Neurodegenerative Disorders

Isamu Ozaki and Isao Hashimoto

Abstract

Scientific evidence of the efficacy of magnetoencephalography (MEG) is currently lacking except in diagnosing epilepsy. In the present study, we performed a review of clinical MEG studies on neurodegenerative disorders using a website bibliographic survey. We searched MEDLINE for MEG papers on neurodegenerative disorders published before December 2014 using the following keywords: a representative diagnosis such as amyotrophic lateral sclerosis (ALS) and magnetoencephalography or MEG. We further narrowed the search to 30 papers based on the levels of evidence and abstract contents; 3 papers on ALS, 18 papers on Parkinson disease, and 9 papers on multiple sclerosis were included in the final review. Levels of evidence were classified as follows: grade I, no paper; grade II, 19 papers; grade III, 2 papers; and grade IV, 9 papers. The majority of studies were conducted with a small number of patients. However, MEG has the advantage of being able to detect spontaneous activity in small brain regions and to measure functional network activity between multiple brain areas or coherent activity between deep brain nuclei and distinct cortical areas. Accordingly, MEG allows the assessment of functional changes in certain diseases and provides novel insights into disease-specific pathophysiology, such as in Parkinson disease.

Keywords

Amyotrophic lateral sclerosis • Parkinson disease • Multiple sclerosis

I. Ozaki (🖂)

I. Hashimoto Kanazawa Institutes of Technology, Tokyo 102-0083, Japan

Faculty of Health Sciences, Aomori University of Health and Welfare, 58-1 Mase, Hamadate, Aomori 030-8505, Japan e-mail: isamu@auhw.ac.jp

12.1 Introduction

Although magnetoencephalography (MEG) provides noninvasive information regarding the localization of epileptic foci in patients with epilepsy, scientific evidence of the utility of MEG in diagnosing various other neurologic diseases, defining disease status, and predicting disease progression or prognosis remains lacking. To evaluate clinical utility of MEG in patients diagnosed as having neurodegenerative diseases, we reviewed clinical MEG studies on neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) or motor neuron disease, multiple sclerosis (MS), Parkinson disease (PD), and spinocerebellar degeneration, based on a website bibliographic survey. We identified MEG studies on neurodegenerative disorders published before December 2014 by searching MEDLINE using the following keywords: a representative diagnosis such as ALS and magnetoencephalography or MEG. We further narrowed the search to 30 papers based on the levels of evidence and abstract contents; 3 papers on ALS, 18 papers on PD, and 9 papers on MS were included in the final review. The evidence level and recommendations were judged in each paper based on published criteria, as shown in Table 12.1 [1]. In this chapter, we provide a brief overview of the clinical and pathophysiological features of each abovementioned neurodegenerative disease and the current status of MEG research related to each disease. We further discuss the present capabilities and future possibilities of MEG in relation to neurodegenerative diseases.

12.2 Magnetoencephalography (MEG) in Amyotrophic Lateral Sclerosis (ALS)

12.2.1 Clinical and Pathophysiological Features of ALS

Amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, is a progressive neurodegenerative disease that affects both upper motor neurons in the brain and lower motor neurons in the spinal cord. *Amyotrophy* means neurogenic

Grade	Level	Type of evidence
А	Ia	Evidence obtained from meta-analysis of randomized-controlled trials
	Ib	Evidence obtained from at least one randomized-controlled trial
В	IIa	Evidence obtained from at least one well-designed controlled study without randomization
	IIb	Evidence obtained from at least one other type of well-designed quasi- experimental study
	Ш	Evidence obtained from well-designed nonexperimental descriptive studies, such as comparative studies, cohort, and case–control studies
С	IV	Evidence obtained from expert committee reports or opinions and/or clinical experiences of respected authorities

Table 12.1 Grades of recommendation and levels of evidence

atrophy of muscle; *lateral sclerosis* refers to the firmness of affected spinal cords reported by pathologists at autopsy [2]. Lateral sclerosis results from the proliferation of astrocytes and the scarring of the lateral columns of the spinal cord in response to degeneration of the corticospinal tracts. Early symptoms of ALS include increasing muscle weakness that predominantly involves the arms and legs, speech, swallowing, or breathing. The disease begins focally and then spreads relentlessly. However, some motor neurons innervating the ocular muscles are spared, and sensation and bladder functions also are spared during the course of the disease. Whereas approximately 10 % of ALS cases are inherited as dominant traits and approximately 25 % of inherited ALS patients result from mutations in the gene encoding superoxide dismutase 1 (SOD1), the cause of sporadic ALS remains unknown [2]. Cognitive impairment in ALS was considered uncommon until recently. Overt frontotemporal dementia (FTD) occurs in approximately 15 % of ALS patients, but up to 50 % of ALS patients are classified as impaired if measured by neuropsychological tests [3].

12.2.2 MEG Study in Patients with ALS

A summary of three MEG studies of ALS is presented in Table 12.2. A number of divergent approaches to the study of MEG in ALS are observed. Pekkonen et al. [4] reported that the P50m and N100m responses or MMNm of auditory-evoked fields, the magnetic counter part of mismatch negativity potentials, are augmented in ALS patients with severe bulbar signs, indicating that auditory processing underlying stimulus detection, and subsequent memory-based comparison processes are abnormal in ALS. Boyajian et al. [5] performed single-dipole analysis of focal deltatheta activity in ALS patients and demonstrated the presence of slow-wave bursts generated from the frontal, temporal, and parietal cortices but not occipital areas, indicating widespread cortical dysfunction in patients with ALS. By performing MEG before and after swallowing in normal controls and ALS patients, Teismann et al. [6] demonstrated event-related desynchronization (ERD) in beta and low gamma bands in bilateral sensorimotor areas in control subjects; however, the ERD response was predominantly on the right side in ALS patients with difficulty in swallowing. This right hemispheric predominance in the activation of the primary motor cortex during volitional swallowing may be the only sign of cortical plasticity in dysphagic ALS patients.

	Journal	Clin Neurophysiol	Am J Phys Med Rehabil	PLoS One
	Year	2004	2008	2011
	Authors	Pekkonen et al.	Boyajian et al.	Teismann et al.
	Grades of recommendation	ß	m	m
	Levels of evidence	41	41	£
	Main results	The amplitudes of the P50m, N100m, and MMNm were larger in patients with ALS than in control subjects. The P50m latencies were shorter in patients with ALS.	The slow-wave activity was produced in all brain regions regions in ALS patients. The slow- wave diplote denity in the cingulate gyrus was correlated with the distability score of upper fimbs. In control subjects, the slow- subjects, the slow- subjects, the slow- tound.	Event-related desynchronization (ERD) in beta band and low gamma band was found in bilateral sensorimotor areas in consolitybets. The ERD response was predominant on the right set in ALS predominant on the right set in ALS predominant with difficulty in swallowing.
	Analysis	The amplitudes or latencies of P50m, N100m, and MMNm were compared.	Regional slow-wave activity was obtained as dipole numbers/min as dipole numbers/min method). Localization method). Localization was based on a subset of 37 channels surrounding the region producing the focal slow-wave activity.	MEGs before and after swallowing were andyzed by means of inne-frequency analysis and synthetic aperture magnetometry (SAM).
	Recording method	Auditory-evoked fields and MMN fields were elicited by standard 700 Hz standard 700 Hz tones with two tones with two and 2.5 s).	Localized dipolar sources of focal delta-due (1-7 Hz) delta-due (1-7 Hz) discharges (100- wave activity) were computed from spontancous MEG (0.1-100 Hz) recorded for 15 min.	EMGs of submental muscles and spontaneous MEG were recorded during a self-paced swallowing.
-	MEG modality (evoked/ spontaneous)	Auditory evoked	Spontaneous	Swallowing evoked
	MEG apparatus	122Ch (61 sites, planar gradiometer), Neuromag (Neuroimag Ltd)	148Ch, Magnes 2500 radial magnetometer and/or axial gradiometer (4D Neuroimaging)	275Ch (Omega 275, CTF Systems Inc., Canada)
	Number of control subjects (gender, mean age, range)	10 (65; 59-76 years)	8 (3983 years)	7 (3F, 4M; 57.6; 41–71 years)
	Number of patients (gender, mean age, range)	10, ALS having bulbar signs without dementia (F 6, M4; 63; 55–78 years)	7, ALS without dementia (F 3, M4:) 41–77 years)	14, bulbar- onset ALS (5F, 9M; 58.9; 44-74 years)
	No	-	0	ς.

 Table 12.2
 MEG study in patients with amyotrophic lateral sclerosis

12.3 Magnetoencephalography (MEG) in Parkinson Disease

12.3.1 Clinical and Pathophysiological Features of Parkinson Disease

Parkinson disease (PD) is a progressive neurodegenerative disorder involving varying combinations of bradykinesia, rest tremor, rigidity, and loss of postural adjustment. The pathological hallmark of idiopathic PD is the degeneration of the dopaminergic cells in the substantia nigra pars compact that project to the striatum and a number of other basal ganglia nuclei. Dopaminergic hypofunction in corticobasal ganglia circuits is thought to underlie the majority of motor disturbances observed in PD as dopamine replacement or dopamine receptor agonist administration has demonstrated efficacy in reducing motor disturbances. Several hypotheses have been proposed to account for the mechanisms underlying the pathogenesis of motor disturbances in PD. Of these hypotheses, the "rate model" [7] or standard "antagonist balance model" [8] posits that the pathophysiology of bradykinesia or hypokinesia is as follows. Loss of dopaminergic input to the striatum gives rise to increased activity of the indirect pathway; the striatum to the external segment of the globus pallidus (GPe) to the subthalamic nucleus (STN) to the internal segment of the globus pallidus (GPi), and decreased activity in the direct pathway; and the striatum to the GPi [7]. Both of these changes would lead to a net increase in the activity of neurons in the GPi and substantia nigra pars reticulata. This increase in basal ganglia output would then result in increased inhibition of thalamocortical and midbrain tegmental neurons and account for the hypokinetic features of PD [7]. A modification of the standard model, known as the "center-surround model," states that the two pathways interact in a center-surround organization similar to that described in the visual system [9]. In this model, desired movement is normally achieved via activation of the direct pathway, and undesired movement due to competing motor programs is suppressed via activation of the indirect pathway that causes surrounding inhibition [9]. In PD, STN hyperactivity leads to excessive inhibition of all movements, both desired and undesired, leading to akinesia and bradykinesia, whereas STN hypoactivity results in decreased suppression of undesired movements and its florid expression in the form of hemiballism [8, 9]. Another emerging hypothesis regarding the pathogenesis of PD is the "abnormal firing pattern model [7, 8]." Studies employing microelectrode recordings from MPTP parkinsonian primates and PD patients have demonstrated abnormal firing pattern in the indirect pathway, i.e., increased oscillatory and synchronized activity in GPi, GPe, and STN neurons [7, 8]. Abnormal neural oscillations in the low frequency range of 5-8 Hz may contribute to rest tremor [7, 8]. In addition, abnormal oscillation and increased synchronization at the 15-30 Hz frequency range (beta band) may either block the normal flow of information through the basal ganglia or be associated with a loss of neuronal selectivity, resulting in the slowing or prevention of movements [7, 8]. High-frequency deep brain stimulation (DBS) has been shown to improve motor deficits in PD patients by suppressing oscillatory beta activity of the basal ganglia.

Recently, an increasing number of studies have examined PD-related non-motor symptoms, such as hyposmia, autonomic dysfunctions, mood disorders, sleep disorders, sensory disorders, and cognitive deficits [10]. In accordance with these clinical symptoms, accumulated pathological studies of sporadic or idiopathic PD patients have provided evidence that PD involves a multisystem degenerative process, possibly initiated by the migration of pathogens to the brain from the stomach or nose [11], involving not only the dopaminergic but also the noradrenergic, serotoninergic, cholinergic, and other systems [10]. During the progression of PD, Lewy bodies have been shown to extend from brainstem areas to multiple cortical areas, leading to the onset of dementia [10]. Therefore, it is now accepted that the majority of PD patients develop cognitive deficits with prolonged disease duration in contradiction to the original description of PD by James Parkinson.

12.3.2 MEG Studies in Patients with Parkinson Disease

A summary of 18 MEG studies of PD is presented in Table 12.3. MEG studies of PD include a number of different approaches dependent on the subject of interest. Eight articles were published by the VU University Medical Center in Amsterdam [12–19]. In earlier studies, the frequency spectrum of spontaneous MEG, or odor stimulus-conditioned MEG, was analyzed in sensor space of ten cortical regions covering the bilateral frontal, central, temporal, parietal, and occipital areas [12, 13]. As a result of sensor-based synchronization likelihood (SL) analysis of odor stimulus-conditioned MEG, Boesveldt et al. [13] found a decrease in beta (β) local SL and an increase in delta (δ) interhemispheric SL in controls but not patients with PD (for further details, see Table 12.3). Gómez et al. [14] also investigated sensor-space functional connectivity in PD patients by obtaining Lempel-Ziv complexity (LZC) values calculated by channel-by-channel analysis and demonstrated lower LZC values in PD patients compared to controls. Recently, Olde Dubbelink et al. [15-18] published four papers focusing on changes in functional connectivity and the possible contribution of such changes to cognitive decline in PD patients. First, the relationship between sensor-space frequency spectral power and cognitive function was assessed with decreased cognitive performance shown to be associated with increased delta (0.5-4 Hz) and theta (4-8 Hz) power, as well as decreased in alpha1 (8-10 Hz), alpha2 (10-13 Hz), and gamma (30-48 Hz) power. Increased motor impairment was found to be associated with increased theta power only [15]. Next, using a beamforming approach to measure brain activity in 78 cortical regions, a source-space analysis was performed to assess frequency spectral power and the phase lag index (PLI), as a measure of functional connectivity, with PD patients and controls examined twice with an interval of 4 years [16]. In patients with PD, longitudinal analyses over a 4-year period revealed decreased alpha1 and alpha2 band connectivity in multiple seed regions associated with motor or cognitive deterioration (see Table 12.3) [16]. In a further study with the same PD patients and controls, Olde Dubbelink et al. [17] applied minimum spanning tree (MST) network analyses as another measure of

		Journal	B rain
		Year	2007
		Authors	Stoffers et al.
		Grades of recommendation	m
		Levels of evidence	8
		Main results	ANCOVA testing showed that patients with dee nove DPD have higher power in the theta and low alpha frequency bands and lequency bands than courtors. In patients with PD, relative spectral power in low alpha hand decreased with increasing disease duration inthe right excipital regions. Spectral power values in any frequency band were uncelated with disease severity or dose of dopaminonimetics, a dight modulatory effect on spectral beta, and left frontal heta, left occipital heta, left occipital beta, and left frontal heta, left occipital heta, left occipital beta, and left frontal heta, left occipital beta, and left frontal heta, left occipital heta, and left frontal heta, left occipital heta, and left frontal heta, and left heta, left occipital
		Analysis	Relative spectral power was calculated into the delta (1-8 Hz), theat (4-8 Hz), theat (1-1 Hz), high alpha (10-1 Hz), high alpha (10-1 Hz), hand gamma (30-48 Hz) bands. Analysis of covariance (ANCOVA) was used (ANCOVA) was used (ANCOVA) was used (ANCOVA) was used (and and the theation of spectral power in de novo PD and to analyze the relation of spectral power of siscase stage, disease severity and effect of doparminomimetics within the whole group of PD patients.
		Recording method	Spontaneous MEGs of Spechs for 13 s were digitally filtered into standard frequency bands, and sensor-space (artifact-free 141 Ch data) analyses were performed for bilateral frontal, central, parietal, temporal, occipital regions.
		MEU modality (evoked/ spontaneous)	Spontaneous
		MEG apparatus	L51Ch, axial gradiometer system (CTF)
1	Number of control subjects	(gender, mean age, range)	21 (F 10, M11: 594±7.3)
		patients (gender, mean age, range)	70 (F 30, M40; 62.1 \pm 6,8) including 18 de novo Parkinson (F 6, M12; 59.4 \pm 7.9)
		No	-

 Table 12.3 MEG in patients with Parkinson disease

(continued)

	Journal	Mapp Map
	Year	2009
	Authors	Boesveldt et al.
	Grades of recommendation	œ
	Levels of evidence	台
	Main results	For the odor stimulus condition, a power endition, a power and a power increase fund a power increase found in bilateral right temporal region in controls. A significant decrease in significant decrease in alpha 1 band was found in bilateral central and parietal regions and the left temporal region in patients with PD. As to analysis of SL, for the stimulus condition in controls, a decrease in beta local SL and an increase in delta an increase in alpha2 interhenispheric SL were found. Control subjects showed an interase in alpha2 miterbenispheric SL and a decrease in the beta band, whereas patients with PD subjects with PD subjects showed an interase in alpha2 and a decrease in the beta band, whereas patients with PD
	Analysis	Relative spectral power was calculated in the delta (1–4 Hz), tabha (4–8 Hz), abha (4–8 Hz), abha (3–9, and gamma (3–048 Hz) bands. Changes in overall spectral power for the odor stimulus compared to the rest continuon were veatuated. Sensor- based synchronization likelihood (SL) was computed.
	Recording method	Spontaneous or ouffactory stimulus-evoked MEGs of around alogically filtered into standard frequency bands, and sensor-space (artifact-free performed for performed for performed for performed for central, parietal, temporal, occipital regions.
	MEG modality (evoked/ spontaneous)	Spontaneous, olfactory evoked
	MEG apparatus	151Ch, axial gradiometer system (CTF)
inued)	Number of control subjects (gender, mean age, range)	21 (F 12, M 9: 56.3; 49–73)
le 12.3 (cont	Number of patients (gender, mean age, range)	61.5; 50–73)
Tab	No	N

Am Biomed Eng	Aging	(continued)
2011	2013	
Gómez et al.	Olde Dubbelink et al.	
<i>α</i>	æ	
<u>а</u>	fi	
PD patients displayed lower LZC values than control subjects for all the MEG channels both with the binary and the binary and the the binary and the expense conversion. There were significant differences in affectures in the former and the even PD patients suggesting that the complexity for spontaneous MEG is lower in PD patients subjects.	In control subjects, global relative spectral power density averaged over all channels was unchanged. In contrast to healthy contrast to healthy contrast to healthy contrast peak frequency. In PD patients, decreasing or equitive performance was associated with increases in delta and the power, as well as decreases in alphal, increasing motor impairment was associated with a the power, whereas increasing motor impairment was associated with a the apparent was	
The Lempel–Ziv complexity (LZC) was obtained by thannel-by-channel analysis, and regional LZC values for 10 cortical regions were compared between the patients with PD and controls.	MEG recordings were performed twice at an approximate 4-year interval. Global power density power density averaged over all channels was obtained for controls and P patients. Relative spectral power was also calculated into the delar ($3, -4$ Hz), theta ($4, -8$ Hz), alpha ($3, -9$ Hz), beta ($3, -9$ Hz), beta and spectral power was also anal/spect.	
Spontaneous MEGs of MEGs of 12 fick-free the sponta of a were recorded. A complexity of magnetic difficult fineral fromal, central, parietal, temporal, was calculated.	MEGs were recorded in an eye-closed resting-state 5 min and 5 min and firguly filtered into standard firequency bands. Sensor-space Sensor-space sensor-space 139 Ch data) analyses were performed for performed for central, parietal, temporal, occipital regions.	
Spontianeous	Spontaneous	
151Ch, axial gradiometer system (CTF)	151Ch, axial gradiometer system (CTF)	
$\begin{array}{c} 20 \ (F 9, \\ M11; \\ 59.4 \pm 7.5) \end{array}$	14 (F 4, M10; 60.0 ± 8.55) at baseline, [12] [12]	
18 (F 6, M12; 60.0 ± 8.0), untreated Parkinson	49 (F 18, M31; 61.4 ± 6.39) at baseline, 70 patients [12]	
m	4	

	Journal	Clin Clin
	Year	2013
	Authors	Olde Dubbelink et al.
	Grades of recommendation	۵
	Levels of evidence	≜
	Main results	In PD patient group, longitudinal analyses over a 4-year period ever a 4-year period alpha 1 and alpha 2 band connectivity for multiple seed regions that were associated with motor or cognitive deterioration. Untreated PD patients had lower archipocampal and temporal delta band higher temporal dighal band connectivity compared to controls.
	Analysis	MEG recordings were performed twice at an approximate 4-year interval. Relative spectral power was calculated into the delta (6), theid (9), low alpha (6), heid (9), low alpha (6), heid (9), low alpha (6), heid (9), alpha (6), heid (9), low alpha (6), heid (9), low alpha (6), heid (9), low alpha (6), heid hase lag index (PLI) was obtained from 78 ortical regions and averaged for parahitpocampal, inferior and middle temporal pole, orbitofrontal, pole, orbitofrontal, pole, orbitofrontal, pole, orbitofrontal, pole, orbitofrontal, pole, orbitofrontal, pole, orbitofrontal, pole, orbitofrontal, pole, arbitofrontal, pole, arbitofrontal, p
	Recording method	MEGs were evecoted in an evectored in an resting-state condition for 5 min. Five epochs for 13 st mered into frequency bands. Source-space analyses were performed for 78 cortical regions.
	MEG modality (evoked/ spontaneous)	Spontaneous
	MEG apparatus	15 ICh, axial gradiometer system (CTF)
inued)	Number of control subjects (gender, mean age, range)	14 (F 4, M10; 60.04 8.55) at base line, 21 controls [12]
ie 12.3 (cont	Number of patients (gender, mean age, range)	43 (F 15, M28; 15, ±6.45) including 12 de novo Parkinson at baseline, 70 patients [12]
lab	°z	v)

	- Ē	urology	ontinued)
	41 B	14 Ne))
	50	50	
	Olde Dubbelink et al.	Olde Dubbelink et al.	
			-
	m ش	m	
	£	4II	
	Brain networks in early-stage untreated PD patients displayed lower local clustering with preserved path length in the delta frequency band in crouparison to controls. MSTs of untreated PD patients revealed lower leaf number and lower tree hierarchy in the alpha2 (Frequency band when compared to controls. Longitudinal analysis over a 4-year period in PD patients showed a progressive decrease in local decrease in path clustering in multiple frequency bands trequency bands	Of the neurophysiologic matkers, beta power less than median was the strongest PDD predictor, followed by peak frequency less than median and theta power more than median. Of the cognitive test battery,	
cingulate, and middle frontal regions.	MEG recordings were performed twice at an approximate 4-year interval. Relative spectral power was calculated into the delta (0.5 - 4 Hz), theta delta (0.5 - 4 Hz), theta delta (0.5 - 4 Hz), theta (1.9 - 13 Hz), beta (1.9 - 13 Hz), the phase finde, the phase lag index (PLI) was obtained from N8 connectivity, the phase lag index (PLI) was obtained from N8 connectivity the phase lag index (PLI) was obtained from N8 connectivity.	Baseline cognitive assessments and MEG recordings were analyzed in relation to PDD-related dementia (PDD) conversion over a 7-year period. Relative spectral power was calculated into the delta (0.5 - 4 Hz), theta	
	MEGs were recorded in an eye-closed resting-state eye-closed resting-state condition for 5 min. Five epochs for 13 s were digitally filtered into standard firequency bands. Source-space analyses were analyses were analyses were performed for regions.	MEGs were recorded in an resting-state resting-state condition for 5 min. Five epochs for 13 s were digitally litered into standard frequency bands.	
	Spontaneous	Spontaneous	
	151Ch, axial gradiometer system (CTF)	151Ch, axial gradiometer system (CTF)	
	14 (F 4, M10; M10; Co 0.0 ± 8.55) at basine, [12] [12]	Ĵ	
	43 (F 15, M28; 61.5 ± 6.45) including 12 de novo Parkinson at baseline, 70 patients [12]	 63 (F 24, M39) at baseline. baseline. 19 patients (F 4, M15;66.0±5.19) out of 63 converted to PD-related dementia (PDD). 44 patients (F 20, 44 patients (F 20, 44 patients (F 20, 10) 	
	¢	~	1

Journal		Clin Neurophysiol
Year		2011
Authors		Vardy et al.
Grades of recommendation		щ
Levels of evidence		٩I
Main results	performance on a posterior (pattern recognition memory score less than median) and a fronto- executive (spatial span scoreless than median) task most median) task most arrongly prediced dementia conversion. The combination of impaired fronto- executive task performance and low beta power was associated with the highest dementia risk.	PD patients displayed more power in the alpha band and less in the best band during both rest and motor activity, as compared to controls. The result implied a slowing of oscillatory activity of the primary motor cortex in PD.
Analysis	(4–8 H2), Iow alpha (8–10 Hz), high alpha (10–13 H2), beta (10–13 H2), beta (10–13 H2), and gamma (30–48 H2) bands for 78 cortical regions. Among the cognitive and narkers, predictive factors for converting PDD were evaluated.	Left M1 sources during right hand morement were enorment were enormer of by synthetic aperture aperture aperture activities were assessed via the signal event-related signal event-related field, hower, and phase uniformity.
Recording	Source-space analyses were performed for 78 cortical regions.	MEGs were rhythmic rhythmic squeezing movement of the right hand, under right hand, under regift pacd condition or regularly cued condition.
MEG modality (evoked/ spontaneous)		Movement- related magnetic fields
MEG apparatus		151Ch (third-order synthetic gradiometers) (CTF)
Number of control subjects (gender, me an age, range)		11 (F 3, M8; 62.2 ± 8.4)
Number of patients (gender, mean age, range)	M 24;60.9 ± 6.48) did not	11 (F 3, M8; 61.0 ± 15.5)
No		∞

Physiol	Aov Disord	continued)
2012 J	2013 1	
Pollok et al.	Pollok et al.	
<u>n</u>	<u>m</u>	
II	911	
In control subjects, beat afterquency power of the hemisphere contralateral to isometric contraction was lower as compared to the ipsilateral side. This pattern appeared to be attern appeared to be atternated in de novo PD patients and reversed in medicated PD patients. Contralateral beta power was correlated with motor rimpatients. DICS analysis showed that cortical sources coherent with EMG from the extenso digitorum bear frequency were lorearm muscle at bera frequency were corresponding to Brodmann area 4.	The EMG power spectral analysis during off (resting tremor period) revealed discernible peaks at tremor frequency (4.8 Hz) of 4 Hz). DICS analysis showed the cohrent activity in the contralateral	
Motor task was one minute isometric contraction of the forearm of the more severely affected side at about 20 % of maximal contraction maximal contraction maximal contraction servesh bilateral power and coherence between bilateral power and coherence between bilateral power and coherence lifter algorithm model of each model of each model of each may so of dynamic inaging of coherent sources (DICS) was applied.	Power and coherence spectra between MEG and EMG were accluated. For source occalization, using a spatia filter algorithm and a realistic head model of each individual, the analysis tool dynamic imaging of coherent sources (DICS) was applied.	
Spontaneous MEGs and electromyograms (EMG)from the extensor digitorum digito	Spontaneous MEGs and electromyograms (EMG)from the extensor digitorum digitorum digitorum digitorum digitorum digitorum digitorum stantaneously were simultaneously recorded for	
Spontaneous and movement related	Spontaneous and movement related	
306Ch(102sites, planar gradiometer), Neuromag (Eleckta Oy)	122Ch (61 sites, planar gradiometer system), Neuromag (Neuroimag Ltd)	
10 (age matched)	11 (28.5±2.4)	
10 de nove PD (F 3, M7; 43–72) 10 with medication (F 3, M7; 44–69)	10 (F 4, M6; 60.0 ± 3.7)	
٥	10	

12 Neurodegenerative Disorders

Number of comon subjects. MEC moduliy (gends. MET moduliy (gends.	2		(noniti										
No Imenan sgent means, instance, ins		Number of	Number of control subjects (gender,		MEG modality				Levels	4 1 1 1			
5 min during off primary sensorimotor and on, respectively, cerebra-cerebra coherence analysis revealed several other revealed several other reveral other revealed several other revealed several other revea	No	patients (gender, mean age, range)	mean age, range)	MEG apparatus	(evoked/ spontaneous)	Recording	Analysis	Main results	or evidence	Grades of recommendation	Authors	Year	Journal
and on, crespectively, crespectively, crespectively, cretterer ergin, conternor and sist contents and sist contents any presentation content and any statistic context and doubte the term or frequency premotor context supplementary motor area, secondary somators short context supplementary motor area, secondary somators sort context and partents context and that and that and that and that an						5 min during off		primary sensorimotor					
respectively. Using the free metric region to the regulation and the free metric region to the relation of the						and on,		cortex (M1/S1).					
reference region, corber-cerebral coherence analysis revealed acvertal other areas oscillating at double the tremor frequentary monor area, secondary somatosensory correx, propertion parterial cortex, and thatmus contralateral that and patients of parterial cortex, and that areas contralateral to the EMG recorded site, and patients of parterial cortex coupling was decerbed with improvement with						respectively.		Using M1/S1 as					
cerebro-cerebral contentions and ysis revealed several other areas oscillating at doubte the tremor frequency: promotion frequency: promotion cortex, suphementary motor area, accondary somatosensory cortex, posterior parietal cortex, and thalmus contralateral to the EMG recorded sist, and thalamus contralateral cortex posterior parietal cortex, and thalmus contralateral cortex posterior parietal cortex, and parietal cortex, and thalmus cortex and parietal cortex, and thalmus contralateral cortex posterior parietal cortex, and thalmus contralateral cortex posterior parietal cortex, and parietal corte								reference region,					
obtenence analysis revealed several other revealed several other areas oscillating at double the tremor frequency: premotor cortex, supplementary motor area, secondary somatosensory cortex, posterior partiell cortex, and thalmus contradateral to the EMG recorded site, and pisilareral corpuing was decreased with inprovement of tremor. The results were siting motioning resting								cerebro-cerebral					
revealed several other revealed several other areas oscillaring at double the tremor request, supplementary motor area, secondary cortex, supplementary motor area, secondary somatosensory cortex, posterior parietal cortex, and thalamus contralateral to the EMD recorded site, and pisibareral cortebulum in all patients. Coherence strength of each cerebelum in all patients. Coherence strength of each cerebelum in all patients								coherence analysis					
ares oscillating at double the tremor frequency: premotor correx, supplementary motor area, secondary somatosensory correx, posterior parietal cortex, and thalamus corretateral to the EMG recorded site, and ipsilateral cerebra-cerebral coupling was decreased with improvement of thentity subjects minicking resting								revealed several other					
double the tremor frequency: premotor cortex, supplementary motor area, secondary								areas oscillating at					
frequency: premotor cortex, supplementary motor area, secondary somatosensory cortex, pastrior parietal cortex, and thalamus contralisateral to the EMG recorded site, and ipsilateral cerebelan-cerebral coupling was decreased with improvement of remor. The results were sinilar in healthy subjects								double the tremor					
cortex, supplementary motor area, secondary somasensory somasensory cortex, posterior partetal cortex, and thalmus contralateral in all patients. Coherence strength of each cerebral coupling was decreased with improvement of trenor. The results were similar in healthy subjects								frequency: premotor					
motor area, secondary motor area, secondary somatosensnoy cortex, posterior partielal cortex, and halamus contralateral to the EMG recorded site, and ipsilateral ecerebellum in all patients. Coherence strength of each comping was decreased with improvement of tremor. The results were similar in healthy subjects minicking resting								cortex, supplementary					
somatosensory cortex, posterior parietal cortex, posterior parietal cortex, and thalamus contralateral to the EMG recorded site, and ipsilateral cerebellum in all patients. Coherence strength of each cerebra-cerebral coupling was decreased with improvement of terror. The results were similar in healthy subjects minicking resting								motor area, secondary					
cortex, posterior parietal cortex, and thalamus contralateral to the EMG recorded site, and ipsilateral cerebellum all patients. Coherence strength of each cerebral coupling was decreased with improvement of remor. The results were sinilar in healthy subjects								somatosensory					
parietal correx, and halamus contralateral to the EMG recorded site, and ipsilateral erebelum in all patients. Coherence strength of each cerebra cerebral coupling was decreased with improvement of tremor. The results were similar in healthy subjects minicking resting								cortex, posterior					
thalmus contralateral to the EMG recorded site, and ipsilateral cerebellum in all patients. Coherence strength of each cerebral coupling was decreased with improvement of tremor. The results were similar in healthy subjects minicking resting								parietal cortex, and					
to the EMG recorded site, and issilateral cerebellum in all patients. Coherence strength of each cerebral coupling was decreased with impovement of trenor. The results were similar in healthy subjects minicking resting								thalamus contralateral					
erebult in all series and series								to the EMG recorded					
cerebellum in all patients. Coherence strength of each cerebra-cerebal coupling was decreased with improvement of tremor. The sulls were similar in healthy subjects minicking resting								site, and ipsilateral					
patients. Coherence strength of each cerebral coupling was decreased with improvement of tremor. The results were similar in healthy subjects minicking resting								cerebellum in all					
strength of each cerbor-cerbral coupling was decreased with improvement of ternor. The results were similar in healthy subjects minicking resting								patients. Coherence					
cerebra-cerebral coupling was decreased with improvement of tremor. The results were similar in healthy subjects minicking resting								strength of each					
coupling was decreased with improvement of tremor. The results were similar in healthy subjects minicking resting								cerebro-cerebral					
decreased with improvement of tremor. The results were similar in healthy subjects minicking resting								coupling was					
improvement of tensor. The results were similar in healthy subjects minicking resting minicking resting								decreased with					
tremor. The results were similar in healthy subjects minicking resting								improvement of					
were similar in healthy subjects minicking resting								tremor. The results					
healthy subjects minicking resting								were similar in					
minicking resting								healthy subjects					
								mimicking resting					
								tremor.					

		ed)
Brain	J Neurossi	(continue
2011	2012	
Litvak et al.	Litvak et al.	
<u>ه</u>	<u>m</u>	
2	2	
Two spatially and spectrally separated cortico-subhalamic networks were identified. A temporoparisatal- bearinsten network, whi (7-13 Hz) band, while STN in the alpha (7-13 Hz) band, while a predominantly frontal network, was coherent in the beta coherent in the beta ($12-35$ Hz) band. Dopaminergic Dopaminergic beta coherence betwork, by increasing beta coherence betwork of prefrontal ortrex.	There were discrete peaks in MI and STN and at 300–400 Hz and at 300–4000 Hz. All these power peaks increased with either synchronous or expendial finger movement and levodopat reatment. G0–90 Hz was coherent with activity at G0–90 Hz was at 50–90 Hz tended to drive gamma activity in M1.	
For each patient, coherence was calculated at the scalculated at the each STN-LFP channel and each fammel and each fammel and each fammel. To locat coherent sources conternat sources (DICS) teanforming method was used to calculate coherence between each STN-LFP conterne each sources of points representing potential sources within the brain.	Source localization of the primary motor hand area performed using the dynamic imaging of dynamic imaging of dynamic imaging of coherent sources (DICS) beamforming method. Spectral power in the contralateral MI and STN and the contralateral MI and STN and the contralateral MI and synchronous or where evaluated during synchronous or sequential finger time series were estimated with a linearly constrained minimum variance (LCMV) beamformer.	
Subthalamic nucleus (STN) electrode local field potential (LFP) and MEGs were were simultaneously recorded between 2 and 6 days postoperatively.	Subthalamic mucleus (STN) mucleus (STN) electrode local field potentias, and EMGs of the right and left first interosecous muscles were simultaneously between 2 and 7 days postoperatively.	
Spontaneous	Spontaneous and movement related	
275 Ch (CTF/VSM MedTech, Vancouver, Carada)	275 Ch (CTF/VSM MedTech, Vancouver, Canada)	
Ĵ	Ĵ	
 (F 2, M10; 35,6;40-61). 53,6;40-61). 53,6;40-61). 53,56;40-61). 53,6;40-61). mulation transformed to the subthalamic subthalamic for the subthalamic transformed to the subthalamic subthalamic for the subthalamic transformed to the subthalamic for t	17 (F 6, M11; 55 \pm 7; 40–66), 17 patients who underwent who underwent authulamic subthalamic nucleus deep brain aucleus deep brain electrode implantation prior to deep brain therapy. 16 patients underwent underwent bilateral operation	

	Journal	Neuroimage
	Year	2011
	Authors	Hirschmann et al.
	Grades of recommendation	۵
	Levels of evidence	2
	Main results	Significant coherence between STN-LFPs and MEG sensors, lateralized to the ipsilateral side with respect to the STN, was found in the high beta band in all subjects. Alpha alpha, low beta, and high beta band in all subjects. Alpha subjects. Alpha subjects. Alpha subjects. Alpha alpha, low beta, and high beta band in all subjects. Alpha subjects. Alpha subjects. Alpha subjects. Alpha alpha, low beta, and high beta band and high beta 20–35 Hz sources maxima were clustered in the ensnotion cortex, and premotor cortex, ipsilateral to the STN.
	Analysis	For each patient, the five MEG sensors showing the highest mean coherence between STN-LFP were identified, and were identified, and were gent corrical spectra were averaged. To locate coherent corrical dynamic imaging of coherent corrical dynamic imaging of coherent corrical dynamic inaging of coherent corrical grand a 3D grid of points representing potential sources within the brain.
	Recording method	Subthalamic electrode local field potentials (LFP) and MEGs were simultaneously recorded the day after electrode implantation.
	MEG modality (evoked/ spontaneous)	Spontaneous
	MEG apparatus	306Ch(102sites, planar gradiometer , nagnetometer), Nuromag (Eleckta Oy)
(nonIII	Number of control subjects (gender, mean age, range)	Ĩ
יווהה) כיידו א	Number of patients (gender, mean age, range)	9 (F 3, M6; 64:47-75). The gunderwent underwent subthalamic nucleus deep brain raimulation electrode bilaterally prior to deep brain stimulation (DBS) therapy. Data from the patient was discarded
901	°Z	m

Neuroimage																								(continued)
2013																								
Hirschmann	et al.																							
В																								
N																								
The beta coherence	between STN-LFP	and M1 was identified	during motor task and	decreased after	levodopa medication.	M1-muscular	coherence in alpha	and beta frequency	bands was decreased	by movement but	unchanged by	medication. STG	showed strong alpha	band coherence with	STN in all	experimental	conditions, and	STG-STN coherence	was neither	modulated by	administration of	levodopa nor by	motor task.	
For three recording	conditions of resting,	holding the hand, and	moving task (opening	and closing one's	fist), two cortical	regions, M1 and	superior temporal	gyrus (STG), were	investigated in terms	of coherence between	the STN-LFP or EMG	channel. To locate	coherent cortical	sources spatially, the	dynamic imaging of	coherent sources	(DICS) beamforming	method was used.						
Subthalamic	nucleus (STN)	electrode local	field potentials	(LFP), MEGs,	and EMG of the	extensor	digitorum	communis and	flexor digitorum	superficialis	muscles of both	upper limbs were	simultaneously	recorded the day	after electrode	implantation.	1							
Spontaneous	and movement	related																						
306Ch(102sites,	planar gradiometer),	Neuromag (Eleckta	Oy) MEG signals of	204 gradiometer	channels were used	for the analysis																		
<u>(</u>)																								
10 (F 4, M6; 64.1;	53-75). The	oatients who	underwent	subthalamic	nucleus deep brain	stimulation	electrode	mplantation	vilaterally prior to	leep brain	stimulation (DBS)	herapy												
14 1	43	1	<u>ر</u>	s	н	s	ê		<u> </u>	5	s	t												

1		•	-								ŀ		i.
		Number of											
		subiects											
Jun	iber of	(gender.		MEG modality				Levels					
atie	nts (gender,	mean age,		(evoked/	Recording			of	Grades of				
near	n age, range)	range)	MEG apparatus	spontaneous)	method	Analysis	Main results	evidence	recommendation	Authors	Year	Journal	
12	M 11; 64.5;	Ĵ	306Ch(102sites,	Spontaneous	Subthalamic	Epochs containing	For the sensor level	N	В	Hirschmann 2	2013	Brain	
5	74). The		planar gradiometer),	and movement	nucleus (STN)	spontaneous rest	analysis, prior to			et al.			
atie	ents who		Neuromag (Eleckta	related	electrode local	tremor and tremor-	sudden increases of						
pu	erwent		Oy) MEG signals of		field potentials	free epochs were	tremor amplitude,						
ubt	halamic		204 pradiometer		(LFP). MEGs.	analvzed. A set of	MEG heta nower						
0	eus deen hrain		channels were used		and EMG of the	24 oradiometers	decreased When						
	unlation		for the and hole		auto curra auto	- Branchister							
Ξ.	IULATION		TOT THE ANALYSIS		extensor	covering	tremor amplitude						
ĕ	ctrode				digitorum	sensorimotor cortex	increased, MEG						
Ē	plantation prior				communis and	contralateral to the	power at tremor						
č	leen hrain				flexor divitorum	tremulous limb was	frequency increased						
5 1	mulation (DDC)				monden mon	colocted a priori ac	Ear the source land						
Ξ.					superiiciaits	selected a priori as							
þ	rapy. 7 patients				muscles of both	MEG sensors of	analysis, increases						
ve.	re bilaterally				upper limbs were	interest to investigate	in cerebral						
ĕ	ated				simultaneously	cerebro-muscular	synchronization were						
					recorded the day	coherence. To locate	observed in a rest						
					after electrode	coherent cortical	tremor network						
					arrier erectione	CONCIENT COLLICAT	Include Includes						
					implantation.	sources spatially, the	including subthalamic						
						dynamic imaging of	nucleus, primary						
						coherent sources	motor, premotor, and						
						(DICS) beamforming	posterior parietal						
						method was used.	cortex contralateral to						
							the tremulous limb						
							Analysis of the						
							our to stefmust						
							imaginary part of						
							coherency revealed						
							tremor-dependent						
							coupling between						
							these cortical areas at						
							tremor frequency and						
							double the tremor						
							frequency. The						
							tremor-associated						
							INTO IL COMPANY						
							increase in STN-						
							cortex coherence was						
							positively correlated						
							with the tremor-						
							associated increase in						
							muscle activity.				_		

226

Hum Brain Mapp	Clin Neurophysiol	(continued)
2011	2012	
Airaksinen et al.	Airaksinen et al.	
<u>m</u>	<u>m</u>	
2	2	
The ipsilateral auditory N100m responses in the right hemisphere were augmented by 10 % following DBS ON. Contralateral N100m responses and somatosensory P60m responses also had a tendency to increase when bilateral DBS was on.	When DBS was turned on, the mean 6–10 Hz range (mu rhythm) and in the lower and ligher pericentral cortical regions decreased nonsignificantly. UPDRS (Unified Parkinson's Disease Rating DBS on, UPDRS (Unified Parkinson's Disease Rating DBS on, UPDRS (Unified ataing DBS on, UPDRS (Unified ataing DBS of, UPDRS (Unified Parkinson's Disease Rating Scale) motor disability rigidity scores correlated with 6–10 Hz and 12–20 Hz and DBS off, UPDRS action tremor scores correlated with the pericentral 6–10 Hz and 12–20 Hz and 12–20 Hz and DBS off, UPDRS action tremor scores correlated with the pericentral 6–10 Hz and 12–20 Hz and occipital alpha source strength when eyes were open.	
1-kHz sinusoidal 50-ms tone pips, electrical shocks to the median nerve the median nerve the median nerve the median fight were randomly given with irregular with irregular miterstimulus interval (ISI) (the mean ISI, 5.5 s) N100m responses of auditory- response of auditory- somatosensory- evoked fields were analyzed.	The spatiotemporal signal space separation (SSS) method was applied to reduce the artifact by DBS when by DBS when by DBS when the DBS when by DBS when conding MEGs. Spontameous MEG activity was recorded for 3 min when the present of a min with eyes open.	
Auditory or somatosensory- evoked magnetic fields were compared between DBS ON and off state.	MEGs when eyes closed or opened were compared between DBS ON and off state.	
Auditory, somatosensory, and visual evoked	Spontaneous	
306Ch(102sites, planar gradiometer + magnetometer), Neuromag (Eleckta Oy)	306Ch(102sites, planar gradiometer + magnetometer), Neuromag (Eleckta Oy)	
Ĵ	Ĵ	
12(F 6, M6; 62; 49–75) The patients who underwent subthalamic nucleus deep brain aimulation electrode implantation bilaterally for deep brain stimulation (DBS) therapy	11(F 6, M5; 61; 947-75) The patients who underwent subthalamic undersu deep brain stimulation electrode electrode bilaterally for deep brain stimulation (DBS) therapy	
٢		1

	Journal	Clin Neurophysiol
	Year	2014
	Authors	Airaksinen et al.
	Grades of recommendation	<u>م</u>
	Levels of evidence	2
	Main results	Corticomotor coherence (CMC) were found in 15 out of 19 patients. CMC peaks for 6–13 Hz peaks for 6–13 Hz peaks for 4–6 Hz were found in 5 patients. The effect of DBS on these corticomotor coherence peaks was variable among patients.
	Analysis	Power spectral density values of MEG and rectified EMG and the MEG-EMG coherence spectra were calculated for each patient both in the DBS on and off conditions. The eases revel analysis for 4–6 Hz, 6–13 Hz, and 13–25 Hz and 13–25 Hz and 13–25 Hz inducenter pairs requiremed for a selection of 15 gradometer pairs over the sensorimotor over the sensorimotor over the activated hand.
	Recording method	Spontaneous electromyograms (EMG) from the extensor carpi extensor carpi extensor carpi extensor carpi muscle were simultaneously recorded for 1 min during wrist extension period and 20 s respectively. Effects of DBS. Effects of DBS on and off were investigated.
	MEG modality (evoked/ spontaneous)	Spontaneous and movement related
	MEG apparatus	306Ch(102sites, plaang radiomter + Neuromag (Eleckta Oy)
(222)	Number of control subjects (gender, mean age, range)	I
	Number of patients (gender, mean age, range)	19(F 4, M 15; 57; patients who underwent underwent subthalamic nucleus deep brain atimulation electrode implantation implantation brain attrundation (DBS) therapy
2	No	<u>8</u>

functional connectivity and found lower leaf number and lower tree hierarchy in the alpha2 (10–13 Hz) frequency band in PD patients compared to controls [17]. A 4-year longitudinal analysis in PD patients demonstrated progressive decreases in local clustering in multiple frequency bands concurrently with decreases in path length in the alpha2 (10–13 Hz) frequency band [17]. More recently, Olde Dubbelink et al. [18] analyzed the results of MEG testing and cognitive functions in PD patients over a 7-year period and evaluated predictive factors for the development of PD-related dementia (PDD). The authors concluded that the combination of impaired fronto-executive task performance and low beta power was associated with the highest dementia risk [18]. Vardy et al. [19] assessed primary motor cortex activity during rest and rhythmic movement in PD patients. This study reported that PD patients displayed more power in the alpha (7–11 Hz) band and less power in the beta (13–30 Hz) band during both rest and motor activity compared to controls, indicating that the slowing of neural activity is a structural, systemic phenomenon in PD that progresses over time [19].

Several MEG studies from other institutes have used different methods to investigate the pathophysiology of movement disorders in PD. One approach for understanding the mechanisms of tremor or hypokinesia is the simultaneous recording of spontaneous MEG and electromyograms (EMG) from the hand muscle of the more severely affected side in PD. Pollok et al. measured coherent activity between the primary motor hand area (M1) and the hand muscle EMG or between multiple motor-related brain areas during muscle contraction or rest [20] with or without the administration of the study drug [21]. In control subjects, the beta frequency power of M1 contralateral to movement was decreased during muscle contraction compared to the ipsilateral side [20]. This pattern appeared to be attenuated in de novo PD patients and fully reversed in medicated PD patients [20]. During the period without drug administration in PD patients, EMG power spectrum analysis revealed discernible peaks at the tremor frequency (4.8 Hz) and double the tremor frequency (9.4 Hz) [21]. Coherent activity at double the tremor frequency was found in the contralateral primary sensorimotor cortex (M1/S1) and several other areas: the premotor cortex (PMC), supplementary motor area (SMA), secondary somatosensory cortex (S2), posterior parietal cortex (PPC), and thalamus contralateral to the EMG recorded site, and ipsilateral cerebellum [21]. The coherence strength of each cerebro-cerebral coupling was seen to decrease with improvements in tremor during drug administration (Table 12.3) [21].

Deep brain stimulation (DBS) neurosurgery allows the assessment of the interactions between populations of neurons in the human cerebral cortex and basal ganglia in PD patients. Another approach for understanding the pathogenesis of motor disturbances in PD is the scrutinization of cortico-basal ganglia network activity. There have been five papers that have used simultaneous recording of MEG and local field potentials (LFP) of the STN to map cortico-STN coherence. Litvak et al. [22] identified two spatially and spectrally separated cortico-STN networks: a temporoparietal-STN network in the alpha (7–13 Hz) band and a predominantly frontal-STN network in the beta (15–35 Hz) band. Dopaminergic medications were shown to modulate the resting beta network by increasing beta

coherence between the STN region and ipsilateral prefrontal cortex. Litvak et al. [23] further investigated cortico-STN coherence in PD patients during the performance of synchronous and sequential finger movements or during the administration of the dopamine prodrug, levodopa. Discrete peaks in M1 and STN power were observed at 60-90 Hz and at 300-400 Hz. All power peaks increased with either synchronous or sequential finger movement and levodopa treatment. Only STN activity at 60-90 Hz was coherent with activity in M1. Based on directionality analysis, STN gamma activity at 60-90 Hz was found to contribute to gamma activity in M1 [23]. Hirschmann et al. also studied cortico-STN coherence using simultaneous MEG and STN-LFP recording [24–26]. During rest, coherent activity in the low (12-20 Hz) and high (20-35 Hz) beta range was observed in the sensorimotor and premotor cortex on the ipsilateral side to STN-LFP recording [24]. Coherence in the alpha range (7–12 Hz) was observed at various locations in the ipsilateral temporal lobe [24]. During the motor task, beta coherence between STN-LFP and M1 was identified and seen to decrease following the administration of levodopa [25]. M1-muscular coherence in alpha and beta frequency bands was decreased by movement but was unchanged by medication [25]. This study also observed strong alpha band coherence between the superior temporal gyrus (STG) and STN in all experimental conditions and that motor tasks and the administration of levodopa had no effect on STG-STN coherence [25]. Hirschmann et al. further investigated cortical activity coherent to EMG spectral power produced by tremor [26]. Increases in cerebral synchronization at tremor frequencies were observed in a rest tremor network that included the STN, M1, premotor, and posterior parietal cortex contralateral to the tremulous limb [26]. Analysis of the imaginary part of coherency revealed tremor-dependent coupling between these cortical areas at tremor frequency and double the tremor frequency [26].

An alternative approach to the investigation of PD pathophysiology was undertaken by Airaksinen et al. [27-29] in a study comparing brain responses with or without DBS. In this study, a spatiotemporal signal space separation (tSSS) method was used to reduce DBS artifacts during MEG recording. When assessing auditory-evoked fields, the ipsilateral auditory N100m responses in the right hemisphere were found to be augmented by 10 % during DBS [27]. A trend toward increased contralateral N100m responses and somatosensory P60m responses was observed in response to bilateral DBS [27]. Spontaneous MEG during DBS demonstrated a nonsignificant decrease in mean source strength at the 6–10 Hz range (mu rhythm) and lower and higher beta ranges over pericentral cortical regions [28]. During DBS, the severity of rigidity correlated with 6-10 Hz and 12–20 Hz somatomotor source strengths when patients had their eyes open [28] (Table 12.3). When DBS was not being applied, action tremor severity correlated with pericentral 6–10 Hz and 12–20 Hz and occipital alpha source strength when patients had their eyes open [28]. By recording MEG during rest and movement, Airaksinen et al. [29] demonstrated sensor-space corticomotor coherence peaks at 13-25 Hz in 15 out of 19 PD patients. In addition, corticomotor coherence peaks at 6-13 Hz and 4-6 Hz were observed in 15 and 5 patients, respectively. The effect of DBS on corticomotor coherence peaks was variable among individual patients [29].

12.4 Magnetoencephalography (MEG) in Multiple Sclerosis (MS)

12.4.1 Clinical and Pathophysiological Features of Multiple Sclerosis (MS)

Multiple sclerosis (MS) is a common chronic demyelinating disease of the central nervous system (CNS) with a highly variable clinical course. MS is characterized by the spatial and temporal progression of lesions affecting the brain, spinal cord, and/or optic nerves [30]. Exacerbations and remissions occur frequently. The symptoms and signs of MS usually indicate the presence of more than one lesion, and some of them may be transient. Multiple sclerosis is a clinical diagnosis that requires appropriate expertise to confirm the spatial and temporal progression of CNS lesions and exclude other possible diseases [30]. Magnetic resonance imaging (MRI) is essential for the diagnosing of MS as it allows the visualization of MS plaques representing white matter inflammation, demyelination, and glial scarring (sclerosis). The identification of oligoclonal immunoglobulin G bands in cerebrospinal fluid may support the diagnosis of MS. Although autoimmune processes are thought to underlie the pathogenesis of MS, there are currently no serological tests with utility in diagnosing MS [30]. For the 10-20 years before MRI was introduced as a diagnostic tool for MS, evoked potentials were used as an important diagnostic tool for the detection of clinically silent CNS lesions. Currently, evoked potentials are considered less sensitive than MRI. However, visual-evoked potentials are still considered to have utility in providing evidence of optic nerve demyelination through the demonstration of markedly delayed P100 wave of normal amplitude [30].

12.4.2 MEG Studies in Patients with Multiple Sclerosis

A summary of nine MEG studies of MS is presented in Table 12.4. Two different approaches to the use of MEG to study MS were identified. Three of the nine papers focus on cortical somatosensory network activity following electrical finger stimulation or median nerve stimulation. Tecchio et al. [31] identified source activity representing the thumb and little finger at around 24 ms poststimulus and estimated sensory cortical connectivity as the phase locking between these source activities in the gamma frequency range. In this study, an altered pattern of the intracortical connectivity index was observed in MS patients (see Table 12.4) compared to controls. Dell'Acqua et al. [32] examined the profiles of M20 and M30 responses following median nerve stimulation in MS patients. Although the latency and signal strength for M20 were not affected, the analysis of M30 responses demonstrated prolonged latency, decreased signal strength, and asymmetry of right and left M30 dipole locations [32]. Hagiwara et al. [33] analyzed contralateral SI and bilateral SII responses following median nerve stimulation. In MS patients, the mean latencies of all contralateral SI responses were prolonged, the signal strength of the N20m

Journal	Brain	Hum Brain Mapp
Year	2008	2010
Authors	Tecchio et al.	Dell'Acqua et al.
Grades of recommendation	٣	m
Levels of evidence	4 <u>1</u>	911
Main results	Altered pattern of the intracortical connectivity index was found in MS patients. The intracortical connectivity index in the primary sensory networks devoted to the thum in the left humisphere was higher than those related to the little finger in controls. This pattern variabed in MS patients.	The latency and signal strength for M20 were not M20 were not patients. The analysis of M30 response in MS patients showed patients showed patients showed patients showed patients showed patients of regra asymmetry of right and left M30 dipole locations.
Analysis	Source activity representing the thumb and little fundom and little finger was identified at around 24 ms prostimulus. The sensory contical the phase prostimated as the phase locking between these source activities in the gamma gamma range.	The strength and location for equivalent current dipoles of M20 and M30 were analyzed.
Recording	Somatosensory- evoked fields were recorded from the right/ left central scalp by electrical scale of the thumb or little finger of hand the right/left hand (interstimulus interval of 641 ms).	Somatosensory- evoked fields were recorded from the right/ left central scalp by electrical simulation of the right/left median ner vrist (at around 2 Hz).
MEG modality (evoked/ spontaneous)	Somatosensory evoked(fuumb or fittle finger or fittle finger stimulation)	Somatosensory evoked (median nerve)
MEG apparatus	28-channel system	28.channel system
Number of control subjects (gender, mean age, range)	14 right handed (F 7, M 7;38 ± 8)	Control 21 (F 16, M 5; 38 ± 12)
Number of patients (gender, mean age, range)	21, right handed the remitting form of MS (RRMS) (EDSS<3.5) (F 16, M5; mean age 40)	21, the relapsing form of MS (RRMS) (EDSS<3.5) (F 16, M 5; 39 ± 9)
No	_	0

 Table 12.4 MEG in patients with multiple sclerosis

Neuroimage	continued)
2010	
Hagi wara et al.	
m	
£	
In MS patients, the mean latencies of all of the contralateral SI responses were prolonged in MS patients. By patients. By contrast, there were no differences in the latencies of plateral SII response. The signal strength of the N2Dm response was decreased, and induced-gamma- band activity of SI was relatively reluced in MS patients. The phase locking band activity between SI and SII increased during the time interval of Do-100 ms poststimulus in increase in phase locking values was diminished in the	MS patients.
The latency and strength for equivalent current dipoles of SI response were analyzed. The phase locking values of the induced gamma-band also analyzed.	
Somatosensory- evoked fields by electrical stimulation of the right/left merian nerve at wrist with intervals ranged from 2.5 to 3.5 s (mean interval: 3 s).	
Somatosensory evoked (median nerve)	
204 Ch, (102 sites, planar gradiometer) Neuromag Neuromag)	
23 (F 18, M 5; 37, 3 ± 10, 6)	
23. definite MS (F 18. M 5: 38.8 ± 8.1)	
m	

	nal	: One
	Jour	PIC
	Year	2012
	Authors	Hardmeier et al.
	Grades of recommendation	m
	Levels of evidence	f
	Main results	In controls, from the 9 to the γ band, the pattern of showed highest EC values that were found over both medium high EC values over both terulees over both terulees over both teral areas and medium high EC values in medium higher over found higher over theta and vere theta and vere theta and vere theta and were both parietal areas; EC values in upper alpha and and so were in gamma band over right parietal regions.
	Analysis	The results were band-pass filtered into diltered into diltered into diltered into (0.5-4 Hz), then (4-8 Hz), then (4-8 Hz), then (4-8 Hz), then (4-8 Hz), then (4-8 Hz), upper alpha (8-10 Hz), upper alpha (13-30 Hz), and (13-30 Hz), and (13-30 Hz), and (13-30 Hz), and (13-30 Hz), then (13-30 Hz), bunds. (13-30 Hz), bunds. (13-30 Hz) bunds. (13-30 Hz) b
	Recording method	Spontaneous MEGs of 30 s MEGs of 30 s filtered into standard frequency brads, and sensor-space (artifact-free 1137 Ch data) andyses were performed for bilateral frontal, central, parietal, occipital regions.
	MEG modality (evoked/ spontaneous)	Spontaneous
	MEG apparatus	151Ch, radial gradiometer system (CTF)
(popula	Number of control subjects (gender, mean age, range)	28 (F 14, M 14: 39.8 ± 10.5)
	Number of patients (gender, mean age, range)	34, definite MS (F 17, M17; 41.4 ± 8.0)
2	No	4

Hum Brain Mapp	PLoS One	continued)
2013	2013	
Schoonheim et al.	Tewarie et al.	_
<u>解</u> 目	8	
Increased synchronization in the thea, low abands and decreased accreased appraints. The upper alpha in MS patients. For the graph theoretical analysis, the lower analysis, the lower engel and a more coefficient and path indicating a change toward a more toward a more	Mean PLI was lower in the alpha2 band and higher in the beta band in MS patients. Lower functional cunnectivity in the alpha2 band was found in the default mode metwork. Higher functional processing	
MEGs were band-pass band-pass delta (0.5-4 Hz), theta (4-8 Hz), low alpha (0.5-4 Hz), upper alpha (10-13 Hz), beta (10-13 Hz), beta (10-13 Hz), beta (13-30 Hz), and gamma (30-45 Hz) bands. (30-45 Hz) bands. (31-30 Hz) bands. (31	Beamforming analysis was peralysis was defined for defined for alpha1 (10-13 Hz), alpha2 (10-13 Hz), beta (10-13 Hz), beta (10-13 Hz), bata (10-13 Hz), and gamma (30-48 Hz) bands. The phase lag index (12-30 Hz), and (13-30	
Spontane ous MEGs of 30 s were digitally filtered into standard firequency frequency frequency and/seard and/seard anal/ses were performed for performed for performed for performed. central, parietal, temporal, regions.	>25 eye-closed MEG epochs of 6.6 s were analyzed in with subject's MRU using a beamforming approach approach approach approach approach approach for 78 cortical regions.	
Spontaneous	Spontaneous	_
151Ch, radial gradiometer system (CTF)	151Ch, radial gradiometer system (CTF)	_
28 (F 14, M 14; 39.8 ± 10.5)	17 (39.8 ± 9.8), selected from 28 (F 14, M 39.8 ± 10.5) [34]	_
34, definite MS (F 17, MI17; 41.4 ± 8.0)	21, definite MS MS selected from 34 definite MS (F 17, M17; 41.4 \pm 8.0) [34]	
ν ν	v	

		Number of										
z	Iumber of	subjects										
p	atients	(gender,		MEG modality				Levels				
3)	gender, mean	mean age,	MEG	(evoked/	Recording			of	Grades of			
No a	ge, range)	range)	apparatus	spontaneous)	method	Analysis	Main results	evidence	recommendation	Authors	Year	Journal
7 2	1, definite	17	151Ch, radial	Spontaneous	>25 eye-closed	Beamforming	MSTs differ	III	в	Tewarie	2014	Neuroimage
Z	4S	(39.8 ± 9.8) ,	gradiometer		MEG epochs of	analysis was	between MS			et al.		
4	41.9 ± 7.7),	selected	system		6.6 s were	performed for	patients and					
Sć	clected from	from	(CTF)		analyzed in	delta	controls in					
ň	4 definite	28 (F 14, M			conjunction	(0.5-4 Hz),	the alpha2, beta,					
Z	4S (F 17,	14;			with subject's	theta (4-8 Hz),	and theta bands.					
Z	417;	39.8 ± 10.5)			MRI using a	alpha 1	The MSTs in					
4	$1.4 \pm 8.0)$	[34]			beamforming	(8–10 Hz),	the alpha2 band of					
~	뚪				approach	alpha 2	MS patients were					
					(Synthetic	(10-13 Hz), beta	characterized by a					
					Aperture	(13–30 Hz), and	larger eccentricity					
					Magnetometry,	gamma	and lower leaf					
					SAM). Source-	(30-45 Hz)	fraction and "tree					
					space analyses	bands. The	hierarchy." These					
					were performed	phase lag index	changes suggestive					
					for 78 cortical	(PLI) was	of a loss of					
					regions.	obtained.	hierarchical					
						Minimum	structure were					
						spanning tree	associated with					
						(MST) network	poorer cognitive					
						analyses were	performance.					
						added.						

Human	Brain Mapp																													Continued)
2014																														
Tewarie	et al.																													
в																														
Ш																														
In MS patients,	higher PLI values	were present in the	delta band in many	cortical areas,	except for right	temporal and	occipital areas, and	in the theta band in	many cortical	areas. Lower PLI	values were found	in the alpha2 band	in the occipital,	temporal, and	parietal areas.	MST analyses	revealed that MST	topology was only	different in	the alpha2 band for	MS patients,	reflecting a lower	leaf fraction, lower	degree divergence,	and lower tree	hierarchy in	the alpha2	frequency band for	MS patients.	
Beamforming	analysis was	performed for	delta	(0.5-4 Hz),	theta (4-8 Hz),	alpha1	(8–10 Hz),	alpha2	(10-13 Hz), beta	(13-30 Hz), and	gamma	(30-45 Hz)	bands. The	phase lag index	(PLI) was	obtained.	Minimum	spanning tree	(MST) network	analyses were	added.									
Eye-closed	MEG epochs of	approximate	5 min were	analyzed in	conjunction	with subject's	MRI. Using a	scalar	beamformer	implementation	(Elekta	Neuromag),	source-space	analyses were	performed for	78 cortical	regions.													
Spontaneous																														
306Ch,	(102 sites,	planar	gradiometer)	Neuromag	(Elekta	Neuromag)																								
42 (F 26,	M16;	51.1 ± 5.98																												
102	(68 relapsing-	remitting	MS/22	secondary-	progressive	MS /12	primary-	progressive	MS) (F 65,	M37;	54.23 ± 9.76																			
8																														

Tabl	e 12.4 (cont	inued)										
	Number of patients (gender, mean	Number of control subjects (gender, mean age,	MEG	MEG modality (evoked/	Recording			Levels of	Grades of			
°N	age, range)	range)	apparatus	spontaneous)	method	Analysis	Main results	evidence	recommendation	Authors	Year	Journal
6	86	21	306Ch,	Spontaneous	Eye-closed	Beamforming	As compared to	IIb	В	Tewarie	2015	Human
	(71 relapsing-	(42.5 ± 10.3)	(102 sites,		MEG epochs of	analysis was	controls, the			et al.		Brain Mapp
	remitting		planar		approximate	performed for	cortical functional					
	MS/5		gradiometer)		5 min were	delta	connectivity was					
	secondary-		Neuromag		analyzed in	(0.5-4 Hz),	higher in					
	progressive		(Elekta		conjunction	theta (4-8 Hz),	theta band and					
	MS /10		Neuromag)		with subject's	alpha1	lower in					
	primary-				MRI. Using a	(8-10 Hz),	gamma band in MS					
	progressive				scalar	alpha2	patients. MST					
	MS)				beamformer	(10-13 Hz), beta	analyses revealed					
	(41.6 ± 8.8)				implementation	(13-30 Hz), and	lower leaf fraction					
					(Elekta	gamma	for the delta, theta,					
					Neuromag),	(30-45 Hz)	and alpha2 bands					
					source-space	bands. The	in MS patients: A					
					analyses were	phase lag index	lower degree					
					performed for	(PLI) was	divergence also					
					78 cortical	obtained.	was found in					
					regions.	Minimum	the delta, theta,					
						spanning tree	alpha1, and alpha2.					
						(MST) network						
						analyses were						
						added.						

response was decreased, and induced SI gamma activity was relatively reduced [33]. Although the latencies of bilateral SII responses were within the normal range, phase locking in the induced gamma-band activity between SI and SII during the time interval of 30–100 ms poststimulus was diminished in MS patients, indicating impaired cortical somatosensory network activity.

The remaining six of the nine MEG studies in MS were published by the VU University Medical Center in Amsterdam [34–39]. Hardmeier et al. [34] performed sensor-space analyses of frequency power spectrum and functional connectivity in spontaneous MEG. Functional connectivity between MEG sensors was assessed by calculating the synchronization likelihood (SL), and the resulting weight matrix was used to compute eigenvector centrality (EC) [34]. Eigenvector centrality values in the theta (θ) band were higher over both parietal areas in MS patients compared to controls. Further, EC values in the upper alpha (α) (8–10 Hz) and beta (β) (13-30 Hz) bands over left temporal regions, and the gamma (γ) (30–48 Hz) band over right parietal regions, were lower in MS patients compared to controls [34]. In a further study of the same MS patients and controls, Schoonheim et al. [35] performed graph theoretical analysis to assess functional connectivity. Sensorspace analyses of the frequency power spectrum demonstrated increased synchronization in the theta (θ) (4–8 Hz), low alpha (α) (8–10 Hz), and beta (β) (10–13 Hz) bands and decreased synchronization in the upper alpha (α) (10–13 Hz) band in MS patients compared to controls [35]. In the graph theoretical analysis, the lower alpha (α) (8–10 Hz) band demonstrated increased clustering coefficient and path length values, indicating a change toward a more regular network topology in MS patients. Tewarie et al. published four studies of spontaneous MEG in MS patients focusing on network functional connectivity [36-39]. Using a beamforming approach (synthetic aperture magnetometry, SAM), source-space analyses were performed in 78 cortical regions. First, the phase lag index (PLI) was determined to calculate the asymmetry of the distribution of phase differences between the two time series [36]. Lower functional connectivity (lower PLI) was observed in the α 2 band in the default mode network (DMN), and the visual processing network and higher functional connectivity (higher PLI) were observed in the beta (β) (13–30 Hz) band in the DMN and the temporoparietal network in MS patients [36]. The authors posited that altered functional connectivity may underlie the clinical and cognitive dysfunction in MS. In the second paper, minimum spanning tree (MST) network analyses were performed [37]. MSTs were found to differ between MS patients and controls in the alpha2 (α 2) (10–13 Hz), beta (β) (13–30 Hz), and theta (θ) (4–8 Hz) bands [37]. The MSTs in the alpha2 (α 2) (10–13 Hz) band of MS patients were characterized by a larger eccentricity and lower leaf fraction and "tree hierarchy" [37]. These changes indicated a loss of hierarchical structure and were associated with poor cognitive performance. Similar findings were reported by a further study with a large number of MS patients and controls [38, 39] (Table 12.4). In MS patients, higher PLI values were present in the delta (δ) (0.5–4 Hz) band in many cortical areas, except for the right temporal and occipital areas, and in the theta (θ) (4-8 Hz) band in many cortical areas [38]. Lower PLI values were observed in the alpha2 (α 2) (10–13 Hz) band in occipital, temporal, and parietal areas. MST

analyses demonstrated different MST topology only in the alpha2 (α 2) band in MS patients, reflecting a lower leaf fraction, lower degree of divergence, and lower tree hierarchy in the alpha2 (α 2) frequency band of MS patients [38]. A lower degree of divergence also was observed in all frequency bands, except the gamma (γ) (30–48 Hz) band, in MS patients [39].

12.5 General Remarks

The present review of studies examining the clinical application of MEG in neurodegenerative diseases such as ALS, PD, and MS reveals the future potential and limitations of MEG as a diagnostic tool or neurophysiological marker. The simultaneous recording of MEG and STN-LFP in PD patients who underwent neurosurgery for STN-DBS provided an opportunity to explore functional network activity between the STN and distinct cortical areas. These studies in PD patients, in conjunction with experimental studies of MPTP parkinsonian primates, have provided invaluable data allowing the testing of emerging hypotheses regarding the pathogenesis of hypokinesia or bradykinesia in PD [22-25], the "abnormal firing pattern model," and novel insights into the pathogenesis of rest tremor in PD [20, 21, 26]. In addition, regardless of diagnosis such as PD and MS, patients with cognitive decline or impairment demonstrated altered or disruptive network functional connectivity during spontaneous MEG [15–18, 36–39]. Thus, functional connectivity analyses using spontaneous MEG may provide data with utility in informing the diagnosis of PD-related dementia or the presence of frontotemporal dementia during the early stages of ALS. Further, spontaneous MEG may also have clinically utility in diagnosing and predicting cognitive decline in patients suffering other neurodegenerative diseases including multisystem atrophy. from spinocerebellar degeneration, and progressive supranuclear palsy. However, network functional connectivity analyses of spontaneous MEG in PD patients or MS patients were repeatedly performed in the same institute with MEG examinations performed on a limited number of patients and control subjects. Therefore, studies from other institutes or collaborations between many institutions with a large number of participants are required to evaluate the validity of functional connectivity analyses and confirm the relationship between abnormal functional connectivity analysis results of spontaneous MEG and cognitive decline or deficits, thereby enhancing the clinical utility of MEG examinations.

References

^{1.} McCormick KA, Fleming B. Clinical practice guidelines. The Agency for Health Care Policy and Research fosters the development of evidence-based guidelines. Health Prog. 1992;73: 30–4.

Brown RH, Cannon SC, Rowland LP. Chapter 14: Diseases of the nerve and motor unit. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principles of neural sciences. 5th ed. New York: McGraw-Hill Professional; 2012. p. 307–30.

- Gordon PH. Amyotrophic lateral sclerosis: an update for 2013 clinical features, pathophysiology. Manag Ther Trials Aging Dis. 2013;4(5):295–310.
- Pekkonen E, Osipova D, Laaksovirta H. Magnetoencephalographic evidence of abnormal auditory processing in amyotrophic lateral sclerosis with bulbar signs. Clin Neurophysiol. 2004; 115(2):309–15.
- Boyajian RA, Amo C, Otis SM, Romine JS, Smith RA. Magnetic source imaging of cortical dysfunction in amyotrophic lateral sclerosis. Am J Phys Med Rehabil. 2008;87(6):427–37.
- Teismann IK, Warnecke T, Suntrup S, Steinsträter O, Kronenberg L, Ringelstein EB, Dengler R, Petri S, Pantev C, Dziewas R. Cortical processing of swallowing in ALS patients with progressive dysphagia—a magnetoencephalographic study. PLoS One. 2011;6(5): e19987. doi:10.1371/journal.pone.0019987.
- Wichmann T, DeLong MR. Chapter 43: The basal ganglia. In: Kandel ER, Schwartz JH, Jessell TM, Siegelbaum SA, Hudspeth AJ, editors. Principles of neural sciences. 5th ed. New York: McGraw-Hill Professional; 2012. p. 982–98.
- Gale JT, Amirnovin R, Williams ZM, Flaherty AW, Eskandar EN. From symphony to cacophony: pathophysiology of the human basal ganglia in Parkinson disease. Neurosci Biobehav Rev. 2008;32(3):378–87.
- 9. Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996;50(4):381–425.
- Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in the development of Parkinson's disease-related pathology. Cell Tissue Res. 2004;318(1):121–34.
- Hawkes CH, Del Tredici K, Braak H. Parkinson's disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol. 2007;33(6):599–614.
- Stoffers D, Bosboom JL, Deijen JB, Wolters EC, Berendse HW, Stam CJ. Slowing of oscillatory brain activity is a stable characteristic of Parkinson's disease without dementia. Brain. 2007;130(Pt 7):1847–60.
- 13. Boesveldt S, Stam CJ, Knol DL, Verbunt JP, Berendse HW. Advanced time-series analysis of MEG data as a method to explore olfactory function in healthy controls and Parkinson's disease patients. Hum Brain Mapp. 2009;30(9):3020–30.
- Gómez C, Olde Dubbelink KT, Stam CJ, Abásolo D, Berendse HW, Hornero R. Complexity analysis of resting-state MEG activity in early-stage Parkinson's disease patients. Ann Biomed Eng. 2011;39(12):2935–44.
- 15. Olde Dubbelink KT, Stoffers D, Deijen JB, Twisk JW, Stam CJ, Berendse HW. Cognitive decline in Parkinson's disease is associated with slowing of resting-state brain activity: a longitudinal study. Neurobiol Aging. 2013;34(2):408–18.
- 16. Olde Dubbelink KT, Stoffers D, Deijen JB, Twisk JW, Stam CJ, Hillebrand A, Berendse HW. Resting-state functional connectivity as a marker of disease progression in Parkinson's disease: a longitudinal MEG study. Neuroimage Clin. 2013;2:612–9.
- Olde Dubbelink KT, Hillebrand A, Stoffers D, Deijen JB, Twisk JW, Stam CJ, Berendse HW. Disrupted brain network topology in Parkinson's disease: a longitudinal magnetoencephalography study. Brain. 2014;137(Pt 1):197–207.
- Olde Dubbelink KT, Hillebrand A, Twisk JW, Deijen JB, Stoffers D, Schmand BA, Stam CJ, Berendse HW. Predicting dementia in Parkinson disease by combining neurophysiologic and cognitive markers. Neurology. 2014;82(3):263–70.
- Vardy AN, van Wegen EE, Kwakkel G, Berendse HW, Beek PJ, Daffertshofer A. Slowing of M1 activity in Parkinson's disease during rest and movement – an MEG study. Clin Neurophysiol. 2011;122(4):789–95.
- Pollok B, Makhloufi H, Butz M, Gross J, Timmermann L, Wojtecki L, Schnitzler A. Levodopa affects functional brain networks in Parkinsonian resting tremor. Mov Disord. 2009;24(1): 91–8.
- Pollok B, Krause V, Martsch W, Wach C, Schnitzler A, Südmeyer M. Motor-cortical oscillations in early stages of Parkinson's disease. J Physiol. 2012;590(Pt 13):3203–12.

- 22. Litvak V, Jha A, Eusebio A, Oostenveld R, Foltynie T, Limousin P, Zrinzo L, Hariz MI, Friston K, Brown P. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. Brain. 2011;134(Pt2):359–74.
- 23. Litvak V, Eusebio A, Jha A, Oostenveld R, Barnes G, Foltynie T, Limousin P, Zrinzo L, Hariz MI, Friston K, Brown P. Movement-related changes in local and long-range synchronization in Parkinson's disease revealed by simultaneous magnetoencephalography and intracranial recordings. J Neurosci. 2012;32(31):10541–53.
- 24. Hirschmann J, Özkurt TE, Butz M, Homburger M, Elben S, Hartmann CJ, Vesper J, Wojtecki L, Schnitzler A. Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson's disease. Neuroimage. 2011;55(3):1159–68.
- 25. Hirschmann J, Özkurt TE, Butz M, Homburger M, Elben S, Hartmann CJ, Vesper J, Wojtecki L, Schnitzler A. Differential modulation of STN-cortical and cortico-muscular coherence by movement and levodopa in Parkinson's disease. Neuroimage. 2013;68:203–13.
- 26. Hirschmann J, Hartmann CJ, Butz M, Hoogenboom N, Ozkurt TE, Elben S, Vesper J, Wojtecki L, Schnitzler A. A direct relationship between oscillatory subthalamic nucleuscortex coupling and rest tremor in Parkinson's disease. Brain. 2013;136(Pt 12):3659–70.
- Airaksinen K, Mäkelä JP, Taulu S, Ahonen A, Nurminen J, Schnitzler A, Pekkonen E. Effects of DBS on auditory and somatosensory processing in Parkinson's disease. Hum Brain Mapp. 2011;32(7):1091–9.
- Airaksinen K, Butorina A, Pekkonen E, Nurminen J, Taulu S, Ahonen A, Schnitzler A, Mäkelä JP. Somatomotor mu rhythm amplitude correlates with rigidity during deep brain stimulation in Parkinsonian patients. Clin Neurophysiol. 2012;123(10):2010–7.
- Airaksinen K, Mäkelä JP, Nurminen J, Luoma J, Taulu S, Ahonen A, Pekkonen E. Corticomuscular coherence in advanced Parkinson's disease with deep brain stimulation. Clin Neurophysiol. 2014 (in press). doi:http://dx.doi.org/10.1016/j.clinph.2014.07.025.
- 30. Leary S, Giovannoni G, Howard R, Miller D, Thompson A. Chapter 10: Multiple sclerosis and demyelinating diseases. In: Clarke C, Howard R, Rossor M, Shorvon SD, editors. Neurology: a queen square textbook. Singapore: Willy-Blackwell; 2009. p. 411–47.
- Tecchio F, Zito G, Zappasodi F, Dell' Acqua ML, Landi D, Nardo D, Lupoi D, Rossini PM, Filippi MM. Intra-cortical connectivity in multiple sclerosis: a neurophysiological approach. Brain. 2008;131(Pt 7):1783–92.
- 32. Dell'Acqua ML, Landi D, Zito G, Zappasodi F, Lupoi D, Rossini PM, Filippi MM, Tecchio F. Thalamocortical sensorimotor circuit in multiple sclerosis: an integrated structural and electrophysiological assessment. Hum Brain Mapp. 2010;31(10):1588–600.
- 33. Hagiwara K, Okamoto T, Shigeto H, Ogata K, Somehara Y, Matsushita T, Kira J, Tobimatsu S. Oscillatory gamma synchronization binds the primary and secondary somatosensory areas in humans. Neuroimage. 2010;51(1):412–20.
- 34. Schoonheim MM, Geurts JJ, Landi D, Douw L, van der Meer ML, Vrenken H, Polman CH, Barkhof F, Stam CJ. Functional connectivity changes in multiple sclerosis patients: a graph analytical study of MEG resting state data. Hum Brain Mapp. 2013;34(1):52–61.
- Hardmeier M, Schoonheim MM, Geurts JJ, Hillebrand A, Polman CH, Barkhof F, Stam CJ. Cognitive dysfunction in early multiple sclerosis: altered centrality derived from resting-state functional connectivity using magnetoencephalography. PLoS One. 2012;7(7):e42087. doi:10. 1371/journal. pone.0042087.
- 36. Tewarie P, Schoonheim MM, Stam CJ, van der Meer ML, van Dijk BW, Barkhof F, Polman CH, Hillebrand A. Cognitive and clinical dysfunction, altered MEG resting-state networks and thalamic atrophy in multiple sclerosis. PLoS One. 2013;8(7):e69318. doi:10. 1371/journal.pone.0069318.
- 37. Tewarie P, Hillebrand A, Schoonheim MM, van Dijk BW, Geurts JJ, Barkhof F, Polman CH, Stam CJ. Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: an MEG source-space study. Neuroimage. 2014;88:308–18.

- Tewarie P, Steenwijk MD, Tijms BM, Daams M, Balk LJ, Stam CJ, Uitdehaag BM, Polman CH, Geurts JJ, Barkhof F, Pouwels PJ, Vrenken H, Hillebrand A. Disruption of structural and functional networks in long-standing multiple sclerosis. Hum Brain Mapp. 2014;35(12):5946–61. doi:10.1002/hbm.22596.
- 39. Tewarie P, Schoonheim MM, Schouten DI, Polman CH, Balk LJ, Uitdehaag BM, Geurts JJ, Hillebrand A, Barkhof F, Stam CJ. Functional brain networks: linking thalamic atrophy to clinical disability in multiple sclerosis, a multimodal fMRI and MEG study. Hum Brain Mapp. 2015;36(2):603–18.