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    Abstract  

  Glomerular basement membrane (GBM) plays a critical role in preventing serum protein 
leakage into Bowman’s space. By using “in vivo cryotechnique (IVCT),” the periodic acid- 
Schiff (PAS) fl uorescence emission was well-represented GBM instead of immunostaining 
of collagen type IV, which was diffi cult to observe without the microwave treatment in 
specimens. Serum protein distribution in living mouse glomeruli was better visualized with 
IVCT compared with other conventional methods. Under normal condition, immunoreac-
tion products of albumin and immunoglobulin G heavy and light chains (IgG (H+L)) were 
localized within glomerular capillary loops (GCL) but not colocalized with the PAS fl uores-
cence emission of the GBM. Under heart-arrest condition and with quick-freezing of 
resected tissues, albumin, IgG (H+L), immunoglobulin kappa light chain, and IgG1 heavy 
chain (IgG1) were immunolocalized within GCL and mesangial areas, but only albumin 
and kappa light chain were additionally immunolocalized in Bowman’s space, indicating 
their passage through GBM. Under acute hypertensive condition, both albumin and kappa 
light chain, but not IgG1, were clearly immunolocalized along GBM and in Bowman’s 
space, indicating their increased passage through GBM. The overlapped areas of PAS fl uo-
rescence emission and albumin or kappa light chain were appeared to be larger with quick- 
freezing and under the heart-arrest or acute hypertensive condition than under normal 
circulation, whereas those of PAS emission and IgG1 were not different among those condi-
tions. These results suggest that PAS fl uorescence emission combined with IVCT allowed 
us to investigate the serum proteins passing through GBM induced by hemodynamic 
changes.  
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22.1         Introduction 

 The hemodynamic changes in animal kidneys are well 
known to cause abnormal  leakage   of serum  protein   s   through 
 glomerular fi ltration barrier   s  , leading to  proteinuria  , which is 
closely related to progression of renal diseases in experimen-
tal animal studies and clinical human cases [ 1 ,  2 ]. The 
charge- and size-selective glomerular fi ltration barriers 
against  serum    protein   s   were composed of highly fenestrated 
 endothelium  , glomerular  basement membrane   s   ( GBM  ), and 
 podocytes   [ 3 ,  4 ]. Although there are some evidences [ 1 ,  5 ] 
suggesting key roles of GBM for the fi ltration barriers of 
serum proteins, one of the technical problems to reveal the 
 immunolocalization   of serum proteins would be due to their 
preparation procedures of the in situ drip-fi xation with aque-
ous aldehyde fi xatives [ 6 ]. 

 The “ in vivo cryotechnique  ” (IVCT) has been already 
developed for the past decade [ 7 – 9 ], which is designed to 
capture transiently dynamic morphology of  living animal 
organ   s  . Using IVCT followed by  freeze substitution  , the dif-
fusion of  soluble component   s   would be mostly restricted 
[ 10 ], and many antigenic sites would be exposed in the frozen 

cells and tissues [ 11 ]. However, in  living mouse kidney   speci-
mens prepared by IVCT,  collagen type IV  , laminin 5, fi bro-
nectin, and perlecan, the widely used markers for  GBM   
[ 12 – 15 ], were not clearly immunostained. To elucidate the 
 distribution   alternation of  serum    protein   s   in living mouse  kid-
ney   under  various hemodynamic condition   s  , the fl uorescence 
emission of periodic acid-Schiff ( PAS  ) staining was utilized 
for representing GBM, and serum protein immunolocaliza-
tions were examined in  living mouse kidneys   by IVCT.  

22.2     Application of  PAS   Fluorescence 
Emission for Glomerular Basement 
Membrane 

 The  PAS    staining   of  nephrons   is specifi c for glomerular or 
tubular  basement membrane   s  , mesangial areas (MA), and 
proximal tubular brush borders in  living mouse kidney   s   [ 16 ]. 
By using the common PAS staining (Fig.  22.1a ) followed 
with immunostaining for zonula occludens-1 (ZO-1) 
(Fig.  22.1c ), a specifi c marker of  foot process   es   in glomeruli 
[ 17 – 20 ], the  PAS fl uorescence   emission can be shown to be 

  Fig. 22.1    Representative light micrograph ( a ) and  confocal laser   scan-
ning micrographs ( b – d ) showing periodic acid-Schiff staining (  PAS   ;  a ), 
its fl uorescence emission (  PAS fl uorescence     emission ;  b ), and immuno-
fl uorescence staining for zonula occludens-1 ( ZO-1 ;  c ) on the same sec-
tion prepared by “ in vivo cryotechnique  ” under the normotensive 

condition. The layer at glomerular  basement membrane   positive for 
PAS fl uorescence emission mostly surrounds the  glomerular capillary 
loop   s   and closely localizes near the  foot process   layers visualized by 
the ZO-1 immunostaining ( d ,  arrows  and  arrowheads ).  Gl  glomeruli, 
 PT   proximal tubule   s  ,  asterisks   blood    capillaries  .  Scale bars  10 μm       
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localized at the  GBM   and MA in the  glomerulus   (Fig.  22.1b ). 
The fl uorescence-merged image clearly showed that the 
immunofl uorescence for ZO-1 mostly outlines the PAS fl uo-
rescence emission of the GBM (Fig.  22.1d ), indicating fl uo-
rescence emission of PAS was effectively represented 
GBM. The immunostaining for GBM with specifi c   antibodies     
against collage type IV was hardly successful in the speci-
mens prepared with the IVCT (unpublished data), although 
the immunoreactivity of  collagen type IV   was increased at 
GBM after the  microwave   treatment on  paraffi n   sections pre-
pared with IVCT. The differences in “immunoreactivity” 
would be due to that small reagents in the PAS staining pro-
cesses could be easily bound to the target molecular sites of 
the compact GBM with  serum    protein   s  , whereas larger mol-
ecules of antibodies were diffi cult to reach them using IVCT 
followed by freeze substitution.

22.3         Alternation   of Serum Protein 
Distribution in Glomeruli Under 
Various Hemodynamic Conditions 

 As  PAS    fl uorescence   emission has been well identifi ed to 
represent  GBM  , the  distribution   of  serum    protein   s   in living 
mouse glomeruli could be estimated by comparing the 
 immunolocalization   of serum proteins and GBM using PAS 
fl uorescence emission combined with IVCT. Serial sections 
of kidneys under different  hemodynamic condition   s   were 
prepared with IVCT and immunostained to detect the distri-
bution of  albumin  ,  immunoglobulin    G   heavy and light chains 
( IgG   (H+L)), as well as the  kappa light chain   and  IgG1   heavy 
 chain  s (IgG1) (Fig.  22.2 ).

   Under normal  hemodynamic condition  , both  serum    albu-
min   and  IgG   were almost kept within GCL (Fig.  22.2a, e ), 
and their immunoreactivity was more widely overlapped 
with the  PAS    fl uorescence   emission under the  acute hyper-
tensive condition   (Fig.  22.2d, h ). Although the main fi ltra-
tion barrier was reported to be  GBM   itself by  electron 
microscopy   [ 5 ,  21 ], other reports also demonstrated that slit 
diaphragms of  foot process   es   formed the ultimate fi ltration 
barrier for macromolecular  permeability   [ 22 ,  23 ]. 
Considering these previous reports, our fi ndings suggest that 
more  serum protein   s   reached the outer layer of GBM under 
the acute hypertensive condition and the slit diaphragms 
would play a signifi cant role especially in such pathological 
or physiological states. The translocation of serum proteins 
may be due to the acutely increased pressures in the GCL, 
and if the  blood   pressures were temporarily so high, lots of 
serum proteins would leak out into Bowman’s space. 

 Under abnormal conditions, the  leakage   of  albumin   
(Fig.  22.2b–d ) and  kappa light chain   (Fig.  22.2j–l ), but not 

 IgG1   (Fig.  22.2n–p ), was clearly detected in Bowman’s 
space. Serum proteins with low molecular weights, such as 
 albumin   and kappa light chains, could easily translocate to 
the urinary space and reabsorbed in the convoluted  proximal 
tubule   s   [ 24 – 27 ]. On the other hand, larger or cationic mole-
cules, such as IgGs, were trapped in the  GBM   and hardly 
leaked out into Bowman’s spaces under some physiological 
or pathological conditions, such as membranoproliferative 
glomerulonephritis, membranous nephropathy, and lupus 
nephritis [ 28 – 30 ]. The differences of protein  immunolocal-
ization   are undoubtedly due to the size and charge selectivity 
of the GBM [ 31 ]. 

 In the present experiment, the overlapping of  PAS    fl uores-
cence   emission with the  IgG   (H+L) immunoreactivity close 
to Bowman’s space appeared to be prominent at some parts 
on one side of the GCL under the  acute hypertensive condi-
tion   (Fig.  22.2h ). As such heterogeneity of leaking areas was 
also observed using extrinsic tracers [ 21 ], the  leakage   degree 
of  serum    protein   s   would exhibit their heterogeneous immu-
nolocalizations not only among glomeruli but also among 
GCL under the acute hypertensive condition. 

 The  leakage   of both  albumin   and  IgG   (H+L) through 
 GBM   into Bowman’s spaces was detected under the  heart- 
arrest      condition   (Fig.  22.2b, f ) or with the  quick-freezing   of 
the resected  kidney   tissues (Fig.  22.2c, g ), which might be 
caused by low  blood   pressures and  ischemia  , resulting in 
serious alteration of GCL structures and molecular organiza-
tion [ 5 ,  32 ]. Moreover, the ischemia or  hypoxia  , including 
the hypotensive condition, was reported to induce changes of 
the glomerular structures and also damages of intercellular 
junctions in renal vasculatures, resulting in the increased 
vascular  permeability   and local interstitial edema of kidneys 
[ 7 ,  33 – 35 ].  

22.4     Concluding Remarks 

 In conclusion, the fl uorescence emission of  PAS    staining   
allowed us to examine the precise  immunolocalization   of 
 serum    protein   s   at the  GBM   under  various hemodynamic 
condition   s   of  living mouse kidney   s   in combination with the 
IVCT followed by freeze substitution. In addition, the IVCT 
would be a  reliable tool   to observe  soluble serum protein   s   in 
situ and capture transient images of functioning glomeruli in 
the living mice. Further detailed analyses, e.g., by using 
 immunoelectron microscopy   in conjunction with the “ in vivo 
cryotechnique  ,” would enable us to characterize the changes 
of soluble serum proteins around GBM, which may be new 
fi ndings of clinical importance. The present fi gures were 
already published in our paper, Arch Histol Cytol (2006) 
69:147–161, and cited with their permissions.     
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