
Chapter 16

Sarcopenia in Diabetes Mellitus

Ken Sugimoto, Chung-Chi Wang, and Hiromi Rakugi

Abstract Sarcopenia is an age-related loss of skeletal muscle mass and strength. In

this chapter, advances in the association of sarcopenia and diabetes mellitus are

discussed. Falls in diabetic patients associate with decline of muscle mass or

strength in the elderly. Insulin resistance impairs the protein regeneration in skeletal

muscle and also induces the protein breakdown and muscle wasting, leading to

development of sarcopenia. This insulin resistance suggests the most important

linkage between sarcopenia and diabetes. Sarcopenia and obesity appear to have

additive effects on insulin resistance and age-related changes in body composition.

Loss of skeletal muscle mass affecting glucose disposal and impaired energy

homeostasis affecting muscle protein content, together, might lead to a vicious

cycle. Insulin resistance and inflammation leads to muscle wasting through the

pathways involved in Akt/PKB, FoxOs, PGC-1α, and AMPK. The accumulation of

AGEs through glucose intolerance enhanced by mitochondrial ROS with promotion

of apoptosis leads to the development of muscle wasting. Exercise is known as the

most efficient treatment of sarcopenia with diabetes but less information is known

for nutritional replenishment or medications. Sarcopenia in diabetes mellitus would

have higher physical dysfunction and mortality risks than those in nondiabetic older

adults.
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16.1 Introduction

The aging population is increasing worldwide. The older population of those aged

65 years is expected to reach 16.2 % of the total world’s population and the “oldest-
old” aged 80 years or older will increase from 1.6 to 4.4 % by 2050 [1]. In the

elderly, functional decline is typically associated with the increase of body fat and

the reduction of lean muscle quality; this contributes to physical disability [2]

known as sarcopenia. Sarcopenia is related to frailty, glucose homeostasis
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impairment [3], and geriatric syndromes [4] which affect 20–50 % of adults aged

over 60 [5]. Obesity and diabetes appeared to be at higher risks of processing

metabolic dysfunction, contributing to the progression of sarcopenia [6] related to

alterations of decreased insulin sensitivity [7], unbalanced fuel oxidation [8], and

reduced muscle protein content [9].

Diabetes is currently viewed as the most common metabolic dysfunction of this

century and referred to high levels of circulating glucose and overall insulin

resistance. Epidemiological studies reported that the number of new diabetic

patients has increased by 50 % over the last 10 years [10]. The incidence of type

2 diabetes (T2D) in people older than 60 years old was more than 20 % higher than

in younger people [11], and around 80 % of people with T2D were obese [12]. Var-

ious clinical studies also indicated that obesity and insulin resistance were associ-

ated with T2D, which might play important roles in the pathogenesis of physical

function decline and sarcopenia [13]. The interplay between obesity and diabetes in

an age-related sarcopenia population is now considered as an important concern in

geriatrics. Here, we discussed the interactions and mechanisms of sarcopenia in

diabetes mellitus and considered the future perspectives of this area.

16.2 Evidence in Clinical Studies for Sarcopenia

and Diabetes

16.2.1 Fall in Skeletal Muscle Function Decline with T2D

The primary function of the skeletal muscle is to generate force and to provide

locomotion. Fall is one of the geriatric syndromes, which has approximately 30 %

of people aged 65 and older fall each year [14] and frequently leads to the risks of

injury and disability. It has been reported that increased falls in diabetic patients

with hypoglycemia [15] are associated with 1 % muscle size decline per year after

age 50 [16]. Further, older adults with T2D have shown an accelerated decline in

leg lean mass, muscle strength, and functional capacity in comparison with

normoglycemic controls [17]. In addition, in T2D patients in the elderly, leg muscle

strength has been presented to be 30 % lower compared with nondiabetic controls in

a 3-year-period study [18]. Therefore, T2D may be associated with increasing fall

risks through loss of skeletal muscle mass and strength, especially in older adults.

16.2.2 Insulin Resistance and Skeletal Muscle

Insulin, which maintains blood-glucose homeostasis, induces glucose uptake into

muscle tissues and mediates lipolysis in adipose tissues. Skeletal muscle plays an

important role in glucose metabolism and mediates whole-body insulin-stimulated
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glucose uptake [19]. In T2D, insulin resistance impairs the balance between protein

synthesis and degradation in skeletal muscle cells, which induces muscle wasting

[20] and leads to the development of sarcopenia. This insulin resistance suggests

the most important linkage between sarcopenia and T2D. T2D and muscle weak-

ness may provide a vicious cycle: loss of skeletal muscle mass affects glucose

disposal and energy homeostasis impairment affects muscle protein content.

16.2.3 Sarcopenic Obesity

Recently, obesity incidence has also increased in the older population. Sarcopenia

and obesity in elderly subjects appeared to have additive effects on insulin resis-

tance and age-related changing in body composition compared with the obesity

condition [21]. Interestingly, insulin resistance is associated with sarcopenia in both

non-obese and obese individuals, but only sarcopenic obese individuals have

established the associations with insulin resistance and dysglycemia, with or with-

out diabetes [22]. This suggested that sarcopenia could be developed independently

from obesity and sarcopenic obese individuals with more unfavorable physical

dysfunction than individuals with neither sarcopenia nor obesity. Altogether,

sarcopenic obesity could be described as having a larger amount of fat but lower

lean muscle mass, excess of energy intake, physical dysfunction, impairment of

insulin sensitivity, and glucose homeostasis [23]. The diagnostic criteria for

sarcopenic obesity in the early stages could be helpful in the clinical observation

for the reduction of health risks in the aged society. The interactions of sarcopenia,

diabetes, and obesity have been summarized in Fig. 16.1.

16.3 Evidences in Basic Studies for Sarcopenia

and Diabetes

16.3.1 Muscle Fiber-Type Switching

Evaluation of changes in skeletal muscle fiber composition during the early stages

of the metabolic syndrome and diabetes is required to provide essential insights as

to fiber-type distribution. Age-related sarcopenia is associated with muscle consti-

tution in differing amounts, in individual skeletal muscle [24], and a decrease of

size and number of fast type II muscle fiber has been observed [25, 26]. The EDL, or

the extensor digitorum longus glycolytic muscle, is predominantly composed of

type IIb fibers which has mainly reduced by 25–30 % in the cross-sectional area of

the skeletal muscle of humans aged 70 [27]. In addition, insulin resistance is

associated with higher proportions of glycolytic fast-twitch type IIb fibers

[28]. The muscle transformation studies of the extended periods of bed rest have
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observed the slow-to-fast muscle transitions (myosin heavy chain, MyHCI to

MyHCII) [29]. This shift in fiber-type composition may lead to the increase of

the total EDL content in the aging process of muscle atrophy; however, this increase

failed to prevent natural muscle aging and resulted in total skeletal muscle mass

reduction in sarcopenia. The decrease in total type II fiber may have negative

effects on the production of essentially muscular power in daily life, which is a

pathognomonic change in sarcopenia or sarcopenia in diabetes.

16.3.2 Inflammation in Skeletal Muscle

Inflammation, an important mediator in the pathogenesis of insulin resistance, has

been observed in both diabetes mellitus and sarcopenia. Since the muscle is the

primary tissue which produces and responds to a variety of hormones and cyto-

kines, it has been involved in modulating muscle protein degradation and

myogenesis through the prevention of inflammation; further, pro-inflammation is

counteracted by insulin resistance [30]. TNF-α is highly expressed in adipose

tissues from obese subjects, which develops insulin resistance, induces IL-6 [31],

and blocks muscle tissues differentiation leading to sarcopenia [32]. In addition,

IL-6 and TNF-α activate TNF-α-related apoptosis-inducing ligand receptors

Fig. 16.1 Interaction between sarcopenia and diabetes. Insulin resistance in skeletal muscle is the

most important link between sarcopenia and diabetes. Sarcopenia and obesity appear to have

additive effects on insulin resistance and age-related changing in body composition. Diabetes,

sarcopenia, and obesity may provide a vicious cycle: loss of skeletal muscle mass affects glucose

disposal and energy homeostasis impairment affects muscle protein content. Coexistence of

sarcopenia with diabetes or/and obesity increases the risk for fall or disability and cardio- and

cerebrovascular diseases

240 K. Sugimoto et al.



Fig. 16.2 Molecular mechanism of muscle wasting in diabetes. Decline of skeletal muscle mass

or strength occurs under a variety of conditions and involves the regulation of muscle protein

catabolism and mitochondrial dysfunction: FoxO1 and FoxO3 induce a decrease in muscle mass

associated with an upregulation of ubiquitin E3 ligases MAFbx/atrogin-1 and MuRF1 expression.

In cancer cachexia and sepsis, FoxOs inhibit the MAFbx/atrogin-1, MuRF1, and Bnip3 mRNA

expression, which has been associated with inhibition of muscle fiber atrophy. NF-kB induces

muscle breakdown by promoting protein degradations in skeletal muscle by regulation of

ubiquitin-proteasome pathway (UPS). AGEs and angiotensin II via the angiotensin type 1 (AT1)

receptor activate NADPH oxidase and lead to ROS production, facilitating activation of caspases,

which contributes to muscle mass loss. IL-6 and TNF-α activate TNF-α-related apoptosis-inducing
ligand receptors (TNFR1) which stimulate inhibitor of κB kinase (IKK) and cause NF-κB
activation, thus processing the protein degradations in muscle. Signal transducer and activator of

transcription 3 (STAT3) links the activation of signal transducers of the Janus kinase (JAK) protein

and increases activity of the transcription factor C-EBPß and C-EBPδ involved in muscle wasting

through ActII receptor and myostatin. Suppressor of cytokine signaling (SOCS3) targets IRS-1 in

inflammation-induced insulin resistance. IRS-1 is rapidly degraded after IGF-1 stimulation and

blocks FoxO1, leading to inhibition of atrophy. IRS-1 phosphorylation links to dephosphorylation

of Akt, which mediates insulin resistance. Inactivation of tuberous sclerosis complex 1/2 (TSC1/

TSC2) stimulates Akt–mTOR signaling and leads to “incomplete” autophagy in muscle wasting.

AMPK inactivates mTOR and decreases the activation of ribosomal protein S6 kinase 1 (S6K1),

an activator of protein synthesis, thereby increasing the rates of muscle mass loss. The autophagic

regulator proteins, Atg12, LC3-II, and apoptotic genes Bnip3, promote mitochondrial disruption

by activation of FoxOs during muscle atrophy
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(TNFR1) which stimulate inhibitor of κB kinase [33, 34], causing NF-κB activation

resulting in processing protein degradation in the muscle. The effects of insulin

antagonizing mediated by IL-6 on skeletal muscle have been described and chronic

exposure to IL-6 caused inflammation which impaired insulin-stimulated GLUT4

translocation in skeletal muscle [35]. STAT3, signal transducer and activator of

transcription 3, has been characterized in myokines signaling [36] which can link

the activation of signal transducers of the Janus kinase (JAK) protein [37] and

increased activity of the transcription factor C-EBPß and C-EBPδ involved in

muscle wasting [38] through ActII receptor and myostatin [39] (Fig. 16.2).

On the other hand, IL-6 or IL-15 [40, 41], which is secreted from skeletal

muscle, suppresses TNF-α effects on the exercise conditions [42]. These cytokines

produced from skeletal muscle are called “myokines” and exert autocrine, para-

crine, or endocrine effects. The interaction between myokines production and

diabetes is still unclear, but myokines can be the candidate biomarkers for meta-

bolic disorders, including diabetes.

16.3.3 Molecule-Related Signaling Pathways in Muscle
Wasting

Many reports have shown the molecular mechanisms for muscle wasting using

animal models which fed on high-fat or sucrose diet and of diabetes. The molecules

signaling pathways related to muscle wasting has been shown in this section.

16.3.3.1 Akt/PKB Signaling

In skeletal muscle, Akt/PKB plays a key role in insulin and PI3K/Akt/mTOR

signaling pathway, which is regulating energy metabolism and protein synthesis.

Previous studies have shown that SOCS3, suppressor of cytokine signaling,

targeted to IRS-1 in inflammation-induced insulin resistance [43]. IRS-1 is rapidly

degraded after IGF-1 stimulation and blocking of FoxO1 leads to inhibition of

atrophy. The activation of Akt/PKB results in the glucose uptake through the

stimulation and translocation of GLUT4, leading to the increased uptake of glucose,

thus decreasing the amount of circulating glucose and regulating glucose metabo-

lism upon insulin exposure [44, 45]. However, IRS-1 phosphorylation is linked to

dephosphorylation of Akt/PKB [46], which mediates insulin resistance and further

inactivates tuberous sclerosis complex 1/2 (TSC1/TSC2) [47] which stimulated

Akt–mTOR signaling and autophagy in muscular dystrophy (Fig. 16.2), since

signaling through IGF-1/PI3K/Akt activated the mechanistic target of rapamycin

(mTOR) pathway [48] and critically mediated the fork head boxO (FoxO) tran-

scription factors [49]. Protein synthesis in skeletal muscle is strongly related to

Akt/PKB signaling, through the activation of mTOR [48], to regulate GSK3
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(glycogen synthase kinase 3) activity which results in enhanced glycogen synthesis

[50]. Furthermore, the defected of insulin actions may produce the increase of

protein degradation [51]; this is supposed the Akt/FoxO pathway may contribute to

sarcopenia-related muscle protein degradation.

16.3.3.2 FoxOs Transcription Factors

Decline of skeletal muscle mass or strength involves regulation of muscle protein

catabolism and mitochondrial dysfunction. FoxOs are important regulators of

muscle energy homeostasis and carbohydrate catabolism in the fast state

[52]. FoxO1 and FoxO3 induced a decreasing of muscle mass which associated

with an upregulation of ubiquitin E3 ligases MAFbx/atrogin-1 and the muscle ring-

finger protein 1 (MuRF1) expression [53]. Recently, defect in autophagy-dependent

signaling, an important mechanism for maintaining cell self-renew and protein

turnover, is also observed in various muscular dystrophies [54]. The autophagic

regulator proteins, LC3-II, Atg12, and Bnip3, promote mitochondrial disruption by

activation of FoxOs during muscle atrophy [55]. Furthermore, mitochondrial dys-

function has been proposed through FoxOs, switching of muscle type from slow-

twitch oxidative type I fiber to fast-twitch glycolytic fiber (MyHCI to MyHCII).

16.3.3.3 PGC-1α and AMPK

In sarcopenia and sarcopenic obese individuals, insulin resistance is involved in

developing muscle atrophy in aging and diabetes mellitus [56]. Importantly, high-

fat diet-induced insulin resistance observed the reduction of skeletal muscle mito-

chondrial function and decreased expression of peroxisome proliferator-activated

receptor gamma coactivator 1 alpha (PGC-1α) [57]; thus, the hypothesis of mito-

chondrial dysfunction leading to sarcopenia has been in attention. The

downregulation of PGC-1α by high-fat diet implicated the development of skeletal

muscle insulin resistance of T2D individuals compared to nondiabetic individuals

[58–61]. It was also suggested that PGC-1α plays an important role in fiber-type

switching from fast-twitch glycolytic fiber into slow-twitch oxidative type I fiber

[62]. These fiber-type switching effects through PGC-1α might be induced by

PGC-1α1. However, muscle-specific induction of PGC-1α4, but not PGC-1α1,
has shown the increase of muscle mass and strength, resistance to cancer cachexia

through activating IGF-1, and suppressing myostatin gene expression [63]. Alto-

gether, PGC-1α and its isoforms may play a crucial role in regulating mitochondrial

biogenesis and muscle mass and strength.

AMP-activated protein kinase (AMPK) is a primary regulator of skeletal muscle

metabolic homeostasis [64]. AMPK impacts the insulin-mediated effects on muscle

protein synthesis through the interfering by the Akt/PKB signaling pathway [65]

and promotes glucose uptake and oxidation through migration of GLUT4 to the

cellular membrane [66]. Importantly, AMPK activation by AICAR in skeletal
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muscle [67, 68] improved muscle function and mitochondrial activity in muscle

atrophy. In addition, AMPK inactivated mTOR and decreased the activation of

ribosomal protein S6 kinase 1, an activator of protein synthesis, thereby increasing

the rates of sarcopenic muscle mass loss. On the other hand, AMPK-mediated

activation of FoxO3 contributed to the proteolysis with the expression of muscle

atrophy F-box (MAFbx/atrogin-1) and MuRF1 [69]. AMPK also was found to

promote directly the phosphorylation of PGC-1α and to induce mitochondrial

biogenesis [70, 71]. Further investigations will be needed to clarify these

conflicting findings on the role of AMPK in the development of sarcopenia.

16.3.4 ROS and Mitochondrial Dysfunction

ROS and oxidative stress have been considered as important pathogenic compo-

nents of metabolic diseases [72]. Mitochondrial dysfunction produces increased

amounts of ROS, resulting in oxidative damage, which includes decreased mito-

chondrial content and oxidative capacity and increased mitochondrial DNA muta-

tions [73]. Activation of the renin-angiotensin system (RAS) is commonly observed

in patients either with diabetes, obesity, or both. ROS production could be enhanced

by angiotensin II (Ang II), which stimulated the angiotensin type 1 (AT1, G-pro-

tein-coupled) receptor and activated NADPH oxidase. In rodent model, RAS

blockade increases survival rate and prevents age-related defects [74]. Thus, it is

suggested that Ang II contributes to mitochondrial dysfunction in the aging process.

This indicated that diabetes mellitus and age-related sarcopenia may have additive

effects for ROS production. Furthermore, NF-kB induces muscle breakdown by

promoting protein degradations in skeletal muscle through regulation of ubiquitin-

proteasome pathway (UPS) [75]. The maintenance of mitochondrial morphology

and regeneration of self-renewal could be due to the mitochondrial fusion and

fission interactions. This mitochondrial fission contributes to the quality control

of creating new mitochondria and removing of damaged mitochondria during high

cellular stress [76]. Disruptions of either event may induce metabolic disorders and

leads to developmental defects and diseases [77], suggesting that the maintenance

in aging muscle cell mitochondrial morphology may prevent cell dysfunction.

16.3.5 AGE Accumulation and Diabetic Neuropathy

The formation of advanced glycation end products (AGEs) is generated through

nonenzymatic glycation of many heterogenous compounds and the complex and

diverse possibilities of reaction of glucose with proteins, lipids, and nucleic acids

[78]. AGEs are regarded as key molecules to be one source of oxidative stress in

aging [79]. It is well known that long-term high-fat diet and endogenously formed

AGEs contribute to the progression of diabetic complications [80]. AGEs are
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produced endogenously via food, and the concentration of circulating AGEs

increases in high-fat diet [81]. Interestingly, it has been reported that AGE accu-

mulation was decreased in association with administration of insulin and greater in

fast-twitch fibers in non-insulin diabetic animal model [82]. AGE/RAGE in aging

stimulates the activation of ERK1/2 and P38 MAPK pathways and increased

apoptosis transcription factor such as NF-kB [83]. In recent years, the modified

protein methylglyoxal (MG) was observed to involve AGE formation in aged

individuals [84, 85]. MG is believed to induce protein glycation leading to the

formation of AGEs; some reports indicated that MG or AGEs administration to

Sprague-Dawley rats resulted in increased glucose levels and insulin resistance

[86, 87]. Moreover, the direct effects of AGEs from Tanaka’s group have shown

that AGE2 or AGE3 markedly suppressed the expressions of MyoD and myogenin

protein on myoblastic differentiation in C2C12 cells and significantly inhibited

mRNA expression. This suggested that AGEs have direct negative effects on

myogenesis [88].

T2D leads to chronic hyperglycemia and is related to the major age-related

microvascular complications such as microangiopathic and macroangiopathic dam-

age and motor neuropathies (diabetic neuropathy) [89]. Enhanced mitochondrial

apoptosis has also been observed in muscle denervation and implicated in diabetes

and neuropathy in human neuromuscular disorders, which exhibited significant

muscle weakness and reduced functional capacity in the ankle and knee [90]. In

addition, the AGE-RAGE axis and accumulation of AGEs in the peripheral nerve

also play important roles in the pathogenesis of diabetic neuropathy [91], thus

impairing the quality of life of diabetic patients. It is not yet established, but

increasing studies suggested that accumulation of AGEs through glucose intoler-

ance enhanced by mitochondrial ROS together with promotion of apoptosis leads to

an elevated risk of developing sarcopenia.

16.4 Potential Treatments for Sarcopenia with Diabetes

Epidemiological and intervention studies for exercise training have strongly

supported its efficacy for prevention, leading to the management of diabetes and

sarcopenia. In exercising and amino acid supplementation (AAS) study [92], not

only enhanced muscle mass or walking speed but also enhanced muscle strength

was observed in sarcopenic women. In addition, high-intensity progressive resis-

tance training was effective in improving glycemic control and physical activity,

increasing lean mass among high-risk older adults with T2D [93]. Thus, resistance

training and a combination of training and nutritional replenishment, like amino

acids, might also be a beneficial intervention in sarcopenia with diabetes.

As for antidiabetic drugs, a class of thiazolidinediones (TZDs) can activate

AMPK in insulin-resistant animals [94] and mediate mitochondrial effects on

neurodegeneration [95]. In T2D patients, rosiglitazone [96] and pioglitazone [97]

both enhanced insulin reactions and reduced plasma nonesterified fatty acids [97],
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which improved insulin-stimulated muscle glucose disposal. These TZDs may

involve a potential role of age-related mitochondrial dysfunction,

neurodegeneration diseases [98], and diabetes with sarcopenia. Indeed, a combina-

tion of pioglitazone and resistance training leads to a potentiated effect on muscle

power compared with resistance training alone in older obese women [99]. Metfor-

min also activates AMPK and enhances insulin sensitivity in skeletal muscle,

thereby stimulating glucose uptake [100]; however, there has been no reliable

clinical evidence so far. At any rate, insulin resistance and glucose intolerance

can contribute to muscle wasting; therefore, the therapies for improving insulin

resistance and glucose intolerance are supposed to have a potential to prevent

sarcopenia.

16.5 Closing Remarks and Perspectives

We conclude that subjects with sarcopenia in diabetes mellitus would have higher

physical dysfunction and mortality risks than those nondiabetic older adults.

Sarcopenic obesity could be described as independent of sarcopenia and obesity,

both related to insulin resistance and inflammation in diabetes mellitus. We intro-

duce the molecular pathways underlying the pathogenesis of sarcopenia in diabetes

in this chapter and, in particular, mitochondrial dysfunction and AGE accumulation

might be significant targets common to sarcopenia and diabetes. Further studies will

be needed to improve our knowledge on the interaction between diabetes and

sarcopenia and to establish beneficial therapeutic interventions combined with

exercise for slowing down and reversing the loss of muscle mass and strength in

older adults with T2D.
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