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    Chapter 2   
 Phospholipase A 2        

       Makoto     Murakami      and     Yoshitaka     Taketomi   

    Abstract     Phospholipase A 2 s (PLA 2 s) are a group of enzymes that hydrolyze the 
 sn -2 position of phospholipids to generate fatty acids and lysophospholipids, which 
serve as lipid mediators or their precursors. Mammalian genomes encode genes for 
more than 30 PLA 2 s or related enzymes, which are subdivided into several groups 
on the basis of their structures, enzymatic properties, and evolutional relationships. 
Among them, the Ca 2+ -dependent cytosolic PLA 2  (cPLA 2 ), Ca 2+ -independent PLA 2  
(iPLA 2 ), and secreted PLA 2  (sPLA 2 ) families are regarded as the “big three.” From 
a general point of view, cPLA 2 α (the prototypic cPLA 2 ) plays a major role in the 
initiation of arachidonic acid (AA) metabolism, the iPLA 2  family contributes to 
membrane homeostasis or energy metabolism, and the sPLA 2  family affects various 
biological events by modulating extracellular phospholipid milieus in response to 
given microenvironmental cues. In this chapter, we overview current understanding 
of the biological functions of PLA 2 s as revealed by gene-manipulated mice and 
human diseases.  

  Keywords     Arachidonic acid   •   Eicosanoid   •   Fatty acid   •   Glycerophospholipid   • 
  Immunity   •   Infl ammation   •   Lipoprotein   •   Lysophospholipid   •   Metabolic disease   • 
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2.1         Introduction 

 Phospholipase A 2  (PLA 2 ) catalyzes the hydrolysis of the  sn -2 position of membrane 
glycerophospholipids to liberate free fatty acids and lysophospholipids. To date, 
more than 30 enzymes that possess PLA 2  or related activities have been identifi ed in 
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mammals, and these have been subdivided into several groups based on their struc-
tures, catalytic mechanisms, localizations. and evolutionary relationships. The 
cPLA 2  family contains 6 enzymes (cPLA 2 α−ζ), which (except for cPLA 2 γ) contain 
an N-terminal C2 domain for Ca 2+ -dependent association with the membrane. The 
iPLA 2  or patatin-like phospholipase domain-containing lipase (PNPLA) family 
includes 9 enzymes, some of which act principally on phospholipids and others on 
neutral lipids such as triglyceride (TG). The sPLA 2  family, in which 10 catalytically 
active enzymes have been identifi ed, are low molecular weight, extracellular enzymes 
that require Ca 2+  of the mM order for optimal enzymatic activity. Because of this 
diversity, PLA 2  enzymes have been implicated in various biological processes such 
as lipid mediator production, membrane remodeling, and energy metabolism. 

 During the past few decades, studies of various PLA 2  transgenic and/or knockout 
mice as well as human diseases with PLA 2  gene mutations have provided new 
insights into the emerging biological roles of individual PLA 2 s. The functions of 
individual PLA 2 s may not simply refl ect changes in lipid mediator signaling, or 
more particularly eicosanoid signaling, but may also be attributable to hydrolysis of 
one or a combination of various target membrane lipids. Herein, we focus on the 
pathophysiology of various PLA 2 s as revealed by information from transgenic or 
knockout mice, as well as human diseases.  

2.2     The cPLA 2  Family 

2.2.1     General Aspects of cPLA 2 s 

 Enzymes belonging to the cPLA 2  family are characterized by the presence of a C2 
domain in their N-terminal region, with the exception of cPLA 2 γ, which lacks this 
domain. Evolutionarily, the cPLA 2  family emerged from the ancestral iPLA 2  family 
at the branching point of vertebrates, correlating with the development of eicosanoid 
signaling cascades. cPLA 2 α is no doubt the best-known PLA 2 , with a major role in 
releasing arachidonic acid (AA), a precursor of eicosanoids (prostaglandins, PGs, 
and leukotrienes, LTs), from cellular membrane phospholipids.  

2.2.2     cPLA 2 α 

 cPLA 2 α, also known as group IVA PLA 2 , is localized in the cytosol of resting cells, 
and in response to an increase in cytosolic Ca 2+  levels after cell activation, it trans-
locates to the perinuclear or, more specifi cally, the Golgi membranes to encounter 
its preferred substrate, AA-containing phosphatidylcholine (PC). Ceramide-1- 
phosphate or phosphoinositide-4,5-bisphosphate (PIP 2 ) enhances the membrane 
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interaction of cPLA 2 α. Mitogen-activated protein kinases phosphorylate Ser 505  on 
cPLA 2 α, leading to its activation. The AA released by cPLA 2 α is then converted to 
PGs and LTs by cyclooxygenases and 5-lipoxygenase, respectively. As an example, 
the cPLA 2 α activation mechanism in mast cells (MCs) is shown in Fig.  2.1 .

   Mice lacking cPLA 2 α ( Pla2g4a  −/− ) exhibit a number of striking phenotypes that 
can be explained by defects in pathways involving PGs, LTs, or platelet-activating 
factor (PAF). For instance,  Pla2g4a  −/−  mice are protected from asthma, acute respi-
ratory distress syndrome, and pulmonary fi brosis, which can be explained by 
marked reductions of detrimental lipid mediators such as LTs and PAF [ 1 – 3 ]. 
 Pla2g4a   −/−   mice or wild-type mice treated with a cPLA 2 α inhibitor are less suscep-
tible to experimental autoimmune encephalomyelitis or collagen-induced arthritis 
[ 4 ,  5 ], are protected from brain injuries caused by ischemia or Aβ amyloid [ 6 ,  7 ], 
and have reduced incidences of intestinal and lung cancer [ 8 ,  9 ], all of which can be 
attributed to reduced PGE 2  signaling. Consistent with the protective role of PGE 2  in 
the gastrointestinal mucosa, the intestinal epithelium of  Pla2g4a   −/−   mice has numer-
ous small ulcerative lesions [ 9 ]. The impairment of female fertility observed in 
 Pla2g4a   −/−   mice suggests that cPLA 2 α has an important role in parturition and 
implantation by providing PGF 2α  and PGE 2  [ 10 ,  7 ]. Because of reduced production 

  Fig. 2.1    Activation of cytosolic PLA 2  (cPLA 2 )α in mast cells (MCs). In response to Ca 2+  infl ux 
following FcεRI activation with IgE and cognate antigen, cPLA 2 α translocates from the cytosol to 
the perinuclear membrane and is phosphorylated by mitogen-activated protein kinase (MAPK) for 
optimal activation. The arachidonic acid (AA) released from membrane phospholipids by cPLA 2 α 
is then converted to PGD 2  by the sequential action of cyclooxygenase (COX)-1 (or COX-2 when 
the cells are primed by particular stimuli) and hematopoietic PGD 2  synthase (H-PGDS) to PGD 2  
or by the sequential action of 5-lipoxygenase (5-LOX) incorporation with 5-LOX-activating pro-
tein (FLAP) and LTC 4  synthase (LTC4S) to LTC 4        
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of thromboxane A 2  (TXA 2 ) by platelets,  Pla2g4a   −/−   mice are protected from throm-
boembolism and have prolonged bleeding times [ 11 ]. Furthermore, ablation or 
knockdown of cPLA 2 α ameliorates metabolic disorders including atherosclerosis, 
hepatic fi brosis, insulin resistance, and adipose tissue infl ammation [ 12 – 14 ]. In all 
cases, the levels of lipid mediators responsible for the corresponding pathophysio-
logical events are markedly reduced in  Pla2g4a   −/−   mice relative to wild-type mice. 
In humans, an inherited  PLA2G4A  mutation is linked to impaired eicosanoid bio-
synthesis, ulceration of the small intestine, and platelet dysfunction [ 15 ].  

2.2.3     Other cPLA 2 s 

 cPLA 2 β, δ, ε, and ζ (group IVB, IVD, IVE, and IVF PLA 2 s) map to the same chro-
mosomal locus and are therefore evolutionally more related [ 16 ]. cPLA 2 β is a dual 
PLA 1 /PLA 2  enzyme, although cPLA 2 δ has a robust PLA 1  activity in preference to 
PLA 2  activity. cPLA 2 γ (group IVC PLA 2 ) is unique in that it lacks the C2 domain 
and displays lysophospholipase and transacylase activities in addition to PLA 2  
activity [ 17 ]. The  in vivo  functions of these cPLA 2  isoforms are entirely unknown 
because knockout studies have yet to be performed. A recent study has shown that 
cPLA 2 ε may drive recycling through clathrin-independent endocytosis [ 18 ].   

2.3     The iPLA 2 /PNPLA Family 

2.3.1     General Aspects of iPLA 2 s 

 The human genome encodes nine iPLA 2 /PNPLA enzymes, which share a protein 
motif known as the “patatin domain” with an unusual folding topology that differs 
from classical lipases (Fig.  2.2 ). The cPLA 2  and iPLA 2  families seem to have 
evolved from a common ancestral gene, as their catalytic domains are commonly 
characterized by a three-layer α/β/α architecture employing a conserved Ser/Asp 
catalytic dyad instead of the classical catalytic triad [ 19 ]. iPLA 2 /PNPLA enzymes 
are found in virtually all eukaryotes including yeast, plants, invertebrates, and ver-
tebrates, suggesting that they possess fundamental roles in cellular lipid metabolism 
conserved in the eukaryote kingdom. The designation “PNPLA” appears to be more 
appropriate than “iPLA 2 ,” as some of the isoforms have enzymatic activities appar-
ently distinct from  bona fi de  PLA 2  activity. For instance, iPLA 2 ζ/PNPLA2 functions 
as a major TG lipase in adipose and many other tissues, whereas iPLA 2 ε/PNPLA3 
may act mainly as an acyltransferase or transacylase for accumulation of TG, par-
ticularly in the liver [ 20 ]. Here, we focus on two particular iPLA 2 s, iPLA 2 β/PNPLA9 
and iPLA 2 γ/PNPLA8, which have robust PLA 2  activity.
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2.3.2        iPLA 2 β 

 iPLA 2 β (PNPLA9 or group VIA PLA 2 ), the best characterized iPLA 2 , has long been 
thought to be involved in homeostatic phospholipid remodeling through deacylation 
of phospholipids in the Lands’ cycle. Indeed, the composition of phospholipids, 
particularly those containing docosahexaenoic acid (DHA), is noticeably altered in 
the brain (but not other tissues) of mice lacking iPLA 2 β ( Pla2g6  −/− ) [ 21 ]. Notably, 
human  PLA2G6  mutations are associated with neurodegenerative diseases such as 
infantile neuroaxonal dystrophy (INAD), neurodegeneration with brain iron accu-
mulation (NBIA), and Schindler’s disease, which share the distinctive pathological 
feature of axonal degeneration with spheroid bodies in the nervous system [ 22 ]. 
Similar neurodegenerative phenotypes are also evident in  Pla2g6  −/−  mice or  Pla2g6  
mutant mice ( Pla2g6-inad , in which the  Pla2g6  gene harbors a point mutation), 
which show motor dysfunction caused by widespread degeneration of axons and 
synapses, accompanied by the appearance of spheroids and vacuoles [ 23 ,  24 ]. 
iPLA 2 β has also been proposed to have more diverse signaling roles. These  Pla2g6  −/−  
phenotypes include male infertility [ 25 ], defective opening of store-operated Ca 2+  
entry, probably caused by reduced production of lysophosphatidylcholine (LPC) 
[ 26 ], impaired insulin secretion by pancreatic β-cells [ 27 ], reduced apoptosis [ 28 ], 
decreased eicosanoid generation in vascular cells [ 29 ], and protection from ovarian 
cancer, possibly through reduction of lysophosphatidic acid (LPA) [ 30 ]. In most 
cases, however, the iPLA 2 β-driven lipid metabolic processes underlying these 
events are poorly characterized.  

  Fig. 2.2    Evolutional relationship between the cPLA 2  and iPLA 2  families. The iPLA 2  family is 
present in all eukaryotes, whereas the cPLA 2  family emerged from the iPLA 2  family at the stage of 
divergence of vertebrates       
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2.3.3     iPLA 2 γ 

 iPLA 2 γ, also known as PNPLA8 or group VIB PLA 2 , is localized to mitochondria 
or peroxisomes and displays PLA 2  or PLA 1  activity depending on the substrates 
involved [ 31 ]. Mice null for iPLA 2 γ ( Pnpla8  −/− ) exhibit bioenergetic dysfunctional 
phenotypes, including growth retardation, cold intolerance, reduced exercise endur-
ance, increased mortality from cardiac stress, and abnormal mitochondrial function 
with an altered cardiolipin composition [ 32 ]. Furthermore,  Pnpla8  −/−  mice are resis-
tant to diet-induced obesity, fatty liver, and hyperlipidemia [ 33 ,  34 ]. These mice 
also display lipodystrophy, impaired glucose-stimulated insulin secretion, and 
decreased mitochondrial β-oxidation. Myocardium-specifi c  Pnpla8 -transgenic 
mice show a dramatic reduction of myocardial phospholipid mass, marked accumu-
lation of TG, impaired mitochondrial function, and hemodynamic dysfunction [ 35 ]. 
Thus, iPLA 2 γ appears to be crucial for maintaining effi cient bioenergetic mitochon-
drial function by tailoring mitochondrial lipid metabolism. However, considering 
that defective β-oxidation usually leads to increased fat accumulation in peripheral 
tissues, the protective effect of iPLA 2 γ ablation against diet-induced metabolic dis-
orders might involve an as yet unknown mechanism.  Pnpla8  −/−  mice also display a 
profound alteration in hippocampal mitochondrial homeostasis, leading to cognitive 
dysfunction [ 36 ]. The  Pnpla8  −/−  hippocampus has an increased level of cardiolipin 
and a decrease of plasmalogen, implying a function of iPLA 2 γ in remodeling of 
these phospholipids. Overall, the neurological abnormalities in  Pnpla8  −/−  mice are 
reminiscent of features in patients with Barth syndrome, a disease caused by dis-
turbed cardiolipin metabolism [ 37 ].   

2.4     The sPLA 2  Family 

2.4.1     General Aspects of sPLA 2 s 

 More than one third of the PLA 2  enzymes belong to the sPLA 2  family, which con-
tains ten catalytically active isoforms (IB, IIA, IIC, IID, IIE, IIF, III, V, X, XIIA). 
Individual sPLA 2 s exhibit unique tissue and cellular localizations and enzymatic 
properties, suggesting their distinct pathophysiological roles. Classical group I/
II/V/X sPLA 2 s are closely related, 14- to 19-kDa secreted enzymes with a highly 
conserved Ca 2+ -binding loop and a His/Asp catalytic dyad as well as conserved 
disulfi de bonds, whereas group III and XII sPLA 2 s are atypical and classifi ed into 
distinct classes. As sPLA 2 s are secreted, their target membranes should reside in the 
extracellular spaces. Individual sPLA 2 s contribute to various biological events 
through production of lipid mediators, promotion of membrane remodeling, modi-
fi cation of extracellular noncellular lipid components such as surfactant, micropar-
ticles, and lipoproteins, or degradation of foreign phospholipids such as those 
originating from microbes and dietary components. Here we overview the 
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pathophysiological functions of several classical sPLA 2 s (IB, IIA, IID, IIE, V, X) 
and an atypical sPLA 2  (group III), as revealed by their transgenic overexpression or 
gene targeting in mice. Several examples of these sPLA 2 -mediated lipid networks 
are illustrated in Fig.  2.3 .

2.4.2        sPLA 2 -IB 

 sPLA 2 -IB, often called “pancreatic sPLA 2 ,” is abundantly expressed in the pancreas. 
After secretion into the duodenal lumen, an N-terminal heptapeptide of the inactive 
zymogen is cleaved by trypsin to yield an active enzyme. The main role of this 

  Fig. 2.3    Several examples of sPLA 2 -driven lipid networks. ( a ) sPLA 2 -V in M2 macrophages 
facilitates the Th2 response and that in airway epithelial cells degrades lung surfactant. sPLA 2 -X 
from the airway epithelium acts on eosinophils to augment LTC 4  generation. Accordingly, the two 
sPLA 2 s independently promote asthma. ( b ) sPLA 2 -III released from immature MCs acts on fi bro-
blasts to promote L-PGDS-dependent generation of PGD 2 , which in turn acts on the PGD 2  receptor 
DP1 on MCs to promote MC maturation. Accordingly, PLA2G3 facilitates MC-dependent ana-
phylaxis. Activation of cPLA 2 α in mature MCs is highlighted in Fig.  2.1 . ( c ) In lymph nodes, 
sPLA 2 -IID in DCs hydrolyzes PE to release DHA, which is then converted to the pro-resolving 
lipid mediator resolving D1 (RvD1) to sequester Th1 immunity. Accordingly, sPLA 2 -IID amelio-
rates Th1-dependent contact dermatitis       
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enzyme is digestion of dietary and biliary phospholipids. Gene disruption of sPLA 2 -
 IB ( Pla2g1b  −/− ) results in decreased phospholipid digestion and absorption in the 
gut [ 38 ]. The reduced intestinal production of LPC, which is a causal factor for 
hepatic insulin resistance, results in protection from diet-induced obesity, glucose 
intolerance, hyperlipidemia, and atherosclerosis in  Pla2g1b  −/−  mice [ 39 – 41 ].  

2.4.3     sPLA 2 -IIA 

 sPLA 2 -IIA is the only isozyme detectable in the circulation, particularly under path-
ological conditions. It is often referred to as “infl ammatory sPLA 2 ” as its levels in 
sera or infl ammatory exudates correlate with the severity of infl ammatory diseases, 
and it is robustly induced by pro-infl ammatory stimuli in various cells [ 42 ]. 
However, the precise role of sPLA 2 -IIA in infl ammation remains debatable, as a 
natural mutation in its gene ( Pla2g2a ) in C57BL/6 and 129Sv mice [ 43 ] prevents 
adequate evaluation of its functions by gene targeting. So far, therefore, most of the 
 in vivo  functions of sPLA 2 -IIA have currently been addressed mainly using  Pla2g2a - 
transgenic  mice. 

  Pla2g2a -transgenic mice have skin abnormalities manifested by hair loss and 
epidermal hyperplasia [ 44 ] and by increased carcinogen-induced skin cancer [ 45 ]. 
In line with clinical evidence that the serum level of sPLA 2 -IIA correlates with car-
diovascular diseases [ 46 ],  Pla2g2a -transgenic mice develop advanced atheroscle-
rotic lesions [ 47 ]. Given that atherosclerosis represents chronic infl ammation in the 
aorta, sPLA 2 -IIA can be regarded as a pro-infl ammatory enzyme in atherosclerosis. 
The most probable physiological role of sPLA 2 -IIA is degradation of bacterial 
membranes, thereby providing a fi rst line of antimicrobial defense [ 48 ]. sPLA 2 -IIA 
is capable of hydrolyzing phosphatidylethanolamine (PE) and phosphatidylglycerol 
in marked preference to PC, which can account for the preferential action of this 
enzyme on bacteria rather than on mammalian cells. Accordingly,  Pla2g2a - 
transgenic  mice or wild-type mice treated with sPLA 2 -IIA are resistant to pneumo-
nia and sepsis following bacterial infection [ 49 ]. For this reason, sPLA 2 -IIA is often 
referred to as a “bactericidal sPLA 2 .” 

 Mouse strains with natural disruption of the  Pla2g2a  gene (see foregoing) are 
more sensitive to intestinal tumorigenesis [ 50 ]. Transgenic transfer of the  Pla2g2a  
gene into these strains reduces the incidence of intestinal polyposis [ 51 ]. Thus, 
sPLA 2 -IIA appears to have an antitumorigenic role in the gastrointestinal tract. 
Presumably, bactericidal sPLA 2 -IIA may affect the gastrointestinal microfl ora, 
thereby infl uencing tumor development. On the other hand, sPLA 2 -IIA expression 
is positively correlated with the malignancy of prostate cancer [ 52 ], revealing dis-
tinct impacts of sPLA 2 -IIA on different types of cancer. Recently, the mutated 
 Pla2g2a  allele in the C57BL/6 mouse strain was delivered into the BALB/c mouse 
strain to produce  Pla2g2a  −/−  BALB/c mice. Autoantibody-induced arthritis is atten-
uated in these  Pla2g2a  −/−  mice relative to  Pla2g2a -suffi cent mice, whereas it is 
conversely aggravated in  Pla2g2a -transgenic mice [ 53 ]. This study has provided the 
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fi rst compelling evidence for the pro-infl ammatory role of sPLA 2 -IIA. Recently, it 
has been shown that sPLA 2 -IIA targets phospholipids in extracellular mitochondria, 
and thereby amplifi es infl ammation by producing eicosanoids as well as mitochon-
drial DNA, a kind of danger-associated molecular pattern (DAMP) [ 54 ].  

2.4.4     sPLA 2 -IID 

 sPLA 2 -IID is structurally most related to sPLA 2 -IIA and is expressed preferentially 
in dendritic cells (DCs) in secondary lymphoid organs [ 55 ], suggesting its immuno-
regulatory role. In a model of Th1-dependent contact dermatitis, resolution of 
infl ammation is compromised in skin and lymph nodes of mice lacking sPLA 2 -IID 
( Pla2g2d  −/− ) [ 55 ]. sPLA 2 -IID in regional lymph nodes mobilizes a pool of polyun-
saturated fatty acids that can be metabolized to pro-resolving lipid mediators such 
as DHA-derived resolvin D1, which reduces Th1 cytokine production and DC acti-
vation. sPLA 2 -IID preferentially hydrolyzes DHA-containing PE in lymph node 
membranes. In accordance with its antiinfl ammatory role, sPLA 2 -IID expression in 
DCs is downregulated after cell activation. Furthermore, administration of sPLA 2 -
IID- Fc protein attenuates autoimmune diseases in mice [ 56 ]. Together, the existing 
data suggest that sPLA 2 -IID is a “resolving sPLA 2 ” that ameliorates infl ammation 
by mobilizing DHA-derived pro-resolving lipid mediators.  

2.4.5     sPLA 2 -IIE 

 Similar to sPLA 2 -IID, sPLA 2 -IIE is structurally most homologous to sPLA 2 - 
IIA. Expression of sPLA 2 -IIE is markedly induced in adipocytes during adipogen-
esis  in vitro  and after high-fat feeding  in vivo . Mice defi cient in sPLA 2 -IIE 
( Pla2g2e  −/− ) are modestly protected from diet-induced obesity, fatty liver, and 
hyperlipidemia [ 57 ]. sPLA 2 -IIE preferentially hydrolyzes minor lipoprotein phos-
pholipids, phosphatidylserine (PS), and PE, with no apparent fatty acid selectivity. 
As such, sPLA 2 -IIE alters lipid composition in lipoproteins, thereby affecting fat 
deposition in adipose tissue and liver. Thus, sPLA 2 -IIE is a “metabolic sPLA 2 ” that 
controls systemic metabolic states by modulating lipoprotein phospholipids. These 
fi ndings shed light on the importance of the minor lipoprotein phospholipids (PS 
and PE) in metabolic regulation.  

2.4.6     sPLA 2 -V 

 Because sPLA 2 -V is able to hydrolyze PC more effi ciently than sPLA 2 -IIA, most 
investigators in this research fi eld have been interested in the potential roles of this 
enzyme in infl ammation in the context of AA metabolism. Indeed, zymosan-induced 
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peritonitis or lipopolysaccharide (LPS)-induced air pouch infl ammation is partially 
attenuated in mice lacking sPLA 2 -V ( Pla2g5  −/− ) [ 58 ,  59 ]. sPLA 2 -V is highly 
expressed in the myocardium, and  Pla2g5  −/−  mice exhibit a markedly decreased 
infarct size in a myocardial ischemia and reperfusion model [ 60 ]. sPLA 2 -V is 
expressed in bronchial epithelial cells and alveolar macrophages, and  Pla2g5  −/−  
mice are protected from airway disorders such as antigen-induced asthma and LPS- 
induced respiratory distress syndrome [ 61 ,  62 ]. Moreover, in keeping with the view 
that hydrolysis of phospholipids in low density lipoprotein (LDL) by sPLA 2 -V can 
promote foam cell formation by macrophages  in vitro  [ 63 ],  Ldlr  −/−  mice transplanted 
with  Pla2g5  −/−  bone marrow cells are partially protected from atherosclerosis [ 64 ]. 
Although most of these studies support the offensive roles of sPLA 2 -V, the underly-
ing mechanisms by which sPLA 2 -V regulates each of these pathologies have 
remained controversial. Of note, sPLA 2 -V prefers phospholipids bearing fatty acids 
with a lower degree of unsaturation (e.g., oleate and linoleate) to those containing 
highly polyunsaturated fatty acids (e.g., AA and DHA), making it unclear whether 
sPLA 2 -V indeed mobilizes AA-derived eicosanoids  in vivo . Because increased 
infl ammation is generally accompanied by cPLA 2 α activation, the observed changes 
in eicosanoid levels in  Pla2g5  −/−  mice might simply refl ect disease-associated 
changes in cPLA 2 α activation, rather than hydrolytic liberation of AA by sPLA 2 -V. 
Indeed, transgenic overexpression of sPLA 2 -V leads to respiratory distress and neo-
natal death without alterations in pulmonary eicosanoid levels [ 65 ]. This phenotype 
has been ascribed to aberrant hydrolysis of surfactant phospholipids (dipalmitoyl-
 PC) and is apparently eicosanoid independent. 

 The roles of sPLA 2 -V in infl ammation have been proven to be more complex. 
Although sPLA 2 -V was thought to be induced by pro-infl ammatory stimuli (as in 
the case of sPLA 2 -IIA), it has recently become obvious that its expression is induced 
by the Th2 cytokines IL-4 and IL-13, rather than proinfl ammatory stimuli including 
LPS, zymosan, and Th1 cytokines, which decrease sPLA 2 -V expression [ 57 ,  66 ]. 
sPLA 2 -V is expressed in IL-4-driven M2 macrophages and Th2 cells, which facili-
tate Th2-type infl ammation while attenuating Th1 or Th17 immunity. Importantly, 
Th2 responses, as monitored by IL-4 expression and IgE production, are greatly 
reduced in  Pla2g5  −/−  mice, thus underscoring the reduced asthmatic phenotype from 
the lack of sPLA 2 -V. Thus, sPLA 2 -V appears to function in at least two regulatory 
steps in asthma: (1) in antigen-presenting cells to regulate antigen processing and 
thereby the Th2 response, and (2) in airway-resident cells to promote airway infl am-
mation that may involve surfactant degradation.  Pla2g5  −/−  mice are more suscepti-
ble to  Candida  infection (Th1 immunity) and arthritis (Th17 immunity) [ 53 ,  67 ], 
which could also be partly explained by the ability of sPLA 2 -V to promote Th2 
immunity (and therefore to suppress Th1/Th17 immunity). 

 The function of sPLA 2 -V as a “Th2-prone sPLA 2 ” also infl uences obesity, as Th2 
or M2 response dampens adipose tissue infl ammation. In obesity, sPLA 2 -V is 
induced in hypertrophic adipocytes [ 57 ]. When fed a high-fat diet,  Pla2g5   −/−   mice 
display hyperlipidemia with higher plasma levels of lipid-rich LDL and increased 
obesity, fatty liver, and insulin resistance. sPLA 2 -V has a protective function against 
metabolic disorders by hydrolyzing and thereby normalizing PC in LDL and by 
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 tipping the immune balance toward an Th2/M2 state that counteracts adipose tissue 
infl ammation. Mechanistically, sPLA 2 -V-driven oleate and linoleate from PC in 
LDL dampen M1 macrophage polarization by saturated fatty acids (e.g., palmitate), 
probably through attenuation of endoplasmic reticulum stress. Clinically also, 
sPLA 2 -V expression in human visceral adipose tissue inversely correlates with 
plasma LDL levels. These studies underscore the physiological relevance of lipo-
protein hydrolysis by sPLA 2 s, highlight two adipocyte-driven “metabolic sPLA 2 s” 
(sPLA 2 -IIE and sPLA 2 -V) as integrated regulators of immune and metabolic 
responses, and bring about a paradigm shift toward a better understanding of the 
roles of the sPLA 2  family as a metabolic coordinator.  

2.4.7     sPLA 2 -X 

 As in the case of sPLA 2 -IB, sPLA 2 -X is synthesized as a zymogen, and removal of 
an N-terminal pro-peptide produces an active mature enzyme [ 68 ]. Among the 
sPLA 2 s, sPLA 2 -X has the highest binding affi nity for PC and thus exhibits the most 
potent ability to hydrolyze plasma membrane phospholipids in intact cells [ 69 ]. 
Because of this property, many investigators have speculated that sPLA 2 -X has a 
major role in infl ammation. In line with this scenario, mice lacking sPLA 2 -X 
( Pla2g10  −/− ) are refractory to antigen-induced asthma, with markedly reduced infi l-
tration of eosinophils and lymphocytes, attenuated goblet cell hyperplasia and 
smooth muscle layer thickening, and decreased levels of Th2 cytokines and pro- 
asthmatic eicosanoids [ 70 ]. The attenuated asthmatic responses in  Pla2g10  −/−  mice 
are fully restored by knock-in of human sPLA 2 -X, and treatment of the knock-in 
mice with an inhibitor specifi c for human sPLA 2 -X suppresses airway infl ammation 
[ 71 ]. Mechanistically, sPLA 2 -X secreted from the airway epithelium may act on 
infi ltrating eosinophils to augment LT production in a process involving LPC- 
dependent activation of cPLA 2 α [ 72 ].  Pla2g10  −/−  mice are also protected from the 
early phase of infl uenza infection [ 73 ], further highlighting the role of this enzyme 
in the airway. Moreover, sPLA 2 -X is one of the major sPLA 2  isoforms detected in 
the airway of patients with asthma [ 74 ], thus directing attention to sPLA 2 -X as a 
novel therapeutic target for asthma. In contrast to sPLA 2 -V, however, sPLA 2 -X does 
not infl uence the Th2 response itself, as antigen-sensitized  Pla2g10  −/−  mice have 
normal IgE and IL-4 levels. 

 Several phenotypes have been reported for  Pla2g10  −/−  mice, but the data are con-
troversial. These phenotypes include protection from myocardial infarction or aneu-
rysm [ 75 ,  76 ], exacerbation or attenuation of atherosclerosis [ 77 ,  78 ], increased or 
decreased adiposity [ 79 ,  80 ], altered macrophage responses [ 81 ], and lower response 
to peripheral pain [ 79 ]. In some of these studies, experiments were performed under 
the assumption that sPLA 2 -X is expressed in immune cells such as neutrophils and 
macrophages. However, the expression of sPLA 2 -X in such immune cells is very 
low or almost undetectable [ 75 ,  79 ], raising a question as to the physiological rele-
vance of studies involving adoptive transfer of  Pla2g10  −/−  bone marrow-derived 
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cells. Rather, the possibility that paracrine sPLA 2 -X may alter the properties of 
infl ammatory cells should be taken into account. Because sPLA 2 -X is abundantly 
expressed in the gut epithelium, it is likely that the decreased digestion and absorp-
tion of dietary and biliary phospholipids are eventually linked to reduced fat accu-
mulation in adipose tissue of  Pla2g10  −/−  mice [ 79 ], a situation similar to 
 Pla2g1b  −/−  mice (see foregoing). 

 sPLA 2 -X is most abundantly expressed in the testis, where it is stored in acro-
somes (secretory granules) in the head of sperm cells [ 82 ].  Pla2g10  −/−  spermatozoa 
display an impaired acrosome reaction and low fertility despite showing a normal 
number and motility [ 83 ,  82 ]. Thus, sPLA 2 -X plays a specifi c role in sperm activa-
tion, boosting the acrosome reaction by producing LPC from sperm membranes in 
a paracrine or autocrine manner. Last, a striking skin phenotype characterized by 
alopecia in  Pla2g10 -transgenic mice points to a unique role of sPLA 2 -X in hair 
homeostasis [ 84 ]. Although grossly the coat hairs of  Pla2g10  −/−  mice appear nor-
mal, they have ultrastructural abnormalities including a hypoplasic outer root sheath 
and reduced melanin granules in their hair follicles.  

2.4.8     sPLA 2 -III 

 sPLA 2 -III, an atypical sPLA 2 , more closely resembles bee venom sPLA 2  rather than 
other mammalian sPLA 2 s [ 85 ]. Transgenic overexpression of sPLA 2 -III in mice 
with an  ApoE  −/−  background results in increased atherosclerosis from accelerated 
LDL hydrolysis and increased TXA 2  synthesis [ 86 ]. These mice also develop sys-
temic infl ammation as they age because of elevated eicosanoid formation [ 87 ]. 
Thus, beyond the overexpression strategy, sPLA 2 -III has a pro-infl ammatory 
potential. 

 sPLA 2 -III is highly expressed in the epididymal epithelium. Studies using mice 
lacking sPLA 2 -III ( Pla2g3  −/− ) have revealed that epididymal sPLA 2 -III acts on 
immature sperm cells passing through the duct in a paracrine manner to regulate 
phospholipid remodeling. During epididymal transit of spermatozoa, PC in the 
sperm membrane undergoes a dramatic shift in its acyl groups from oleate, linole-
ate, and AA to docosapentaenoic acid (DPA) and DHA, and the increased propor-
tion of DPA/DHA consequently contributes to increased sperm membrane fl uidity 
and thereby sperm motility. In  Pla2g3  −/−  mice, this sperm membrane remodeling is 
severely compromised. Accordingly, spermatozoa from  Pla2g3  −/−  mice have a low 
DPA/DHA content, aberrant acrosomes and fl agella with an abnormal axoneme 
confi guration, and display hypomotility and reduced fertility [ 88 ]. Thus, the two 
“reproductive sPLA 2 s” (sPLA 2 -III and sPLA 2 -X), which are expressed in different 
locations within the male genital organs, exert nonredundant but interrelated func-
tions in two major steps of male fertility, the former during sperm maturation in the 
epididymis and the latter during capacitation and the acrosome reaction, likely after 
ejaculation in the uterus and oviduct. 
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 Microenvironmental alterations in MC phenotypes affect susceptibility to allergy, 
yet the mechanisms underlying the proper maturation of MCs toward an allergy- 
sensitive phenotype were poorly understood. sPLA 2 -III is stored in and released 
from MC granules, and MC-associated passive and active anaphylactic responses 
are markedly attenuated in  Pla2g3  −/−  mice, whereas they are augmented in  Pla2g3 - 
transgenic  mice [ 89 ]. Tissue MCs in  Pla2g3  −/−  mice are immature and are therefore 
resistant to IgE-dependent and -independent activation. Similar MC abnormalities 
are also seen in mice lacking lipocalin-type prostaglandin D 2  (PGD 2 ) synthase 
(L-PGDS) or those lacking the PGD 2  receptor DP1, suggesting their functional rela-
tionship. Indeed, genetic or pharmacological ablation of DP1 in MCs or L-PGDS in 
fi broblasts phenocopies that of sPLA 2 -III in MCs in terms of defective MC matura-
tion and anaphylaxis. Taken together, the data suggest that sPLA 2 -III secreted from 
immature MCs is coupled with fi broblastic L-PGDS to provide microenvironmental 
PGD 2 , which in turn promotes MC maturation via DP1. The sPLA 2 -III/L-PGDS/
DP1 paracrine loop is a novel lipid-orchestrated mechanism, providing a missing 
microenvironmental cue that underlies the proper maturation of MCs.   

2.5     Concluding Remarks 

 With the growing list of knockout and transgenic mouse strains for PLA 2 s, much 
progress has been made in delineating the physiological functions of each PLA 2 . It 
is now becoming obvious that cPLA 2 α is a central regulator of AA metabolism, sup-
ported by the view that the molecular evolution of cPLA 2 α coincided with that of 
eicosanoid receptors when vertebrates evolved, that the iPLA 2  family is a funda-
mental regulator of membrane homeostasis and energy metabolism, and that indi-
vidual sPLA 2 s exert unique and tissue-specifi c biological functions by acting on 
extracellular phospholipids, which include adjacent cell membranes, noncellular 
lipid components, and foreign phospholipids such as those in microbes and the diet. 
The diversity of target phospholipids and products may explain why each PLA 2  
family contains many isoforms. Further advances in this research fi eld and their 
integration for therapeutic applications are likely to benefi t from improved, time- 
and space-resolved lipidomics technology that will allow monitoring of individual 
PLA 2 s and their associated forms of lipid metabolism within specifi c tissue niches. 
Hopefully, the next decade will yield a comprehensive map of the PLA 2 -driven lipid 
networks, which will allow the therapeutic application of inhibitors for some PLA 2 s 
central to human diseases.     
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