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      TIM-3 Is a Novel Therapeutic Target 
for Eradicating Acute Myelogenous Leukemia 
Stem Cells                     

       Koichi     Akashi    

    Abstract     Acute myelogenous leukemia (AML) is derived from self-renewing 
leukemic stem cells (LSCs). We found that T-cell immunoglobulin mucin-3 (TIM-3) 
is expressed on LSCs in most types of primary AML, except for acute promyelocytic 
leukemia (M3 by the FAB classifi cation). TIM-3 is not expressed in normal hema-
topoietic stem cells (HSCs). In a xenogeneic transplantation system, we showed that 
targeting of TIM-3 by an anti-TIM-3 cytotoxic antibody is suffi cient to eradicate 
human AML LSCs without affecting normal human hematopoiesis. These data 
strongly suggest that TIM-3 is a promising therapeutic target to cure AML patients.  

  Keywords     Acute myelogenous leukemia   •   Leukemic stem cell   •   Cancer stem cell   • 
  TIM-3   •   Hematopoietic stem cell   •   Xenotransplantation  

        Introduction 

 In normal hematopoiesis, human hematopoietic stem cells (HSCs) reside within the 
CD34 + CD38 −  cell fraction of bone marrow cells. They self-renew and differentiate 
into mature cells to maintain normal hematopoiesis. Similarly, in acute myeloge-
nous leukemia (AML), leukemic blast cells are derived from a small population 
called leukemic stem cells (LSCs) or leukemia-initiating cells, which also resides 
within the CD34 + CD38 −  cell fraction [ 1 ,  2 ]. LSCs self-renew and give rise to 
clonogenic leukemic cells, whereas non-LSCs lack the potential to self-renew or 
maintain leukemia [ 1 ,  3 ,  4 ] indicating that AML is hierarchically organized initiating 
from LSCs. 

 Conventional chemotherapy currently achieves complete remission in ~90 % of 
AML cases [ 5 ,  6 ]. However, a considerable proportion of AML patients (~60 %) 
eventually relapse after intensive chemotherapies. The recurrence of AML in these 
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patients may be caused by regrowth of surviving LSCs. To selectively kill AML 
LSCs while sparing normal HSCs, one of the most practical approaches is to target 
AML LSC-specifi c surface molecules or molecules required for LSC function. To 
achieve such specifi city, the target molecule should be expressed on LSCs at a high 
level but not on normal HSCs [ 7 ]. The molecule can be expressed in mature blood 
cells or progenitors, because these cells can anyway be replenished by normal HSCs.  

    Search for Surface Antigens Specifi c to AML LSCs 

 A number of candidate surface molecules for eradicating AML LSCs have been 
reported mainly by utilizing cDNA microarray analysis of purifi ed LSCs. Figure  1  
shows the results of transcriptome profi ling of purifi ed LSCs from AML patients 
and normal adult HSCs [ 8 ]. The molecules strongly expressed in AML LSCs, 
including CLL-1 [ 9 ], CSF1R [ 10 ], CD96 [ 11 ], and CD99 [ 12 ], are specifi cally 
expressed in LSCs. CLL-1 is a transmembrane glycoprotein [ 13 ]. The proportion of 
CLL-1-expressing CD34 + CD38 −  AML cells, however, is highly diversifi ed in cases 
[ 9 ]. CD96 is a member of the Ig gene superfamily. CD96 is expressed on activated 
T cells [ 14 ]. The expression level of CD96 protein is also high enough to clearly 
distinguish AML LSCs from normal HSCs. T-cell immunoglobulin mucin-3 (TIM- 3) 
is expressed in LSCs of most AML types (except for M3) at high levels, but is not 
expressed in normal HSCs [ 8 ]. The expression level of CD25 [ 15 ], CD32 [ 15 ], 
CD44 [ 16 ], and CD47 [ 17 ] in LSCs was only two- to threefold higher at the mRNA 
level as compared with normal HSCs, and in some AML cases, LSCs did not express 
these molecules. CD33 and CD123 [ 18 ] proteins are expressed at a high level in 
normal HSCs and myeloid progenitors, including CMPs and GMPs [ 19 ], suggesting 
that targeting these molecules should harm normal hematopoiesis.

   It might also be important to understand the function of these therapeutic target 
molecules in the development of AML. A previous study has shown that anti-CD44 
monoclonal antibodies reduced the leukemic burden and blocked secondary engraft-
ment in a NOD-SCID model [ 16 ]. This effect on LSCs was mediated in part by the 
disruption of LSC-niche interactions [ 16 ]. Anti-CD47 antibodies can block LSC 
reconstitution in a NOD-SCID model [ 17 ], and this might be due to the activation 
of phagocytosis by macrophages through inhibition of interaction of CD47 with 
SIRPA [ 20 ]. 

 Recently, we have reported that TIM-3 is expressed on the cell surface of LSCs 
in most AML types [ 8 ,  21 ]. TIM-3 is not expressed in normal human HSCs [ 8 ] (Fig.  1 ). 
Furthermore, a recent study has succeeded in prospectively isolating LSCs from 
residual HSCs within the CD34 + CD38 −  fraction in de novo AML patients by using 
TIM-3 as a positive LSC marker [ 12 ]. Here, we summarize recent progress in studies 
of TIM-3 and discuss the potential usefulness of TIM-3 for eradicating AML LSCs. 
TIM-3 has several advantages over other candidate markers. First, TIM-3 protein is 
not detectable in normal HSCs or in other myelo-erythroid or lymphoid progenitors, 
although TIM-3 is upregulated in monocyte-lineage committed progenitors. 
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Second, TIM-3 marks all functional LSCs that can reconstitute human AML in 
immunodefi cient mice in the majority of M0, M1, M2, and M4 AML cases, and its 
expression level is suffi cient to eradicate LSCs by antibody-based treatment.  

    TIM-3 Expression and Functions in Normal Hematopoiesis 

 TIM-3 was originally identifi ed as a surface molecule expressed in interferon 
(IFN)- γ-producing CD4 +  Th1 cells and CD8 +  T cytotoxic type 1 (Tc1) cells [ 22 ] in 
murine hematopoiesis. TIM-3, a type 1 cell-surface glycoprotein, has a structure 
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  Fig. 1    TIM-3 expression in normal HSCs and AML LSCs. ( a ) Results of gene expression analysis 
comparing CD34 + CD38 −  normal HSCs and AML LSCs. Surface molecules highly expressed in 
LSCs are shown. ( b ) FACS analysis of TIM-3 protein expression in normal HSCs and AML LSCs. 
Both CD34 + CD38 − CD90 −  LSCs and CD34 + CD38 + AML cells express TIM-3, whereas 
CD34 + CD38 − CD90 −  HSCs completely lack TIM-3 expression. TIM-3 expression originates within 
the CD34 + CD38 +  progenitor fraction in normal human hematopoiesis. A representative FACS 
analysis is shown here       
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that includes an N-terminal immunoglobulin variable domain followed by a mucin 
domain, a transmembrane domain, and a cytoplasmic tail (Fig.  2 ). In steady-state 
human hematopoiesis, TIM-3 is expressed in monocytes and in a fraction of NK 
cells, but not in granulocytes, B cells, or T cells [ 8 ]. However, TIM-3 is upregulated in 
T cells in response to immune reactions. TIM-3 plays an important role in regulation 
of Th1-dependent immune responses and immune tolerance [ 22 – 24 ]. Galectin-9, an 
S-type lectin, has been reported as a TIM-3 ligand in lymphocytes. Galectin-9 has 
two distinct carbohydrate recognition domains and binds to carbohydrate chains on 
the IgV domain of TIM-3. TIM-3 has highly conserved six tyrosine residues and a 
Src homology 2 (SH2) binding motif in its cytoplasmic tail, and stimulation of 
TIM-3 by galectin-9 results in increased phosphorylation of tyrosine residues in 
T cells [ 25 ]. Engagement of TIM-3 by galectin-9 induces apoptosis of Th1 cells and 
inhibits their IFN-γ production [ 26 ]. These data collectively suggest that TIM-3 is a 
negative regulator of Th1- and Tc1-driven immune responses.

   TIM-3 is also known as a marker of “exhausted” CD8 +  T cells. Exhausted T cells 
show impaired proliferation and effector function under antigen stimulation. 
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  Fig. 2    Structure of TIM-3 molecule and its ligands. TIM-3 is a type 1 cell-surface glycoprotein 
and has a structure that includes an N-terminal immunoglobulin variable domain followed by a 
mucin domain, a transmembrane domain, and a cytoplasmic tail with highly conserved six tyrosine 
residues and a SH2 binding motif. Galectin-9, HMGB1, and PS have been identifi ed as ligands 
of TIM-3       
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One of the major markers for exhausted T cells is the inhibitory molecule programmed 
cell death 1 (PD-1), and T cell function is partially restored by blocking the interac-
tion between PD-1 and PD-1 ligand in mice [ 27 ]. TIM-3 is also expressed on 
exhausted CD8 +  T cells in patients with chronic viral infections, including human 
immunodefi ciency virus (HIV) [ 28 ], hepatitis B virus [ 29 ], and hepatitis C virus 
(HCV) [ 30 ]. Blockade of both TIM-3 and PD-1 ligation can signifi cantly restore 
T cell proliferation and effector potential, suggesting that both TIM-3 and PD-1 
pathways play a major role in CD8 +  T cell exhaustion [ 31 ]. 

 TIM-3 can also modulate the immune reaction pathway to regulate innate immunity. 
NK cells and some myeloid cells, including monocytes/macrophages, dendritic 
cells, and mast cells, express TIM-3 in both human and mouse hematopoiesis. 
In NK cells, TIM-3 is induced on their surface on activation [ 32 ,  33 ], but the function 
of TIM-3 in NK cells remains controversial. It has been reported that TIM-3 is a 
human NK cell co-receptor to enhance IFN-γ production [ 32 ], but another report 
showed that NK cell-mediated cytotoxicity was reduced by cross-linking of TIM-3 [ 33 ]. 

 In terms of the myeloid lineage, TIM-3 is expressed in monocytes/macrophages, 
dendritic cells (DCs), and mast cells [ 34 – 37 ]. In human bone marrow, 
CD34 + CD38 − CD90 +  normal HSCs and the majority of CD34 + CD38 +  progenitor 
cells do not express TIM-3. Within the CD34 + CD38 +  progenitor fraction, human 
myeloid progenitors can be divided into three subpopulations, such as common 
myeloid progenitors (CMPs), granulocyte/macrophage progenitors (GMPs), and 
megakaryocyte/erythrocyte progenitors (MEPs) [ 38 ]. TIM-3 is expressed only in a 
fraction GMPs, but not in CMPs and MEPs. Purifi ed TIM-3 +  GMPs give rise mainly 
to colony-forming unit-macrophage (CFU-M), whereas TIM-3 −  GMPs can generate 
various types of myeloid colonies, suggesting that upregulation of TIM-3 occurs in 
concert with monocyte lineage commitment at the GMP stage in humans [ 8 ]. 

 In mature monocytes or dendritic cells, TIM-3 signaling synergizes with that of 
Toll-like receptors to promote secretion of tumor necrosis factor-α (TNF-α) infl am-
matory responses [ 34 ]. In addition, TIM-3 on macrophages and DCs recognizes 
phosphatidylserine (PS) in apoptotic cells through its IgV domain. Binding of PS to 
TIM-3 does not interfere with that of galectin-9 to TIM-3, as the binding sites of 
these molecules are located on opposite sides of the IgV domain. In TIM-3- 
expressing DCs, recognition of PS by TIM-3 induced enhancement of phagocytosis 
of apoptotic cells and cross-presentation of apoptotic cell-associated antigen to 
CD8 +  T cells [ 35 ]. TIM-3 expression and functions in hematopoietic cells are sum-
marized in Fig.  3 .

       TIM-3 Is a Marker of Malignant Stem Cells in Human AML 

 We have identifi ed TIM-3 as an AML LSC-specifi c surface molecule. We fi rst 
compared the gene expression profi les of CD34 + CD38 −  AML cells and normal 
HSCs by using cDNA microarray analysis (Fig.  1a ). As shown in Fig.  1b , TIM-3 
protein is not expressed in CD34 + CD38 − CD90 +  normal HSCs, but the vast majority 
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of the CD34 + CD38 −  LSCs and the CD34 + CD38 +  cells expressed TIM-3 at a high 
level in patients with most types of AML except for acute promyelocytic leukemia 
(M3) [ 8 ,  21 ]. Another group has also reported that the expression level of TIM-3 is 
especially high in immature AML cells with core-binding factor translocations or 
mutations in  CEBPA  [ 21 ]. 

 It is important to note that the TIM-3 +  fraction in AML patients contained all 
functional LSCs. We separated AML cells into the TIM-3 +  and TIM-3 −  populations 
and transplanted each population into sublethally irradiated immunodefi cient mice, 
and found that only TIM-3 +  AML cells, but not TIM-3 −  cells, reconstituted human 
AML in these mice [ 8 ]. These data suggest that targeting TIM-3 +  cells is suffi cient 
for eradication of LSCs in AML patients.  

    Targeting AML-LSCs by Monoclonal Anti-TIM-3 Killing 
Antibodies in a Xenograft Model 

 To utilize TIM-3 to target AML LSCs, it is critical to establish anti-human TIM-3 
antibodies that can kill TIM-3-expressing cells in vivo. To achieve successful 
antibody- based treatment, antibody-dependent cellular cytotoxicity (ADCC) and 
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  Fig. 3    TIM-3 expression and functions in normal hematopoietic cells. TIM-3 is expressed in Th1 
cells, exhausted CD8 +  T cells, NK cells, monocytes, and dendritic cells in normal hematopoiesis. 
The functions of TIM-3 differ by cell type and context       
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complement-dependent cytotoxicity (CDC) activities are critical to eliminate target 
cells [ 39 ]. Additionally, recent studies have suggested that antibody-dependent 
cellular phagocytosis (ADCP) could play an important role in killing target cells 
in vitro [ 40 ] and in vivo [ 41 ]. 

 An anti-TIM-3 monoclonal antibody (IgG2b) was obtained by immunizing 
Balb/c mice with L929 cells stably expressing human TIM-3 and soluble TIM-3 
protein [ 8 ]. In this antibody, the variable portions of the VH regions of the cloned 
hybridoma that recognize TIM-3 were grafted onto IgG2a Fc regions, because the 
IgG2a subclass is most effi cient to induce ADCC activity in mice [ 42 ,  43 ]. The clone 
called ATIK2a was established, and it was effective in killing TIM-3- expressing cell 
lines by its CDC and ADCC activities [ 8 ]. 

 We then tested the effect of ATIK2a on the growth of AML LSCs or normal 
HSCs in xenograft models. NOD-SCID mice transplanted with 10 5  CD34 +  cord 
blood cells were treated with ATIK2a. These mice were reconstituted with normal 
hematopoiesis with nearly equal percentages of human cell chimerisms, although 
human mature monocytes were depleted. In contrast, in mice reconstituted with 
human AML, ATIK2a exerted profound effects on leukemia development. The mice 
were transplanted with human AML of M0, M1, and M4 types, and after confi rma-
tion of AML development in these mice, ATIK2a was injected six times over 2 
weeks. Strikingly, human AML cells disappeared in mice treated with ATIK2a but 
not in those with control IgG treatment. These data strongly suggest that targeting 
of AML LSCs by utilizing anti-TIM-3 killing antibodies is a practical approach to 
cure human AML.  

    TIM-3 Is a Functional Molecule for AML LSC Maintenance 

 Since TIM-3 has a tyrosine residue and SH2 domain that can activate Src family 
proteins, we hypothesized that TIM-3 signaling has some function to maintain 
AML-LSCs. We found that the serum levels of galectin-9, a TIM-3 ligand, were 
signifi cantly (>10-fold) elevated in AML patients but not in normal individuals on 
an ELISA assay. Furthermore, TIM-3 +  AML cells had abundant galectin-9 protein 
in their cytoplasm, and they secreted galectin-9 in the sera of mice transplanted with 
human AML. Mice reconstituted with normal human HSCs or B cell acute lympho-
blastic leukemia did not have detectable levels of serum galectin-9. These results 
collectively suggest that AML cells secreted galectin-9 in an autocrine manner. 
Furthermore, TIM-3 stimulation by galectin-9 in AML cells in vitro induced signifi -
cant gene expression changes including NF-κB target genes (unpublished data). 
Collectively, it is suggested that AML LSCs had growth and survival advantages 
through an autocrine stimulation loop of the TIM-3/galectin-9 system.  
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    Conclusion 

 TIM-3 has been shown to play pivotal roles in modulating immune reactions. 
By transcriptome analysis, we newly identifi ed TIM-3 as a surface molecule 
specifi c to AML LSCs but not expressed in normal HSCs. Our in vivo xenogeneic 
transplantation analysis directly showed that targeting TIM-3 could be an effi cient, 
useful therapeutic approach to eradicate AML LSCs.     
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