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    Chapter 21   
 Rice Pathogens in Japan 

             Hideo     Ishii    

    Abstract      Magnaporthe oryzae  causes blast, the most serious disease on rice. The 
fungus is genetically diverse and hence easily develops resistance to fungicides. In 
Japan, it started from the resistance to kasugamycin and has continued up until 
MBI-D and QoI fungicide resistance experienced most recently. The history of fun-
gicide resistance occurred on rice blast disease and research and countermeasure 
taken in the country are summarized in this chapter. Some related information from 
overseas is also introduced.  

  Keywords     Benzimidazole fungicides   •   Fungicide resistance   •    Gibberella fujikuroi    
•    Magnaporthe oryzae    •   MBI-D fungicides   •   QoI fungicides   •   Rice Bakanae   •   Rice 
blast  

21.1         Introduction 

 Rice is one of the most important crops worldwide. Blast, caused by the fungus 
 Magnaporthe oryzae , is the most serious disease on rice. This disease is distributed 
in about 85 countries (Kato  2001 ). In Japan, applications of chemical fungicides are 
common to control rice diseases although alternative methods such as biofungi-
cides, hot water seed treatment, and blast-resistant multiline rice cultivars are 
employed. Chemical control of rice diseases, blast disease in particular, has been 
reviewed recently (Hirooka and Ishii  2013 ). Fungicide resistance in rice was also 
reviewed before (Ishii  2011 ; Uesugi  1982 ). 

 Four decades have passed since fungicide resistance fi rst occurred on rice in 
Japan that was the resistance of blast fungus  M. oryzae  to kasugamycin. Thereafter, 
resistance issue was not always very serious on rice although some other cases were 
reported as reviewed by Uesugi ( 1982 ). However, the new problem of resistance to 
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MBI-D fungicides caused the decrease of control effi cacy, and there was a concern 
whether QoI resistance might occur in the fi eld populations of rice blast fungus in 
the future. In this paper, the history of fungicide resistance in rice and current topics 
related are reviewed.  

21.2     Rice Blast Disease 

21.2.1     Kasugamycin (Antibiotic) 

 In the early 1970s, kasugamycin was the most common fungicide for the control of 
this disease and sprayed frequently (Miura et al.  1975 ). However, control effi cacy 
against this disease was lost in northern part of Japan in 1971 (Miura  1984 ). 

 Resistant isolates of  M. oryzae  exhibited reduced sensitivity to kasugamycin on 
rice-straw decoction agar medium. Control effi cacy of kasugamycin was extremely 
low in the tests when resistant isolates were inoculated. However, resistant strains 
declined after withdrawal of this fungicide and control effi cacy against blast was 
recovered gradually (Fukaya and Kobayashi  1982 ; Miura  1984 ).  

21.2.2     Organophosphorus Fungicides 

 The fungicide IBP has been used since 1965 and resistance of  M. oryzae  to this 
fungicide was found in 1976 when the decrease of effi cacy was observed (Katagiri 
et al.  1980 ; Yaoita et al.  1978 ). Two levels of IBP resistance were reported but most 
of the resistant isolates showed a moderate level of resistance. IBP-resistant isolates 
exhibited cross resistance to another organophosphorus fungicide EDDP and an 
organosulfur fungicide isoprothiolane (Katagiri and Uesugi  1977 ). The frequency 
of IBP-resistant strains also decreased when the selection pressure with the fungi-
cide was removed (Iijima and Terasawa  1987 ).  

21.2.3     MBI-D Fungicides 

  M. oryzae  requires melanized appressoria for host penetration. MBI-D fungicides 
containing carpropamid, diclocymet, and fenoxanil (Fig.  21.1 ) inhibit scytalone 
dehydratase in fungal melanin biosynthesis. Nursery box treatment with MBI-D 
fungicides, carpropamid in particular, became common in many rice-growing 
areas as this fungicide exhibited long-lasting control effi cacy against blast disease. 
The treatment was labor cost effective and greatly contributed to diminishing fun-
gicide applications in paddy fi elds and lowering the pesticide input to the 
environment.
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   In 2001, however, the effi cacy of carpropamid against leaf blast decreased 
 suddenly in some areas of the southern part of Japan. Results from studies indicated 
that resistant strains appeared and played a signifi cant role in the decrease of fungi-
cide effi cacy (Yamaguchi et al.  2002 ; Sawada et al.  2004 ). As of 2013, resistant 
strains have been detected in 36 out of 47 prefectures within the country although 
the impact of resistance greatly differed depending on the areas. 

 Results from monitoring tests suggested that resistant strains seemed to be less 
fi t to the environment as their populations decreased in the absence of the selection 
pressure by MBI-D fungicides (Suzuki et al  2010 ; Yasunaga  2007 ). In a model 
experiment, resistant isolates showed lower competitive ability than sensitive 
 isolates as the proportion of resistant ones decreased when their mixtures with 
 sensitive isolates were inoculated repeatedly under no fungicide treatment (Kimura 
 2006 ). 

 Despite that, production of carpropamid was stopped and the use of diclo-
cymet and fenoxanil in the same cross-resistance group has been largely reduced 
(Fig.  21.2 ). This is a typical example showing how seriously resistance develop-
ment in major pathogens infl uences the market share of particular chemical con-
trol agents. In this case, MBI-D fungicides were replaced by disease resistance 
inducers such as probenazole, the inducer of systemic acquired resistance (SAR) 
commercially introduced fi rst in the world, and two other products tiadinil and 
isotianil (Fig.  21.3 ). Probenazole has been widely used for 40 years as a major 
blasticide with no sign of fi eld resistance development in  M. oryzae . More details 
of MBI-D fungicide resistance of rice blast fungus are described in Chap.   11     of 
this book.

    MBI-R fungicides, another class of melanin biosynthesis inhibitors, contain 
 tricyclazole, pyroquilon, and phthalide and the primary target of these fungicides is 
1,3,8-trihydroxynaphthalene reductase (Motoyama and Yamaguchi  2003 ). 
Laboratory mutants resistant to tricyclazole were obtained in rice blast fungus 
(Zhang et al.  2006 ); however, those mutants have not been isolated from the fi eld 
where decreased effi cacy of tricyclazole was reported in China (Zhang et al.  2009 ). 
No fi eld isolates resistant to MBI-R fungicides have been found in Japan so far 
although nearly 30 years have passed since three fungicides in this class were regis-
tered and used for rice blast control (Eizuka et al.  2001 ). In Italy, tricyclazole-based 
fungicide was registered at the end of the 1990s and has been widely used for rice 
blast management since then. However, reduced sensitivity to tricyclazole has not 
been observed in the populations of  M. oryzae  collected from rice fi elds repeatedly 
treated with this fungicide over a 12-year period (Kunova et al.  2014 ).  
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21.2.4     QoI Fungicides 

21.2.4.1     Background of Resistance Development 

 Occurrence and subsequent widespread of MBI-D resistance in rice blast fungus 
resulted in the reduction of the use of this class of fungicides rapidly. Alternatively, 
QoI fungicides became popular particularly when orysastrobin came into the 
market for nursery box treatment (Hirooka and Ishii  2013 ). Two other fungicides 
azoxystrobin and metominostrobin (Fig.  21.4 ) in the same cross resistance group 
had already been marketed for applications to paddy fi eld. Nursery box treat-
ment of rice with granule formulations of orysastrobin exhibited long-lasting 
control effi cacy not only against blast but also against sheath blight diseases, 
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  Fig. 21.2    Market value of fungicides used for rice blast in Japan       
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caused by  Rhizoctonia solani , contributing to the reduction of fungicide 
 applications (Stammler et al.  2007 ).

   It was well known that QoI fungicides possessed high risk for resistance devel-
opment in target pathogens. In fact, resistance had occurred in many diseases on 
various crops other than rice within Japan (Ishii  2012 ). Laboratory mutants of blast 
fungus resistant to azoxystrobin were obtained on culture media amended with 
azoxystrobin and SHAM (salicylhydroxamic acid), an inhibitor of AOX (alternative 
oxidase) in electron transfer pathway of fungal mitochondria (Avila-Adame and 
Köller  2003 ). In those spontaneous mutants, point mutations such as G143A (sub-
stitution of glycine with alanine at position 143) were found in cytochrome  b  gene 
which encodes the fungicide target protein. 

 However, as experienced with MBI-R fungicides mentioned above, it was not 
certain yet whether QoI fungicide-resistant strains could appear in the fi eld even if 
resistant mutants were produced in the laboratory. Subsequently, azoxystrobin- 
resistant strains were reported in  Pyricularia grisea  ( M. oryzae ), closely related 
with rice blast fungus, from perennial ryegrass grown in the USA where severe 
outbreaks of gray leaf spot were observed despite the treatment with this fungicide 
(Vincelli and Dixon  2002 ). Molecular characterization of resistance was conducted 
and two mutations, G143A and F129L (substitution of phenylalanine with leucine 
at position 129) of cytochrome  b  gene, were found in resistant isolates. The former 
mutation was involved in higher level of resistance to azoxystrobin and trifl oxys-
trobin than the latter one (Kim et al.  2003 ).  

21.2.4.2     Monitoring for Field Resistance on Rice 

 Monitoring for QoI fungicide sensitivity of rice blast fungus was started in Japan. 
Araki et al. ( 2005 ) fi rst established baseline sensitivity to metominostrobin and then 
compared it with fi eld isolates collected from 2001 to 2003 when no QoI-resistant 
isolates were found and QoI sensitivity occurred throughout Japan. In this study, 
neither G143A nor F129L mutations were observed in cytochrome  b  gene from 
isolates examined by PCR-RFLP analysis. In 2004 and 2005, Stammler et al. ( 2007 ) 
also monitored for resistance quantitatively using pyrosequencing method but both 
mutations, G143A and F129L, were not detected. Both of these groups concluded 
that no QoI-resistant isolates and full QoI-sensitive situation were found throughout 
Japan. Meanwhile, it was briefl y reported that benomyl and azoxystrobin activity 
against rice blast decreased in fi eld experiments conducted in Louisiana, the USA, 
over time suggesting the occurrence of resistance (Groth and Rush  2006 ). 
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 Monitoring studies were also carried out in our laboratory using isolates  collected 
from various regions in 2004 and 2005 but resistant isolates were never found in 
mycelial growth tests (Wei et al.  2009 ). Growth of all isolates was inhibited on PDA 
medium supplemented with 1 mg L −1  (a.i.) azoxystrobin plus 1 mM  n -propyl gal-
late, an inhibitor of AOX known to be more specifi c than SHAM.  

21.2.4.3     Guideline for Fungicide Use 

 When orysastrobin was marketed on rice, the Japan Fungicide Resistance Action 
Committee (J FRAC,   http://www.jfrac.com/    ) made a guideline indicating how to 
use orysastrobin and other QoI fungicides which had already been in the market. 
Shortly after that, the Research Committee on Fungicide Resistance (  http://www.
taiseikin.jp/    ), the Phytopathological Society of Japan, also proposed a guideline on 
this subject (So and Yamaguchi  2008 ). It was proposed to use QoIs only once per 
year on rice if necessary. In the latter guideline, furthermore, QoIs were recom-
mended to be used in alternation with other unrelated fungicides such as MBI-R 
fungicides or resistance inducers every 2–3 years when QoIs were employed in 
nursery box treatment. As rice blast fungus is disseminated not only by wind but 
also by seeds, it was not recommendable to use QoIs in a paddy fi eld where com-
mercial seeds were produced. The same strategies were also proposed for MBI-D 
fungicides, if they were still effective.  

21.2.4.4     Occurrence of Resistance 

 Nakamura et al. ( 2008 ) showed that three isolates of blast fungus sampled in 2007 
were less sensitive to azoxystrobin in inoculation to young rice plants. In the sum-
mer 2012 subsequently, heavy outbreak of leaf blast disease has been reported from 
various regions in the western part of Japan after nursery box was regularly treated 
with orysastrobin for some years. Results from experiments conducted urgently 
confi rmed that QoI-resistant strains were distributed in a large populations of the 
fungus (Ishii and Fuji  2013 ; Miyagawa et al.  2013 ). Resistant strains have been 
reported offi cially from three prefectures, Yamaguchi, Shimane, and Ehime, in 
2012. As of October 2014, the presence of resistant strains has been proved in 16 
prefectures. Cross resistance among three QoI fungicides, orysastrobin, azoxys-
trobin, and metominostrobin, was confi rmed by fungus inoculation tests (Miyagawa 
and Fuji  2013 ). Resistant isolates were clearly distinguished from sensitive ones on 
PDA medium supplemented with 1 mg L −1  (a. i.) azoxystrobin plus 1 mM  n -propyl 
gallate (Fig.  21.5 ).

   Monitoring for QoI fungicide sensitivity has been continued, but resistant strains 
have not been detected from some prefectures such as Nagasaki, and Hiroshima yet. 
In these areas, the authorities related give rice growers a caution on the use of QoI 
fungicides. Some prefectures have started adopting the guideline from the Research 
Committee on Fungicide Resistance described above.  
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21.2.4.5     Mechanism of Resistance 

 It is well known that QoI resistance is mostly caused by a single point mutation of 
fungicide-targeted cytochrome  b  gene in pathogens (Ishii  2012 ). In highly resistant 
isolates of the fungus  Pyricularia grisea  grown in the USA where there were severe 
outbreaks of gray leaf spot on perennial ryegrass, nucleotide sequences at the posi-
tion 143 of this gene were converted from GGT to GCT resulting in the amino acid 
substitution of glycine (G) by alanine (A) (Kim et al.  2003 ). Another mutation, the 
change of phenylalanine (F) to leucine (L), was found at the position 129 in moder-
ately resistant isolates. 

 When the sequence of cytochrome  b  gene was examined, QoI-resistant isolates 
of rice blast fungus carried the same mutation of G143A (exchange of GGT to GCT 
at position 143) as expected, but F129L mutation, found in the gray leaf spot fungus 
in the USA previously, was not recognized (Miyagawa et al.  2013 ). The partial 
nucleotide sequences analyzed in resistant and sensitive isolates are shown in 
Fig.  21.6  (Ishii  2014 ).

21.2.4.6        Molecular Diagnosis of Resistance 

 Using the single point mutation specifi cally found in cytochrome  b  gene of QoI- 
resistant isolates, a couple of methods have been developed to diagnose resistance. 
PCR-RFLP analysis is most widely used at present (Miyagawa and Fuji  2013 ). 
Fragments of cytochrome  b  gene are PCR-amplifi ed from cultures of isolates with 

  Fig. 21.5    Mycelial growth test for the detection of QoI-resistant isolates of rice blast fungus. 
 Upper , resistant isolates;  lower , sensitive isolates.  Left , No fungicide treatment;  right , 1 mg L −1  (a. 
i.) azoxystrobin plus 1 mM  n -propyl gallate       
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two primers designed by BASF and the products treated with a restriction enzyme 
 Fnu 4HI are loaded on an agarose gel. After digestion with this enzyme, the products 
from resistant isolates show two bands on a gel, whereas those from sensitive iso-
lates remain a single band as they do not possess the restriction site (GCNGC) of 
 Fnu 4HI at the position 143 of cytochrome  b  gene. 

 The method of PCR-RFLP can also be applied for genomic DNA extracted from 
diseased rice leaves using microwave and pathogen-contaminated grains (Wei et al. 
 2009 ). Other methods such as ASPCR (allele-specifi c PCR) with a primer which 
recognizes the G143A mutation specifi cally and PCR-Luminex system suitable for 
high-throughput diagnosis were further developed (Wei et al.  2009 ). PCR-Luminex 
was originally introduced for rapidly identifying MBI-D fungicide resistance of rice 
blast fungus or identifying fungal species causing head blight of wheat (Ishii et al. 
 2008 ). In the future, the development of a more simple method like LAMP (loop- 
mediated isothermal amplifi cation) may be necessary for molecular resistance mon-
itoring on site. 

 Heteroplasmic status has often been found in cytochrome  b  gene of QoI-resistant 
fungal isolates (Ishii  2011 ). It is not known yet whether resistant isolates of rice 
blast fungus found in Japan carry heteroplasmic cytochrome  b  gene or not. If so, 
however, molecular methods for identifying QoI resistance would encounter some 
diffi culties as experienced previously (Ishii  2010 ). Involvement of heteroplasmic 
cytochrome  b  gene with stability of resistance is described in details in Chap.   3     of 
this book.  

21.2.4.7    Countermeasure with Resistance 

 In the areas where QoI-resistant strains were found to be distributed widely, the use 
of QoI fungicides has been stopped. However, in some cases, resistant strains have 
also been detected in a low frequency from the areas in which QoI fungicides were 
used in paddy fi elds only with foliar applications but not as a nursery box treatment 
and even from the areas with no use history of QoI fungicides. Therefore, it will be 
an important subject in the future to assess the resistance risk when these fungicides 
are used for foliar applications. 

Sensitive isolate:

5’…GGTTTCCTA………………TTATGAGGTGCTACA………3’

Resistant isolate:

5’…GGTTTCCTA………………TTATGAGCTGCTACA………3’

  Fig. 21.6    A single point mutation at the cytochrome  b  gene found in QoI-resistant isolates of 
 Magnaporthe oryzae . Nucleotide sequences corresponding to position 143 of cytochrome  b  gene 
are underlined. GGT at sensitive isolates are converted to GCT in resistant isolates resulting in the 
substitution of glycine by alanine       
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 It is defi nitely important to save QoI fungicides within one application per year 
as well as to avoid their yearly successive applications for a nursery box treatment. 
There have been no reports on resistance to MBI-R fungicides and resistance induc-
ers so far. Alternative use of QoI fungicides with these fungicides will be highly 
recommended to delay QoI resistance development. 

 As rice blast disease is disseminated not only by air but also by seeds, it is also 
quite important how we control seed contamination effectively. In general, it is rec-
ommended to growers not to use seeds harvested and stored by themselves and to 
alternatively purchase seeds disinfected by other sectors previously. However, it is 
not very rare to see those commercial seeds contain fungal strains resistant to fun-
gicides. Such cases have been claimed on MBI-D as well as QoI fungicide 
resistance. 

 Due to this, the guideline recommends that QoI fungicides shouldn’t be used in 
a seed-producing paddy fi eld and its surroundings. In some regions actually, QoI 
fungicides are never applied through the course of rice seed production. Management 
such as removal of diseased plant debris, rice straws, and hulls from related facili-
ties is also effective to sanitize the environment resulting in the decrease of infection 
source.    

21.3     Report of QoI and SDHI Fungicide Resistance 
in Other Diseases Overseas 

 Occurrence of sheath blight disease, caused by  Rhizoctonia solani , is increasing 
recently. Although it hasn’t been found in Japan yet, resistance of this pathogen to 
azoxystrobin has been reported in the USA (Olaya et al.  2012 ). In addition, control 
failure using azoxystrobin has been mentioned in  Bipolaris  leaf spot disease on turf 
grass and reduced fungicide sensitivity of  B. spicifera  isolates was briefl y reported 
(Tomaso-Peterson  2012 ). Although brown spot disease rarely occurs on rice these days 
in Japan, this disease is caused by  Cochliobolus miyabeanus  close to  B. spicifera . 

 Most recently, QoI resistance has been reported in wheat blast pathogen  M. ory-
zae  in Brazil (Castroagudin et al.  2015 ). Control of this disease relied mainly on 
QoIs and these fungicides were used over the last 15 years. As a result, isolates 
 carrying high frequency of the G143A mutation in cytochrome  b  gene associated 
with high QoI resistance have been sampled from both wheat and other poaceous 
host species of  M. oryzae  adjacent to wheat fi elds. Castroagudin et al. ( 2015 ) men-
tioned that these species may be an important reservoir for the pathogen that could 
contribute QoI-resistance inoculum during the early stage of a wheat blast epidemic. 
Furthermore, in  M. grisea , anastomosis (i.e., hyphal fusion) has been proposed as a 
possible mechanism of resistance through transmission of the G143A mutation 
(Avila-Adame  2014 ). 

 New generation of succinate dehydrogenase-inhibiting (SDHI) fungicides has 
been recently developed very actively worldwide. Penfl ufen, one of them, has been 
registered in early 2014 for the control of sheath blight disease on rice in Japan. 
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SDHI fungicides also carry moderate to high risk for resistance development. In 
fact, isolates of  R. solani  resistant to the preexisting SDHI fungicide thifl uzamide 
have been obtained in the laboratory (Mu et al.  2014 ). Furthermore, resistant iso-
lates have been detected from the fi eld as well and they reduced the effi cacy of thi-
fl uzamide in fungus inoculation tests (Liu unpublished).  

21.4     Fungicide Resistance in Bakanae Disease 

21.4.1     Benzimidazole Fungicide Resistance 

 The benzimidazole fungicide benomyl, used in a mixture with thiram as a seed 
 disinfectant, effectively controlled Bakanae disease caused by  Gibberella fujikuroi  
( Fusarium moniliforme ). However, isolates of this pathogen resistant to benomyl 
were detected in 1980 (Ogawa and Suwa  1981 ), and heavy occurrence of this dis-
ease due to resistance was reported in 1984. In 1987, resistant strains were widely 
distributed in 37 prefectures in Japan (Yoshino  1988 ). 

 Recently, Suga et al. ( 2013 ) divided the isolates of  F. fujikuroi  complex into two 
groups: G strains, gibberellic acid producing, thiophanate-methyl resistant, and 
highly ipconazole sensitive, and F strains, not gibberellic acid producing, thiophanate- 
methyl sensitive, and less ipconazole sensitive. Molecular mechanism has been stud-
ied and resistance was found to result from mutations in  β   2   tub  gene [GAG 
(Glu) → GTG (Val) at codon 198 and TTC (Phe) → TAC (Tyr) at codon 200] but not 
in  β   1   tub  gene (Chen et al.  2014 ). This fi nding could explain the following reports 
from early studies on fungicide sensitivity and binding to target proteins: (1) increased 
sensitivity (negative cross-resistance) to the  N -phenylformamidoxime compound 
 N -(3,5-dichloro-4-propynyloxyphenyl)-N′-methoxyformamidine (DCPF) was asso-
ciated with a high level of carbendazim resistance in  Botrytis cinerea  but not with a 
moderate resistance level and (2) increased sensitivity to DCPF was not observed in 
carbendazim-resistant isolates of  G. fujikuroi  (Ishii and Takeda  1989 ).  

21.4.2     DMI Fungicide Resistance 

21.4.2.1    Reduced Sensitivity in Japan 

  G. fujikuroi  isolates less sensitive to the DMI fungicide trifl umizole were detected. 
MIC values of this fungicide for mycelial growth on PDA were 1,000 mg L −1  or 
more, but the EC 50  values were less than 1.3 mg L −1 , only slightly different from 
sensitive isolates (Hamamura et al.  1989 ). Less trifl umizole-sensitive isolates 
reduced pathogenicity remarkably against rice seeds and fl owers than sensitive iso-
lates, and such a difference in pathogenicity coincided with their lower production 

H. Ishii



351

of gibberellic acids. Sensitivity of this fungus was also tested for pefurazoate, and 
less trifl umizole-sensitive isolates were also less sensitive to this DMI fungicide, but 
pefurazoate still showed high effi cacy against these isolates in artifi cial inoculation 
tests (Wada et al.  1990 ). 

 Similarly, isolates with MIC values lower than 0.78 mg L −1  for ipconazole were 
pathogenic but all the isolates with MIC values higher than or equal to 1.56 mg L −1  
were not pathogenic to rice seedlings. Low pathogenicity or lack of pathogenicity 
of the isolates less sensitive to ipconazole may contribute to the stable effi cacy of 
this fungicide (Tateishi and Chida  2000 ). Subsequently,  G. fujikuroi  species com-
plex was classifi ed into two groups based on MIC of ipconazole: (1) between 0.10 
and 0.78 mg L −1  and gibberellic acid-producing  F. fujikuroi  and (2) 0.78 to 
6.25 mg L −1  and no gibberellic acid-producing species such as  F. proliferatum  
(Tateishi et al.  2011 ). Most recently,  G. fujikuroi  isolates resistant to benomyl and 
less sensitive to DMIs were predominant, and these isolates were pathogenic to rice 
causing a disease on fungicide-treated seeds (Kudo et al.  2014 ).  

21.4.2.2    Resistance Development in Korea 

 In Korea, the incidence of Bakanae disease has increased rapidly. Resistance of the 
pathogen to prochloraz and hexaconazole was detected using the agar dilution 
method, but there was no evidence of cross-resistance between these two DMI fun-
gicides (Jeong et al.  2009 ). Subsequently, cross-resistance to prochloraz and tebu-
conazole was found in some isolates (Lee et al.  2010 ). Surprisingly, it was reported 
that degradation of prochloraz might account for the reduced sensitivity to this fun-
gicide (Kim et al.  2010 ). Relationship of  in vitro  resistance with disease control in 
the fi eld has not been reported yet in details.    

21.5     Recent Topics on Rice Disease Control 

 There is a strong demand from consumers to reduce pesticide applications. The use 
of biofungicides and/or hot water treatment has been introduced for seed disinfec-
tion of rice, but these treatments tend to increase the occurrence of Bakanae disease. 
Therefore, the development of alternative methods is still required to control major 
diseases. 

 ‘Koshihikari’, the most popular and abundantly grown rice cultivar in Japan, was 
crossed with a resistant cultivar and progenies were further crossed with ‘Koshihikari’ 
fi ve to six times. In 2005, seeds of four blast-resistant multi-lines thus bred were 
mixed together and cultivated at ca. 80 % of paddy fi elds in Niigata Prefecture, the 
most important rice-growing region in Japan. As a result, the occurrence of leaf and 
panicle blast dramatically decreased and blasticide applications were reduced to one 
fourth as compared before (Ishizaki  2010 ). 
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 A mixture of the QoI fungicide orysastrobin and the best-selling disease 
 resistance inducer probenazole (plus an insecticide) was developed and commer-
cialized locally. These strategies are expected to play roles in reducing the risk of 
fungicide resistance.     
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