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    Chapter 2   
 Genetics of Fungicide Resistance 

             Rita     Milvia     De Miccolis Angelini    ,     Stefania     Pollastro     , and     Franco     Faretra   

    Abstract     Acquired resistance to fungicides in fungal plant pathogens is a  challenge 
in modern crop protection. Fungi are indeed very able to adapt to changing environ-
mental conditions, such as the introduction of a new fungicide in the agricultural 
practice. Several genetic mechanisms may underlay fungicide resistance and infl u-
ence the chance and time of its appearance and spreading in fungal populations. 
Resistance may be caused by mutations in major genes (monogenic or oligogenic 
resistance) or in minor genes (polygenic resistance) which may occur in nuclear 
genes as well as in cytoplasmic genes. They are immediately expressed in haploid 
fungi, while they may be dominant or recessive in diploid fungi. Allelic variants 
may cause different levels of resistance and/or different negative pleiotropic effects 
on the fi tness of resistant mutants. The sexual process, where occurring, plays an 
important role in releasing new recombinant genotypes in fungal populations. 
Heterokaryosis provides multinucleate fungi with a further mechanism of adapta-
tion. Resistant mutants can be obtained from samples representative of fi eld popula-
tion of a pathogen or under laboratory conditions through selection of spontaneous 
mutations or following chemical or physical mutagenesis. Nowadays, molecular 
tools, such as gene cloning, sequencing, site-directed mutagenesis and gene replace-
ment, make genetic studies on fungicide resistance amenable even in asexual fungi 
for which classical genetic analysis of meiotic progeny is not feasible.  
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2.1         Introduction 

 Resistance to chemicals in microorganisms is a very common phenomenon 
 occurring whenever antimicrobial compounds are used against pathogens of plants, 
animals or humans. Natural or innate resistance refers to intrinsic features (e.g. the 
lack of a specifi c molecular target and/or a metabolic pathway) protecting the organ-
ism from the effects of antimicrobials. For example, strobilurin-producing organ-
isms, including wood-degrading  Basidiomycetes , such as  Strobilurus tenacellus , 
have innate resistance to their own strobilurins that show, instead, activity against a 
very broad spectrum of fungi and  Oomycetes . Acquired resistance refers to organ-
isms that in their wild-type form are sensitive and may develop resistance after their 
exposure to an antimicrobial compound. Acquired resistance is due to genetic modi-
fi cations transmissible to the progeny so that a chemical that was once effective 
against the organism is no longer effective. 

 Resistance to fungicides used in agriculture as well as in animal or human health 
care is a more recent phenomenon than resistance to antibiotics (Coplin  1989 ; 
Cookson  2005 ) and insecticides (Brown  1977 ). Until the late 1960s, fungicides used 
in crop protection (e.g .  sulphur, copper derivatives, dithiocarbamates) were indeed 
essentially multisite inhibitors, affecting multiple target sites and hence interfering 
with many metabolic processes of the pathogen. Despite their protracted and wide-
spread use, acquired resistance to multisite fungicides is still a rare event. This is 
because there is a low probability that a number of mutations at different loci, needed 
for the onset of the resistance, simultaneously occur in fungal cells and, if this hap-
pens, the mutated isolates remain viable. Afterwards, with the introduction of single-
site fungicides and as a consequence of their frequent and repeated use, fungicide 
resistance has become a major concern in modern crop protection seriously threat-
ening effectiveness of several fungicides (Brent and Hollomon  2007a ,  b ). 

 Fungicide resistance is hence a result of adaptation of a fungus to a fungicide due 
to a stable and inheritable genetic change, leading to the appearance and spread of 
mutants with reduced fungicide sensitivity (Delp and Dekker  1985 ).  

2.2     Genetic Bases of Fungicide Resistance 

 Genetics of fungicide resistance have been previously reviewed by Grindle ( 1987 ), 
Grindle and Faretra ( 1993 ), Steffens et al. ( 1996 ) and Ma and Michailides ( 2005 ), 
and deeper information is available on the website of the Fungicide Resistance 
Action Committee (  www.frac.info    ). 

 Fungal genetic backgrounds and genetic bases of resistance are key factors in 
the intrinsic risk of resistance and infl uence its evolution in the pathogen popula-
tions. For example, the occurrence of genetic recombination through the sexual 
process, where it regularly occurs in nature, or parasexuality, in essentially 
 asexual fungi, may greatly infl uence the dynamics of resistant subpopulations 
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producing new combinations of resistance and fi tness traits originally occurring 
in separate individuals. 

 Most genetic studies on fungicide resistance have been carried out on ‘model’ 
saprophytic  Ascomycetes , such as  Aspergillus nidulans ,  Neurospora crassa  and 
 Saccharomyces cerevisiae . Nevertheless, the genetics of fungicide resistance has 
been investigated in several pathogenic fungi (Table  2.1 ).

   Key factors in the genetic bases of fungicide resistance are (1) the number of loci 
involved, (2) the number of allelic variants at each locus, (3) the existence and rel-
evance of dominant or recessive relationship between resistant and wild-type alleles 
(Borck and Braymer  1974 ) and (4) the additive or synergistic interactions between 
resistance genes. 

 Genes responsible for fungicide resistance may be located on chromosomes 
inside the nucleus or on extrachromosomal genetic determinants. Nuclear and cyto-
plasmic genes can be distinguished by their inheritance patterns. Nuclear genes typi-
cally show classical biparental (disomic) inheritance in sexual crosses, i.e. the zygote 
receives one allele of each gene from each of its parents. In contrast, genetic material 
in the cytoplasm has a non-Mendelian inheritance and is characterized by uniparen-
tal (usually maternal) transmission (Griffi ths  1996 ). In addition, cytoplasmic genes 
differ from nuclear genes in showing vegetative segregation and intracellular selec-
tion potentially affecting resistance stability (Birky  2001 ; Ziogas et al.  2002 ). 

 Most fungicide-resistance genes are located on nuclear chromosomes. In most 
cases, there is only one copy of resistance gene in the genome and mutations are 
usually located in gene sequences encoding enzymatic or structural proteins. 
However, multidrug resistance (MDR) in  B. cinerea  and other fungi is caused by 
overexpression of membrane effl ux transporter genes resulting in an increased 
effl ux of toxicants that reduces fungal sensitivity to several unrelated fungicides as 
well as plant defence chemicals (reviewed by Kretschmer  2012 ). In MDR1 strains 
of  B. cinerea , resistance is conferred by mutations in the regulator  mrr1  gene encod-
ing a transcription factor controlling the ABC transporter  AtrB  gene, whereas in 
MDR2 strains resistance is caused by an insertion of a retrotransposon-derived 
sequence in the promoter region of the facilitator superfamily (MFS) transporter 
gene  mfsM2  (Kretschmer et al.  2009 ) .  

 Fungicide resistance may result from mutations in single major genes 
(Georgopoulos  1988 ) or from additive (Kalamarakis et al.  1991 ; Lasseron-de 
Farandre et al.  1991 ) or synergistic interactions (Molnar et al.  1985 ) between  several 
mutant genes. 

 Monogenic and oligogenic resistance are caused, respectively, by one or few 
major genes. Major genes have an appreciable infl uence on the phenotype, and 
resistance mutations cause a qualitative change in the response to a fungicide with 
the appearance in the fi eld of new fungicide-resistant subpopulation(s) well distin-
guishable from the wild-type sensitive one (Fig.  2.1 ). Most cases of fungicide resis-
tance are due to mutations in major genes (Table  2.1 ). Mutations in major genes 
conferring resistance to fungicides having different modes of action may also occur 
in a same isolate, causing multiple resistance. In oligogenic resistance, several 
 different major genes are involved, any one of which can mutate to cause an increase 
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in resistance to a same fungicide. For instance, kasugamycin resistance in  Pyricularia 
oryzae  as well as resistance to the two fungicides ethirimol and triadimenol in 
 Blumeria graminis  f.sp.  hordei  may be controlled by three different loci where a 
resistance allele at any one locus confers resistance (Taga et al.  1979 ; Brown et al. 
 1992 ). Furthermore, differently from what is usually observed in most fungi where 
a single multiallelic gene is responsible for resistance to benzimidazole fungicides, 
the resistance of  Fusarium oxysporum  to benzimidazoles is caused by mutations in 
two major genes which interact synergistically conferring high degrees of fungicide 
resistance (Molnar et al.  1985 ).
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  Fig. 2.1    Population dynamics of fungicide resistance in monogenic resistance ( upper ) and poly-
genic resistance ( bottom ). Disruptive or directional selection is caused by the usage of fungicides 
having the same mode of action at risk of resistance. Stabilizing selection is due to possible reduc-
tion of fi tness of fungicide-resistant mutants       
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   Different mutations in a same gene may cause different levels of resistance to a 
particular fungicide; this is known as multiallelic resistance. In the past, multiallelic 
resistance could be assessed only on the ground of phenotypic differences in the 
level of resistance and/or pleiotropic effects of mutations. With the availability of 
molecular and sequencing tools, nowadays it is clear that multiallelic resistance is 
quite common (Table  2.1 ). 

 Each mutant allele can be partially/completely dominant or partially/completely 
recessive to its wild-type allele. That is, when mutant and wild-type alleles of the 
same gene are combined in the same fungal cells or hyphae, the phenotype may be 
fungicide resistant (mutant) or fungicide sensitive (wild type). 

 Combinations of major genes may interact when they are present in the same 
fungal cells, so that the phenotype of a double mutant may be different from either 
single-gene mutants (Molnar et al.  1985 ). Usually, however, one mutant gene is 
epistatic to another mutant gene, which means that the double mutant has the same 
level of resistance of the single-gene mutants (Kappas and Georgopoulos  1970 ; Van 
Tuyl  1977 ). The presence of modifi er genes affecting phenotypic response of resis-
tant mutants has been suggested to infl uence the expression of response to phenyl-
amides in  Oomycete  pathogens (Crute and Harrison  1988 ) or to mediate fi tness of 
resistant mutants as found in mutants of  N. crassa  resistant to dicarboximides 
(Grindle and Dolderson  1986 ) and  A. nidulans  resistant to imazalil (van Tuyl  1977 ). 
The consequent increase in fi tness will result in better survival and possible selec-
tion of resistant subpopulations in the fi eld. 

 Polygenic resistance is due to mutations in minor genes. Those have individually 
a little effect on the phenotype and cause hence a negligible reduction in the sensi-
tivity to a fungicide. However, numerous mutated minor genes may contribute, with 
an additive effect, to produce an appreciable increase of the level of resistance. In 
the fi eld, the result is a quantitative decrease of the sensitivity to a fungicide with a 
slow, continuous and gradual shift of the fungal population towards increasing 
resistance levels (Fig.  2.1 ). Polygenic resistance is much more diffi cult to be 
detected and ascertained in the fi eld. Polygenic resistance was demonstrated in  B. 
graminis  f.sp.  hordei  to ethirimol (Hollomon  1981 ) and triadimenol (Hollomon 
et al.  1984 ). Resistance to dodine is polygenic in  Nectria haematococca  var.  cucur-
bitae  (Kappas and Georgopoulos  1970 ). Ultraviolet-induced mutants of 
 N.  haematococca  var.  cucurbitae  also show polygenic inheritance for resistance to 
fenarimol (Kalamarakis et al.  1991 ), fenpropimorph and terbinafi ne 
(Lasseron-deFalandre et al.  1991 ). 

 Cytoplasmic genes are present in mitochondria, plasmids and viruses. 
Mitochondrial genome, which contains mitochondrial rRNA genes and some of the 
proteins of the respiratory chain, is the most relevant among fungal extrachromo-
somal genetic elements affecting resistance to chemicals. However, antibiotic- 
resistance genes have been located on fungal episomes, plasmids or viruses 
(Guerineau et al.  1974 ). 

 Natural or induced resistance to QoI fungicides, inhibitors of mitochondrial 
respiration at the Qo site of the cytochrome  bc1  complex (complex III), is usually 
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conferred by point mutations in the mitochondrial  cytb  gene causing amino acid 
substitutions in the target protein. In particular, at least three possible codon 
changes have been associated to a moderate (F129L or G137R) or, more 
 frequently, high (G143A) level of resistance to QoIs in several fungal species 
(Grasso et al.  2006 ; Fernández-Ortuño et al.  2008 ).    The presence of a G143-
associated group I-like intron in the  cytb  gene in some fungal species (i.e. 
 Puccinia  spp.,  Uromyces appendiculatus ,  Alternaria solani ) or isolates (i.e.  B. 
cinerea ) prevents the occurrence of the G143A mutation and QoI resistance, 
since it would be lethal because it would be affecting the correct intron splicing 
process (Grasso et al.  2006 ). 

 Analysis of meiotic progenies of appropriate crosses between sensitive and resis-
tant strains confi rmed cytoplasmic (maternal) inheritance of QoI resistance in  B. 
graminis  (Robinson et al.  2002 ),  Venturia inaequalis  (Steinfeld et al.  2002 ) and  B. 
cinerea  (De Miccolis Angelini et al.  2012a ). The segregation pattern in randomly 
collected progenies is expected to be in a phenotypic 1:0 ratio in most fungal species 
showing a uniparental, anisogamous inheritance of mitochondrial genome or 1:1 
ratio in species, such as  A. nidulans  and  B. graminis  f.sp.  tritici , showing an her-
maphroditic, isogamous mitochondrial inheritance (Robinson et al.  2002 ). 

 Wild-type and mutated mitochondrial DNA carrying the G143A mutation in the 
 cytb  gene may coexist in heteroplasmic state within a single isolate, as demon-
strated in several species, including  V. inaequalis  (Zheng et al.  2000 ),  B. cinerea  
(Ishii et al.  2009 ) and other fungal pathogens (Ishii et al.  2007 ). Equilibrium 
between resistant and sensitive mitochondria depends on the strength of selective 
pressure (Ishii  2010 ). In  Podosphaera leucotricha , the relative proportion of 
mutated and wild-type mitochondria is associated with differences in QoI sensitiv-
ity levels of the isolates (Lesemann et al.  2006 ). An instability of QoI resistance in 
heteroplasmic isolates grown in absence of selective pressure has been frequently 
reported (Ishii  2012a ) suggesting a fi tness cost associated to the resistance 
(Markoglou et al.  2006 ).  

2.3     Ploidy Level 

 Differences in ploidy level, affecting the number of alleles at each locus, constitute 
a major genomic trait infl uencing the onset and subsequent evolution of fungicide 
resistance. Firstly, frequency of mutations that may arise in single individuals is 
directly related to the ploidy level as a result of the different numbers of mutational 
targets (Otto and Gerstein  2008 ). 

 Most phytopathogenic fungi are in haploid state for the major part of their life 
cycle. In contrast,  Oomycetes  typically show a diploid life cycle and the haploid 
phase is restricted to the gametes (Fincham et al.  1979 ). Furthermore, polyploids 
have been frequently identifi ed among  Oomycetes , such as  Plasmopara viticola  and 
 Phytophthora  spp. (Rumbou and Gessler  2006 ; Bertier et al.  2013 ). 
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 In haploid fungi, mutations conferring resistance are immediately expressed and 
then directly exposed to selection, while in diploids or polyploids, mutations fi rst 
appear in heterozygotic state and their phenotypic effects can be masked by 
 dominant wild-type alleles on the homologous chromosome. For this reason, 
 resistance mutations spread more rapidly in haploid than in diploid or polyploid 
populations. Fixation time may be reduced and selection against deleterious 
 pleiotropic effects of mutations is more effective in haploids than in diploids 
(Anderson et al.  2004 ; Otto and Gerstein  2008 ). 

 CAA (carboxylic acid amide) fungicides, inhibitors of cellulose biosynthesis in 
 Oomycete  phytopathogens, are considered at low to medium resistance risk depend-
ing on the fungal species. Resistance to CAAs in  P. viticola  is controlled by one or 
two recessive nuclear genes, as demonstrated through sexual crosses between CAA- 
sensitive and CAA-resistant isolates and analysis of segregation patterns of sensi-
tive and resistant phenotypes in F1 and F2 progenies (Gisi et al.  2007 ; Blum and 
Gisi  2008 ) and by sequence analysis of putative resistance genes (Blum et al.  2010 ). 
Classic genetic analysis also showed that resistance to all CAA fungicides co- 
segregates and has thus the same genetic basis (Young et al.  2005 ; Gisi et al.  2007 ). 
However, no cross resistance exists between CAA and other fungicides currently 
available against  Oomycetes , such as phenylamides and QoI fungicides, where the 
intrinsic risk of resistance is estimated to be signifi cantly higher than CAA due to 
their genetic differences. Resistance to phenylamides is indeed a monogenic trait, 
conferred by a semidominant chromosomal gene (Gisi and Cohen  1996 ; Knapova 
et al.  2002 ), while QoI resistance is due to mutations in the mitochondrial  cytb  gene 
(Gisi and Sierotzki  2008 ). 

 Similar to CAA, resistance to the new benzamide zoxamide in isolates of 
 Phytophthora capsici  is recessive and is conferred by two nontarget nuclear genes 
(Bi et al.  2014 ). This implies that resistance phenotype is expressed only in homo-
zygous mutants, thus limiting resistance spreading and risk. 

 Nevertheless, the risk of resistance is signifi cantly increased by the occurrence 
of gene recombination, even if several cycles of sexual process may be required 
for making resistance fi xed and fully expressed in phenotypically aggressive and 
well- adapted isolates of the pathogen. Sexual recombination naturally occurring 
under fi eld conditions has been proposed, for instance, as a possible explanation 
of the higher risk of CAA resistance assessed in fi eld populations of 
 Pseudoperonospora cubensis  as compared to in vitro estimations (Zhu et al. 
 2007 ). Moreover, CAA resistance has been experienced in  P. viticola  fi eld popula-
tions since shortly after their introduction, while no reduced sensitivity to CAA 
has been detected in other  Oomycetes , such as the late blight pathogen, 
 Phytophthora infestans , despite their intensive usage against these pathogens and 
extensive monitoring. It has been suggested that the lower risk of CAA resistance 
in  P. infestans  may be due to the lower frequency of sexual recombination under 
fi eld conditions, as well as to polyploidy, heterokaryosis (Catal et al.  2010 ) and 
chromosomal aberrancies (Gisi  2012 ).  
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2.4     Heterokaryosis and Nuclear Number 

 The presence of two or more genetically different haploid nuclei, coexisting in a 
common hyphal compartment, occurs frequently in some fungal  taxa  and is a poten-
tial source of genetic variation. In multinucleate  Ascomycetes , this condition, known 
as heterokaryosis, often permits changes in the proportions of different nuclei in 
response to selection and is a prerequisite to parasexual recombination (Davis 
 1966 ). In heterothallic  Basidiomycetes , two distinct parental haploid nuclei coexist 
without fusion in each cell establishing a stable dikaryotic state. The dikaryon is 
genetically equivalent to a diploid, as two haploid genomes of different origins exist 
in each cell even if they remain separated in different nuclei. 

 Heterokaryons and dikaryons, harbouring several nuclei, offer the opportunity of 
genes to complement each other (genetic complementation). Heterokaryons har-
bouring both fungicide-resistant and fungicide-sensitive nuclei may be able to grow 
in the presence or absence of fungicides (Grindle  1987 ). They can adapt to fl uctua-
tions in fungicide exposure as a result of changes in the proportions and distribution 
of resistant-sensitive nuclei within cells (Meyer and Parmeter  1968 ; Ogden and 
Grindle  1983 ). Nucleotypic competition and selection after exposure to fungicides 
and the ability of heterokaryons to adapt to modifi ed environmental conditions have 
been demonstrated, for instance, in  B. cinerea  strains resistant to dicarboximides 
(Summers et al.  1984 ) or to anilinopyrimidines (Santomauro et al.  2000 ). 

 Dominance or recessivity can be tested by inducing hyphal anastomosis between 
one strain carrying the wild-type allele and the other the mutant allele of a resistance 
gene to form heterokaryotic mycelium. Incompatibility impeding heterokaryon 
establishment can be overcome by fusion of protoplasts. The mutant allele is com-
pletely (or partially) dominant if the heterokaryon is phenotypically identical (or 
similar) to the mutant parent; it is completely (partially) recessive if the hetero-
karyon is phenotypically similar to the wild-type parent (Grindle  1987 ; Grindle and 
Faretra  1993 ).  

2.5     Level of Resistance and Pleiotropic 
Effects of Resistance Mutations 

 Levels of resistance are usually quantifi ed by determining from dose–response 
curves the concentration of fungicide needed to reduce ‘life’ parameters, such as 
colony or mycelium growth or spore germination by 50  % (effective concentration 
50; EC 50 ) and the minimal inhibitory concentration (MIC). A mutant can be desig-
nated resistant to a fungicide if its EC 50  value is at least twice the EC 50  value of 
sensitive wild-type isolates (Delp and Dekker  1985 ). However, small differences in 
EC 50  values among resistant mutants and sensitive isolates may not be detected 
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unless environmental variables are rigorously controlled and/or data from 
dose–response experiments are subjected to statistical analysis. Moreover, with 
small differences it may be diffi cult to establish whether resistance is due to a single 
major gene or to polygenes (Grindle and Faretra  1993 ). 

 A mutant gene conferring resistance to a particular fungicide often confers posi-
tive cross resistance to other fungicides having the same or related mode of action. On 
the contrary, mutant genes causing resistance to one fungicide may increase sensitiv-
ity to other chemicals (negative cross resistance) (Brent and Hollomon  2007a ,  b ). 

 Resistance mutations may have deleterious pleiotropic effects on unrelated 
 phenotypic characters, such as competitiveness, virulence, survival and reproductive 
success. Physiological mechanisms underlying resistance to fungicides may also be 
associated with a metabolic cost. Hence, resistant isolates may have lower fi tness 
than wild-type sensitive isolates. Differences in fi tness can be experimentally mea-
sured as reduction in mycelial growth rate, sporulation and conidial germination, 
pathogenicity, survival under stressing conditions, etc., in a fungicide-free environ-
ment. For instance, fi tness penalty was observed in (1) DMI resistance in powdery 
mildews (Gisi et al.  2002 ); (2) resistance to dicarboximides and  phenylpyrroles in 
several fungi, such as  B. cinerea  (Pollastro et al.  1996 ; Ochiai et al.  2001 ),  N. crassa  
(Hollomon et al.  1997 ) and  Monilinia laxa  (Katan and Shabi  1982 ); (3) resistance to 
QoIs (G143A replacement) in fi eld populations of  P. viticola  (Fernández-Ortuño 
et al.  2008 ) and  Pyricularia grisea  (Avila-Adame and Köller  2003 ) and in labora-
tory mutants of  B. cinerea  (Markoglou et al.  2006 ),  C. beticola  (Malandrakis et al. 
 2006 ) and  Ustilago maydis  (Ziogas et al.  2002 ), but not in  B. graminis  f.sp.  tritici  
(Heaney et al.  2000 ; Chin et al.  2001 ),  Mycosphaerella  graminicola  (Miguez et al. 
 2004 ) and  Magnaporthe grisea  (Avila-Adame and Köller  2003 ); (4) most of the 
mutations in the  SdhB  gene conferring resistance to SDHIs in  B. cinerea  except for 
SdhB H272Y  (Lalève et al.  2014a ; Veloukas et al.  2014 ); and (5)  Penicillium expansum  
resistant to tebuconazole, fl udioxonil and iprodione, but not to cyprodinil, coupled 
with reduction in patulin production (Karaoglanidis et al.  2011 ). 

 Mutations responsible for fungicide resistance may infl uence mycotoxin produc-
tion. For instance, the production of 3-acetyl deoxynivalenol (3-ADON) was altered 
in isolates of  Fusarium culmorum  resistant to the DMI fungicide difenoconazole 
(D’Mello et al.  1997 ). A higher production of T-2 toxin, 4,15-diacetoxyscirpenol 
and neosolaniol was found in a carbendazim-resistant strain of  Fusarium spo-
rotrichioides  (D’Mello et al.  1998 ,  2000 ). More recently, Zhang et al. ( 2009 ) found 
that benzimidazole resistance increased trichothecene production in  F. gra-
minearum . Laboratory mutants of  Aspergillus parasiticus  resistant to phenylpyr-
roles and dicarboximides produced more afl atoxins than the parental wild-type 
strain (Markoglou et al.  2008a ). Similarly, laboratory mutant strains of  A. parasiti-
cus ,  A. ochraceus  and  F. verticillioides  resistant to triazoles (epoxiconazole and 
fl usilazole) and mutant strains of  A. carbonarius  and  P. expansum  resistant to 
fl udioxonil produced signifi cantly higher levels of mycotoxins (ochratoxins, patulin 
and fumonisins) compared to the parental sensitive strains (Doukas et al.  2008 ; 
Markoglou et al.  2008b ,  2009 ). 
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 It is generally assumed that fi tness costs of resistance are invariable. However, 
Chin et al. ( 2001 ) showed that the cost of resistance to QoI fungicides in  B. graminis  
varies with environmental conditions, such as temperature, being more costly under 
suboptimal conditions for the fungus.  

2.6     Population Genetics 

 To develop effective resistance management strategies, it is crucial to know all the 
factors infl uencing relationship between sensitive and resistant strains. 

 The prevailing model explaining the selection of fungicide-resistant fungal pop-
ulations considers random and rare mutations as the cause for pre-existing but infre-
quent resistant phenotypes prior to the introduction of a new fungicide (Torriani 
et al .   2009 ; Camps et al .   2012 ). Nevertheless, the evolutionary question on how 
populations adapt to novel environments, such as new antimicrobials, through de 
novo mutations or through selection from standing genetic variation, which affect 
the probability and speed of emergence of resistant alleles, is still debated 
(Hermisson and Pennings  2005 ; Hawkins et al.  2014 ). 

 Anyway, rare resistant mutants gain in competitiveness under the selection force 
of fungicide sprays and are selected to frequencies at which disease control becomes 
unsatisfactory (Milgroom et al.  1989 ; Skylakakis  1987 ; Wolfe  1982 ; Hobbelen et al. 
 2014 ). The shift towards resistance occurs at different rates depending on the num-
ber of genes conferring resistance. In monogenic resistance, a rapid shift towards 
resistance may occur, leading to discrete resistant subpopulation(s), while in poly-
genic resistance, the shift towards resistance progresses slowly, leading to a reduced 
sensitivity of the entire population. Resistant and wild-type subpopulations are in a 
dynamic equilibrium due to two selective pressures: i) the disruptive selection 
(directional selection in polygenic resistance), favouring resistant subpopulation(s), 
is due to repeated sprays with fungicides having the same mode of action at risk of 
resistance, and ii) stabilizing selection, favouring the wild-type sensitive popula-
tions, is caused by possible negative pleiotropic effect of resistance mutations lead-
ing to a reduced fi tness (Fig.  2.1 ). Unfi t mutants compete well only under the 
selection pressure of fungicide sprays, and, hence, resistance is at least partially 
reversible when the selection pressure is removed or minimized by applying resis-
tance management strategies.  

2.7     Obtainment of Resistant Mutants 

 Field isolates collected from diseased plants, plant debris, soil or air may include 
fungicide-resistant mutants, particularly if crops have been sprayed intensively with 
single-site fungicides. Resistant fi eld isolates may be selected on appropriate agar 
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media amended with a fungicide at a concentration inhibiting germination of conidia 
and/or mycelium growth of wild-type sensitive isolates. In choosing agar medium 
the mode of action of the fungicide must be complained. In the case of obligate 
biotrophic pathogens, plants or parts of plants must replace agar media. A number 
of monitoring methods are available (  www.frac.info    ). Field isolates may display a 
broad variation making their genetic analysis more diffi cult than laboratory mutants 
(Grindle and Faretra  1993 ). It is advisable to obtain ‘monoconidial’ or ‘single hyphal 
tip’ isolates rather than ‘mass-conidial’ or ‘mass-hyphal’ isolates since they are 
likely to be genetically more homogeneous and stable. These traits are improved by 
repeated subculturing monoconidial isolates selecting the ‘most typical’ progeny. 

 Experiments under laboratory conditions are useful because it is possible to 
replicate them, to control the strength of selection and to use defi ned reference 
strains (Cowen et al.  2002 ). Resistant laboratory mutants can be generated in vitro 
from wild-type strains of known phenotype, and all mutants deriving from a same 
strain are near isogenic since their genomes are virtually identical, except for mutant 
gene(s) conferring resistance. 

 Selection of spontaneous mutations may be achieved by growing fungal colonies 
on media added with sublethal fungicide concentration; resistant hyphae grow better 
than the sensitive ones and produce vigorous sectors from slow-growing colonies. 
Alternatively, a high number of conidia can be plated on fungicide-amended media, 
and growing colonies can be singly transferred to fresh media. For instance, in 
 B. cinerea  it is relatively easy to get spontaneous mutants resistant to dicarboximides, 
phenylpyrroles, anilinopyrimidines and QoIs (Faretra and Pollastro  1991 ,  1993a ,  b ; 
De Miccolis Angelini et al.  2002 ,  2012a ). 

 Mutations can be induced by exposing conidia or hyphae to chemical (e.g .  
N-methyl-N-nitro- n -nitrosoguanidine) or physical mutagens (e.g. UV light) causing 
established proportions of lethality, before incubation on selective media. 
Mutagenesis greatly increases the yield of mutants but may cause unwished muta-
tions in the genome which may interfere with identifi cation and analysis of gene(s) 
causing fungicide resistance. Physical or chemical mutagenesis have been used suc-
cessfully to produce resistant mutants in numerous fungi, including  B. cinerea  
(De Miccolis Angelini et al.  2002 ,  2010a ,  b ,  2012a ,  b ),  F. graminearum  NRRL 13383 
(Becher et al.  2010 ),  P. capsici  and  P. infestans  (Young et al.  2001 ),  Ustilago maydis  
(Orth et al.  1994 ) and  V. inaequalis  (Zheng et al.  2000 ). In fungi with multinucleate 
conidia, laboratory mutants are frequently heterokaryons containing both mutated 
and wild-type nuclei so that they are often phenotypically unstable and produce 
both resistant and wild-type progeny during subculturing. Hence, at least initially, 
the selective pressure exerted by fungicide is crucial for the stability of the resis-
tance trait. 

 The availability of molecular techniques has made it possible to investigate the 
genomes of pathogenic fungi which are not amenable to classical Mendelian analy-
sis of meiotic progeny. For instance, genetic differences between isolates can be 
detected by RFLP (restriction fragment length polymorphisms) or various PCR- 
based techniques suitable for evidencing SNPs (single nucleotide polymorphisms) 
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and allelic variants (AS-PCR, allele-specifi c PCR). Individual genes can be  dissected 
out of the genome, then cloned and sequenced or altered genetically and put back 
into the genome. Cells containing cloned genes can be used to obtain large amounts 
of protein for amino acid sequencing. In the last fi fteen years, site-direct mutagen-
esis has been used for studies of fungicide resistance. For instance,  N. crassa  
mutants in the osmosensing histidine kinase  os-1  gene exhibit resistance to dicar-
boximides, aromatic hydrocarbons and phenylpyrroles. The  os-1  mutants can be 
classifi ed into two groups: type I are null mutants highly resistant to iprodione and 
fl udioxonil and moderately sensitive to osmotic stress, and type II carry single 
amino acid changes and are moderately resistant to both fungicides and highly sen-
sitive to osmotic stress. This suggests that Os1p is essential for the antifungal activ-
ity of these fungicides and that amino acid repeats have an important function in 
osmoregulation (Ochiai et al.  2001 ). Site-directed mutagenesis followed by gene 
replacement was used to introduce mutations in different codons of the β-tubulin 
gene of a carbendazim-sensitive fi eld strain of  Gibberella zeae . All the mutants 
were resistant to carbendazim, but the level of resistance was depending on the 
mutations (Qiu et al.  2011 ). Site-directed mutagenesis of the  SdhB  gene was applied 
to confi rm that each of the mutations identifi ed in fi eld strains conferred resistance 
to boscalid in  B. cinerea  and partial cross resistance to other SDHIs (fl uopyram, 
carboxin) (Lalève et al.  2014b ).     
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