
Chapter 2

Hereditary Renal Cell Carcinoma

Masaya Baba, Laura S. Schmidt, and W. Marston Linehan

Abstract Hereditary renal cell carcinoma (RCC) is estimated to comprise 3% to

5% of all RCC. Since the manifestations that are associated with hereditary RCC

syndromes are not well recognized by most clinicians, hereditary RCC may be

underreported. Diagnostic criteria including multiple and/or bilateral renal tumors,

a young age at diagnosis, a positive family history for RCC, a particular histological

type of RCC, and extrarenal manifestations are suggestive of hereditary RCC.

Hereditary RCC is a heterogeneous disorder comprised of a variety of hereditary

syndromes caused by different gene alterations, including von Hippel-Lindau

(VHL) disease, hereditary papillary renal carcinoma (HPRC), hereditary

leiomyomatosis renal cell carcinoma (HLRCC), hereditary head and neck

paragangliomas (HPGL) and pheochromocytomas (PCC) (SDH-RCC), Birt-

Hogg-Dubé syndrome (BHDS), tuberous sclerosis complex (TSC), Cowden syn-

drome (CS), and BAP1 cancer susceptibility syndrome. All of these syndromes are

associated with a germline mutation in a specific causative gene and are inherited in

an autosomal dominant manner. In this chapter, clinical manifestations, genetics,

and molecular functions of the responsible genes will be presented for each

hereditary RCC susceptibility syndrome.
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2.1 Introduction

Hereditary renal cell carcinoma (RCC) is a heterogeneous disorder comprised of a

variety of hereditary syndromes, each of which has a specific genetic/molecular

basis, characteristic histology, and clinical features (Table 2.1). Hereditary RCC is

estimated to account for 3% to 5% of all kidney cancers. However, the frequency of

hereditary RCC is likely to be underestimated. Recognition and diagnosis of

hereditary RCC susceptibility syndromes is important for patients and relatives at

risk because of the medical consequences. Hereditary RCC tends to be bilateral and

multifocal and has an early age of onset. Some hereditary RCCs display character-

istic histologies. Furthermore, the presence of specific extrarenal manifestations is

very useful for the proper diagnosis of hereditary RCC susceptibility syndromes

(Table 2.1).

Through the study of hereditary RCC susceptibility syndromes, many important

novel genes have been identified such as the VHL (von Hippel-Lindau) gene

responsible for von Hippel-Lindau disease, and several previously known genes

were rediscovered to have new essential functions including the MET proto-

oncogene which is mutated in hereditary papillary renal cell carcinoma and FH
(fumarate hydratase), the gene responsible for hereditary leiomyomatosis renal cell

carcinoma. Cloning of these genes and elucidating their molecular genetics have

contributed to a better understanding of the pathogenesis of these hereditary RCC

susceptibility syndromes and to the development of specific genetic tests, appro-

priate surveillance, and targeted therapies. These studies have also provided insight

into the molecular basis of non-hereditary, sporadic RCC. In this chapter, clinical

manifestations and the genetics of hereditary RCC susceptibility syndromes and the

molecular function of the responsible genes will be presented.

2.2 Von Hippel-Lindau (VHL) Disease

Von Hippel-Lindau (VHL) disease is an autosomal dominant hereditary neoplastic

disorder and the first described hereditary kidney cancer syndrome. The clarifica-

tion of the molecular pathogenesis of VHL disease has made an enormous contri-

bution toward understanding the molecular mechanism of sporadic clear cell renal

cell carcinoma (ccRCC) development and provided the basis for developing molec-

ular targeted therapies for ccRCC.

2.2.1 Clinical Manifestations of Von Hippel-Lindau Disease

VHL disease is a rare disease which occurs about 1 in 36,000 [1, 2, 3], which is

characterized by a predisposition to develop ccRCC, pheochromocytomas, central

20 M. Baba et al.



T
a
b
le

2
.1

H
er
ed
it
ar
y
R
C
C
su
sc
ep
ti
b
il
it
y
sy
n
d
ro
m
es

S
y
n
d
ro
m
e

G
en
e

C
h
ro
m
o
so
m
e

lo
ca
ti
o
n

M
u
ta
ti
o
n
ra
te

in

sp
o
ra
d
ic

R
C
C

P
re
v
al
en
ce

%
d
e

n
o
v
o

R
en
al

tu
m
o
r

h
is
to
lo
g
y

M
u
lt
ip
le
/

so
li
ta
ry

P
en
et
ra
n
ce

o
f
R
C
C

A
g
e
(y
ea
rs
)
at

R
C
C
d
ia
g
n
o
si
s

E
x
tr
ar
en
al

m
an
if
es
ta
ti
o
n
s

V
H
L

d
is
ea
se

V
H
L

3
p
2
5

9
2
%

in
sp
o
ra
d
ic

cc
R
C
C

1
/3
6
,0
0
0

2
0
%

cc
R
C
C

B
M
F

2
5
–
4
5
%

4
5
(m

ea
n
)

P
h
eo
ch
ro
m
o
cy
to
m
a

C
N
S
h
em

an
g
io
b
la
st
o
m
a

R
et
in
al

an
g
io
m
a

E
n
d
o
ly
m
p
h
at
ic

sa
c
tu
m
o
r

P
an
cr
ea
ti
c
tu
m
o
r/
cy
st

E
p
id
id
y
m
al

cy
st
ad
en
o
m
a

B
ro
ad

li
g
am

en
t
cy
st
ad
en
o
m
a

H
P
R
C

M
E
T

7
q
3
1

1
3
%

in
p
ap
il
la
ry

ty
p
e
1
R
C
C

V
er
y
ra
re
,

ar
o
u
n
d

3
0
fa
m
il
ie
s

4
7
%

P
ap
il
la
ry

ty
p
e
1
R
C
C

B
M
F

6
7
%

4
6
~
6
3
(m

ed
ia
n
)

N
o
n
e

H
L
R
C
C

F
H

1
q
4
2

N
o
t
fo
u
n
d
in

sp
o
ra
d
ic

R
C
C

T
B
D

T
B
D

P
ap
il
la
ry

ty
p
e
2
R
C
C
(6
2
.5
%
)

M
o
st
ly

so
li
ta
ry

1
4
–
1
8
%

3
9
–
4
6
(m

ed
ia
n
)

S
k
in

le
io
m
y
o
m
a

T
u
b
u
lo
p
ap
il
la
ry

(2
0
%
)

T
u
b
u
la
r
(5
%
)

S
o
li
d
(1
.5
%
)

U
te
ri
n
e
le
io
m
y
o
m
a

M
ix
ed

p
at
te
rn
s
(1
0
%
)

S
D
H
-

R
C
C

S
D
H
B
/

C
/D

S
D
H
B
:1
p
3
5
–
3
6

S
D
H
C
:
1
q
2
3

S
D
H
D
:1
1
q
2
3

N
o
t
fo
u
n
d
in

sp
o
ra
d
ic

R
C
C

T
B
D

T
B
D

U
n
iq
u
e
fo
rm

o
f
o
n
co
cy
ti
c
R
C
C
,

cc
R
C
C
,
ch
ro
m
o
p
h
o
b
e
R
C
C

B
M
F

S
D
H
B
:1
4
%

S
D
H
D
:8
%

S
D
H
B
:3
3
(m

ea
n
)

S
D
H
C
:4
7
(m

ea
n
),

S
D
H
D
:4
8

(m
ed
ia
n
)

P
h
eo
ch
ro
m
o
cy
to
m
a

P
ar
ag
an
g
li
o
m
a

P
ap
il
la
ry

ty
p
e
2
R
C
C
,

o
n
co
cy
to
m
a

B
H
D
S

F
L
C
N

1
7
p
1
1

C
o
n
tr
o
v
er
si
al

(0
~
5
%

in
ch
ro
-

m
o
p
h
o
b
e
R
C
C
)

T
B
D
(r
ep
o
rt
o
f

5
0
0
fa
m
il
ie
s

w
o
rl
d
w
id
e)

T
B
D

O
n
co
cy
ti
c
h
y
b
ri
d
tu
m
o
r
(5
0
%
),

ch
ro
m
o
p
h
o
b
e
R
C
C
(3
5
%
),

cc
R
C
C
(9
%
),
o
n
co
cy
to
m
a
(5
%
)

B
M
F

1
2
–
3
4
%

4
8
(m

ed
ia
n
)

F
ib
ro
fo
ll
ic
u
lo
m
a,
lu
n
g
cy
st
,

sp
o
n
ta
n
eo
u
s
p
n
eu
m
o
th
o
ra
x

T
S
C

T
SC

1/
T
SC

2
T
S
C
1
:9
q
3
4

T
S
C
2
:1
6
p
1
3

6
%

in
ch
ro
m
o
-

p
h
o
b
e
R
C
C
,
2
%

in
cc
R
C
C

1
/6
0
0
0
to

1
/1
0
,0
0
0

6
6
%
–

8
3
%

R
en
al

an
g
io
m
y
o
ad
en
o
m
at
o
u
s

tu
m
o
rs

(R
A
T
)-
li
k
e
R
C
C

B
M
F

2
–
3
%

3
0
–
4
2
(m

ea
n
)

A
n
g
io
fi
b
ro
m
a
fi
b
ro
u
s
ce
p
h
al
ic

p
la
q
u
e,
u
n
g
u
al

fi
b
ro
m
a,
sh
a-

g
re
en

p
at
ch
es
,
h
y
p
o
m
el
an
o
ti
c

m
ac
u
le
,
co
n
fe
tt
i-
li
k
e
m
ac
u
le
,

co
rt
ic
al

d
y
sp
la
si
a,

su
b
ep
en
d
y
m
al

n
o
d
u
le

(S
E
N
),

su
b
ep
en
d
y
m
al

g
ia
n
t
ce
ll

as
tr
o
cy
to
m
a
(S
E
G
A
),

ca
rd
ia
c
rh
ab
d
o
m
y
o
m
a,

ly
m
p
h
an
g
io
le
io
m
y
o
m
at
o
si
s

(L
A
M
),
u
te
ri
n
e
P
E
C
o
m
a

R
C
C
w
it
h
sm

o
o
th

m
u
sc
le

st
ro
m
a,
ch
ro
m
o
p
h
o
b
e-
li
k
e

R
C
C
,
u
n
iq
u
e
g
ra
n
u
la
r

eo
si
n
o
p
h
il
ic
-m

ac
ro
cy
st
ic

R
C
C
,

T
S
C
-a
ss
o
ci
at
ed

p
ap
il
la
ry

R
C
C
,

h
y
b
ri
d
o
n
co
cy
ti
c/
ch
ro
m
o
p
h
o
b
e

tu
m
o
r
(H

O
C
T
),
u
n
cl
as
si
fi
ed

R
C
C
,
an
g
io
m
y
o
li
p
o
m
a,

ep
it
h
el
io
id

an
g
io
m
y
o
li
p
o
m
a

(c
o
n
ti
n
u
ed
)

2 Hereditary Renal Cell Carcinoma 21



T
a
b
le

2
.1

(c
o
n
ti
n
u
ed
)

S
y
n
d
ro
m
e

G
en
e

C
h
ro
m
o
so
m
e

lo
ca
ti
o
n

M
u
ta
ti
o
n
ra
te

in

sp
o
ra
d
ic

R
C
C

P
re
v
al
en
ce

%
d
e

n
o
v
o

R
en
al

tu
m
o
r

h
is
to
lo
g
y

M
u
lt
ip
le
/

so
li
ta
ry

P
en
et
ra
n
ce

o
f
R
C
C

A
g
e
(y
ea
rs
)
at

R
C
C
d
ia
g
n
o
si
s

E
x
tr
ar
en
al

m
an
if
es
ta
ti
o
n
s

C
o
w
d
en

sy
n
d
ro
m
e

P
T
E
N

1
0
q
2
3

7
.5
%

in
sp
o
ra
d
ic

R
C
C
,
9
%

in

ch
ro
m
o
p
h
o
b
e

R
C
C
,
2
–
4
%

in

cc
R
C
C

A
t
le
as
t

1
/2
0
0
,0
0
0

1
0
.7
%
–

4
7
.6
%

P
ap
il
la
ry

R
C
C
,
cc
R
C
C
,

ch
ro
m
o
p
h
o
b
e
R
C
C

M
o
st
ly

so
li
ta
ry

3
4
%

4
9
(m

ed
ia
n
)

4
5
(m

ea
n
)

T
ri
ch
il
em

m
o
m
a
(h
ai
r
fo
ll
ic
le

h
am

ar
to
m
a)
,
p
ap
il
lo
m
at
o
u
s

p
ap
u
le
,
ac
ra
l/
p
la
n
ta
r
k
er
at
o
-

se
s,
m
ac
ro
ce
p
h
al
y
,
d
o
li
ch
o
-

ce
p
h
al
y
d
y
sp
la
st
ic

g
an
g
li
o
cy
to
m
a
o
f
th
e
ce
re
b
el
-

lu
m
,
b
en
ig
n
tu
m
o
rs
(c
o
lo
re
ct
al

p
o
ly
p
o
si
s,
th
y
ro
id

g
o
it
er
/n
o
d
-

u
le
,
li
p
o
m
a,
fi
b
ro
m
a,
an
d
p
ro
-

li
fe
ra
ti
v
e
b
re
as
t
ch
an
g
e)
,

li
fe
ti
m
e
ri
sk

fo
r
ca
n
ce
r
(b
re
as
t

ca
n
ce
r,
th
y
ro
id

ca
n
ce
r,
en
d
o
-

m
et
ri
al

ca
n
ce
r,
co
lo
re
ct
al

ca
n
ce
r)

B
A
P
1

ca
n
ce
r

sy
n
d
ro
m
e

B
A
P
1

3
p
2
1

7
.5

to
1
4
%

in

cc
R
C
C

T
B
D

T
B
D

cc
R
C
C

B
M
F

T
B
D

4
5
(m

ea
n
)

M
al
ig
n
an
t
m
es
o
th
el
io
m
a,

u
v
ea
l
m
el
an
o
m
a,
cu
ta
n
eo
u
s

m
el
an
o
m
a,
m
el
an
o
cy
ti
c

B
A
P
-1

m
u
ta
te
d
at
y
p
ic
al

in
tr
a-

d
er
m
al

tu
m
o
rs

(M
B
A
IT
T
s)
,

li
fe
ti
m
e
ri
sk

fo
r
o
th
er

ca
n
ce
rs

(b
re
as
t
ca
n
ce
r,
lu
n
g
ca
n
ce
r,

n
eu
ro
en
d
o
cr
in
e
ca
rc
in
o
m
a,

b
as
al

ce
ll
ca
rc
in
o
m
a,

m
en
in
g
io
m
a)

B
M
F
b
il
at
er
al

m
u
lt
if
o
ca
l,
T
B
D

to
b
e
d
et
er
m
in
ed

22 M. Baba et al.



nervous system (CNS) hemangioblastomas, retinal angiomas, endolymphatic sac

tumors, pancreatic tumors, cysts in the kidney and pancreas, epididymal

cystadenomas, and broad ligament cystadenomas (Fig. 2.1a–i) [4–7]. VHL disease

is classified generally into two subtypes, type 1 without pheochromocytoma and

type 2 with pheochromocytoma. Type 2 is further subclassified into type 2A

without RCC, type 2B with RCC, and type 2C with pheochromocytoma only

without any other manifestations [8, 9]. Twenty-five to 45% of affected members

of VHL families have bilateral, multifocal ccRCC [3]. Since the biological behavior

of ccRCC in VHL disease is known to be mild and VHL patients have a lifetime risk

for recurring ccRCC development, active surveillance is recommended until the

size of the largest tumor reaches 3 cm in diameter. To conserve kidney function,

aa b c

d e f

g h i

Fig. 2.1 Clinical manifestations of VHL disease. (a) MRI image of a cerebellar

hemangioblastoma (arrow) with an associated cyst. (b) Ophthalmoscopic view of retinal

hemangioblastoma (arrow) with an enlarged vessel (arrowheads). (c) MRI image of an endolym-

phatic sac tumor (arrowheads). (d) Postcontrast CT imaging shows bilateral multifocal RCC with

solid (arrows) and cystic (arrowheads) disease. (e) Postcontrast CT image of bilateral pheochro-

mocytomas (arrows). (f) Pancreatic neuroendocrine tumor (arrow). (g) Histology of clear cell

RCC. (h) Histology of pheochromocytomas. (i) Histology of pancreatic neuroendocrine tumors

with trabecular architecture (Images from Lonser et al. [6])
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nephron-sparing surgery including enucleation of the tumor is preferred as a

surgical intervention [10, 11]. Pheochromocytomas develop in 10 to 20% of

individuals with VHL disease, which can be multiple and bilateral. Extra-adrenal

paragangliomas can arise in the carotid body and sympathetic paraganglia. Minor

populations of pheochromocytoma in VHL disease can be malignant [3, 6]. CNS

hemangioblastomas are the most common manifestations seen in 60–80% of

affected patients. Although these are benign tumors, they are a major cause of

morbidity in VHL disease because of their localization in the cerebellum,

brainstem, and spinal cord [6, 12, 13].

2.2.2 Genetics of Von Hippel-Lindau Disease

Loss of heterozygosity (LOH) on chromosome 3p was first found in sporadic RCC

[14]. The study of age incidence for sporadic ccRCC and for RCC in VHL disease

suggested that the chance of developing RCC in VHL disease was compatible with

a “one-hit” model, while the chance of developing RCC in a sporadic setting was

compatible with a “two-hit” model [15]. Based on these findings, a tumor suppres-

sor for ccRCC was predicted to be located on chromosome 3p, and a novel VHL
gene was isolated on chromosome 3p25–26 by positional cloning in VHL kindreds

[16]. Individuals affected with VHL disease harbor a germline mutation in the VHL
gene. LOH or somatic inactivation of the second allele was observed in

VHL-associated RCC, indicating a classical tumor suppressor function for VHL
[17, 18]. Germline VHL mutations in VHL disease encompass a broad spectrum of

mutations, including frameshift mutations, nonsense mutations, large deletions,

splicing defects, and missense mutations substituting an amino acid in the VHL

protein. Over 945 VHL families worldwide have been analyzed for VHL germline

mutations, and more than 700 different VHL mutations have been found throughout

the entire VHL gene with the exception of the first 35 amino acids, which are not

conserved across species [3]. VHL germline mutations were identified in nearly

100% of VHL families facilitated by the development of new methods to detect

large deletions, confirming that VHL disease is caused solely by germline muta-

tions in the VHL gene [19].

One of the major findings that has come from studying VHL disease to under-

stand the molecular mechanism of RCC is that somatic mutations of the VHL gene

accompanied by loss of the wild-type VHL allele are found in most sporadic ccRCC

[20, 21]. Ninety-two percent of sporadic ccRCC are reported to have somatic

mutations in or methylation of the VHL gene, indicating that loss of the VHL
gene function is the fundamental initial step in most sporadic ccRCC development

[22]. Insights gained from studies of families with VHL disease serve as a model for

how discoveries obtained from study of a familial cancer may be applied to

sporadic cancers.

24 M. Baba et al.



2.2.3 Molecular Function of VHL Protein

The protein encoded by the VHL gene, pVHL, was a novel protein with no known

functional domains, when it was isolated. Extensive research has clarified that

pVHL functions as a substrate recognition component of an E3 ubiquitin ligase

protein complex composed of elongin C, elongin B, Cul2, and Rbx1 [23–30]. Under

normoxic conditions, transcription factors hypoxia-inducible factor 1α (HIF1α) and
hypoxia-inducible factor 2α (HIF2α) are hydroxylated on their N-terminal

transactivation domain (NTAD) by the EglN family of prolyl hydroxylases

(PHDs), which require α-ketoglutarate, oxygen, ascorbic acid, and iron. Prolyl

hydroxylated HIF1α and HIF2α are bound by the β-domain of pVHL, ubiquitinated

and degraded by the proteasome [30–37]. Under conditions when oxygen or iron is

insufficient, HIF1α/HIF2α is not hydroxylated, escapes from pVHL-mediated

ubiquitination, and accumulates, driving transcription of hypoxia-responsive

genes through their binding to hypoxia-responsive elements (HREs). Thus, in

VHL-deficient cells, HIF1α/HIF2α is not ubiquitinated, and hypoxia-responsive

genes, which are important for cell proliferation, including VEGF, PDGFB,
TGFα, GLUT1, and CCND1, are upregulated even under normoxic conditions

[38]. The fact that germline VHL mutations are frequently found in the α-domain

of pVHL that interacts with elongin C and the pVHL β-domain, which interacts

with prolyl hydroxylated HIFα, emphasizes the physiological importance of HIFα
degradation for pVHL tumor suppressor function. HIF1α and HIF2α are similar in

their structure, form heterodimers with HIFβ (ARNT) to bind to HREs, and share

many hypoxia-responsive gene targets. However, their target genes are not identical

and differ in a context-dependent manner. For example, glycolysis-related genes

are mainly regulated by HIF1α, and CCND1 is regulated by HIF2α in RCC cells

[38–43]. In terms of kidney cancer development, many in vitro and in vivo studies

support the idea that HIF2α is a renal oncoprotein and HIF1α is a renal tumor

suppressor [43–46]. Chromosome 14, where the HIF1α gene is located, is fre-

quently deleted in ccRCC, and loss of 14q is associated with poor prognosis of

ccRCC patients [47].

2.2.4 VHL Research: Bench to Bedside

As mentioned above, VHL disease research has made invaluable contributions to

the clarification of the molecular mechanisms of ccRCC development and to the

development of molecular target therapies for RCC [48]. Many drugs targeting the

VHL-HIFα axis that have been approved by the FDA as therapeutic agents for

advanced ccRCC patients have proven efficacy and superseded conventional immu-

notherapies. The details of targeted therapies for RCC will be discussed in other

chapters.
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2.2.5 Additional Gene Alterations in ccRCC

High throughput sequencing analysis of sporadic ccRCC has identified a number of

gene alterations in addition to VHL mutations [49–51]. Genes mutated in sporadic

ccRCC are involved in chromatin remodeling (PBRM1) [52], or histone modifica-

tion, which regulates chromatin structure (SETD2, BAP1, JARID1C, and UTX, also
known as KDM5C and KDM6A) [49, 53, 54]. Interestingly, PBRM1, SETD2, and
BAP1 are located on chromosome 3p and could be deleted with VHL as a result of

chromosome 3p loss. These gene alterations could contribute to ccRCC develop-

ment and progression, which is initiated by loss of VHL. In fact, BAP1 mutation is

associated with poor prognosis of ccRCC [51, 54]. Further analysis of the physio-

logical consequence of alterations in these genes will provide a better understand-

ing of the nature of ccRCC and might lead to the development of next-generation

therapeutic agents for ccRCC.

2.3 Hereditary Papillary Renal Cell Carcinoma Type

1 (HPRC)

Hereditary papillary renal cell carcinoma type 1 (HPRC) is an autosomal dominant

hereditary cancer syndrome (Fig. 2.2a), which was first described by Zbar et al. in

1994 [55, 56]. HPRC is a very rare type of hereditary RCC syndrome that pre-

disposes affected individuals to develop bilateral multifocal papillary type 1 RCC

(Fig. 2.2b) [57]. Causative germline mutations have been identified in the MET
gene, which has an essential role in cancer cell proliferation, survival, invasion, and

metastasis. Molecular genetic studies of HPRC have also contributed to our under-

standing of the molecular basis of RCC and provided the basis for development of

targeted therapies for papillary RCC.

2.3.1 Clinical Manifestations of HPRC

Distinct from other hereditary RCC syndromes, no manifestations other than RCC

have been reported in HPRC. The patients have a lifelong risk for the development

of multiple papillary type 1 RCC with age-dependent penetrance, which is esti-

mated to be 67% by 60 years of age [58]. However, there are rare cases of HPRC

kindreds presenting with earlier-onset RCC [59, 60]. RCC in HPRC tends to grow

slowly, but is malignant and may metastasize when the tumor size becomes large.

Since patients have a lifelong risk of developing multiple renal tumors, active

surveillance is recommended until the largest tumor size reaches 3 cm when

nephron-sparing surgery should be considered [11]. Histologically papillary type

1 RCC exhibits a characteristic papillary/tubulopapillary architecture lined by a
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single layer of small cells having small basophilic nuclei and amphophilic cyto-

plasm (Fig. 2.2d, e). Occasionally focal areas of cells with eosinophilic cytoplasm

can be seen [61]. Fuhrman nuclear grade is predominantly 1–2. In some tumors,

focal areas of Fuhrman nuclear grade 3 can be seen. Most tumors in HPRC exhibit

foamy macrophages in fibrovascular cores. Psammoma bodies are frequently seen.

There can be focal areas of clear cells (Fig. 2.2f, g). Multiple adenomas and

microscopic papillary lesions can be seen in the renal parenchyma surrounding

bb c

d e

Family 150a

f g

Fig. 2.2 Clinical manifestations of HPRC. (a) Pedigree of HPRC family. Solid symbols indicate

individuals with RCC. (b) Gross image of a nephrectomized kidney from an HPRC patient. (c)

Fluorescent in situ hybridization (FISH) on an RCC touch preparation shows trisomy of chromo-

some 7 (red chromosome 7, green chromosome 17). (d) Histology of RCC showing papillary

architecture characterized by thin interstitium. (e) Tubulopapillary architecture composed of small

RCC cells with basophilic nuclei and amphophilic cytoplasm. (f) Psammoma bodies are prominent

histological features. (g) Most tumors in HPRC demonstrate foamy macrophages in fibrovascular

cores. Focal clear cells can be seen occasionally (Images from Lubensky et al. [61])
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the tumors [61]. HPRC-associated RCC is hypovascular, and computed tomogra-

phy (CT) imaging shows hypoenhancement with a contrast agent [57].

2.3.2 Genetics of HPRC

Trisomy of chromosome 7 was identified as a characteristic feature of papillary

RCC, which suggested the localization of an oncogene on chromosome

7 [62, 63]. Through genetic linkage analysis in HPRC families, the responsible

locus for HPRC was narrowed to chromosome 7q31.1–34, where the MET proto-

oncogene was located. Schmidt et al. identified germline missense mutations in the

tyrosine kinase domain of MET on chromosome 7q31 in affected individuals of

HPRC kindreds [64]. Subsequently, somatic mutations of MET were identified in

13% of sporadic papillary type 1 RCC [64, 65]. TheseMET mutations were located

in codons homologous to codons in KIT and RET, which were mutated in systemic

mastocytosis and multiple endocrine neoplasia (MEN) type 2B, respectively. These

findings support the idea that these missense mutations inMET are gain of function

mutations, acquiring oncogenic activity.

2.3.3 Molecular Consequence of MET Mutation in HPRC

The MET proto-oncogene encodes c-Met, the hepatocyte growth factor/scatter

factor (HGF/SF) receptor tyrosine kinase. HGF/SF, the ligand of c-Met, is produced

by mesenchymal cells and stimulates a variety of neighboring cells including

epithelial, endothelial, hematopoietic, and neuronal cells during normal embryonic

development and throughout adulthood [66]. HGF/SF/c-Met signaling induces

multiple biological activities, which include proliferation, survival, motility,

epithelial-mesenchymal transition, and branching morphogenesis. Upon ligand

binding, two tyrosine residues (Y1234 and Y1235) of c-Met in the activation loop

of the tyrosine kinase domain are autophosphorylated and enhance c-Met kinase

activity. Subsequent phosphorylation on two tyrosine residues (Y1349 and Y1356)

near the carboxy terminus of c-Met form a multifunctional docking site which

recruits a variety of signaling molecules, transmitting the signals further down-

stream for a variety of biological outputs [67, 68]. The pathological significance of

MET missense mutations found in HPRC or PRC was investigated in NIH3T3

transfectants [69, 70]. Mutant c-Met showed increased autophosphorylation on

tyrosine residues compared to wild-type c-Met. NIH3T3 cells expressing mutant

c-Met are able to make foci on monolayer culture and form larger tumors in nude

mice than cells expressing wild-type c-Met. In addition these cells displayed

increased motility and increased activation of the Ras-Raf-MEK-ERK signaling

pathway without HGF. Furthermore, the fact that a transgenic mouse model

expressing mutant c-Met developed metastatic mammary carcinoma solidified the
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idea that mutant MET functioned as an oncogene [69, 70]. However, the data that

support ligand-independent activation of mutant c-Met should be considered with

caution. Most of the initial functional experiments with mutant c-Met were done in

NIH3T3 cells, which express HGF/SF endogenously, but epithelial cells including

renal tubular cells do not express HGF/SF. In fact, MDCK kidney epithelial cells

reconstituted with c-Met mutants require the addition of exogenous HGF/SF for

colony formation in soft agar. Deletion of the extracellular domain of mutant c-Met

abrogates its transformation ability. In addition, expression of the soluble c-Met

extracellular domain was able to block colony formation of NIH3T3 cells

expressing mutant c-Met. Taken together, these data suggest that the availability

of HGF/SF may contribute greatly to the oncogenesis of MET mutations in HPRC

[71]. Mutant MET appears to have a lower threshold for kinase activation by

HGF/SF, stabilizes the active conformation of the kinase, and exhibits a reduced

susceptibility to inactivation by phosphatases in some cases [57]. It is noteworthy

that most (95%) sporadic papillary type 1 RCC (PRC) exhibit chromosome 7 tri-

somy, while only 13% of PRC have somatic mutations in MET. Importantly, both

MET andHGF/SF localize on chromosome 7. So trisomy 7 causes increased dosage

of both HGF/SF and c-Met thereby driving HGF/c-Met signaling, which might be

important for PRC development. Zhuang et al. precisely analyzed 16 RCCs in

HPRC and found trisomy 7 in all tumors. Importantly, duplication of the specific

chromosome 7 that harbors the mutant MET was seen in all 16 RCCs (Fig. 2.2c)

[72]. This selective duplication of the mutant MET allele may function as a second

hit event for RCC development in HPRC. These findings may suggest that the

increased dosage of HGF/SF and c-Met and enhanced signaling through this axis is

the essential factor for RCC development for both sporadic PRC and HPRC.

Together with ligand dependency of mutant c-Met activation, these findings sug-

gest an attractive hypothesis to explain why affected family members of HPRC

develop cancer only in the kidney. The kidney produces large amounts of HGF/SF,

as well as urokinase, which is necessary to activate the secreted immature form of

HGF/SF [72].

2.3.4 HPRC Research: Bench to Bedside

These studies to understand the molecular pathogenesis of HPRC have provided

significant insights into the development of targeted therapeutics [73]. Based on

basic research, there are three possible strategies to target c-Met for HPRC and

PRC: (1) direct inhibition of c-Met tyrosine kinase activity, (2) blockage of HGF/SF

and c-Met interaction, and (3) inhibition of the molecular interaction between the

cytoplasmic docking motif of c-Met and the effector downstream molecules. To

date several humanized anti-HGF/SF monoclonal antibody drugs have been devel-

oped and are being tested in clinical trials for a variety of cancers [74]. An anti-c-

Met humanized monoclonal antibody drug has also been developed and is being

tested in a clinical trial for non-RCC cancers [75]. Small molecules targeting c-Met
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kinase activity are also being tested for efficacy in treating PRC and HPRC. The

presence of germline mutations in MET is a factor well correlated with a positive

response [75–77]. Since c-Met is activated in VHL-deficient ccRCC cells, c-Met

could also be a target molecule for advanced ccRCC therapy [78].

2.4 Hereditary Leiomyomatosis and Renal Cell Carcinoma

(HLRCC)

HLRCC is an autosomal dominant hereditary kidney cancer syndrome that was first

reported in 2001 [79] as an inherited susceptibility to uterine leiomyomas and

papillary RCC. HLRCC is caused by germline mutations of the fumarate hydratase
(FH) gene encoding the TCA cycle enzyme [80]. RCC in HLRCC is very aggres-

sive and has to be managed totally differently from RCCs that develop in other

types of hereditary kidney cancer syndromes.

2.4.1 Clinical Manifestations of HLRCC

HLRCC is characterized by three manifestations: cutaneous leiomyomas, uterine

leiomyomas (fibroids), and renal tumors and benign renal cysts. Originally HLRCC

was reported in 1973 as Reed’s disease, in which patients presented with cutaneous
leiomyomas and uterine leiomyomas. Subsequently cosegregation of kidney cancer

with skin and uterine leiomyomas was identified, and Reed’s disease was renamed

HLRCC (Fig. 2.3a). Skin leiomyomas are the most common manifestations seen in

76–100% of affected individuals with HLRCC, which present as multiple, firm,

skin-colored to light-brown-colored papules and nodules (Fig. 2.3b) [81–83]. The

number of lesions range from 10 to 100, and the size ranges from 0.4 to 2.5 cm in

diameter. They develop on the trunk and extremities increasing over time with a

disseminated pattern or a combination of disseminated and segmental distribution.

Most of the lesions are symptomatic with pain and paresthesias. Mean age of onset

of cutaneous lesions is 25 years (range 10–47 years old) [81]. The other common

manifestations are uterine leiomyomas (fibroids), developing in most women

affected with HLRCC (Fig. 2.3c) [81–85]. Multiple leiomyomas with diameters

ranging from 1.5 cm to 10 cm develop very early (median 28–31 years) in HLRCC

patients [84, 86]. In one study, 91% of affected women with skin and uterine

leiomyomas had a myomectomy or hysterectomy, and 57% of affected women

with skin and uterine leiomyomas had a hysterectomy before 30 years of age

[81]. Uterine leiomyomas in HLRCC show characteristic histology including

increased cellularity, large single nuclei, or multiple nuclei with large orangiophilic

nucleoli surrounded by a halo [86].
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HLRCC patients have an increased risk for developing RCC compared to

unaffected family members. However, the penetrance for RCC in HLRCC is

much lower than for leiomyomas, ranging from 14 to 18% in North American

and French studies, and even lower in a Dutch study [87, 88]. In contrast to other

hereditary kidney cancer syndromes, most RCCs in HLRCC are solitary and

unilateral (Fig. 2.3d). However, there are reports of two cases of bilateral or

bilateral, multifocal RCC among 38 HLRCC patients [89, 90]. RCC can develop

in HLRCC at a young age (10–44 years) [79, 81, 89] with a reported median age at

diagnosis of 39–46 years [81, 89]. The histology of HLRCC-related RCC is

classified typically as papillary type 2 RCC, in which papillae are thick and

elongated with fibrovascular cores (Fig. 2.3e). Many RCCs in HLRCC show this

papillary pattern (62.5%), which is composed of characteristic cells with abundant

amphophilic cytoplasm and large nuclei (Fig. 2.3g). However, it should be noted

that they may also display other architectural patterns including tubulopapillary

(20%) (Fig. 2.3f), tubular (5%), solid (1.5%), and mixed patterns (10%) [90]. Many

cases of RCC in HLRCC have no cystic component (47.5%), but some cases have

cystic areas (40%) or are predominantly cystic (12.5%). The hallmark of the

HLRCC tumors is the presence of a characteristic large nucleus with a prominent

large inclusion-like eosinophilic or orangiophilic nucleolus surrounded by a clear

halo (Fig. 2.3g). Although the histology can be variable in HLRCC tumors, the

characteristic feature of a macronucleus and prominent nucleolus with clear halo is

commonly seen in all RCC in HLRCC [90]. Based on the nucleolus size, Fuhrman

Fig. 2.3 Clinical manifestations of HLRCC. (a) Pedigree of an HLRCC family. Red quadrants
indicate individuals with RCC. (b) Multiple skin leiomyomas on the trunk. (c) CT image of

multiple large uterine leiomyomas (arrows). (d) CT image of a solitary RCC. (e) Histology of

RCC showing papillary type 2 RCC architecture with thick and elongated collagen-abundant

stalks. (f) Other architectural patterns including tubulopapillary are seen. (g) The characteristic

large nucleus with a prominent large inclusion-like eosinophilic or orangiophilic nucleolus

surrounded by a clear halo (Images from Grubb et al. [89])
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nuclear grade is classified as high grade in all cases. To date, there is no specific

immunohistochemical marker for HLRCC-associated RCC. HLRCC-related RCC

reveals an extremely malignant character, which differentiates HLRCC from other

hereditary kidney cancer syndromes. More than 70% of RCC patients with HLRCC

present with advanced stage III or stage IV disease [79, 81, 89]. Importantly,

HLRCC-related RCC tends to metastasize to lymph nodes very early, when the

primary tumors are T1. Even if patients initially present with localized disease, 50%

will eventually develop lethally metastatic disease [89]. Based on this malignant

nature, HLRCC-related RCC must be treated differently from other inherited forms

of RCC. HLRCC tumors should be surgically treated immediately upon detection

regardless of size rather than management by active surveillance until the largest

tumor size reaches 3 cm, which is recommended for most other inherited RCC

syndromes [81, 91, 92].

Ten percent of affected individuals with HLRCC have been reported to have

adrenal cortical adenomas [83, 93].

2.4.2 Genetics of HLRCC

Genetic linkage analysis in HLRCC families localized the disease locus on

chromosome1q42, and germline mutations were identified in a gene encoding

fumarate hydratase (FH), an enzyme of the tricarboxylic acid (TCA) cycle, which

catalyzes the conversion of fumarate to malate [80, 81]. These mutations are

predicted to cause absence or truncation of the FH protein or substitutions or

deletions of conserved amino acids. Missense mutations are most common. More-

over FH enzyme activity was shown to be absent or reduced in tumors,

lymphoblastoid cells, and fibroblasts from HLRCC patients [80, 82, 94, 95]. LOH

studies show loss of the wild-type FH allele in skin and uterine leiomyomas and

RCC, indicating FH is a classical tumor suppressor gene in HLRCC. More than

150 unique FH mutations, which may be pathogenic, have been reported in the

Leiden Open Variant Database [96]. The mutation detection rate in affected

individuals with HLRCC is reaching 90% [81, 82, 95]. There is a missense

mutational hot spot at Arg190, which is mutated to histidine, leucine, or cysteine

[81, 82, 95]. Kiuru et al. searched for FH mutations in sporadic skin and uterine

leiomyomas and sporadic RCC and found few mutations [97].

2.4.3 Molecular Consequence of Mutation in FH

FH functions as a tetramer. Reduced FH enzymatic activity in lymphoblastoid

cells and fibroblasts from HLRCC patients indicates that mutant FH may function

as a dominant negative form to disturb normal function of the FH tetramer
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[98, 99]. Loss of FH activity impairs oxidative phosphorylation enabling a cell

metabolism shift to aerobic glycolysis [100, 101]. Due to a blockage in the TCA

cycle, accumulated fumarate and succinate are transported out of the mitochondria

into the cytoplasm and compete with α-ketoglutarate, which is a cosubstrate of the

EglN family of prolyl hydroxylases (PHDs) that target HIFα , resulting in inhibition

of PHD activity and accumulation of HIFα and thereby evading pVHL-mediated

ubiquitination and proteasomal degradation [102, 103]. This pseudo-hypoxic con-

dition results in elevation of HIF-target genes such as VEGF and GLUT1, which
leads to upregulated angiogenesis and glucose uptake [104]. More evidence

supporting the oncometabolite function of fumarate and succinate is accumulating.

Elevated fumarate and succinate in FH-mutated RCC can inhibit multiple

α-ketoglutarate-dependent dioxygenases, which include histone demethylases

(KDMs, JMJDs), prolyl hydroxylases, and the ten-eleven translocation (TET)

family of DNA hydroxylases. As a consequence of dioxygenase impairment,

genome-wide epigenetic alterations could occur which may contribute to kidney

cancer development in HLRCC patients [105]. RCCs in HLRCC have increased

levels of ROS, leading to HIFα stabilization [101]. This suggests another mecha-

nism of tumor suppression by FH as well as the possible involvement of the

antioxidant response in RCC development in HLRCC. S-(2-succinyl) cysteine

(2SC) has been identified as an endogenous chemical modification of proteins.

Fumarate is an electrophile and reacts with cysteine sulfhydryl groups to form 2SC

under physiological conditions [106]. This reaction is termed succination, which

could be detected endogenously, and modifies the activity of many proteins

[107]. One of the significant proteins that is modified by succination is KEAP1.

KEAP1 is the substrate recognition subunit of an E3 ubiquitin ligase complex,

which is composed of KEAP1, Cul3, and Rbx1. This complex ubiquitinates a

transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) for

proteasome mediated degradation [108, 109]. Nrf2 transcriptionally upregulates

target genes containing antioxidant-response elements (ARE), in response to oxi-

dative and electrophilic stress [110]. In FH-mutated cells, elevated fumarate causes

succination of critical cysteine residues in KEAP1, resulting in a conformational

change of the KEAP1 containing E3 complex and an abrogation of Nrf2 recognition

by KEAP1. As a result, Nrf2 is stabilized, accumulates, and upregulates

ARE-containing genes leading to overactivation of the Nrf2-dependent antioxidant

pathway [111–113]. In fact, somatic mutations in NRF2 and CUL3 are found in

sporadic type 2 papillary RCC, which result in Nrf2 activation. Consistent with this

model, loss of function mutations in KEAP1 are frequently seen in sporadic cancers
[114–119]. Although Nrf2 is activated to transcriptionally upregulate antioxidant

genes, ROS levels are still high in FH-deficient RCC cells. Sullivan et al. found that

accumulated fumarate directly binds the antioxidant glutathione (GSF), which

works as an alternative substrate to glutathione reductase, resulting in decreased

NADPH and increased ROS [120].
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2.4.4 HLRCC Research: Bench to Bedside

HLRCC-associated RCC has very malignant features and metastasizes even when

the primary tumor is small in size. Advanced RCC in HLRCC is refractory to

conventional immunotherapy and lethal. However, results from many research

studies have been reported in the decade since FH germline mutations were identi-

fied in HLRCC, which may provide a foundation for the development of rational

targeted therapies. Based on basic research, a phase II clinical trial to evaluate

combination therapy of bevacizumab (anti-VEGF monoclonal antibody) and

erlotinib (EGFR inhibitor) is currently under way at the National Cancer Institute,

NIH (https://clinicaltrials.gov/ct2/show/NCT01130519?term¼HLRCC&rank¼1).

The recent findings that define the KEAP1-Nrf2 axis in HLRCC may provide

another basis for developing new targeted therapies for advanced HLRCC-

associated RCC.

2.5 Hereditary Head and Neck Paragangliomas (HPGL)

and Pheochromocytomas (PCC): SDH-RCC

Hereditary head and neck paragangliomas (HPGL), extra-adrenal pheochromocy-

tomas (paragangliomas), and hereditary pheochromocytomas (PCC) are caused by

germline mutations in genes encoding the three subunits (SDHB, SDHC, and
SDHD) of the mitochondrial TCA cycle enzyme succinate dehydrogenase (SDH)
[121, 122]. Bilateral multifocal RCC was reported as a novel manifestation of

SDHB-mutated HPGL in 2004 [123]. A unique form of oncocytic RCC is seen

most frequently in SDH-RCC. However, a variety of histologies including clear cell

RCC, chromophobe RCC, papillary type 2 RCC, and oncocytoma have been

reported [124–127]. SDH-RCC also can be very aggressive, similar to HLRCC.

2.5.1 Clinical Manifestations of SDH-RCC

Fifty-four percent of affected individuals with SDHB germline mutations developed

HPGL or PCC and 79% of SDHC mutation carriers presented with HPGL or PCC.

PCC and HPGL can be bilateral and/or multifocal [125, 128]. The mean age of

diagnosis is younger for PCC (42.3 and 40.1 years of age) than for HPGL (27.4 and

20.7 years of age) in SDHB and SDHD mutation carriers, respectively. Approxi-

mately 13.6% of SDHB mutation carriers and 3.2% of SDHD mutation carriers

developed malignant PCC or HPGL [126]. The frequency of RCC development is

not very high. The lifetime risk of developing a renal tumor at the age of 70 was 14%

in SDHB and 8% in SDHD mutation carriers, respectively [126]. RCC associated

with SDH-RCC can have bilateral, multifocal, and early-onset characteristics.

34 M. Baba et al.

https://clinicaltrials.gov/ct2/show/NCT01130519?term=HLRCC&rank=1
https://clinicaltrials.gov/ct2/show/NCT01130519?term=HLRCC&rank=1
https://clinicaltrials.gov/ct2/show/NCT01130519?term=HLRCC&rank=1


2.5.2 Genetics of SDH-RCC

Germline mutations in SDHD were first identified in HPGL families in 2000

[121]. An SDHD germline mutation was found in a kindred with familial PCC as

well [129]. Subsequently, germline mutations in SDHB and SDHD were also

identified as causes of susceptibility to familial PCC and HPGL [130, 131]. In

2004, two young affected family members with HPGL and germline SDHB muta-

tions were diagnosed with clear cell RCC [123]. Subsequently RCCs with a variety

of histologies have been identified in family members inheriting germline muta-

tions in SDHB, SDHC, and SDHD (Fig. 2.4a–d) [124–128]. All types of loss of

function germline mutations including missense, frameshift, and nonsense are seen

in SDH-RCC kindreds.

Fig. 2.4 Clinical manifestations of SDH-RCC. (a) Pedigree of an SDHD mutation-associated

SDH-RCC family. Patient III:1 had advanced ccRCC. (b) MRI image of an SDHB mutation-

associated SDH-RCC patient showing a pheochromocytoma and an RCC. (c) A unique form of

oncocytic RCC is seen most frequently in SDH-RCC. (d) Histology of ccRCC seen in an SDHC
mutation-associated SDH-RCC patient (Images from Ricketts et al. [127])
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2.5.3 Molecular Consequence of Mutations in SDHB,
SDHC, and SDHD

SDH enzymatic activity is impaired in SDH-mutated cells, resulting in the accu-

mulation of succinate. Similar to increased fumarate in FH-deficient cells in

HLRCC, accumulating succinate is exported into the cytoplasm and can compete

with α-ketoglutarate, resulting in inhibition of enzymes which utilize

α-ketoglutarate as a cosubstrate, including prolyl hydroxylases (PHDs) [102, 103,

105]. Upon PHD inactivation, HIFα evades ubiquitination by the pVHL E3 com-

plex, accumulates, and transcriptionally activates expression of HIFα target genes

that support cell proliferation through neovascularization, glucose uptake, or cell

proliferation. Analogous to FH-mutated HLRCC, RCCs in SDH-RCC tend to have

malignant features [127]. Based on the molecular consequence of SDH inactivation

that drives upregulation of HIFα target genes, targeted therapies such as anti-VEGF

antibodies or VEGFR inhibitors are expected to be effective for advanced RCC

associated with SDH-RCC. In fact, there is a case report of advanced RCC in

SDH-RCC, which shows nearly complete remission in response to a standard

regimen of sunitinib [132].

2.6 Birt-Hogg-Dubé Syndrome (BHDS)

Birt-Hogg-Dubé syndrome (BHDS) is an autosomal dominant hereditary kidney

cancer syndrome, which predisposes affected individuals to develop benign tumors

of the hair follicle (fibrofolliculomas), pulmonary cysts, spontaneous pneumotho-

rax, and kidney tumors (RCC and/or oncocytoma) (Fig. 2.5a–d). Causative

germline mutations were identified in a novel gene FLCN in affected BHDS family

members. In contrast to other hereditary kidney cancer syndromes, a variety of

histologies including chromophobe RCC, oncocytoma, ccRCC, papillary RCC, and

hybrid tumors consisting of features of both chromophobe RCC and oncocytoma

can be seen in BHDS.

2.6.1 Clinical Manifestations of BHDS

BHDS was first described in 1977 by three dermatologists, Birt, Hogg, and Dubé, as

a hereditary cutaneous disorder in which patients presented with fibrofolliculomas

[133]. A case report of a BHD patient having bilateral multifocal chromophobe

RCC in 1993 raised the question of whether kidney tumors might be part of the

manifestations of BHDS. One hundred fifty-two patients from 49 familial renal

tumor families were analyzed for cutaneous lesions at the National Institutes of

Health in the U.S. The cosegregation of fibrofolliculomas and kidney tumors was
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seen in three families in an autosomal dominant manner, which established BHDS

as a hereditary kidney cancer syndrome [134]. BHDS is a rare syndrome with

roughly 500 families reported worldwide to date. However, this number could be

underestimated because BHDS is a newly categorized syndrome and not widely

known yet.

Fibrofolliculomas are the most common clinical manifestations of BHDS, which

are seen in 82–92% of affected individuals with BHDS who are older than 25 years

old. It is a benign tumor, so-called hamartoma, seen as flesh-colored papules with a

smooth surface, 2–4 mm in diameter, and frequently seen on the face, neck, and

upper trunk singly or coalescing into a plaque (Fig. 2.5a) [135–138]. Histologically,

fibrofolliculomas show anastomosing epithelial strands emanating from an aberrant

hair follicle, surrounded by a thick fibrous tissue and mucin-rich stroma (Fig. 2.5b)

[133, 134]. Other than a cosmetic issue, fibrofolliculomas exhibit no symptoms.

Lung cysts are the second most common manifestations of BHDS. Multiple

bilateral thin-walled lung cysts can be observed on thin-section chest CT scans in

70–84% of affected individuals with BHDS (Fig. 2.5c) [135, 136, 138] Tobino et al.

precisely described the characteristic features of pulmonary cysts in BHDS seen on

CT scans. The cysts vary in their numbers (29–407/person), sizes (a few mm–2 cm

or larger), and shape (76.6% of cysts are irregular-shaped). Cysts are predominantly

distributed to the lower, medial, and subpleural regions of the lung, abutting or

involving the proximal portion of lower pulmonary arteries or veins [139]. Respi-

ratory function tests generally exhibit normal lung function [139, 140]. Affected

Fig. 2.5 Clinical manifestations of BHDS. (a) Fibrofolliculomas on the face (arrow). (b) Histol-
ogy of fibrofolliculoma showing epithelial strands with thick connective tissue stroma (arrows).
(c) CT image indicating multiple lung cysts. (d) CT image of bilateral multifocal renal tumors

(arrowheads). (e–h) BHDS-associated renal tumors show multiple histological types: chromo-

phobe RCC (e), oncocytoma (f), hybrid oncocytic tumor (g), and ccRCC (h) (Images from

Pavlovich et al. [146])
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family members with BHDS have a 50-fold higher risk for having spontaneous

pneumothorax than unaffected siblings [141]. An analysis of 198 patients from

89 BHDS families evaluated for risk of pneumothorax revealed that 24% of BHDS

patients had a history of pneumothorax. The presence of lung cysts, total lung cyst

volume, and largest cyst size were significantly associated with pneumothorax. The

median age of onset for pneumothorax in BHDS is 38 years old [142].

Zbar et al. performed a risk assessment study of a large cohort of BHDS families

and concluded that affected family members of BHDS have a sevenfold greater risk

of developing renal tumors than unaffected siblings [141]. The penetrance of renal

tumors in BHDS ranges from 12 to 34% [135, 136, 143]. Kidney neoplasia present

in BHDS patients can be bilateral, multifocal, or solitary (Fig. 2.5d). Kidney tumors

in BHDS exhibit a wide spectrum of histological subtypes both in the single kidney

of a BHDS patient and in multiple affected individuals from the same BHDS

kindred, differentiating this syndrome from other hereditary kidney cancer syn-

dromes (Fig. 2.5e–h). The unique kidney tumors, hybrid oncocytic/chromophobe

tumors, which contain features of chromophobe RCC and renal oncocytoma [144]

are the most common kidney tumors in BHDS (Fig. 2.5g). Pavlovich et al. have

reported the frequency of histologies seen in BHDS-related kidney tumors as

follows: hybrid oncocytic/chromophobe tumors (50%), chromophobe RCC

(35%), clear cell RCC (9%), and renal oncocytoma (5%) [145, 146]. Multiple

microscopic foci of eosinophilic dysplastic cells, so-called oncocytosis, can be

seen frequently in the normal parenchyma of kidneys from BHDS patients

[145]. Kidney tumors in BHDS tend to grow slowly and less aggressively, although

they have the potential to metastasize. Affected family members without renal

masses are recommended to be screened for kidney tumors byMRI every 36 months

starting at the age of 21. If a renal mass less than 3 cm is detected, annual or

semiannual imaging, depending on the size, location, and growth rate, should be

considered. When the diameter of the largest tumor reaches 3 cm, surgical inter-

vention is recommended. Since BHDS patients have a lifelong risk for developing

multiple bilateral renal tumors, nephron-sparing surgery should always be consid-

ered to conserve renal function as much as possible, to prepare for multiple

surgeries. During the nephron-sparing surgery of the largest tumor, all of the

detectable small tumors should be removed with the aid of intraoperative ultra-

sound [146, 147]. So far there is no report of metastatic RCC developing in BHDS

patients with primary tumors less than 3 cm in diameter [11]. However, BHDS-

associated large RCC can metastasize and cause mortality [146, 148]. Appropriate

regular follow-up has to be performed for BHDS-related kidney tumors.

Although it is not clear whether or not they are real BHDS manifestations, there

are many reports of neoplasms in BHDS patients. Parotid oncocytomas have been

identified in many BHDS patients [135, 136, 149–151]. It is controversial whether

BHDS patients are at risk of developing colon polyps and/or colorectal carcinoma.

There are several case reports describing colorectal manifestations in BHDS

patients [152–154]. However, Zbar et al. have conducted a risk assessment study

of BHD families who were evaluated by colonoscopy and showed no increased

risk for colon polyps and/or carcinomas in affected members of BHDS families
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compared to unaffected members. On the other hand, Nahorski et al. and Khoo et al.

have described increased risk of colorectal neoplasia in a large European BHD

cohort and in a large French BHD family, respectively [155, 156]. Further analysis

will be required to conclude if colon neoplasia should be included as a manifesta-

tion of BHDS.

2.6.2 Genetics of BHDS

The causative gene for BHDS was localized on the short arm of chromosome 17 by

genetic linkage analysis in BHDS kindreds [157–159]. Subsequently in 2002,

germline mutations were identified in a novel gene in affected family members

with BHDS, which was named FLCN [160]. Since the cloning of FLCN, many

germline mutations have been reported [136, 137, 144, 162, 163]. To date more

than 100 unique germline mutations have been reported in the Leiden Open

Variation Database (LOVD) for FLCN [163] (https://grenada.lumc.nl/LOVD2/

shared1/home.php?select_db¼FLCN). Lim et al. have reported analysis of

70 unique germline mutations based on this database in 2010. Germline mutations

are found in all coding exons (4–14). Deletion mutations are most frequently seen

(31/70, 40%), followed by single base substitutions (25/70, 35.7%), duplications

(10/70, 14.3%), and deletion/insertions (4/70, 5.7%). Most of these germline

mutations are predicted to cause loss of function of the encoded protein FLCN.

Frameshifts, causing a premature termination codon, are the most frequent muta-

tional consequences (37/70, 52.9%), followed by splice site mutations (14/70,

20%), nonsense mutations (10/70, 14.3%), missense mutations (6/70, 8.6%), and

deletion mutations (3/70, 4.3%) [163]. Partial gene deletions of FLCN have been

seen in the germline of affected BHDS family members, which are also predicted to

cause loss of function [143, 161, 164]. Benhammou et al. have reported germline

intragenic deletion of the noncoding exon 1 causing loss of promoter activity of the

FLCN gene [164]. The mutation detection rate of FLCN in affected BHDS patients

is reaching 90% with advanced technologies for identifying gene deletions and

accurate sequencing [135, 136, 143]. There is no report of a clear genotype-

phenotype correlation in BHDS [135, 136, 142].

The majority of tumor suppressor genes that are causative for hereditary cancer

syndromes follow the Knudson two-hit theory. Tumors have germline loss of

function mutations in one allele and additional inactivation of the other allele by

LOH, somatic mutation, or methylation [165]. A second hit somatic inactivation of

FLCN is seen in BHD associated renal tumors [156, 166]. Vocke et al. analyzed

77 renal tumors from 12 individuals with BHDS who were confirmed to carry

germline mutations in FLCN. The majority of renal tumors (41/77, 53%) showed

somatic mutations in FLCN, most of which resulted in frameshifts and loss of

function. LOH at the FLCN locus was also seen at a relatively lower frequency

(14/77, 17%). Interestingly, each tumor within a group of multifocal tumors from a

single kidney of a BHDS patient showed a distinct second hit inactivation
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[166]. These observations support the idea that FLCN is a classical tumor suppres-

sor gene, which follows the Knudson two-hit theory.

FLCN somatic mutations are seen infrequently in sporadic RCC. Multiple losses

of whole chromosomes are a characteristic of sporadic chromophobe RCC. Chro-

mosome 17, where FLCN is located, is frequently lost in chromophobe RCC

[167]. This motivated Gad et al. to look at the somatic mutations of FLCN in

sporadic renal tumors including 46 samples of chromophobe RCC, 19 ccRCC,

18 renal oncocytoma, and 9 papillary RCC. After five samples of chromophobe

RCCs having mutations in normal tissues were excluded, somatic FLCN mutations

were seen in 4.9% of sporadic chromophobe RCCs and in 5.6% of sporadic renal

oncocytoma. No FLCN mutations were seen in ccRCC or papillary RCC. Methyl-

ation status of the FLCN promoter was analyzed in 61 of 92 samples, and no FLCN
promoter methylation was found [168]. Khoo et al. analyzed 39 renal tumors,

7 samples of renal oncocytomas, 9 chromophobe RCC, 11 papillary RCC, and

12 ccRCC. Only one papillary RCC exhibited a somatic frameshift mutation in

FLCN. However, LOH on chromosome 17p was observed in 36% of sporadic renal

tumors (33% of all chromophobe RCC), and FLCN promoter methylation was

detected in 28% of sporadic renal tumors (36% of all chromophobe RCC). Inter-

estingly, 11% of chromophobe RCC, 27% of papillary RCC, and 8% of ccRCC

showed both LOH and promoter methylation [169]. On the other hand, da Silva

et al. found no evidence of FLCN CpG island methylation in 20 RCC tumors and

6 RCC cell lines. Nagy et al. did not find FLCN somatic mutations in any of

8 sporadic chromophobe RCC or 8 sporadic renal oncocytoma. They saw LOH

on chromosome 17p in 100% of chromophobe RCC and 0% of oncocytoma

[170]. The latest publication from the Cancer Genome Atlas project describing

whole-exome sequencing of 66 sporadic chromophobe RCCs reports no mutations

in FLCN [171].

2.6.3 Molecular Function of FLCN

FLCN gene encodes a novel 579 amino acid protein FLCN, which does not share any

homology or known functional domains with other proteins at the level of amino acid

sequence or secondary structure prediction [160]. However, FLCN is well conserved

across species, suggesting its fundamental role for organisms. Baba et al. have

identified a novel FLCN-binding protein, FNIP1, which is also conserved across

species and has no known functional domains to suggest its function. FNIP1 binds to

the C-terminus of FLCN, which is sometimes the target of protein truncating

germline FLCN mutations in BHDS families, and interacts with 50-AMP-activated

protein kinase (AMPK), which has an important role as an energy sensor and

metabolic switch to maintain energy homeostasis in cells and organisms

[172, 173]. AMPK negatively regulates mechanistic target of rapamycin (mTOR)

[174], the master regulator of protein translation and cell growth [175]. The signif-

icant role of the AMPK-mTORC1 signaling axis is well documented in hereditary
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cancer syndromes [176] including Cowden syndrome which is caused by PTEN
inactivation [177], Peutz-Jeghers syndrome caused by LKB1 inactivation

[178, 179], and tuberous sclerosis complex caused by TSC1 or TSC2 inactivation

[180]. Indeed, there are several lines of evidence supporting FLCN/FNIP1 involve-

ment in the AMPK-mTORC1 signaling pathway. FLCN is phosphorylated on mul-

tiple serines and threonines, which are differently inhibited by mTORC1 inhibition or

AMPK inhibition. FNIP1 expression facilitates FLCN phosphorylation in an

mTORC1 dependent manner [181, 182]. Regulation of mTORC1 activity by

FLCN/FNIP1 seems to be context dependent. For example, a FLCN-null RCC cell

line showed higher mTORC1 activity than the FLCN-restored RCC cell line under

serum-starved conditions. On the other hand, serum stimulation activated mTORC1

inefficiently in the FLCN-null RCC cell line under amino acid-starved conditions,

while the FLCN-restored RCC cell line demonstrated efficient activation of

mTORC1 [181]. Recently, Tsun et al. have shown that FLCN functions as a

RagC/D GTPase-activating protein (GAP) to facilitate mTOR recruitment to the

lysosome for amino acid-dependent mTORC1 activation. Petit et al. have also

shown that FLCN is required for mTOR to be recruited to lysosome by Rags upon

amino acid stimulation. In this case they showed that FLCN functions as a RagA

guanine nucleotide exchange factor (GEF) [183]. A crystal structure of the

C-terminal half of FLCN was solved in 2012 and found to be structurally similar to

a Rab-GEF family of proteins [184]. Animal models also support a complex FLCN

role in mTOR regulation. Kidney-targeted Flcn deletion causes acute cell prolifera-

tion in kidney epithelial cells of the distal nephron, accompanied by mTORC1

activation. Kidney epithelial cells aberrantly proliferate in monolayer, resulting in a

polycystic kidney-like morphology and lethal renal failure by 4 weeks of age. This

phenotype is suppressed by rapamycin treatment, supporting the involvement of

mTORC1 activation in the pathogenesis of BHDS [185, 186]. Flcn heterozygous

knockout mice, mimicking affected BHDS patients, develop solid tumors, which

demonstrate LOH of the remaining Flcn allele and similar histologies to human

BHDS-associated tumors. mTOR activity, evaluated by western blotting, was high in

these solid tumors [187]. On the other hand, another Flcn heterozygous mouse model

showed suppressed mTORC1 activity in solid tumors and cysts which were evaluated

by immunohistochemistry of phosphorylated S6 ribosomal protein on paraffin-

embedded samples [188]. A third Flcn heterozygous mouse model exhibited

increased phospho-S6 staining in large cysts and suppressed phospho-S6 staining in

small cysts on paraffin-embedded samples [189]. In addition to these in vivo data,

mTORC1 regulation by FLCN is shown to be cell type dependent [189–191].

A second FLCN-binding protein, FNIP2 (which is also known as FNIPL [192]

or MAPO1 [193]), was identified by bioinformatics search [194]. FNIP2 is

very similar to FNIP1 (identity, 49%; similarity, 74%) and shares the same char-

acteristics as FNIP1 in binding to FLCN and AMPK. Hasumi et al. have shown that

FNIP1 and FNIP2 can make hetero- or homomultimers, which can complex with

FLCN and AMPK. This finding suggests that FLCN/FNIP1/FNIP2 may function

as a tumor suppressor in a complex. Fnip1 homozygous knockout mice have

B cell developmental defects and show no obvious phenotype in kidneys
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[195, 196]. Fnip2 homozygous knockout mice show no phenotype at all. However,

kidney-targeted Fnip1 and Fnip2 double knockout mice exhibit completely identi-

cal phenotypes to kidney-targeted Flcn knockout mice [197]. This finding indicates

that Fnip1 and Fnip2 may have redundant function and that FLCN and FNIP1/

FNIP2 function coordinately as a tumor suppressor complex.

Other signaling pathways are also regulated by FLCN. Klomp et al. have

compared gene expression profiles between BHDS-associated renal tumors and

sporadic chromophobe RCC/oncocytoma and found that mitochondrial genes

which are regulated by PPAR-γ coactivator 1α (PPARGC1A) were expressed

significantly higher in BHDS-associated renal tumors [198]. Hasumi et al. have

demonstrated that Flcn regulates Ppargc1a in vivo by analyzing muscle-targeted

Flcn knockout mice. Flcn-deficient muscle shows increased mitochondrial biogen-

esis accompanied by increased Ppargc1a expression and a metabolic shift to

oxidative phosphorylation, which is completely neutralized by the additional dele-

tion of Ppargc1a [199]. It remains to be determined whether regulation of

PPARGC1A activity by FLCN serves an essential role in FLCN tumor suppressor

function. Hasumi et al. have shown suggestive data indicating that deletion of

Ppargc1a in kidney-targeted Flcn knockout mice results in complete loss of

hyperplastic cells, although aberrant kidney epithelial cell proliferation is seen in

these animals and eventually causes lethal renal failure [199]. Flcn inactivation in

murine cardiac muscle led to ATP overproduction, caused by aberrant mitochon-

drial biogenesis, AMPK suppression followed by mTORC1 activation, and cardiac

hypertrophy, which was suppressed by rapamycin treatment or inactivation of

Ppargc1a [200].

Recent evidence suggests that FLCN is a multifunctional protein. One of the

important functions for FLCN is regulation of transcriptional activity of the basic-

helix-loop-helix leucine zipper transcription factor, TFE3, a member of the

microphthalmia-associated transcription factor (MiT) family. Under FLCN-defi-
cient conditions, TFE3 translocates into the nucleus and has increased transcrip-

tional activity [191, 201]. TFE3 regulation by FLCN might be essential for the role

of FLCN as a tumor suppressor for the following reason. There is a rare subset of

sporadic RCC, Xp11.2 translocation RCC, with translocations between TFE3 at

Xp11.2 and a variety of genes, including ASPL, PRCC, NonO, PSF, and CLTC
[202–204]. All of the proteins encoded by these TFE3 fusion genes maintain the

C-terminal half of TFE3, where the basic-helix-loop-helix leucine zipper domain is

located, and show nuclear TFE3 immunostaining in the corresponding Xp11.2

translocation RCC [205], suggesting that TFE3 constitutive activation leads to

RCC development.

Moreover, FLCN is involved in the TGF-β signaling pathway [206, 207],

ciliogenesis [208], and autophagy [209, 210]. The pathogenesis of lung cysts in

BHDS has been uncertain for a long time. Identification of a FLCN-binding protein,

plakophilin-4 (p0071), shed light on the molecular role of FLCN in cell-cell

adhesion and cell polarity, which might be involved in the lung manifestations of

BHDS [190, 211, 212]. Rho A signaling, which is regulated through p0071, is

disordered under FLCN-deficient conditions. FLCN regulates cell-cell adhesions,
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and defects in this process may cause lung cyst formation [190]. Goncharova et al.

have developed lung-targeted Flcn knockout mice and showed increased apoptosis

in lung epithelium, which was caused by a dysregulated E-cadherin-LKB1-AMPK

axis [213]. The multifunctionality of FLCNmight explain the broad phenotype seen

in Flcn knockout mice as well as the distinct manifestations of BHDS.

2.6.4 BHDS Research: Bench to Bedside

Currently there is no approved targeted therapy for BHDS. Part of the reason for

this may be the rarity of BHDS and indolent nature of most BHDS-associated RCC.

Based on kidney-targeted Flcn knockout mouse model results [185], mTORC1

inhibition might be a promising targeted strategy. In fact, Nakamura et al. treated

advanced BHDS-related RCC with the mTORC1 inhibitor, everolimus, as a sixth-

line therapy after disease was refractory to IL-2 (3 month, progressive disease

(PD)), IFNα (3 month, PD), S-1(28 month, PD), sorafenib (1 month, PD), and

sunitinib (4 month, PD). Even though everolimus was used as a sixth-line systemic

therapy, it displayed a relatively long-term effect (SD for 7 month). Further

progress in both basic research and translational research will be necessary for

developing successful treatments for advanced RCC in BHDS.

2.7 Tuberous Sclerosis Complex (TSC)

Tuberous sclerosis complex (TSC) is an autosomal dominant hereditary hamartoma

syndrome, which is caused by germline loss of function mutations in TSC1 or TSC2
genes. Disease manifestations are seen in multiple organs, including the skin, brain,

heart, lung, eye, and kidney, with widely variable clinical presentations even among

relatives (Fig. 2.6a–h) [214, 215]. Affected individuals are highly predisposed to

develop renal angiomyolipomas, which are benign tumors in most cases. It should

also be noted that TSC patients can develop renal epithelioid angiomyolipomas

with malignant potential and, in rare cases, RCC with a characteristic histology.

Since epithelioid angiomyolipoma is sometimes misdiagnosed for RCC, it is

important to correctly distinguish these renal lesions in TSC patients.

2.7.1 Clinical Manifestations of TSC

TSC has been underdiagnosed because of the variable severity of manifestations

among affected individuals [216]. Through the discoveries of the causative genes

and establishment of diagnostic criteria, significant advancements have been made

in the management of TSC. Currently its prevalence is estimated at 1/6000 to
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Fig. 2.6 Clinical manifestations of TSC. (a) Angiofibromas on the centrofacial area. (b) Ungual

fibromas arising from the nail bed. (c) Hypomelanotic macules are observed frequently in TSC patients.

(d) CT image showing bilateral multifocal angiomyolipomas. (e) MRI image demonstrating cortical

dysplasia, which is observed very frequently in TSC patients (arrows: tubers, arrowhead: radial
migration line). (f)MRI image indicating subependymal nodules (SEN) with arrows and subependymal

44 M. Baba et al.



1/10,000 of live births [215, 217]. The second International TSC Consensus Con-

ference was held in 2012 and revised the clinical diagnostic criteria published in

1998. The identification of a pathogenic mutation in TSC1 or TSC2 in genomic

DNA is sufficient for a definitive diagnosis of TSC. Since conventional genetic

testing does not identify germline mutations in TSC1/2 in a significant population

(10–25%) of TSC patients, a negative outcome of a genetic test does not exclude

TSC. Here, an outline of TSC manifestations will be described. For details of the

clinical diagnostic criteria, the reader is referred to the literature [216].

2.7.1.1 Extrarenal Manifestations of TSC

Dermatologic features are seen in almost 100% of TSC-affected individuals, which

can be easily recognized by physical examination (Fig. 2.6a–c). The prominent

manifestations are skin hamartomas, which include angiofibromas, fibrous cephalic

plaques, ungual fibromas, and shagreen patches. Facial angiofibromas are seen in

75% to 93% of affected individuals [218–220]. Angiofibromas are red to pink

papules with smooth surface, which distribute over the centrofacial area

(Fig. 2.6a). Histologically, dermal fibrosis, coarse collagen bundles, stellate fibro-

blasts in the upper dermis, and capillary dilation are seen with atrophic sebaceous

glands [221, 222]. Second-hit somatic TSC1 or TCS2 mutations were identified in

cultured fibroblasts isolated from angiofibromas of TSC patients, supporting the

idea that UV-induced DNA damage caused second-hit mutations in skin fibroblasts

resulting in hamartoma formation [223]. There are two reports, suggesting a

possible phenotypic overlap of skin hamartoma between TSC and Birt-Hogg-

Dubé syndrome (BHDS). One publication reports angiofibromas in BHDS, while

the other reports fibrofolliculomas in TSC [222, 224]. Clinicians should be aware

that these overlapping clinical manifestations can sometimes make the differential

diagnosis of TSC and BHDS challenging. In addition, angiofibromas are also seen

frequently in another hereditary neoplastic syndrome, multiple endocrine neoplasia

type 1 (MEN1), which do not develop kidney neoplasia [225]. Fibrous cephalic

plaques (forehead fibrous plaques) are seen in around 25 to 46% of TSC-affected

individuals [215, 220]. Fibrous cephalic plaques are histologically similar to

angiofibromas, with remarkably sclerotic collagen tissue [221]. Ungual fibromas

show later onset and are seen in 20 to 80% of patients in an age-dependent manner

(Fig. 2.6b) [226, 227]. They are skin-colored or red nodules, arising from the nail

bed of fingers or toes. Histologically they are similar to angiofibromas or fibrous

cephalic plaques [215, 218, 220, 228]. Another proliferative skin manifestation is

⁄�

Fig. 2.6 (continued) giant cell astrocytoma (SEGA) with arrowhead. (g) Echocardiogram of

cardiac rhabdomyomas. (h) Chest CT image demonstrating lymphangioleiomyomatosis (LAM).

(i) Histology of angiomyolipoma. (j) Histology of epithelioid angiomyolipoma composed of

pleomorphic cells with large hyperchromatic nuclei and abundant eosinophilic cytoplasm (Images

from Northrup et al. [215] (a–h), and Kato et al. (i, j) [254])
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the shagreen patch, which is specific for TSC and seen in 50 to 80% of

TSC-affected individuals in their first decade of life [219, 220, 227¸ 228]. They

usually appear as large plaques on the lower back with the rough surface resembling

an orange peel. Histologically it is a connective tissue hamartoma composed of

vascular structures, adipose tissue, collagen, smooth muscle, and cutaneous

appendages [229]. Another set of skin manifestations are large hypomelanotic

macules and tiny confetti-like macules. Hypomelanotic macules are observed

frequently in 65 to 90% of TSC patients (Fig. 2.6c) [218, 220, 227]. Confetti-like

macules are numerous scattered tiny white hypomelanotic macules usually cover-

ing the arms and legs, which are seen in about 50% of affected patients [218, 226].

Central nervous system features are also very common in TSC. Cortical dyspla-

sia, including cortical tuber and cerebral white matter radial migration lines, which

can be diagnosed by MRI, are observed in 90% of patients (Fig. 2.6e). Cortical

dysplasia is associated with intractable epilepsy and learning difficulties in TSC

[215]. Subependymal nodules (SEN) and subependymal giant cell astrocytomas

(SEGA) are observed in 80% of TSC patients (Fig. 2.6f) [215]. They are basically

benign and slow growing, but can cause serious neurological morbidity. Cardiac

rhabdomyomas can occur in 50% of cases (Fig. 2.6g) [218–220], which are rarely

observed in non-TSC patients.

Lymphangioleiomyomatosis (LAM) is one of the major manifestations of TSC.

Histologically, benign-appearing smooth muscle cells (LAM cell) are infiltrating

into lymphatics, airways, blood vessels, and alveolar septa, and thin-walled lung

cystic changes, which are the cause of destruction of alveolar structures, are

observed [230, 231]. Upon high-resolution CT scanning, at least 30 to 40% of

TSC-affected females present cystic pulmonary parenchymal changes, which are

consistent with LAM (Fig. 2.6h) [232, 233]. The cystic changes of lung, consistent

with LAM, are observed in about 10% of male TSC individuals, but symptomatic

LAM in males is rare [234]. The risk of LAM is age dependent, increasing by 8%

each year. The prevalence of LAM in females reaches 80% by 40 years of age

[233]. Cudzilo et al. have reported that 12.5% of TSC patients with LAM eventually

die from LAM. The origin of LAM cells is unknown. Ninety-three percent of TSC

patients with LAM have concurrent renal angiomyolipomas, and 100% have uterine

PEComas (tumors showing perivascular epithelioid cell differentiation) [235],

suggesting that these extra lung manifestations might be the source of LAM cells.

2.7.1.2 Kidney Manifestations of TSC

Angiomyolipoma is the major kidney manifestation of TSC, which can cause the

most severe clinical symptoms. Angiomyolipomas are frequently seen bilaterally

and multifocally in kidneys of nearly 80% of TSC-affected individuals (Fig. 2.6d)

[236]. Angiomyolipomas can also develop in other organs including the liver

[237]. Renal angiomyolipoma is a benign mesenchymal clonal neoplasm composed

of variable proportions of hyalinized thick-walled dysmorphic blood vessels,

immature spindle-shaped smooth muscle-like cells, and mature adipose tissue
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(Fig. 2.6i) [238, 239]. Karbowniczek et al. have microdissected each component of

sporadic angiomyolipomas and demonstrated that all three components have LOH

at the TSC2 locus and shown that all cell components have immunoreactivity to

anti-phospho-S6 antibody, supporting mTORC1 activation presumably caused by

loss of TSC2 [240]. This may support the idea that all the components of

angiomyolipomas are derived from a common progenitor cell [241]. It has been

postulated that the origin of angiomyolipoma is a renal mesenchymal precursor cell

or a neural crest lineage cell [242, 243]. Most renal angiomyolipomas behave

biologically as a benign lesion and show favorable prognosis, although there have

been reports of nodal involvement and extensions into the renal vein and inferior

vena cava [244, 245]. On the other hand, angiomyolipomas confer a risk to

TSC-affected patients by causing chronic kidney disease (CKD) [246] and hemor-

rhage [247]. The abnormal vascular components of larger angiomyolipomas have a

tendency to develop aneurysms, which can rupture and cause patients to go into

shock [248, 249].

Angiomyolipomas contain a subset of the smooth muscle-like cells, which

appear epithelioid with clear to pale eosinophilic granular cytoplasm and focally

associate with the blood vessels. This distinctive cell type is called a perivascular

epithelioid cell or PEC, which is shared among a family of mesenchymal neoplasms

known as “PEComas” (tumors showing perivascular epithelioid cell differentia-

tion). PEComas include angiomyolipomas, lymphangiomyomatoses, and clear cell

“sugar” tumor of the lung [250]. As mentioned above, angiomyolipomas can

display extremely variable proportions of each component. Angiomyolipomas,

which display dominantly or exclusively epithelioid cells, are classified as epithe-

lioid angiomyolipomas or epithelioid PEComas (Fig. 2.6j) [235]. It is important to

note that epithelioid angiomyolipomas could be misdiagnosed as RCC. Epithelioid

angiomyolipoma is histologically characterized by polygonal cells with eosino-

philic to clear cytoplasm, prominent nucleoli, occasional marked nuclear atypia,

and pleomorphic forms (Fig. 2.6j), forming solid arrangements [235, 251–

254]. More importantly, epithelioid angiomyolipomas can be malignant neoplasms,

which metastasize and cause death, especially in cases that show malignant histol-

ogy [252, 253, 255, 256]. In rare cases, typical angiomyolipomas can become

malignant with epithelioid or sarcomatous transformation [257, 258]. It is important

to consider the possibility of epithelioid angiomyolipoma when a high-grade

epithelioid renal neoplasm is observed in a TSC patient or is found coexisting

with a conventional AML [254]. Immunohistochemistry is extremely useful for

differential diagnosis of epithelioid angiomyolipoma. PEC are positive for

melanocytic antigens (HMB-45 and melan-A) as well as smooth muscle-specific

actin and negative for epithelial markers, EMA, and cytokeratin [254].

The incidence of RCC in TSC-affected individuals is thought to be very rare and

estimated to be 2 to 3%, which is comparable to the incidence of sporadic RCC in

the general population [259, 260]. There have been many case reports of

TSC-associated RCC with a variety of histologies. But there has not been any

systematic evaluation and/or classification of these TSC-associated RCC. Recently,

two groups have evaluated and classified TSC-associated RCC independently
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[261, 262]. Both groups have concluded that the RCCs in TSC show distinct

histology and character, which differ from sporadic RCC in non-TSC general

populations. Guo et al. have analyzed 57 RCCs from 18 TSC-affected patients.

They describe unique clinicopathologic features of TSC-associated RCC including

female predominance, younger age at diagnosis, multiplicity, association with

angiomyolipoma, favorable clinical course, and three distinct histologic patterns

as follows: (1) carcinoma resembling renal angiomyoadenomatous tumors

(RAT-like) or RCC with smooth muscle stroma (30%), (2) carcinoma resembling

sporadic chromophobe-type RCC (chromophobe-like) (59%), and (3) a unique

granular eosinophilic-macrocystic histology (11%) [261]. Yang et al., have ana-

lyzed 46 RCC from 19 TSC patients and classified them into three categories based

on morphologic, immunologic, and molecular profiles as follows: (1) “TSC-asso-

ciated papillary RCC” with prominent papillary architecture and loss of SDHB

expression (52%), (2) hybrid oncocytic/chromophobe tumor (HOCT) (33%), and

(3) unclassified (15%) [262]. In both studies, HMB-45 negativity and Pax8 posi-

tivity were tested to exclude epithelioid angiomyolipoma. Both studies share

distinct clinicopathologic characteristics of TSC-associated RCC.

2.7.2 Genetics of TSC

Through linkage analysis of TSC families, causative germline mutations in TSC1
and TSC genes were identified [263–265]. TSC1 localizes on chromosome 9q34,

encoding an 1164 amino acid 140kD protein, hamartin. TSC2 localizes on chromo-

some 16p13, encoding an 1807 amino acid 200kD protein, tuberin. Seventy-five to

90% of TSC patients diagnosed through clinical criteria exhibit pathogenic

germline mutations in either TSC1 or TSC2. Extensive genetic analysis of the

TSC1 and TSC2 genes in TSC patients have identified a broad spectrum of muta-

tions [219, 266–269]. To date, more than 500 unique TSC1 sequence variants and

1400 unique TSC2 sequence variants, which do not include nonpathogenic variants,
have been reported (http://chromium.lovd.nl/LOVD2/TSC/home.php?select_

db¼TSC1, http://chromium.lovd.nl/LOVD2/TSC/home.php?select_db¼TSC2 ).

Missense mutations, large genomic deletions, and in-frame deletions are very rare

in TSC1. The germline mutation frequency in TSC2 is higher than TSC1. Especially
in de novo cases, mutation frequency in TSC2 is reported to be two to ten times

higher than in TSC1 [219, 268–273]. On the other hand, the mutation frequency in

TSC pedigrees which segregate across multiple generations is approximately equal

in TSC1 and TSC2 [180]. This might be explained by the fact that TSC1 mutations

are associated with a less severe phenotype in TSC patients [219, 268]. LOH in

TSC1 or TSC2 is consistently observed in most TSC-associated neoplastic lesions

including angiomyolipomas, but rarely observed in cerebral cortical tubers

[274, 275]. This indicates that TSC1 and TSC2 are classical tumor suppressor

genes which follow the Knudson two-hit theory [276]. Although TSC is an auto-

somal hereditary syndrome, the sporadic cases, which have acquired de novo
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mutations without family history, are predominant. It has been estimated that about

66% to 83% of all TSC patients are sporadic cases [219, 268, 273, 277]. Therefore,

although TSC is a hereditary syndrome, one should notice that lack of family

history does not exclude TSC from the differential diagnosis.

2.7.3 Molecular Function of TSC1/TSC2

Both TSC1 and TSC2 are confirmed to function as tumor suppressor genes by

in vitro and in vivo experiments [278–280]. TSC1 encodes a 140kD protein,

TSC1 (hamartin), which does not have any known functional domains. TSC2
encodes a 200kD protein, TSC2 (tuberin), which has a GAP (GTPase-activating

protein) domain in its c-terminal region. TSC1 and TSC2 share no homology and

form a heterodimer [281, 282] to function as a GAP toward the small G-protein

Rheb (Ras homolog enriched in the brain). As expected from the fact that both

mutations in TSC1 and TSC2 cause a single disease, TSC1 and TSC2 function as a

complex. TSC1 binds to TSC2 and stabilizes it by preventing ubiquitin-mediated

degradation [283, 284]. The GAP activity is essential for TSC1/TSC2 tumor

suppressor function [285]. Indeed, missense germline mutations are frequently

found in TSC patients in the GAP coding regions of TSC2, underscoring the

importance of GAP activity for TSC2 tumor suppressor function [286]. The

TSC1/TSC2 complex activates Rheb GTPase and accelerates the conversion of

GTP-bound Rheb to GDP-bound Rheb, resulting in inhibition of mTORC1 (com-

posed of mTOR, RAPTOR, mLST8, and PRAS40) activity [287–289]. The TSC1/

TSC2 complex receives upstream signals from many canonical signaling molecules

including AKT, AMPK, Ras-ERK-RSK, Wnt-GSK3β, and HIF1α-REDD1 and

works as a central hub of signaling transduction, which regulates mTORC1 activity

[290]. Inactivation of TSC1 or TSC2 causes aberrant accumulation of GTP-bound

Rheb resulting in constitutive activation of mTORC1 [291]. mTORC1 has a pivotal

role in regulation of cell growth and proliferation and is activated in a majority of

cancers [292].

Therapies that target mTORC1 using rapalogues have shown a very dramatic

effect on angiomyolipoma and LAM in TSC patients. The problem is that the

mTORC1 effect is cytostatic and termination of rapalogue treatment causes

regrowth of tumors [293]. Although there were two advanced cases reported that

did not respond to rapalogue treatment [294, 295], there are several case reports of

advanced epithelioid angiomyolipomas treated with rapalogues with dramatic

responses [296–298]. One thing to be considered is that constitutive activation of

mTORC1 by loss of TSC1/2 function suppresses insulin signaling-mediated PI3K/

AKT activation through a feedback loop [299]. So mTORC1 inhibition by

rapalogues might release this feedback loop and reactivate PI3K/AKT signaling.
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2.8 Cowden Syndrome (CS)/PTEN Hamartoma Tumor

Syndrome (PHTS)

Cowden syndrome (CS)/PTEN hamartoma tumor syndrome (PHTS) is an autoso-

mal dominant hereditary cancer syndrome, which is caused by germline mutations

in a tumor suppressor gene PTEN. CS/PHTS predisposes patients to develop breast,

thyroid, kidney, uterine, and other types of cancers as well as benign neoplasia and

neurodevelopmental disorders. Because of its rareness and difficulty to diagnose

due to the wide spectrum of manifestations, CS tends to be underestimated as a

cause of kidney cancer. PTEN hamartoma tumor syndrome (PHTS) was defined to

describe patients having germline mutations in PTEN [300]. In this chapter the term

CS will be used to represent CS/PHTS.

2.8.1 Clinical Manifestations of CS/PHTS

CS was first reported in 1962 describing a case with a family history and was named

after the first patient’s name [301]. This rare syndrome is inherited in an autosomal

dominant manner with an estimated prevalence of at least 1 in 200,000

individuals [302].

CS displays a wide range of clinical characteristics including benign neoplasia,

malignancies, central nervous system anomalies, and dysmorphic characteristics

[303]. Mucocutaneous manifestations are the most common manifestations of CS,

which include trichilemmomas (hair follicle hamartoma), papillomatous papules,

and acral/plantar keratoses, and are present in 99% of CS patients by their third

decade of life (Fig. 2.7b, c) [304]. Other commonly observed features seen in CS

patients are macrocephaly (Fig. 2.7a), dolicocephaly, and dysplastic gangliocytoma

of the cerebellum (Lhermitte-Duclos) [304]. In addition, affected patients can

develop benign tumors that include colorectal polyposis, thyroid goiter/nodules,

lipomas, fibromas, and proliferative breast changes [303].

Individuals affected with CS are at risk throughout their lifetime to develop a

variety of cancers, which can be bilateral and multifocal, similar to other inherited

cancer syndromes. Affected women have the lifetime risk for breast cancer ranging

from 67% to 85% [305–307], which is even higher than the lifetime risk of

hereditary breast and ovarian cancer (HBOC) syndrome caused by germline muta-

tions of BRCA1 or BRCA2 [308]. CS patients can have a variety of benign breast

lesions, which are difficult to differentiate from cancers [309]. Careful and close

follow-up of breast lesions is required. The lifetime risk for thyroid cancer is from

7.8% to 38% [305–307]. Among the thyroid cancers, the papillary type is the most

common histology (52%), followed by a follicular variant of papillary (28%) and

follicular (14%) [310]. Since most CS patients have multinodular thyroids, goiter

(73%), and Hashimoto’s disease (27%), careful differential diagnosis and close

follow-up are also necessary [310]. Affected women have an increased risk of
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Fig. 2.7 Clinical manifestations of CS. (a) Macrocephaly is commonly observed in CS patients.

(b) Mucocutaneous manifestations are the most common in CS patients. Image shows papilloma-

tous papules on dorsum of the tongue. (c) Cutaneous verrucous papule over the centrofacial area.
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endometrial cancer with a lifetime risk of 21%–28% [305, 307]. The lifetime risk

for colorectal cancer is 9%, while 93% of affected patients who had a GI tract

endoscopy were found to have polyps [311].

Mester et al. have analyzed the prevalence and histology of RCC among 219 CS

patients who were confirmed to have pathogenic germline mutations in PTEN
[312]. Nine of the 219 patients had a medical history of RCC, which means the

age-adjusted standardized incidence ratio (SIR) is 31.7. Differently from sporadic

RCC, the SIR is higher for females (46.7) than males (21.6). The lifetime risk of

RCC for CS affected patients is calculated as 34% [305]. Shuch et al. have reported

a higher incidence of RCC cases among the CS patients (4 in 24 patients) and have

pointed out that RCC is an underappreciated feature of CS [313]. A wide variety of

histologies have been reported in CS-associated RCC (Fig. 2.7d–g). Mester et al.

have reported that 75% of cases are papillary RCC and 25% of cases are chromo-

phobe RCC [312]. Shuch et al. have reported 50% papillary RCC (Fig. 2.7d, e),

25% clear cell RCC (Fig. 2.7f), and 25% chromophobe RCC in CS (Fig. 2.7g)

[313]. Clearly CS-associated RCCs have different characteristics from other types

of hereditary kidney cancers. Further analysis with a larger cohort will be required

to define the histological spectrum of CS-related RCC. Although it has to be

confirmed in a larger cohort, CS-associated RCC seems to be less malignant. To

date there are no reports of metastatic RCC in CS [303, 313].

Another characteristic of RCC in CS is the absence of family history of RCC,

although the total number of reported CS-associated RCCs is limited

[303, 313]. Shuch et al. discuss that this is probably because of low disease

penetrance and a high rate of de novo germline mutations in PTEN, which is

estimated to be between 10.7% and 47.6% [313, 314]. Therefore, lack of RCC

family history does not exclude a diagnosis of CS in a patient. Recognition of

pathognomonic characteristics like mucocutaneous lesions, medical history of

other type of cancers, GI hamartomas, and neurodevelopmental disorders would

be important for clinicians to diagnose CS patients with RCC.

2.8.2 Genetics of CS/PHTS

Genetic linkage analysis of 12 CS families identified a responsible genetic locus on

chromosome 10q22–23 in 1996 [315]. PTEN, a candidate tumor suppressor gene

located on 10q23, was found to be mutated in cell lines of glioblastomas, prostate

cancers, and breast cancers as well as in primary glioblastomas and other cancers

[316, 317]. Subsequently, loss of function mutations of PTEN were found in the

germline of CS kindreds [318–320]. The germline PTEN mutation spectrum

Fig. 2.7 (continued) (d–g) Renal tumor histology in CS patients showing papillary type 1 RCC (d,

e), ccRCC (f), and chromophobe RCC (g) (Images from Shuch et al. [313])
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includes all types of mutations located throughout the gene. Although the physio-

logical meaning is unknown, there are significant correlations between promoter

mutations and breast cancer incidence and between nonsense mutations and colo-

rectal cancers [305]. There is no clear correlation between germline mutations in

PTEN and a specific histology of RCC in CS [313]. LOH of PTEN has been

analyzed in five cases of CS-associated RCC and was found in four cases, indicat-

ing that LOH might be the major mechanism for second-hit PTEN alterations

driving RCC development in CS [313]. Mester et al. have reported negative

PTEN immunohistochemistry staining in all 5 cases of analyzed CS-associated

RCC. Negative PTEN staining might be a useful marker to suggest the possibility of

CS-associated RCC, because PTEN expression is mostly positive in sporadic RCC

[312]. Kondo et al. have reported that 5 of 68 (7.5%) cases of sporadic RCC exhibit

somatic loss of function mutations and 25% of cases show LOH of PTEN, including
3 of the cases with somatic mutations in PTEN. Among the five somatic PTEN
mutation cases, four cases were high-grade advanced ccRCC with poor prognosis.

The other case was low-grade papillary RCC [321]. The biological behavior of

CS-associated RCC and PTEN-inactivated sporadic RCC appears to be different.

Recent exome sequencing studies have identified PTEN loss of function mutations

in sporadic ccRCC, papillary RCC, and chromophobe RCC [50, 51, 171, 322].

2.8.3 Molecular Function of PTEN

PTEN is a 403 amino acid multifunctional protein, which has phosphatase activity

both on lipid and protein [323–326]. The main tumor suppressor function of PTEN

is maintaining the homeostasis of the phosphatidylinositol 3 kinase (PI3K)/AKT

cascade [327–329]. In response to extracellular signaling, receptor tyrosine kinases,

G-protein-coupled receptors, and RAS can activate PI3K, which converts

phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-

triphosphate (PIP3) [330]. Increased local PIP3 recruits many signaling molecules,

including phosphatidylinositol-dependent kinase 1(PDK1) and AKT together, to

the plasma membrane, where AKT is activated by PDK1 [331]. Activated AKT

regulates many downstream biological effects, including proliferation, survival,

cell polarity, motility, cell cycle, metabolism, and angiogenesis [332]. PTEN

dephosphorylates PIP3 to PIP2, resulting in reduced AKT activity and antagonizes

PI3K/AKT signaling pathways. One of the most important signaling molecules

downstream of PI3K/AKT is mTOR. AKT activates mTORC1 (composed of

mTOR, RAPTOR, mLST8, PRAS40) by phosphorylating TSC2 [333, 334] and

PRAS40 [335], causing phosphorylation of p70 ribosomal protein S6 kinase and

4EBP1 to promote protein translation. mTORC1 regulates many cellular processes,

including protein synthesis, lipid synthesis, autophagy, cell cycle, growth, and

metabolism [336, 337]. Among them, the PI3K/AKT/mTOR/HIF1α axis has an

important role in cancer development by regulating glucose metabolism as well as

angiogenesis [338, 339]. Apart from its tumor suppressor role in the PI3K/AKT
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axis, PTEN has a phosphatase independent role in the nucleus to regulate chromo-

somal stability, double-strand DNA break repair, and the cell cycle [327, 340,

341]. These findings suggest that targeting the PI3K/AKT/mTOR axis itself may

not be sufficient to treat PTEN-deficient cancers. Targeting the loss of function

effect of PTEN in the nucleus might be useful in combinatorial therapy or next-

generation targeted therapy for PTEN-deficient cancers.

2.9 BAP1 Germline Mutations (BAP1 Cancer Syndrome

and BAP1 Tumor Predisposition Syndrome)

BAP1 (BRCA1-associated protein 1) is a tumor suppressor gene [342, 343] which

resides on chromosome 3p21 and is frequently deleted in ccRCC. Recently a novel

autosomal dominant tumor predisposition syndrome, associated with loss of func-

tion germline mutations in BAP1, has been proposed. [344, 345] BAP1 germline

mutations predispose patients in a familial setting to develop a variety of tumors

including ccRCC (Fig. 2.8a) [344, 346, 347]. BAP1 inactivation also contributes to

the development and progression of sporadic ccRCC, which underscores the

importance of gaining a better understanding of this emerging cancer syndrome

[50–54].

2.9.1 Clinical Manifestations of BAP1 Tumor Predisposition
Syndrome

BAP1 germline mutations predispose patients to develop malignant mesothelioma,

uveal melanoma, cutaneous melanoma, and new category of tumor “melanocytic

BAP1-mutated atypical intradermal tumors” (MBAITs) [344]. MBAIT is a newly

proposed term to describe atypical melanocytic tumors that were previously diag-

nosed using various terminologies [348–351]. Carbone et al. have performed meta-

analysis of published families with BAP1 germline mutations [348–351] and have

shown that MBAITs are the most highly penetrant manifestation of the BAP1

cancer syndrome, seen in 66.7% of affected individuals. MBAITs are often asso-

ciated with a compound nevus or intradermal nevus, grow very slowly, and are

thought to be benign tumors. MBAITs are characterized histologically as intrader-

mal lesions with large epithelioid and spindle-shaped melanocytes (MBAITs cells),

which show cellular atypia and pleomorphic/hyperchromatic nuclei, but no mitotic

figures or Ki67 staining. Through meta-analysis, Carbone et al. have reported the

prevalence of other tumors in BAP1-mutated individuals as follows: malignant

mesothelioma (MM, 21%), uveal melanoma (UM, 17.7%), and cutaneous mela-

noma (CM, 12.9%). None of these tumors has been observed in non-affected family

members, suggesting that these manifestations are significant features of the BAP1
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cancer syndrome [344]. Popova et al. have reported that among 6 of the 11 families

with BAP1 cancer syndrome, 9 affected individuals presented with RCC [346]. Far-

ley et al. also have reported a novel germline mutation in BAP1, which predisposes
to familial ccRCC [347]. These findings strongly support RCC as a manifestation of

the BAP1 cancer syndrome. To date, there is no report regarding the pathological

analysis of BAP1 cancer syndrome-associated RCC and no consensus of histolog-

ical features, which would be useful for diagnosis of BAP1 cancer syndrome-

associated RCC. However, based on two reports, bilateral multifocal early-onset

ccRCC with high Fuhrman grade might be characteristic of BAP1 cancer

syndrome-associated RCC (Fig. 2.8b–d) [346, 347]. There are many reports

suggesting the involvement of other types of cancers in BAP1 cancer syndrome,

i.e., breast cancer, meningioma, lung cancer, neuroendocrine carcinoma, and basal

cell carcinoma [350, 352–355]. To define the true tumor spectrum of BAP1 cancer

syndrome, a large-scale recruitment of affected families and intensive analysis

would be required.

Fig. 2.8 Clinical manifestations of BAP1 tumor predisposition syndrome. (a) Pedigree of BAP1

tumor predisposition syndrome family. Red symbols indicate individuals with RCC. (b) CT image

of affected individual following right radical nephrectomy demonstrating multifocal left renal
lesions. (c) Histology of solid ccRCC in affected individual. (d) Histology of atypical renal cyst

with clear cell lining (Images from Farley et al. [347])
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2.9.2 Genetics of BAP1 Tumor Predisposition Syndrome

BAP1 inactivating somatic mutations were first identified by whole-exome

sequencing of metastatic uveal melanomas, which had chromosome 3 monosomy

[356]. Additional Sanger sequencing of all BAP1 exons revealed the frequent loss

of function mutations of BAP1 in metastasizing uveal melanomas (26/31; 84%).

Subsequently, somatic inactivation mutations were found in 23% of malignant

pleural mesothelioma [357]. Following these findings, germline mutations in

BAP1 were reported as predisposing to malignant mesothelioma, melanocytic

tumors, uveal melanoma [348–352], and RCC [346, 347]. From 7.5 to 14% of

cases of sporadic ccRCC are reported to have somatic inactivating mutations in

BAP1, which underscores the significance of loss of BAP1 function in developing

ccRCC [50–54]. Most of the germline mutations reported to date are nonsense or

insertion/deletion mutations causing frameshift and premature terminations

[358]. To date, there is no report describing distinct genotype-phenotype correla-

tions in BAP1 cancer syndrome.

2.9.3 Molecular Function of BAP1

The precise molecular function of BAP1 as a tumor suppressor for RCC remains to

be clarified. BAP1 is a 729 amino acid nuclear protein, which is a deubiquitinase

belonging to the ubiquitin carboxyl-terminal hydrolase (UCH) family. It was

originally identified as a BRCA1 interacting protein and a deubiquitinase of

BRCA1, which activates the tumor suppressor function of BRCA1 [342]. Later

BRCA1 was reported to form an E3 ubiquitin ligase heterodimeric complex with

BRCA1/BARD1, whose E3 ligase activity is dramatically increased by auto-

ubiquitination [359]. BAP1 was shown to interact with BARD1 and inhibit the

E3 ligase activity of the BRCA1/BARD1 complex by interfering with the BRCA1/

BARD1 association, instead of deubiquitinating BRCA1 [360]. Deubiquitinase

enzymatic activity of BAP1 seems to be necessary for its tumor suppressor func-

tion, because missense mutations, which abrogate deubiquitinase activity, are

frequently found in the catalytic domains of BAP1 in RCC [54, 347]. Drosophila

BAP1 (Calypso), which is a polycomb repressive deubiquitinase, deubiquitinates

H2A and regulates the expression of genes involved in body patterning [361]. Like-

wise, mammalian BAP1 is able to deubiquitinate the ubiquitinated H2A [361],

suggesting the involvement of BAP1 in gene expression regulation.

BAP1 binds to host cell factor (HCF-1) through its HCF-1 binding motif

(HBM), which is absent in Drosophila BAP1 [362–364]. HCF-1 is a 2035 amino

acid nuclear scaffold protein, which regulates the transcription of a variety of

genes by recruiting chromatin remodeling complexes to transcription factors
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[365–367]. HCF-1 recruits H3K4 histone methyltransferases to the E2F transcrip-

tion factors to transcribe genes for S phase initiation and promote cell cycle

progression [368]. Since BAP1 regulates the ubiquitination status of HCF-1 [362,

364] and is involved in cell cycle regulation [362], it would be an attractive idea to

test if BAP1 regulates the E2F transcription activity through deubiquitination of

HCF-1.

As mentioned above, BAP1 somatic mutations are found in approximately 10%

of sporadic ccRCC. Since most of the sporadic ccRCC have lost 3p and BAP1
resides on 3p21, BAP1-mutated ccRCC do not have functional BAP1. The BAP1-
mutated sporadic ccRCC show higher Fuhrman grade and significantly shorter

median overall survival [54, 369, 370]. In addition, BAP1 protein expression can

be an independent prognostic marker for ccRCC patients [371, 372]. Kidney-

targeted Vhlf/f, Bap1f/+ double knockout mice develop kidney cancers, which are

not seen in Vhlf/f mice, indicating that inactivation of both Vhl and Bap1 synergizes
toward the kidney cancer development [373]. Clarification of the BAP1 molecular

function would shed light on our understanding of the molecular pathogenesis of

sporadic ccRCC as well as the BAP1 tumor predisposition syndrome.

2.10 Conclusion

Although hereditary RCC accounts for only a small portion of all RCC, the medical

consequences for patients and their affected family members can be serious.

Detailed medical history, family history, and careful physical examination are of

great importance for their proper diagnosis.

Studies of patients with hereditary RCC susceptibility syndromes and their

families have made tremendous contributions toward the clarification of the molec-

ular pathogenesis of sporadic RCC as well as hereditary forms of RCC. These

findings have led to improved clinical outcomes for patients with hereditary and

non-hereditary forms of RCC and provided the foundation for developing new

targeted therapies.
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