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     Chapter 10   
 Probing Neuronal Activity Using Genetically 
Encoded Red Fluorescent Calcium Indicators 

             Takuya     Sasaki    

    Abstract     Understanding brain function requires experimental approaches that 
decipher the information coded by individual neurons. Calcium imaging with 
genetically encoded calcium indicators (GECIs) is a promising method that can 
visualize the spatiotemporal activity patterns of brain cells. Recent advances in 
protein engineering have greatly improved the properties of fl uorescent GECIs, and 
they now have high fl exibility for imaging defi ned cell populations over the course 
of months. The action spectra of single-wavelength GECIs have been extended by 
the development of color-shifted fl uorescence probes, which increase the potential 
for multicolor imaging of different cell structures and, more importantly, can be 
integrated into optogenetics experiments with photoactivatable proteins. In particu-
lar, red-shifted GECIs are highly important for imaging deeper tissues because 
longer-wavelength light can reduce tissue scattering and background autofl uores-
cence. This chapter mainly describes recent advances in the engineering of red 
GECIs, and highlights important neuroscience applications in optical monitoring 
and the manipulation of neuronal activity.  

  Keywords     Calcium imaging   •   Genetically encoded calcium indicator   •   Red fl uo-
rescent protein   •   R-CaMP   •   ChR2   •   Cortical neurons  

10.1         Genetically Encoded Calcium Indicators (GECIs) 
for Monitoring the Spatiotemporal Dynamics 
of Neuronal Populations 

 Monitoring where, when, and how individual cells are active in the brain is a central 
requirement in neuroscience research. Over the past decades, electrophysiological 
recordings have been used extensively for capturing neuronal dynamics at a single- 
cell resolution both in vitro and in vivo. Advances in multi-channel unit recordings of 
animal behavior allows the simultaneous recording of up to hundreds of neurons, 
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which have provided major contributions to the discovery of activity patterns in a 
variety of brain circuits (Buzsáki  2004 ). However, the drawbacks of microelectrode 
recording are the lack of suffi cient spatial resolution to resolve the precise location of 
cells and the diffi culty of tracking identifi ed cells over consecutive recording sessions 
because of electrode drifting, cell death, and gliosis around the tips of electrodes. 

 Compared with electrophysiological techniques, optical imaging holds greater 
promise for probing the activity patterns of large groups of neurons with identifi ed 
physical positions over extended periods of time (Gobel and Helmchen  2007 ; 
Takahashi et al.  2010b ; Grienberger and Konnerth  2012 ). In particular, calcium 
fl uorescent imaging has been used to obtain reliable measurement of neuronal activ-
ity with a high signal-to-noise ratio (SNR) because action potential fi ring is coupled 
tightly to large and rapid changes in the intracellular calcium concentration. 
Multicell calcium imaging is performed by loading cells with membrane-permeant 
forms of synthetic calcium indicators such as Fura-2, Oregon Green BAPTA (OGB)-
1, and Fluo-4 (Regehr and Tank  1991 ; Yuste et al.  1992 ; Dombeck et al.  2007 ; Chen 
et al.  2011 ; Takahashi et al.  2010a ). The major advantages of these organic probes 
are as follows: (i) they are bright, high-affi nity, and have calcium-dependent fl uores-
cence changes with large dynamic ranges; and (ii) the bulk loading procedure is 
relatively simple, i.e., simply incubating living tissues with dye-containing solution. 
Despite the widespread availability of synthetic indicators, they are generally 
unsuitable for labeling specifi c cell populations, which limits the examination of 
detailed circuit dynamics. Furthermore, it is technically challenging to visualize 
identical neuron populations over days and weeks due to the rapid clearance of 
indicators from the intracellular spaces. 

 Genetically encoded calcium indicators (GECIs) have the potential to overcome 
these technical limitations (Tian et al.  2012 ). GECIs are proteins; therefore, they can be 
expressed by delivering their genes into cells via viral vectors (Ziv et al.  2013 ; Osakada 
et al.  2011 ), electroporation techniques (Yamada et al.  2011 ; Ohkura et al.  2012b ), or 
by constructing transgenic animal lines (Chen et al.  2012 ; Zariwala et al.  2012 ). GECIs 
have several remarkable advantages over synthetic indicators. First, GECIs can be tar-
geted to specifi c cell types or specifi c subcellular compartments using cell-type specifi c 
promoters or cellular targeting sequences. Second, GECIs can be tracked repeatedly to 
analyze the neuronal activity of identical cell populations over the course of multiple 
recording sessions. Third, GECIs can be easily applied to mature neurons, whereas the 
loading effi ciency of synthetic indicators generally declines as the age of neurons 
increases. These properties should be essential for unveiling the development, organi-
zation, and maintenance of neural circuit dynamics.  

10.2     Recent Improvements in Green GECIs 

 Two important classes of GECIs have been engineered: (i) the Förster resonance 
energy transfer (FRET) type indicators such as a series of Cameleons (Nagai et al. 
 2004 ; Horikawa et al.  2010 ; Miyawaki et al.  1997 ), D3cpVenus (Palmer and Tsien 
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 2006 ), and TN-XXL (Mank et al.  2008 ); and (ii) the single-wavelength type indicators, 
such as a series of GCaMPs (Nakai et al.  2001 ; Ohkura et al.  2005 ,  2012b ; Tian 
et al.  2009 ,  2012 ; Chen et al.  2013 ) and fl ash-pericam (Nagai et al.  2001 ). Both 
types of GECIs comprise a calcium-binding domain such as calmodulin or tropo-
nin C and either one or two fl uorescent proteins. These protein structures undergo 
changes in their fl uorescence intensity, depending on the binding of calcium ions. 
Of these GECIs, GCaMPs are the most widely used sensors in a variety of brain 
regions and organisms, and they have been improved repeatedly to obtain faster 
kinetics and larger dynamic ranges of fl uorescence changes. In particular, determi-
nations of the X-ray crystal structures of GCaMPs have facilitated more rational 
improvements in the properties of probes. Recently, structure-based and random 
mutagenesis and semi-rational library screening have recently produced highly 
sensitive green calcium probes, including GCaMP3 (Tian et al.  2009 ), 
GCaMP4.1(Shindo et al.  2010 ), G-GECO (Zhao et al.  2011 ), and GCaMP5 
(Akerboom et al.  2012 ). The latest version of GCaMPs is a family of GCaMP6 
(Ohkura et al.  2012b ; Chen et al.  2013 ), which have been developed by two inde-
pendent groups (for further details, see Chap.   9     by Ohkura and Nakai). Such a new 
generation of calcium probes signifi cantly outperforms other existing GECIs in the 
detection of neuronal activity at a sensitivity level similar to or better than those of 
synthetic calcium dyes. Green GECIs have been shown to be applicable to the 
long-term in vivo imaging of orientation- tuned activity in visual cortical neurons 
(Chen et al.  2013 ) and place- selective fi ring in hippocampal pyramidal neurons 
(Ziv et al.  2013 ) over days and weeks.  

10.3     Development and Application of Red GECIs 

10.3.1     Requirements for Red GECIs 

 Despite the ongoing efforts to improve GECIs, the majority of single-wavelength 
probes were still limited to green fl uorescent proteins (GFPs) or yellow fl uores-
cent proteins (YFPs) that emit fl uorescence at a wavelength of 500–550 nm. This 
restricted emission spectrum prevents the use of GECIs in cells that have already 
been labeled with a green fl uorescent probe. Furthermore, recent advances in 
optogenetic manipulation using light-modulated microbial opsins (Yizhar et al. 
 2011 ; Nagel et al.  2003 ; Chow et al.  2010 ; Zhang et al.  2007 ; Boyden et al.  2005 ) 
such as channelrhodopsin (ChR)-2 require the combinatorial use of GECIs and 
photoactivatable proteins in an identical cell population. However, the use of 
GECIs to visualize opsin-expressing cells without photoactivation is technically 
challenging because of the large overlap in their broad excitation spectra 
(GCaMPs 470–510 nm; ChR2 430–500 nm). Thus, GCaMP3 and ChR2 can only 
be combined in conditions where the laser power is lowered strictly to excite 
GCaMP3 alone but not ChR2 (Guo et al.  2009 ). The development of GECIs with 
different absorption and emission spectra from GFPs should resolve these 
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technical limitations and allow GECIs to be employed together with optogenetic 
tools. A number of fl uorescent proteins have been developed, but few multicolor 
probes that exhibit clear fl uorescent changes in response to calcium ions. Several 
research groups have recently engineered color-shifted GECIs by combining the 
fl uorescent proteins and a calcium- binding protein (Zhao et al.  2011 ; Akerboom 
et al.  2012 ) (Fig.  10.1 ). Among these, red-shifted indicators are particularly 
desirable because longer-wavelength light is less susceptible to tissue scattering, 
blood absorption, phototoxicity, and background autofl uorescence. These condi-
tions are appropriate for in vivo live cell imaging from deeper tissues. This section 
describes the recent development and application of red-emitting GECIs in neu-
roscience research.   

10.3.2     Repertoire of Red GECIs 

10.3.2.1     R-GECO1 

 While neurophysiologists were awaiting new applications of GECIs, a pioneering 
study by Zhao et al   . ( 2011 ) succeeded in creating color-shifted GECIs with unique 
excitation and emission spectra on the basis of a combination of single-wavelength 
fl uorescent proteins. They used a variety of strategies to obtain effi cient probes, 
including mutagenesis with an error-prone polymerase chain reaction (PCR) and 
digital fl uorescence imaging of gene variants expressed in  Escherichia coli  colo-
nies. Introducing targeted and random mutations into GCaMP3 yielded a blue cal-
cium indicator, B-GECO1, and a series of high-sensitive green calcium indicators, 
G-GECOs. Part of the cfGFP in G-GECO1.1 was then replaced with an analogous 
cp version of a red fl uorescent protein (mApple) (Shaner et al.  2008 ), which yielded 
red-shifted probes that are potentially calcium sensitive. Through the iterative evo-
lution of variants created by error-prone PCR and randomization, the best opti-
mized protein was fi nally identifi ed as R-GECO1. The absorption and emission 
maxima of R-GECO1 were approximately 570 nm and 600 nm, respectively. On 
the basis of the calcium responses obtained from HeLa cells and cultured cells, the 
dynamic range of fl uorescent changes in R-GECO1 appears to be almost similar to 
that in G-CaMP3.  

  Fig. 10.1    Improvements of red genetically encoded calcium indicators (GECIs)       
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10.3.2.2     R-CaMP1.07 

 The development of red-shifted GECIs by Zhao et al. ( 2011 ) motivated us to 
improve the probe further (Ohkura et al.  2012a ). As an initial step, random mutations 
were introduced into a prototype molecule, R-GECO1, with the RSET tag at the 
N-terminus. Repeated rounds of in vitro screening yielded the best variant, 
R-CaMP1.01, which had mutations of K47V and T49V in the circularly permuted 
mApple domain. However, both the R-GECO1 and R-CaMP1.01 signals were 
found to be aggregated in the HeLa cell nucleus and the cytoplasm. This abnormal 
subcellular localization is probably related to the dysfunctioning of probes due to 
partial proteolysis (Tian et al.  2009 ). To prevent nuclear entry, R-CaMP1.01 was 
combined with a self-cleaving peptide, F2A, at the C-terminus. The resulting vari-
ant obtained, R-CaMP1.07, showed no signals of nuclear localization, and approxi-
mately two times larger fl uorescent changes in response to adenosine triphosphate 
(ATP) application in HeLa cells compared with R-GECO1. 

 The performance of R-CaMP1.07 was also characterized in mammalian hippo-
campal CA3 pyramidal neurons in cultured slices. R-CaMP1.07 detected calcium 
transients induced by single spikes with 95 % probability. The signal amplitudes 
increased almost linearly up to six spikes with a frequency of 50 Hz (Fig.  10.2A ). 
On average, R-CaMP1.07 yielded 1.5- to 2.0-fold larger dynamic responses (ΔF/F) 
and higher SNRs than R-GECO1 (Fig.  10.2B ). The rise and decay time constants of 
the spike-induced calcium transients of R-CaMP1.07 were approximately 120 ms 
and 900 ms, respectively, which are almost identical to those of R-GECO1. 
According to the temporal kinetics, this sensor could resolve individual spikes in 
bursts with a frequency of up to 5 Hz (Sasaki et al.  2008 ). However, R-CaMP1.07 
has not yet reached the affi nity and speed of the commonly used green GECIs. It 
may be possible to optimize the kinetics of sensors to further resolve the temporal 
patterns of spikes during burst fi ring.   

10.3.2.3     RCaMPs 

    In parallel with the study of mApple-based GECIs, Akerboom et al. ( 2012 ) indepen-
dently engineered a series of multi-color GECIs. To create color-shifted GECIs, they 
fi rst introduced mutations into the GFP chromophore of GCaMP3 through the muta-
tion sites that are crucial for conversion to color-shifted fl uorescent proteins (Heim 
et al.  1994 ; Heim and Tsien  1996 ; Ormo et al.  1996 ). Additional systematic muta-
tions of these color-shifted GCaMP3 yielded blue, cyan, and yellow probes, which 
displayed substantial fl uorescent changes in response to calcium (i.e., BCaMP, 
CyCaMP, and YCaMP, respectively). However, this strategy failed to produce red 
variants of GCaMP3. As an alternative pathway, part of cpEGFP in GCaMP3 was 
replaced with a circularly permuted version of mRuby (Kredel et al.  2009 ), a red 
fl uorescent protein. The addition of random mutations and subsequent structure-
guided optimization produced red-emitting calcium indicators, RCaMP1a-h (note 
that these are different probes from R-CaMP1.07, which was developed by Ohkura 
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et al. [ 2012a ]). In cultured rat hippocampal neurons, RCaMP1d, 1e, 1f, and 1 h were 
brighter, and they exhibited smaller fl uorescent changes in response to neuronal 
activity than did R-GECO1. The kinetics of these RCaMPs were slower than those of 
R-GECO1. These results suggest that R-GECO1 may be more suitable for detecting 
neuronal activity than R-CaMPs. However, RCaMPs have signifi cant advantages 
over R-GECO1, i.e., RCaMPs are more tolerant to photobleeching and, as described 
later, they are never photoactivated by blue and green wavelength light, which is a 
prerequisite for their combined use with optogenetics tools. In addition, it has been 
demonstrated that RCaMPs can be used together with GCaMP5 for visualization of 
the calcium activity with multicolor fl uorescence from different organelles in a single 
cell or different cell types in a single preparation.   

10.3.3     Application of Red GECIs to Optogenetics 

 The excitation spectra of red-shifted GECIs are distinct from the action wave-
lengths used for photostimulating ChR2 (Fig.  10.3B ). By exploiting their spectra 
properties, red GECIs can be used in optogenetics experiments for monitoring 
and manipulating neural activity with multiple light wavelengths. Ohkura et al. 
( 2012a ) demonstrated that R-CaMP1.07 fl uorescence imaging can be used to 
detect spike-induced calcium events triggered via ChR2 photoactivation with 
blue light (Fig.  10.3C ). A longer duration of photostimulation evoked larger 
numbers of spikes, which were linearly correlated with the amplitudes of the 
fl uorescent changes. No membrane potential changes were induced during the 
imaging of R-CaMP1.07 fl uorescence with 568 nm light, indicating that ChR2 
was not activated in these imaging conditions. These results demonstrate that 
R-CaMP1.07 may be suitable for monitoring calcium transients in response to 
optically evoked spikes. However, the drawback of the imaging system by 
Ohkura et al. ( 2012a ) is that blue light illumination causes the contamination of 

  Fig. 10.2     Detection of spiking activity using red genetically encoded calcium indicators (GECIs) 
in hippocampal pyramidal cells . ( a ) Representative fl uorescent traces (Δ F / F ) in response to spike 
trains with a frequency of 50 Hz. Imaging was performed at 50 frames per second (fps) using a 
Nipkow-disk confocal microscope. The  arrows  indicate the timing of spikes. ( b ) Mean signal-to- 
noise ratios (SNRs) plotted against the number of action potentials    in R-GECO1 ( black ) and 
R-CaMP1.07 ( red ) (Copyright (2014) PLOS. From Ohkura M et al. ( 2012a ) with permission)       
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photosignals, which prevents the direct recording of red fl uorescent changes 
upon ChR2 photostimulation (as shown in the dashed line in Fig.  10.3A ). Chang 
et al. ( 2012 ) overcame this issue by developing an optical system where a blue 
light pulse was applied during short intervals between image- acquisition events 
(Chang et al.  2012 ). This system allowed R-GECO calcium imaging without 
overlapping the photosignals generated by ChR2 photostimulation.  

 However, the results reported in these two previous studies have been questioned 
by the claim that mApple-based sensors, including R-GECO1 and R-CaMP1.07, 
inherit the property of photoreactivity to blue and green light; thus, implying that 
the ChR2-evoked fl uorescent changes detected by these probes may be prone to 
artifacts. In contrast, RCaMPs produced by Akerboom et al. (2013) do not exhibit 
these photo-sensitive dynamics; therefore, it is possibly more suitable for use in 
artifact-free, integrated optogenetics experiments.  

10.3.4     Note Regarding Red GECIs 

 It should be noted that the expression of GECIs alone may affect endogenous 
calcium- dependent signaling by buffering intracellular free calcium ions, thus leading 
to abnormal changes in cellular functions and behavioral phenotypes. For example, 
long-term and/or a high level of expression of GCaMP3 using in utero electropora-
tion or viral infection caused nonfunctional indicators and abnormal physiology 
(Dombeck et al.  2010 ; Tian et al.  2009 ). In certain conditions, this concern may be 
excluded by demonstrating that GECI-positive cells in cultured slices do not show 
any changes in their intracellular and synaptic properties (Ohkura et al.  2012a ,  b ), 
and GCaMP3-expressing transgenic mice generally display calcium transients 
in vivo without changing cellular functions (Chen et al.  2012 ). Overall, the most 
crucial factors are likely to be the accurate timing and magnitude of the expression 

  Fig. 10.3     Optical monitoring and manipulation of neuronal activity . ( a ) Hippocampal pyramidal 
cell co-expressing R-CaMP1.07 and channelrhodopsin (ChR)-2. ( b ) Excitation ( green ) and emis-
sion ( red ) spectra of R-CaMP1.07 superimposed on the excitation spectrum of ChR2 ( cyan ). The 
spectrum range of excitation fi lter used for RCaMP1.07 imaging is shown as the  green  region. ( c ) 
Imaging of ChR2-triggered-action potentials by R-CaMP1.07. Photostimulation (470-nm) is indi-
cated by the  blue  region. Putative calcium increases during the photostimulation are represented by 
 broken lines . The number of action potentials was recorded using the current clamp mode 
(Copyright (2014) PLOS. From Ohkura et al. ( 2012a ) with permission)       
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of GECIs. Depending on the stability and affi nity of sensors, the optimization of 
expression levels should be considered on a case-by-case basis. In addition, moder-
ate levels of calcium indicators are crucial for obtaining the best performance with 
GECIs because excessively high concentrations of calcium indicators substantially 
affect the shapes of calcium transients with extended durations and smaller ampli-
tudes (Helmchen et al.  1996 ). 

 The performance of red-shifted GECIs in rodent cells has been tested almost 
exclusively in slice preparations or cultured cells. However, little is known regarding 
whether these sensors may work in vivo with similar detection levels in rodent neu-
rons. In general, the dynamic range of GECIs decreases in more intact preparations 
due to a variety of external factors such as pH, temperature, light scattering, and 
background autofl uorescence (Tian et al.  2009 ; Ohkura et al.  2012b ). In addition, the 
ability of detection by red GECIs in different neuron types has not yet been system-
atically examined. A number of physiological factors such as the electrical activity, 
the expression of calcium channels, and the endogenous calcium buffering capacity, 
vary considerably between neurons of different subtypes and among brain regions 
(Fierro and Llano  1996 ; Maeda et al.  1999 ). In other preparations, particularly in vivo 
rodents, the usefulness of each GECI should be confi rmed and compared by indi-
vidual end users. Further studies are needed to determine the optimal situations 
where each GECI shows the best sensitivity, dynamic range, and kinetics.   

10.4     Concluding Remarks 

 Recent protein engineering has continuously improved the properties of GECIs in 
terms of their brightness, calcium affi nity, response kinetics, and color expansion. 
In this trend, multicolor GECIs will facilitate new applications of optical imaging 
and activity manipulations, which have not been performed with existing experi-
mental tools. To support these applications, gene delivery systems have been greatly 
improved to allow the expression of functional probes in a specifi c class of a neuro-
nal population (Osakada et al.  2011 ; Chen et al.  2012 ; Zariwala et al.  2012 ). In 
addition, the microscopic instrumentation has improved recently, including multi-
photon microscopy, high-speed scanning systems, Gallium Arsenide Phosphate 
(GaAsP) detectors, and portable integrated microscopy (Ghosh et al.  2011 ). This 
progress in biological and technological engineering should encourage neuroscien-
tists to address a variety of fundamental questions regarding the neural mechanisms 
of behavior, learning, and diseases.     
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