
Chapter 20
Subjective Random Discounting and
Intertemporal Choice

Youichiro Higashi, Kazuya Hyogo, and Norio Takeoka

Abstract This chapter provides an axiomatic foundation for a particular type
of preference shock model called the random discounting representation where
a decision maker believes that her discount factors change randomly over time.
For this purpose, we formulate an infinite horizon extension of Dekel, Lipman,
and Rustichini (Econometrica 69:891–934, 2001), and identify the behavior that
reduces all subjective uncertainties to those about future discount factors. We
also show uniqueness of subjective belief about discount factors. Moreover, a
behavioral comparison about preference for flexibility characterizes the condition
that one’s subjective belief second-order stochastically dominates the other. Finally,
the resulting model is applied to a consumption-savings problem.

Keywords Random discounting • Preference for flexibility • Subjective states

1 Introduction

1.1 Objective and Outline

In intertemporal decision making, a decision maker (DM) faces two kinds of trade-
offs among alternatives. The first is a trade-off from the difference of alternatives
within a time period and the second is an intertemporal trade-off between different
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time periods. Anticipating intertemporal trade-offs seems more difficult than antic-
ipating trade-offs within a period. Thus, we consider a DM who is certain about
ranking of alternatives within a period, and at the same time is uncertain about
future intertemporal discount rates.

In addition, several authors have mentioned psychological reasons for uncer-
tainty about discount factors. As Yaari (1965) and Blanchard (1985) point out, a
discount factor admits an interpretation as a probability of death. Depending on the
future prospects of diseases, armed conflicts, and discoveries in medical treatments,
the probabilities of death will change over time. An alternative interpretation is to
think not of an agent but of a dynasty, in which case a discount factor is regarded as
a degree of altruism. The bequest motives of the current generations may fluctuate
over time because they may die without descendants. Becker and Mulligan (1997)
suggest a model in which a discount factor depends on the quantity of resources
the DM invests into making future pleasures less remote. For example, schooling
may focus students’ attention on the future, and parents would spend resources
on teaching their children to make better future plan. The choice of investment
or effort level in these activities is affected by economic variables, for instance,
interest rates or the DM’s wealth, which are uncertain by their own nature. Thus,
these uncertainties may lead to random discounting.1

Moreover, random discounting has been used in several macroeconomic models
with infinite horizon since it is a useful device for generating heterogeneity among
agents, in particular, for realistic wealth heterogeneity in quantitative models. For
example, see Krusell and Smith (1998) and Chatterjee et al. (2007). However,
preference shock to discounting is often postulated in an ad hoc way since shock
cannot be observed directly by analysts. The reliance on these unobservable entities
seems problematic.

In this chapter, we provide an axiomatic foundation for the random discounting
model, in which the DM believes that her discount factors change randomly over
time. Therefore, we demonstrate that there exists a behavior which can, in principle,
pin down expected shocks to discount factors. For this purpose, we extend the
two-period framework of Kreps (1979, 1992) and Dekel et al. (2001) (hereafter
DLR) to an infinite horizon setting. They axiomatize a preference shock model by
considering preference over menus (opportunity sets) of alternatives. If a DM is
aware of uncertainties regarding her future preference over alternatives, then ranking
of menus reflects how she perceives those uncertainties. Kreps and DLR derive the
set of future preferences from the ranking of menus.

Behavioral characterization of random discounting shows that uncertainty about
future preferences, whether it is about future discount factors or other aspects of
preference, leads to a demand for flexibility—larger menus are preferred. This
observation is made on the basis of Kreps and DLR. However, if uncertainty is
only about discount factors, then flexibility has value only in limited cases. The

1See Mehra and Sah (2002, Section 1.1, pp. 871–873) for more examples about fluctuations in
subjective parameters.
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behavioral characterization of random discounting takes the form of identifying
primarily the instances where flexibility has no value (see the example that follows
shortly for elaboration).

To analyze sequential decision making, we adopt the same domain of choice
used by Gul and Pesendorfer (2004). Let C be the outcome space (consumption set),
which is a compact metric space. There exists a compact metric space Z such that
Z is homeomorphic to K .�.C �Z //, where�.C �Z / is the set of lotteries, that
is, all Borel probability measures over C � Z and K .�/ denotes the set of all non-
empty compact subsets of “�”. An element of Z , called a menu, is an opportunity
set of lotteries over pairs of current consumption and future menus. Preference % is
defined on Z ' K .�.C � Z //.

We consider the following timing of decisions: In period 0, the DM chooses a
menu x. In period 1�, current discount factor ˛ becomes known to the DM, and she
chooses a lottery l out of the menu x in period 1. In period 1C, the DM receives a
pair .c; x0/ according to realization of the lottery l, and consumption c takes place.
The DM expects another discount factor ˛0 to be realized in the following period.
Subsequently, she chooses another lottery l0 out of the menu x0, and so on.

Notice that our primitive % is preference in period 0. Thus, beyond period 0, the
time line in Fig. 20.1 is not part of the formal model. However, if the DM has in
mind this time line and anticipates uncertain discount factors to be resolved over
time, then % should reflect the DM’s perception of those uncertainties. Hence, our
domain can capture the expectation of random discounting.

We provide an axiomatic foundation for the following functional form, called the
random discounting representation: there exists a non-constant, continuous, mixture
linear function u W �.C/ ! R, and a probability measure � over Œ0; 1�with E�Œ˛� <

1, such that % is represented numerically by the functional form,

U.x/ D
Z
Œ0;1�

max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z

U.z/ dlz

�
d�.˛/;

where lc and lz are the marginal distributions of l on C and Z , respectively.
The above functional form can be interpreted as follows: the DM behaves as

if she has in mind the time line described above, and anticipates a discount factor
˛ to be realized with probability � in every time period. After the realization of
˛, the DM evaluates a lottery by the weighted sum of its instantaneous expected
utility u.lc/ and its expected continuation value

R
U.z/ dlz. The same representation

0 1− 1 1+

x α l ∈ x (c,x )

2− 2

α l ∈ x

Fig. 20.1 Timing of decisions
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U is used to evaluate menus at all times. Hence, the representation has a stationary
recursive structure and the DM’s belief about future discount factors is constant over
time.

We show uniqueness of the DM’s belief �. That is, the components .u; �/ of
the representation are uniquely derived from preference. This result is in stark
contrast to that of Kreps (1979, 1992) and DLR. Since future preference is state-
dependent in their model, arbitrary manipulations on subjective probabilities are
possible. In our model, a future utility function over �.C � Z / is state-dependent
as in DLR (˛ corresponds to a subjective state). However, notice that both the
instantaneous expected utility u and the utility U over menus are independent of
subjective states, and state-dependent components, 1 � ˛ and ˛, add up to one.
Hence, the representation cannot be maintained under arbitrary manipulations. A
combination of the additive recursive structure and the normalization of discount
factors ensures uniqueness.

Owing to uniqueness result, it is meaningful to compare subjective beliefs among
agents. We provide a behavioral condition capturing a situation where one agent
is more uncertain about discount factors than the other. For objective uncertainty,
second-order stochastic dominance is widely used to describe such a comparison
(Rothschild and Stiglitz 1970). If agent 2 perceives greater uncertainty about
discount factors than agent 1, the former is more reluctant to make a commitment
to a specific plan than the latter. This greater demand for flexibility is the behavioral
manifestation of greater uncertainty about future discount factors. An implication
of the behavioral comparison similar to DLR is also investigated and it shows
contrasting results.

The resulting model is applied to a consumption-savings problem and it analyzes
how uncertainty about discount factors affects savings behavior. By assuming an
instantaneous utility function to be CRRA with the parameter � < 1 (or � > 1),
savings rates increase (or decrease) when the DM becomes more uncertain about
future discount factors in the sense of second-order stochastic dominance. This
result can be interpreted based on the DM’s attitude toward flexibility. It is noted that
uncertainty about discount factors has an opposite effect on savings when compared
to uncertainty about interest rates.

1.2 Motivating Example

To understand the behavior that characterizes the random discounting model, we
consider a simple example as follows: Let C stand for a set of monetary payoffs.

Suppose that DM faces uncertainty about future discount factors. As pointed out
by Kreps (1979) and DLR, she may keep her options open until the uncertainty
is resolved, that is, she may exhibit preference for flexibility. On considering
two alternatives, .$60; f.$100; z/g/ and .$100; f.$50; z/g/ in �.C � Z /, chosen
in period 1, there might be a difference in consumption levels between periods
1 and 2. However, from period 3 onward, both alternatives guarantee the same
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opportunity set z. We assume that f.$60; f.$100; z/g/g % f.$100; f.$50; z/g/g.
This ranking under commitment reflects the DM’s ex ante perspective on random
discount factors. The DM, on average, believes that she will be patient in period
1 and prefer .$60; f.$100; z/g/ to .$100; f.$50; z/g/. However, the DM may still
prefer keeping .$100; f.$50; z/g/ as an option if there is a possibility of becoming
impatient in period 1, in which case .$100; f.$50; z/g/would be more attractive than
.$60; f.$100; z/g/. Hence, the DM may exhibit preference for flexibility as

˚
.$60; f.$100; z/g/; .$100; f.$50; z/g/� � ˚

.$60; f.$100; z/g/�
% f.$100; f.$50; z/g/g:

However, if the DM is uncertain only about future discount factors, then other
forms of flexibility may not be valued. In that case, the DM would be sure of
her preference over consumption in the next period (in this example, consumption
is scalar, and hence, greater consumption is preferred to less), and also other
preference over menus for the rest of the horizon. Therefore, uncertainty is relevant
for rankings only when an intertemporal trade-off must be made, as in comparing
.$60; f.$100; z/g/ and .$100; f.$50; z/g/, between consumption for period 1 and the
menu for period 2 onward. Hence, some forms of flexibility are not valuable on
uncertainty related to future discount factors.

To illustrate further, consider a lottery l, yielding

.$0; f.$0; z/g/ or .$120; f.$200; z/g/

with an equal probability of one-half. For current consumption, l induces the lottery
yielding $0 or $120 with a probability of one-half, while it induces the lottery over
menus with an equal chance of f.$0; z/g or f.$200; z/g. If $60 and f.$100; z/g are
both preferred to these induced lotteries respectively, then the DM does not face an
intertemporal trade-off between .$60; f.$100; z/g/ and l. Irrespective of how patient
she will be in the next period, l will not be chosen over .$60; f.$100; z/g/. Since
there is no benefit in keeping l as an option with .$60; f.$100; z/g/, the DM will
exhibit

f.$60; f.$100; z/g/; lg � f.$60; f.$100; z/g/g % flg:

In a later section, we formally provide axioms consistent with these behavior.

1.3 Related Literature

1.3.1 Macroeconomics

Random discounting in a number of infinite-horizon macroeconomic models, where
its role broadly appears, generates suitable heterogeneity across agents. Models of
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wealth inequality based on standard and identical preferences and on uninsurable
shocks to income can explain only a small part of the observed wealth inequality.
Krusell and Smith (1998) consider shocks to discount factors and succeed in
relating wealth heterogeneity predicted by the model to the observed data in the
United States. Dutta and Michel (1998) use random discounting to model imperfect
altruism to future generations, and derive a stationary wealth distribution where
fewer agents hold higher levels of wealth. Karni and Zilcha (2000) prove that if
the agents have random discount factors, in a steady-state competitive equilibrium,
agents other than the most patient agents hold capital. This contrasts with the result
in deterministic economies where only the most patient agents hold capital (see
Becker 1980). Chatterjee et al. (2007) construct a general equilibrium model where
agents with random discounting are allowed to default. They are able to match a
default rate consistent with data partly because agents with low discount factors
tend to consume more and default more frequently.

In models of monetary economics, random discounting also plays an important
role. In a two-period model with random discounting, Goldman (1974) shows the
possibility that an agent holds money that yields a lower interest than other interest-
bearing assets. If the discount factor is random, after finding the discount factor, the
agent may be willing to change her portfolio consisting of money and other assets.
Since the transaction cost of money is lower than that of other assets, money allows
the agent to change the portfolio more easily, and hence, can be valuable for the
agent with random discounting.

Atkeson and Lucas (1992) and Farhi and Werning (2007) consider an intergen-
erational model, where each generation is composed of a continuum of agents who
live for one-period and are altruistic to a descendant. Agents are ex ante identical but
they experience taste-shocks to the degree of altruism (or discount factor), which
are private information. The authors investigate the property of the second-best
allocations of consumption. In these papers, agent’s private information about taste-
shocks is elicited through an incentive-compatible mechanism, while in the present
chapter, the information is elicited indirectly from the observable behavior of the
agent.

1.3.2 Axiomatic Models

To provide a foundation for random discounting, we follow studies of preference
on the opportunity set approach. Koopmans (1964) first introduces an opportunity
set as a choice object to model sequential decision making and emphasizes that
intertemporal choice may be essentially different from a once-and-for-all decision
making. He points out that if a DM perceives uncertainty about future preferences,
she may strictly prefer to leave some options open rather than to choose a completely
specified future plan.

Kreps (1979, 1992) interprets uncertain future preferences as subjective uncer-
tainties of the DM, and provides an axiomatic foundation for the subjective
state space. Dekel et al. (2001) refine Kreps’s idea and show uniqueness of the
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subjective state space. Furthermore, Dekel et al. (2007) modify the argument of
DLR surrounding the additive representation with subjective states. In this line of
research, our result can be viewed as an infinite-horizon extension of DLR, where
the DM’s subjective state space is specified to the set of sequences of discount
factors.

Several authors provide sequential choice models consistent with preference for
flexibility. Rustichini (2002) follows the same idea as DLR and considers closed
subsets of C1 as choice objects. In this framework, all subjective uncertainties
are resolved one period ahead. Kraus and Sagi (2006) follow the dynamic model
of Kreps and Porteus (1978) and consider a sequence of preferences without the
completeness axiom. Each incomplete preference is represented by the decision
rule of the form, where one choice object is preferred to another if the former
is unanimously preferred to the latter with respect to a set of uncertain future
preferences. This uncertainty leads to preference for flexibility. Takeoka (2007)
introduces objective states into DLR’s model and considers preference over menus
of menus of Anscombe-Aumann acts, which is viewed as a three-period extension
of DLR. He derives a subjective decision tree and a subjective probability measure
on it as components of representation.

2 Model

2.1 Domain

Let C be the outcome space (consumption set), which is assumed to be compact and
metric. Let �.C/ be the set of lotteries, that is, all Borel probability measures over
C. Under the weak convergence topology, �.C/ is also compact and metric. Gul
and Pesendorfer (2004) show that there exists a compact metric space Z such that
Z is homeomorphic to K .�.C � Z //, where K .�/ denotes the set of non-empty
compact subsets of “�”.2 Generic elements of Z are denoted by x; y; z; � � � . Each
such object is called a menu (or an opportunity set) of lotteries over pairs of current
consumption and menu for the rest of the horizon.

Preference % is defined on Z ' K .�.C �Z //. We have in mind the timing of
decisions as mentioned in Fig. 20.1.

An important subdomain of Z is the set L of perfect commitment menus where
DM is committed in every period. We identify a singleton menu with its only
element. Then a perfect commitment menu can be viewed as a multistage lottery,
considered by Epstein and Zin (1989), that is, L is a subdomain of Z satisfying
L ' �.C � L /. A formal treatment is found in Appendix section “Perfect
Commitment Menus”.

2The set K .�.C � Z // is endowed with the Hausdorff metric. Details are relegated to
Appendix section “Hausdorff Metric”.
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The following examples illustrate that the recursive domain Z can accommodate
sequential decision problems.

Example 1 (Consumption-Savings Problem) Given a constant interest rate r > 0

and an initial savings s > 0, DM decides a current consumption c and savings s0
carried over to the next period within the wealth of .1C r/s. That is, the DM faces
the budget constraint,

B.s/ D f .c; s0/ 2 R
2C
ˇ̌
c C s0 D .1C r/sg;

which is translated into the menu x.s/ D f .c; x.s0//j .c; s0/ 2 B.s/g. If r is random,
x.s/ can be modified to a set of lotteries.

Example 2 (Durable Goods) A durable good provides flow of services, c D fctg1
tD1

over certain time periods. The durability of goods depends both on the physical
property and intensive use of goods. Let fc D fctg1

tD1 j f .c/ � 0g be the feasible
set of flow of services associated with a durable good, where f is a technology
frontier. Given the history of consumptions up to period t � 1, denoted by ct�1 D
.c1; � � � ; ct�1/, ct is a feasible consumption in period t if and only if f .ct�1; ct; c/ � 0

for some c. In other words, the DM faces the menu as

xf .c
t�1/ D f.ct; xf .c

t�1; ct// j f .ct�1; ct; c/ � 0 for some sequence cg:

The DM prefers one durable good f to another g if and only if xf .c0/ % xg.c0/.

Example 3 (Sampling Problem) Given a wage offer w, which is a random sample
from a distribution F, a DM has to decide whether to accept or reject the offer. If
the DM accepts w, she receives current payoff from w and nothing for the rest of
the horizon. Otherwise, the DM continues sampling, and receives a new random
sample w0 in the next period. Sampling is repeated until the DM accepts an offer.
This decision problem can be described formally as follows: given a current offer
w, define the menu x.w/ � facceptw; continueg. The object “accept w” is the
consumption stream .w; f.0; f.0; � � � /g/g/, and “continue” is the lottery over menus
of the form x.w0/ D facceptw0; continueg, where w0 is given according to the
distribution F.

2.2 Random Discounting Representations

By taking any non-constant, continuous, mixture linear function u W �.C/ ! R

and any Borel probability measure � over Œ0; 1� with the mean N̨ � E�Œ˛� < 1 we
consider the functional form U W Z ! R defined as

U.x/ D
Z
Œ0;1�

max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z

U.z/ dlz

�
d�.˛/; (20.1)

where lc and lz denote the marginal distributions of l on C and Z , respectively.
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The functional form (20.1) can be interpreted as follows: the DM behaves as
if she has in mind the time line described in Fig. 20.1 and anticipates uncertainty
about discount factors, which is captured by � over Œ0; 1�. On the other hand, she
is certain about future risk preference, u over �.C/. Moreover, she is also certain
about future ranking of menus, which is identical with the current ranking U. That
is, the representation has a stationary and recursive structure. After considering
the realization of discount factor ˛, the DM chooses a lottery out of the menu to
maximize the “ex post” utility function,

.1 � ˛/u.lc/C ˛

Z
Z

U.z/ dlz; (20.2)

which is the weighted sum of expected utilities from current consumption and the
opportunity set for the rest of the horizon. The functional form (20.1) states that the
DM evaluates a menu x by taking the expected value of these maximum values with
respect to her subjective belief � over discount factors.

Definition 1 Preference % on Z admits a random discounting representation if %
can be represented numerically by the functional form U as given by (20.1) with
components .u; �/.

A random discounting representation coincides with a stationary cardinal utility
function on the subdomain L of perfect commitment menus. Since the DM has no
opportunity for choice, random discounting does not matter on this subdomain. The
functional form (20.1) reduces to

U.l/ D .1 � N̨ /u.lc/C N̨
Z
L

U.l0/ dlL.l
0/;

where lc and lL denote the marginal distributions of l 2 �.C � L / on C and
L , respectively. This is a standard stationary recursive utility with a deterministic
discount factor N̨ < 1.

Apart from the difference of choice objects,3 a random discounting representa-
tion is a special case of DLR’s additive representation of the form that

U.x/ D
Z

S
max

l2x
V.l; s/ d�.s/; (20.3)

where S is a state space, � is a non-negative measure on S, and V.�; s/ is a state-
dependent expected utility function. Indeed, the ex post utility function (20.2) can
be written as

V.l; s/ D .1 � ˛.s//u.lc/C ˛.s/
Z
Z

U.z/ dlz (20.4)

with an index s 2 S.

3DLR consider preference over K .�.C// with finite set C.
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DLR have a model of the form (20.3) with a signed measure �, where
choice based on some subjective states may be negatively evaluated from the ex
ante perspective. The DM having such a representation does not necessarily desire
flexibility. Similarly, it is possible to consider functional form (20.1) by assuming
� as a signed measure. For example, Gul and Pesendorfer (2004) correspond to
the case where � has one “regular” discount factor ˛ > 0 with a positive weight
and a completely myopic discount factor ˛ D 0 with a negative weight.4 In this
chapter, however, we do not focus on this general model. First, unless some further
restriction is imposed such as in Gul and Pesendorfer (2004), a model with a signed
measure does not necessarily have a clear implication of how choice behavior
evolves over time. Such a model is not appropriate as a dynamic model, while the
random discounting representation can generate a stochastic choice according to
the probability measure. Second, as Koopmans (1964) and Kreps (1979) point out,
a dynamic model consistent with preference for flexibility is of its own interest.

3 Foundations

3.1 Axioms

The axioms which we consider on % are the following. The first two axioms are
standard and need no explanation.

Axiom 1 (Order) % is complete and transitive.

Axiom 2 (Continuity) For all x 2 Z , fz 2 Z jx % zg and fz 2 Z jz % xg are
closed.

For any l 2 �.C � Z /, lc and lz denote the marginal distributions of l on C and
on Z , respectively.

Axiom 3 (Nondegeneracy) There exist l; l0 2 �.C �Z / such that lc ¤ l0c, lz D l0z,
and flg � fl0g.

The lotteries l and l0 differ only in the distribution of current consumption. Thus,
strict preference for l over l0 presumably reveals that the DM’s risk preference over
C is not constant.

The next three axioms are the same as those in Gul and Pesendorfer (2004).

Axiom 4 (Commitment Independence) For all l; l0; l00 2 �.C � Z / and for all
� 2 .0; 1/,

flg � fl0g ) f�l C .1 � �/l00g � f�l0 C .1 � �/l00g:

4A sophisticated DM, who is fully aware of time-inconsistency caused by hyperbolic discounting,
may be viewed as a limiting case of their model, where the DM never exercises self-control at the
moment of choice.
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For all l; l0 2 �.C�Z /, flg % fl0g means commitment preference, which reflects
the DM’s ex ante perspective on future preference over lotteries. Axiom 4 states that
commitment preference over lotteries satisfies the vNM independence.

Axiom 5 (Stationarity) For all x; y 2 Z and c 2 C, f.c; x/g % f.c; y/g ,
x % y.

Since current consumption is the same, the ranking between f.c; x/g and f.c; y/g
reflects how the DM evaluates x and y in the next period. Thus, Stationarity means
that the ranking over menus is identical across time.

In general, belief about future discount factors may depend on the history of
consumptions and realizations of discount factors up to that period. Stationarity,
however, excludes such history-dependent beliefs: the DM is sure that her belief
about discount factors will not change over time. We adopt Stationarity because
it seems sensible as a first step and because the general model seems much more
difficult to characterize and is beyond our grasp at this time.

For any .c; x/; .c0; x0/ 2 C � Z and � 2 Œ0; 1�, the notation

� ı .c; x/C .1 � �/ ı .c0; x0/

denotes the lottery over C�Z yielding .c; x/ with probability � and yielding .c0; x0/
with probability 1 � �.

For any x; x0 2 Z and � 2 Œ0; 1�, define the mixture of two menus by considering
the mixtures element by element between x and x0, that is,

�x C .1 � �/x0 � f�l C .1 � �/l0jl 2 x; l0 2 x0g 2 Z :

If the DM identifies a two-stage lottery � ı l C .1 � �/ ı l0 with its reduced lottery
�l C .1 � �/l0, �x C .1 � �/x0 can also be viewed as a set of two-stage lotteries.

Axiom 6 (Timing Indifference) For all x; x0 2 Z , c 2 C, and � 2 .0; 1/,

f� ı .c; x/C .1 � �/ ı .c; x0/g � f.c; �x C .1 � �/x0/g:

Notice that �ı.c; x/C.1��/ı.c; x0/ is the lottery yielding .c; x/with probability
� and yielding .c; x0/with probability 1��, while .c; �xC.1��/x0/ is the degenerate
lottery that assigns the pair of consumption c and menu �x C .1��/x0 of two-stage
lotteries. Hence, these two lotteries differ in timing of resolution of randomization
�. For the former, the DM makes choice out of a menu (either x or x0) after the
resolution of �, while for the latter, this order is reversed, that is, the choice out of the
menu �xC.1��/x0 is made before the resolution of �. Timing Indifference suggests
that the DM does not care about this difference in timing. Timing Indifference can
be justified by the same argument as in DLR. Suppose that a DM is uncertain
about future preference over �.C � Z /, yet she surely anticipates that it will
satisfy the expected utility axioms. Let l and l0 be a rational choice from x and
x0, respectively, with respect to a future preference. Therefore, .c; �l C .1 � �/l0/
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is the expected choice from � ı .c; x/ C .1 � �/ ı .c; x0/. On the other hand, if
the future preference satisfies the expected utility axioms, .c; �l C .1 � �/l0/ is a
rational choice from .c; �x C .1��/x0/ as well. Therefore, irrespective of the future
preference, the two menus will ensure indifferent consequences.5

Axioms 1, 2, and 4–6 appear in Gul and Pesendorfer (2004).6 They consider
a DM facing self-control problems. Such a DM may be better off by restricting
available options and, hence, exhibits preference for commitment rather than for
flexibility. A key axiom of their model is called Set Betweenness: for any x; y 2 Z ,

x % y ) x % x [ y % y:

Even if x % y, the DM may rank x over x [ y because y may contain a tempting
option and choosing from x [ y may require costly self-control to the DM.

We adopt the following two axioms, which distinguish our model from theirs. As
mentioned in Sect. 1.2, the DM facing uncertainty about her future preferences may
want to keep options open as much as possible. This is because flexibility allows the
DM to make a decision contingent upon realization of her future preference. This
informational advantage leads to preference for flexibility. Such a DM would rank
x [ y over x even though x % y. To accommodate such behavior, we follow Kreps
and DLR, and assume (instead of Set Betweenness):

Axiom 7 (Monotonicity) For all x; y 2 Z , y 	 x ) x % y.

This axiom states that a bigger menu is always weakly preferred. That is,
Monotonicity is consistent with preference for flexibility.7

Monotonicity is consistent with any kind of uncertainty about future preferences.
To identify behavior that reduces uncertainty about future preferences to that about
future discount factors, we need to impose a qualification on the attitude toward
flexibility. The DM facing random discount factors is sure how she evaluates
consumption in the next period and a menu from that time period onward.
Thus, uncertainty is relevant only when an intertemporal trade-off must be made.
As mentioned in Sect. 1.2, such a DM should not value flexibility provided by
“dominated lotteries”, which are now described formally.

Let lc ˝ lz denote the product measure on C � Z that consists of marginal
distributions lc 2 �.C/ and lz 2 �.Z /. We define dimension-wise dominance
as follows:

5The DM may care about timing of resolution of risk and prefer earlier or later resolution of
multistage lotteries. Such distinction is examined in Kreps and Porteus (1978). Epstein et al. (2007)
argue against Timing Indifference and provide a model with nonlinear future preferences.
6Their Nondegeneracy axiom requires the existence of menus x; y with x � y and x � y. That is,
this axiom captures preference for commitment—a DM may prefer a smaller menu.
7A sophisticated DM with hyperbolic discounting exhibits preference for commitment rather than
for flexibility. Thus, such a DM is excluded by this axiom.
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Definition 2 For all l; l0 2 �.C � Z /, l dominates l0 if flc ˝ l0zg % fl0c ˝ l0zg and
fl0c ˝ lzg % fl0c ˝ l0zg, where lc (resp. lz) denotes the marginal distribution of l on C
(resp.Z ).

If the DM is certain about her risk preferences over �.C/ and over �.Z / in
future, the commitment rankings appearing in the above definition should reflect
those preferences. Since lc ˝ l0z and l0c ˝ l0z differ only in marginal distributions on C,
the ranking flc ˝ l0zg % fl0c ˝ l0zg reflects that lc is preferred to l0c in terms of the future
risk preference over �.C/. Similarly, the ranking fl0c ˝ lzg % fl0c ˝ l0zg should reveal
the DM’s future preference for lz over l0z. If l dominates l0, the marginal distributions
of l on C and Z are both preferred to those of l0. Hence, l will definitely be chosen
over l0 by the DM who is certain about her future risk preferences over C and Z .

For any l 2 �.C � Z /, let O.l/ be the set of all lotteries dominated by l, that is,

O.l/ � fl0 2 �.C � Z / j l dominates l0g: (20.5)

If % satisfies Order, l 2 O.l/. Thus, a DM having preference for flexibility weakly
prefers O.l/ to flg. However, there is no reason to choose a dominated lottery l0 2
O.l/ over l. Hence, O.l/ should be indifferent to flg.

The same intuition should hold between a general menu x and the set

O.x/ �
[
l2x

O.l/; (20.6)

that is, O.x/ is the set of all lotteries dominated by some lottery in x. Lemma 3 (i)
in Appendix section “Proof of Theorem 1” shows that O.x/ is a well-defined choice
object, that is, O.x/ 2 Z for all x.

Axiom 8 (Marginal Dominance) For all x 2 Z , x � O.x/.

Marginal Dominance states that the DM should not care about dominated
lotteries. Since x 	 O.x/ when % satisfies Order, the DM having preference
for flexibility weakly prefers O.x/ to x. Thus, this axiom is a counterpoint to
Monotonicity, and shows that it is not useful to keep dominated lotteries within the
menu, that is, x % O.x/. Such behavior can be justified if the DM believes that her
future risk preference over�.C/ is separated from her future ranking of menus, and
these two preferences are known to the DM without uncertainty. Then, dominated
lotteries are definitely useless because they give less utilities in the future, both
immediate and remote, and hence the DM exhibits x � O.x/.

Marginal Dominance involves a form of separability of preferences between
immediate and remote future. Two remarks are in order: First, under this axiom,
the DM cares only about the marginal distributions on C and Z —the correlation
between immediate consumption and the future opportunity set does not matter.
Second, Marginal Dominance is stronger than the Separability axiom stated by Gul
and Pesendorfer (2004), which requires a form of separability only in the singleton
sets. That is, for any c; c0 2 C and x; x0 2 Z ,



536 Y. Higashi et al.

�
1

2
ı .c; x/C 1

2
ı .c0; x0/

�
�
�
1

2
ı .c0; x/C 1

2
ı .c; x0/

�
:

If % satisfies Marginal Dominance, for all l 2 �.C � Z /, we have flg � O.l/ D
O.lc ˝ lz/ � flc ˝ lzg. Thus, both the above singleton menus are indifferent to

��
1

2
ı c C 1

2
ı c0

�
˝
�
1

2
ı x C 1

2
ı x0

��
;

which results in Separability.

3.2 Representation Results

It is now appropriate to state the main theorem.

Theorem 1 If preference % satisfies Order, Continuity, Nondegeneracy, Commit-
ment Independence, Stationarity, Timing Indifference, Monotonicity, and Marginal
Dominance, then there exists a random discounting representation .u; �/.

Conversely, for any pair .u; �/ with N̨ < 1, there exists a unique functional form
U that satisfies functional equation (20.1) and the preference it represents satisfies
all the axioms.

The above theorem is closely related to DLR’s study, and the role of the
axioms may be well understood when compared with their axioms. DLR show that
preference over menus of lotteries admits the additive representation (20.3) with a
non-negative measure if and only if it satisfies Order, Continuity, Monotonicity, and
the following axiom8:

Axiom 9 (Independence) For all x; y; z and � 2 .0; 1�,

x � y ) �x C .1 � �/z � �y C .1 � �/z:

Indeed, Commitment Independence, Stationarity, and Timing Indifference imply
Independence.9 Marginal Dominance plays a key role in restricting subjective states
(future preferences) to differ only in intertemporal trade-offs between the immediate
and remote future. The recursive form of the representation is due to Stationarity.
For an outline of the proof of sufficiency, see Sect. 3.4. A formal proof is relegated
to Appendix section “Proof of Theorem 1”.

According to the above argument, a natural strategy to obtain a random dis-
counting representation would be to establish the additive representation (20.3) on

8Dekel et al. (2007) fill a gap in DLR surrounding this representation result.
9See Gul and Pesendorfer (2004, p. 125, footnote 7) for more details.
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K .�.C �Z //, and to manipulate the representation to convert the subjective state
space S to the set of discount factors Œ0; 1� using the additional axioms (especially
Marginal Dominance). However, we do not follow this strategy mainly because the
first step is not immediate: DLR consider menus of lotteries over finite alternatives
as choice objects and, hence, can regard the compact set of expected utility functions
over lotteries as the subjective state space, while in this chapter, choice objects are
menus of lotteries over a compact set. Thus, instead of dealing with the set of all
mixture linear functions over the compact set, we start off with the subjective state
space Œ0; 1� of discount factors and establish our functional form by adapting DLR’s
argument. For an outline of the proof of sufficiency, see Sect. 3.4.

The next result considers uniqueness of the representation. If preference admits
two distinct random discounting representations, say .u; �/ and .u0; �0/, we cannot
know which belief actually captures the DM’s subjective uncertainty about discount
factors. Therefore, we have the following uniqueness result. A proof can be found
in Appendix section “Proof of Theorem 2”.

Theorem 2 If two random discounting representations, U and U0, with components
.u; �/ and .u0; �0/ respectively, represent the same preference, then:

(i) u and u0 are cardinally equivalent; and
(ii) � D �0.

Theorem 2 pins down a subjective probability measure � over the set of future
discount factors, which is interpreted as the set of subjective states of the DM. Our
result is in contrast to Kreps (1979, 1992) and DLR, where probability measures
over subjective states are not identified; since the ex post utility functions are
state-dependent as shown in (20.3), probabilities assigned to those states can be
manipulated arbitrarily. Formally, let � be a probability measure which is absolute
continuous with respect to �. Then there is a function f such that V 0.l; s/ D
V.l; s/f .s/ and

U.x/ D
Z

S
max

l2x
V 0.l; s/ d�.s/;

which means that � cannot be identified. On the other hand, our representation has
an additive recursive structure, that is, the ex post utility functions are specified
as shown in (20.4). Notice that both the instantaneous expected utility u and the
utility U over menus are independent of subjective states, and state-dependent
components, 1�˛.s/ and ˛.s/, add up to one for all s. Under the above manipulation,
the representation is maintained only when f .s/ D 1 almost surely, and thus
� D �. Therefore, it is a combination of the additive recursive structure and the
normalization of discount factors that ensures uniqueness of subjective beliefs.10

10To prevent arbitrary manipulations, DLR (p. 912) suggest that probability measures can be
identified if some aspect of the ex post utility functions is state-independent. Such a condition
is satisfied in our model.
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3.3 Special Case: Deterministic Discounting

We imagine a “standard” DM with deterministic discounting, who is not anticipating
any uncertainty about future discount factors. Such a DM should not care about
flexibility, and should evaluate a menu by its best element according to a fixed weak
order over singleton sets. That is,

x % y , flxg % flyg; (20.7)

where flxg % flg and flyg % fl0g for all l 2 x and l0 2 y. Kreps (1979) characterizes
such a standard DM based on the next axiom:

Axiom 10 (Strategic Rationality) For all x; y 2 Z , x % y ) x � x [ y.

Strategic Rationality states that as long as x is preferred to y, the DM does not
care whether options in y are added into x or not. This axiom is more restrictive than
Monotonicity, and excludes preference for flexibility.11

Strategic Rationality is not enough to characterize deterministic discounting
because it does not impose any restriction on the commitment ranking. The next
axiom requires the dimension-wise dominance on singleton sets.

Axiom 11 (Commitment Marginal Dominance) For all l 2 �.C � Z /, flg �
O.l/.

This axiom is weaker than Marginal Dominance, but the intuition is the same as
before.

The next corollary of Theorem 3.1 characterizes deterministic discounting.
Appendix section “Proofs of Corollary 1 and Proposition 1” can be referred for
a proof.

Corollary 1 Preference % satisfies Order, Continuity, Nondegeneracy, Commit-
ment Independence, Stationarity, Timing Indifference, Strategic Rationality, and
Commitment Marginal Dominance if and only if % admits a random discounting
representation .u; �/ such that � is degenerate.

As mentioned above, Strategic Rationality implies Monotonicity. To verify that
the set of axioms in Corollary 1 implies Marginal Dominance, we provide a further
perspective on Strategic Rationality. A standard DM, who surely anticipates her
preference in the next period, will rank menus according to the decision rule (20.7).
Consequently, she should be indifferent between committing to a lottery l 2 �.C �
Z / and having its “lower contour set”

O�.l/ � fl0 2 �.C � Z / j flg % fl0gg;

11Strategic Rationality implies Monotonicity. Indeed, assume y � x. Arguing by contradiction,
suppose y � x. Strategic Rationality implies x D x [ y � y � x, which is a contradiction.
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which is the set of all lotteries that are no more desired than l with respect to
commitment ranking. Accordingly, arranging O�.x/ � [l2xO�.l/ for all x 2 Z ,
the standard DM will satisfy the next axiom:

Axiom 12 (Dominance) For all x 2 Z , x � O�.x/.

This axiom states that DM does not care about keeping a lottery which is no
more desired than some lottery in the menu in terms of commitment ranking. Even
if flg % fl0g, the support of l may be different from that of l0, that is, these lotteries
may differ in intertemporal trade-offs, and hence, the DM facing uncertainty about
discount factors may be better off by keeping l0 as an option. However, Dominance
implies that if flg % fl0g, the DM surely anticipates not to choose l0 in the next
period, and does not care about flexibility regarding intertemporal trade-offs in the
future. Hence, this axiom is a necessary condition for deterministic discounting.

As one might imagine, Dominance has close relations to Strategic Rationality
and Marginal Dominance.

Proposition 1 Assume that % satisfies Order and Continuity.

(i) Strategic Rationality is equivalent to Dominance.
(ii) Dominance and Commitment Marginal Dominance imply Marginal Domi-

nance.

See Appendix section “Proofs of Corollary 1 and Proposition 1” for a proof.
From this proposition, Strategic Rationality and Commitment Marginal Dominance
together with the other axioms imply the set of axioms in Theorem 1.

3.4 Proof Sketch for Sufficiency of Theorem 1

As mentioned in Sect. 3.2, Commitment Independence, Stationarity, and Timing
Indifference imply Independence. Focusing on the subdomain Z1 	 Z consisting
of convex menus, the mixture space theorem delivers a mixture linear representation
U W Z1 ! R. We have to show that U can be rewritten as the desired form.

Marginal Dominance implies that the DM is certain about her future risk
preferences over C and Z . Let u W �.C/ ! R and W W �.Z / ! R be

u.lc/ � U.flc ˝ lzg/ and W.lz/ � U.flc ˝ lzg/;

where l 2 �.C � Z / is a minimal lottery in terms of commitment ranking. These
two functions should represent those future preferences.

Monotonicity captures preference for flexibility, which presumably reflects
uncertainty about future preferences. Since u and W are sure for the DM, all the
uncertainties about future preferences are effectively reduced to those about future
discount factors. The DM should expect her future preference over �.C � Z / to
have the form of
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.1 � ˛/u.lc/C ˛W.lz/;

where ˛ 2 Œ0; 1� is a subjective weight between u and W.
We identify a menu x with its “support function” �x W Œ0; 1� ! R, defined by

�x.˛/ � max
l2x

.1 � ˛/u.lc/C ˛W.lz/; for all ˛ 2 Œ0; 1�:

That is, �x D �y , x D y. This identification ensures that the mapping �
embeds the set of menus into the space of real-valued continuous functions on Œ0; 1�,
and hence, the functional V.f / D U.��1.f // is well-defined on the image of � .
Following the similar argument by DLR (and Dekel et al. 2007), we show that there
exists a unique probability measure � over Œ0; 1� such that V.f / can be written asR

f .˛/ d�.˛/, and hence,

U.x/ D V.�x/ D
Z
Œ0;1�

�
max

l2x
.1 � ˛/u.lc/C ˛W.lz/

�
d�.˛/:

The remaining step is to show that U has a stationary and recursive form
as desired. Since W.lz/ is a mixture linear function, it has the expected utility
form

R
Z W.z/ dłz. By Stationarity, W and U must represent the same preference.

Moreover, Timing Indifference implies that W is mixture linear with respect
to the mixture operation over menus. Hence, W.z/ can be written as an affine
transformation of U.z/. Manipulating the functional form appropriately, we obtain
the desired representation. Finally, Continuity and Nondegeneracy imply N̨ < 1.

4 Greater Demand for Flexibility and Greater Uncertainty

We would like to analyze the situation where one agent is more uncertain about
discount factors than another. We provide behavioral comparisons about preference
for flexibility and characterize intuitive properties of subjective beliefs.

Consider two agents: Agent i has preference %i on Z , i D 1; 2. Since we
are interested in comparing preference for flexibility, we focus on agents having
identical commitment rankings. Recall that L is the set of multistage lotteries. If
an element of L is chosen, there remains no opportunity for choice over the rest of
the horizon. We say that %1 and %2 are equivalent on L if, for all l; l0 2 L ,

flg �1 fl0g , flg �2 fl0g:

A DM’s preference for flexibility is captured by the Monotonicity axiom, that is,
the DM prefers bigger menus. Hence, one can say that agent 2 has greater demand
for flexibility than agent 1 if agent 2 strictly prefers a bigger menu whenever agent
1 does so. Such a behavioral comparison is provided by DLR. Formally:
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Definition 3 Agent 2 desires more flexibility than agent 1 if, for all x; y 2 Z with
y 	 x, x �1 y ) x �2 y.

In a two-period model, DLR show that, under Definition 3, the subjective state
space of agent 2 is bigger than that of agent 1. That is, greater demand for flexibility
reflects greater uncertainty about future contingencies. In particular, in the case of
their additive representation, the subjective state space corresponds to a support of
non-negative measure. By analogy of DLR, one might expect that greater demand
for flexibility reflects a bigger support of the subjective belief about discount factors.

Since a menu in Z is an infinite horizon decision problem, preference for
flexibility on Z reflects the agent’s belief about sequence of discount factors
over the rest of the horizon, while � is her belief about discount factors only in
the immediate future. To obtain a characterization result, it is relevant to specify
preference for flexibility attributable solely to belief about the immediate future. To
formalize the idea, define “the two-period domain” as

Z 1 � K .L / 	 Z :

Holding a menu x 2 Z 1, the agent can postpone a decision only until period 1,
from which point on she has to make a commitment. A comparison of preference
for flexibility on Z 1 corresponds to DLR’s two-period case.

Definition 4 Agent 2 desires more flexibility in the two-period model than agent 1
if, for all x; y 2 Z 1 with y 	 x, x �1 y ) x �2 y.

The next theorem is a counterpart of DLR. A proof is found in Appendix sec-
tion “Proof of Theorem 3”.

Theorem 3 Assume that %i, i D 1; 2, satisfy all the axioms of Theorem 1 and are
equivalent on L . The following conditions are equivalent:

(a) Agent 2 desires more flexibility in the two-period model than agent 1.
(b) There exist random discounting representations Ui with .ui; �i/, i D 1; 2, such

that (i) u1 D u2, and (ii) the support of �2 set-theoretically includes that of �1.

Two remarks are in order: First, although �i is constant over time, condition
(b) does not imply that agent 2 desires more flexibility than agent 1. Indeed, under
condition (b), we may find two menus z and z0 such that U1.z/ > U1.z0/ and U2.z/ �
U2.z0/. Considering x � f.c; z/; .c; z0/g and y � f.c; z0/g for some c 2 C, we have
y 	 x and U1.x/ > U1.y/, yet U2.x/ D U2.y/. Second, although our functional
form is a special case of DLR’s, Theorem 3 does not follow directly from Theorem 2
(p. 910) of DLR regarding the characterization of Definition 4. DLR consider menus
of lotteries over finite outcomes, while in our study, choice objects are menus of
lotteries on a compact outcome space.

We next consider another behavioral comparison about preference for flexibility.
If agent 2 faces more uncertainty about discount factors than agent 1, agent 2 is
presumably more averse to making a commitment to a specific plan than agent 1 is.
That is,
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Definition 5 Agent 2 is more averse to commitment than agent 1 if, for all x 2 Z
and l 2 L , x �1 flg ) x �2 flg.

This condition states that if agent 1 strictly prefers a menu x to a completely
spelled-out future plan flg, so does agent 2. Since l does not necessarily belong to x,
Definition 5 is independent of Definition 3.

In a similar way to Definition 4, the above condition can be restricted to the
two-period domain.

Definition 6 Agent 2 is more averse to commitment in the two-period model than
agent 1 if, for all x 2 Z 1 and l 2 L , x �1 flg ) x �2 flg.

Several authors adopt conditions identical to Definitions 5 and 6 in different
contexts. Ahn (2008) considers preference over subsets of lotteries and interprets
those subsets as ambiguous objects. Since singleton sets are then regarded as
options without ambiguity, a similar comparison with Definition 5 shows that agent
1 is more ambiguity averse than agent 2. By taking preference over menus of
lotteries, Sarver (2008) models a DM who anticipates regret from choice in the
future and, hence, may prefer smaller menus. In his model, the identical comparison
is interpreted as agent 1 being more regret prone than agent 2.12

Now the implication of the above behavioral comparison is considered. We
show that Definition 5 characterizes second-order stochastic dominance in terms
of subjective beliefs. In case of objective uncertainty, second-order stochastic
dominance has been widely used to describe increasing uncertainty since Rothschild
and Stiglitz (1970).

Definition 7 Consider probability measures �1 and �2 over Œ0; 1�. Say that �1

exhibits second-order stochastic dominance over �2 if, for all continuous and
concave functions v W Œ0; 1� ! R,13

Z
Œ0;1�

v.˛/ d�1.˛/ 

Z
Œ0;1�

v.˛/ d�2.˛/:

Rothschild and Stiglitz (1970) show that the above condition holds if and only if
�2 is obtained as �1 plus some “noise”.14 Thus, second-order stochastic dominance
is a natural ordering on probability measures to describe increasing uncertainty.
One immediate observation is that E�1 Œ˛� D E�2 Œ˛� if �1 exhibits second-order
stochastic dominance over �2 because v.˛/ D ˛ is a convex and concave function.

We may now state a characterization result.

12In literature on ambiguity in the Savage-type model, Epstein (1999) and Ghirardato and Mari-
nacci (2002) adopt closely related conditions to capture comparative attitudes toward ambiguity
aversion. They compare an arbitrary act with an unambiguous act instead of comparing an arbitrary
menu with a commitment menu.
13Notice that continuity is not redundant because a concave function is continuous in the interior of
the domain. In the original definition by Rothschild and Stiglitz (1970), continuity is not imposed.
14Their argument for this equivalence works even when continuity is imposed on v.
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Theorem 4 Assume that %i, i D 1; 2, satisfy all the axioms of Theorem 1. Then the
following conditions are equivalent:

(a) Agent 2 is more averse to commitment than agent 1.
(b) Agent 2 is more averse to commitment in the two-period model than agent 1.
(c) There exist random discounting representations Ui with .ui; �i/, i D 1; 2, such

that (i) u1 D u2, and (ii) �1 exhibits second-order stochastic dominance over
�2.

A formal proof is relegated to Appendix section “Proof of Theorem 4”. By
definition, condition (a) implies condition (b). The intuition behind (b))(c) is as
follows: Definition 6 implies that %1 and %2 are equivalent on L , and hence part (i)
is obtained. Furthermore, together with this observation, Definition 6 implies that
U2.x/ 
 U1.x/ for all x 2 Z 1. Since, for all x, the function

max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z

Ui.z/ dlz

�
(20.8)

is convex in ˛, the ranking U2.x/ 
 U1.x/ means that the integral of a convex func-
tion of the form (20.8) with respect to �2 is always bigger than that corresponding to
�1. As the last step, we show that any continuous convex function v on Œ0; 1� can be
arbitrarily approximated by a function of the form (20.8) if an affine transformation
of u is chosen appropriately.

Unlike Theorem 3, condition (c) implies condition (a). That is, condition (c) is
sufficient to show relative aversion to commitment with respect to not only “two-
period menus” x 2 Z 1 but also all infinite horizon decision problems x 2 Z . In the
proof, by exploiting the property of second-order stochastic dominance, we show
that condition (c) ensures U2.x/ 
 U1.x/ for all x 2 Z , which implies U2.x/ 

U1.x/ > U1.flg/ D U2.flg/ as desired.

5 Consumption-Savings Decisions Under Random
Discounting

In this section, we apply the resulting model to a consumption-savings problem and
analyze how random discounting affects consumption-savings decisions. We focus
on the situation where the DM becomes more uncertain about discount factors in the
sense of second-order stochastic dominance. We will characterize savings behavior
when the DM has a CRRA utility function on consumption.

Recall Example 1 in Sect. 2.1. Assume that an interest rate r is constant as in
the example. Given the savings s from the previous period, the DM evaluates x.s/
according to the random discounting representation,
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U.x.s// D
Z

max
.c;x.s0//2x.s/

�
.1 � ˛/u.c/C ˛U.x.s0//

�
d�.˛/: (20.9)

Throughout this section, the DM is assumed to have a CRRA utility function over
instantaneous consumption, that is, u.c/ D c1��=.1 � �/ for � > 0, � ¤ 1. As is
well-known, the inverse of � is the elasticity of intertemporal substitution.

We examine the effect of the DM being more uncertain about future discount
factors. Suppose that the DM changes her belief �1 to �2, where �1 second-order
stochastically dominates �2. Let Ui denote the random discounting representation
with components .u; �i/, i D 1; 2.

After realization of ˛ 2 .0; 1/, the DM faces the following problem:

V�i.s; ˛/ � max
.c;x.s0//2x.s/

.1 � ˛/u.c/C ˛Ui.x.s0//

D max
.c;s0/2B.s/

.1 � ˛/u.c/C ˛Ui.x.s0//: (20.10)

Here, the current discount factor is known as ˛ and the DM believes discount factors
to follow distribution �i over the rest of the horizon. From (20.9) and (20.10), the
Bellman equation is obtained as

V�i.s; ˛/ D max
.c;s0/2B.s/

�
.1 � ˛/u.c/C ˛

Z
V�i.s0; ˛0/ d�i.˛0/

�
: (20.11)

Let g�i.s; ˛/ denote the savings function which solves problem (20.11).
We state the main result in this section. A proof is relegated to Appendix sec-

tion “Proof of Theorem 5”.

Theorem 5 Assume that �1 second-order stochastically dominates �2 and N̨ �
E�1 Œ˛� D E�2 Œ˛� < 1=.1C r/1�� . Then:

(i) the DM saves a constant fraction of wealth, that is,

g�i.s; ˛/ D SR�i.˛/.1C r/s;

where the savings rate SR�i.˛/ 2 .0; 1/ is uniquely determined, and;
(ii) for all ˛ 2 .0; 1/, SR�1.˛/ 7 SR�2.˛/ if � 7 1.

Part (i) is a characterization of the savings function, and is based on the
assumption that u is a CRRA utility function. Owing to part (i), we can focus on
the savings rate rather than the savings function to analyze the savings behavior of
the DM. Part (ii) concerns a comparative analysis. Depending on the relative size
of � compared to one, the savings rate increases or decreases as the DM becomes
more uncertain about discount factors.

To obtain the intuition behind part (ii), for each s, define the number � i.s/ by
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V N̨ .� i.s// D
Z

V�i.s; ˛0/ d�i.˛0/; (20.12)

where V N̨ is the value function of the savings problem when a discount factor is
constant over time and equal to the average N̨ , that is, for all s, V N̨ .s/ is defined as

V N̨ .s/ D max
.c;s0/2B.s/

.1 � N̨ /u.c/C N̨V N̨ .s0/: (20.13)

Let ci D .ci
1; c

i
2; � � � / be a solution to (20.13) that attains the maximum value

V N̨ .� i.s//. Then, the discounted sum of ci is equal to � i.s/, that is, � i.s/ DP1
tD1 ci

t=.1Cr/t, and (20.12) is equivalent to saying that fcig �i x.s/. Since the DM
desires flexibility, � i.s/must be greater than s so as to compensate the DM for being
committed to ci. Hence, the ratio 	 i � � i.s/=s is interpreted as the commitment
premium.15 As uncertainty increases, the DM becomes more averse to commitment,
and hence, 	 i increases. From (20.12), maximization problem (20.10) is rewritten
as

max
.c;s0/2B.s/

.1 � ˛/u.c/C ˛V N̨ .	 is0/:

That is, increasing uncertainty has the same effect as if the rate of return from
savings increases in the consumption-savings model with no uncertainty. Therefore,
the substitution and income effects lead to the desired result.

Part (ii) of Theorem 5 includes, as a special case, a comparison between random
and deterministic discounting with the same mean. According to the theorem, the
savings increase or decrease depending on parameter � when the DM becomes
uncertain about discount factors, which implies that observed over-savings or under-
savings behavior may be explained by subjective uncertainty about discount factors.
Salanié and Treich (2006) provide the same observation in a three-period model.

Instead of uncertainty about discount factors, uncertainty about interest rates
has been discussed in studies on consumption-savings, for example, Levhari and
Srinivasan (1969), Sandmo (1970) and Rothschild and Stiglitz (1971). They report
that increasing uncertainty will decrease (increase) savings in case of � < .>/1,
which is the opposite to Theorem 5 (ii). Under risk aversion, the certainty equivalent
of an uncertain interest rate always decreases as uncertainty increases. Hence,
increasing uncertainty has the same effect as if the interest rate decreases in the
consumption-savings problem with no uncertainty, while the commitment premium
increases as discount factors become more uncertain. Thus, substitution and income
effects lead to opposite implications.
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Appendices

Hausdorff Metric

Let X be a compact metric space with a metric d. Let K .X/ be the set of all non-
empty compact subsets of X. For x 2 X and A;B 2 K .X/, let

d.x;B/ � min
x02B

d.x; x0/; d.A;B/ � max
x2A

d.x;B/:

For all A;B 2 K .X/, define the Hausdorff metric dH by

dH.A;B/ � maxŒd.A;B/; d.B;A/�:

Then, dH satisfies (i) dH.A;B/ 
 0, (ii) A D B , dH.A;B/ D 0, (iii) dH.A;B/ D
dH.B;A/, and (iv) dH.A;B/ � dH.A;C/ C dH.C;B/. Moreover, K .X/ is compact
under the Hausdorff metric.

Perfect Commitment Menus

We follow the construction of menus by Gul and Pesendorfer (2004, Appendix A)
(hereafter GP) and define the set L of perfect commitment menus. Then we show
that L is homeomorphic to�.C �L /. That is, a perfect commitment menu can be
viewed as a multistage lottery.

Let C denote the outcome space (consumption set), which is a compact metric
space. We define the set of one-period consumption problems as Z1 � K .� .C//.
For t > 1, define the set of t-period consumption problems inductively as Zt �
K .� .C � Zt�1//. Let Z � � …1

tD1Zt. A menu is a consistent element of Z �.
Formally, define G1 W C � Z1 ! C, F1 W �.C � Z1/ ! �.C/, and F1 W

K .�.C � Z1// ! K .�.C// as follows:

G1.c; z1/ � c; F1.�2/.E/ � �2.G
�1
1 .E// and F1.z2/ � fF1.�2/ j�2 2 z2g;

for E in the Borel ��algebra of C. For t > 1, we define inductively Gt W C � Zt !
C � Zt�1, Ft W �.C � Zt/ ! �.C � Zt�1/, and Ft W K .�.C � Zt// !
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K .�.C � Zt�1// by

Gt.c; zt/ � .c;Gt�1.zt//; Ft.�tC1/.E/ � �tC1.G�1
t .E//; and

Ft.ztC1/ � fFt.�tC1/ j�tC1 2 ztC1g;

for E in the Borel ��algebra of C � Zt�1. Finally, we define fztg1
tD1 2 Z � is

consistent if zt�1 D Ft�1.zt/ for every t > 1.
We identify a singleton menu with its only element by slightly abusing notation.

Let L1 � �.C/ 	 Z1. An element of L1 is a one-period “commitment”
consumption problem. For t > 1, we define Lt inductively as Lt � �.C �Lt�1/ 	
Zt. An element of Lt is a t-period “commitment” consumption problem. Let
L � � …1

tD1Lt. We define the set of perfect commitment menus as L � Z \L �.
Thus, an element in L is a menu in which the DM is committed in every period.

Proposition 2 L is homeomorphic to 
.C � L /.

Proof GP construct a homeomorphism f W Z ! K .�.C � Z //. Note that L
is compact since Lt is compact for every t. It is sufficient to check that f .L / D
�.C � L /.

Definition 8 Let Y1 � OL1 � �.C/ and for t > 1 let Yt � �.C � …t�1
nD1Zn/ and

OLt � �.C �…t�1
nD1Ln/. Define Ykc � ff O�tg 2 …1

tD1Yt j margC�…t�1
nD1Zn

O�tC1 D O�tg.

Let OLkc D Ykc \…1
tD1 OLt.

GP show that for every f O�tg 2 Ykc there exists a unique� 2 �.C�Z �/ such that
margC� D O�1 and margC�…t

nD1Zn
� D O�t. Then they define  W Ykc ! �.C �Z �/

as the mapping that associates this � with the corresponding f O�tg.

Step 1:  . OLkc/ D �.C � L �/.

Note that, for a sequence fOltg 2 OLkc, it holds that

margC�…t�1
nD1Ln

OltC1 D margC�…t�1
nD1Zn

OltC1 D Olt:

The same argument of Lemma 3 in GP shows that there exists a homeomorphism
 0 W OLkc ! �.C �L �/ such that margC 

0.fOltg/ D Ol1 and margC�…t�1
nD1Ln

 0.fOltg/ D
Olt. The uniqueness part of the Kolmogorov’s Existence Theorem implies that
 0 D  jOLkc . Step 1 thus follows.

Definition 9 Let Dt � f.z1; : : : ; zt/ 2 …t
nD1Zn j zk D Fk.zkC1/; 8k D 1; : : : ; t �1g

and DL
t � Dt\…t

nD1Ln. Define Mc � ff�tg 2 �.C/�…1
tD1�.C�Zt/ j Ft.�tC1/ D

�t; 8t 
 1g. Let Yc � ff O�tg 2 Ykc j O�tC1.C � Dt/ D 1;8t 
 1g and OLc �
Yc \ OLkc.

Note that L D Mc \ L �. GP show that for every f�tg 2 Mc there exists a
unique f O�tg 2 Yc such that O�1 D �1 and margC�Zt�1

O�t D �t for every t 
 2.
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Then they define 	 W Mc ! Yc as the mapping that associates this f�tg with the
corresponding f O�tg.

Step 2: 	.L / D OLc.

It is straightforward from the definition of 	 that 	.L / � OLc. We show
	.L / 	 OLc or 	.L / 	 …1

tD1 OLt by mathematical induction. Take fltg 2 L

and let f O�tg � 	.fltg/ 2 Yc. By definition, O�1 D l1 2 �.C/ D OL1 and
O�2 D margC�Z1

O�2 D l2 2 �.C � L1/ D OL2.
Suppose that O�k 2 OLk for every k D 1; 2; : : : ; t. Since f O�tg is a Kolmogorov

consistent sequence, margC�…t�1
nD1Zn

O�tC1 D O�t 2 OLt. Thus, O�tC1 2 �.C�…t�1
nD1Ln�

Zt/. The definition of 	 implies that margC;Zt
O�tC1 D ltC1 2 �.C �Lt/. Therefore,

O�tC1 2 OLtC1 D �.C �…t
nD1Ln/.

Step 3:  . OLc/ D fl 2 �.C � L �/ j l.C � L / D 1g.

Since OLc D ffOltg 2 OLkc j OltC1.C � DL
t / D 1;8t = 1g, Step 3 follows from the

same argument of Lemma 5 in GP.

GP define � W Z ! K .Mc/ as �.z/ � ff�tg 2 Mc j�t 2 zt; 8t 
 1g. Note that
� is identity on L . Finally, the homeomorphism f W Z ! K .�.C � Z // is given
by f .z/ D  ı 	.�.z//. Then the above steps imply that f .L / D  ı 	.�.L // D
 ı 	.L / D �.C � L /.

Proof of Theorem 1

Necessity

Necessity of the axioms is routine. We show that for any .u; �/ there exists U
satisfying the functional equation.

Let U be the Banach space of all real-valued continuous functions on Z with
the sup-norm metric. Define the operator T W U ! U by

T.U/.x/ �
Z
Œ0;1�

max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z

U.z/ dlz

�
d�.˛/:

Since T.U/ is continuous, the operator T is well-defined. To show T is a contraction
mapping, it suffices to verify that (i) T is monotonic, that is, T.U/ 
 T.V/whenever
U 
 V , and (ii) T satisfies the discounting property, that is, there exists ı 2 Œ0; 1/

such that for any U and c 2 R, T.U C c/ D T.U/C ıc.

Step 1: T is monotonic.

Take any U;V 2 U with U 
 V . Since
R

U.z/ dlz 
 R
V.z/ dlz for all l 2

�.C � Z /, we have
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max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z

U.z/ dlz

�

 max

l2x

�
.1 � ˛/u.lc/C ˛

Z
Z

V.z/ dlz

�

for all x and ˛, and hence T.U/.x/ 
 T.V/.x/ as desired.

Step 2: T satisfies the discounting property.

Let ı � N̨ . By assumption, ı 2 Œ0; 1/. For any U 2 U and c 2 R,

T.U C c/ D
Z
Œ0;1�

max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z
.U.z/C c/ dlz

�
d�.˛/

D T.U/C N̨c D T.U/C ıc:

By Steps 1 and 2, T is a contraction mapping. Thus, the fixed point theorem (See
Bertsekas and Shreve 1978, p. 55) ensures that there exists a unique U� 2 U
satisfying U� D T.U�/. This U� satisfies Eq. (20.1).

Sufficiency

Lemma 1 Commitment Independence, Stationarity, and Timing Indifference imply
Independence, that is,

x � y ) �x C .1 � �/z � �y C .1 � �/z;

for all x; y; z 2 Z and � 2 .0; 1/.
Proof Let x � y. From Stationarity, f.c; x/g � f.c; y/g. For any � 2 .0; 1/,
Commitment Independence implies f�ı .c; x/C .1��/ı .c; z/g � f�ı .c; y/C .1�
�/ ı .c; z/g. From Timing Indifference, f.c; �x C .1� �/z/g � f.c; �y C .1� �/z/g.
Again, from Stationarity, �x C .1 � �/z � �y C .1 � �/z. ut

Let co.x/ denote the closed convex hull of x. As in DLR, Order, Continuity, and
Independence imply x � co.x/. Hence we can pay attention to the sub-domain

Z1 � fx 2 Z jx D co.x/g:

Since Z1 is a mixture space, Order, Continuity, and Independence ensure that % can
be represented by a mixture linear function U W Z1 ! R. Nondegeneracy implies
U is not constant. Since C � Z is compact, there exist a maximal and a minimal
lottery Nl, l 2 �.C � Z / with respect to U.f�g/. Without loss of generality, assume
U.fNlg/ D 1 and U.flg/ D 0.

Define u W �.C/ ! R and W W �.Z / ! R by

u.lc/ � U.flc ˝ lzg/; W.lz/ � U.flc ˝ lzg/;
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where lc and lz be the marginal distributions of l on C and Z .

Lemma 2 (i) For any lc; l0c 2 
.C/ and lz; l0z 2 
.Z /,

u.lc/ 
 u.l0c/ , U.flc ˝ lzg/ 
 U.l0c ˝ lz/;

W.lz/ 
 W.l0z/ , U.flc ˝ lzg/ 
 U.lc ˝ l0z/:

(ii) u and W are mixture linear.

Proof (i) Consider the restriction of U on �.C � Z /. Let U.c; z/ � U.f.c; z/g/.
First we will claim that there exist Nu W C ! R and NW W Z ! R such that
U.c; z/ D Nu.c/C NW.z/. Since

O

�
1

2
ı .c; z/C 1

2
ı .c0; z0/

�
D O

�
1

2
ı .c0; z/C 1

2
ı .c; z0/

�
;

Marginal Dominance implies

U

��
1

2
ı .c; z/C 1

2
ı .c0; z0/

��
D U

��
1

2
ı .c0; z/C 1

2
ı .c; z0/

��
:

Mixture linearity of U implies

U.c; z/C U.c0; z0/ D U.c0; z/C U.c; z0/:

Define Nu.c/ � U.c; z0/ and NW.z/ � U.c0; z/ � U.c0; z0/ for an arbitrarily fixed
.c0; z0/. Then, U.c; z/ D Nu.c/C NW.z/.
By the above claim, for any l 2 �.C � Z/,

U.flg/ D
Z

U.c; z/ dl.c; z/ D
Z
.Nu.c/C NW.z// dl.c; z/ D

Z
Nu.c/ dlc.c/

C
Z

NW.z/ dlz.z/:

Thus,

u.lc/ 
 u.l0c/ , U.flc ˝ lzg/ 
 U.fl0c ˝ lzg/

,
Z

Nu.c/ dlc.c/C
Z

NW.z/ dlz.z/ 

Z

Nu.c/ dl0c.c/C
Z

NW.z/ dlz.z/

,
Z

Nu.c/ dlc.c/ 

Z

Nu.c/ dl0c.c/

,
Z

Nu.c/ dlc.c/C
Z

NW.z/ dlz.z/ 

Z

Nu.c/ dl0c.c/C
Z

NW.z/ dlz.z/
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, U.flc ˝ lzg/ 
 U.fl0c ˝ lzg/:

The symmetric argument can be applied to W.

(ii) We want to show u.�lc C .1� �/l0c/ D �u.lc/C .1� �/u.l0c/ for any lc; l0c and
� 2 Œ0; 1�. Since

O..�lc C .1 � �/l0c/˝ lz/ D O.�lc ˝ lz C .1 � �/l0c ˝ lz/;

Marginal Dominance implies

U.f.�lc C .1 � �/l0c/˝ lzg/ D U.f�lc ˝ lz C .1 � �/l0c ˝ lzg/:

Since U.f�g/ is mixture linear,

u.�lc C .1 � �/l0c/ D U.f.�lc C .1 � �/l0c/˝ lzg/
D U.f�lc ˝ lz C .1 � �/l0c ˝ lzg/
D �U.fłc ˝ lzg/C .1 � �/U.fl0c ˝ lzg/
D �u.lc/C .1 � �/u.l0c/:

By the symmetric argument, we can show that W is mixture linear. ut
Next we show several properties of the Marginal Dominance operator.

Lemma 3 (i) For any x 2 Z , O.x/ 2 Z .
(ii) If x is convex, so is O.x/.

(iii) O W Z ! Z is Hausdorff continuous.

Proof (i) Since �.C � Z / is compact, it suffices to show that O.x/ is a closed
subset of �.C � Z /. Let ln ! l with ln 2 O.x/. By definition, there exists
a sequence fNlng with Nln 2 x such that fNlnc ˝ lnz g % flnc ˝ lnz g and flnc ˝ Nlnz g %
flnc ˝ lnz g. Since x is compact, without loss of generality, we can assume that
fNlng converges to a limit Nl 2 x. Since lnc ! lc and lnz ! lz, Nlnc ! Nlc and Nlnz ! Nlz,
Continuity implies fNlc ˝ lzg % flc ˝ lzg and flc ˝ Nlzg % flc ˝ lzg. Hence,
l 2 O.x/.

(ii) Take l; l0 2 O.x/ and � 2 Œ0; 1�. Let l� � �l C .1 � �/l0. We want
to show l� 2 O.x/. By definition, there exist Nl; Nl0 2 x such that fNlc ˝
lzg % flc ˝ lzg, flc ˝ Nlzg % flc ˝ lzg, fNl0c ˝ l0zg % fl0c ˝ l0zg, and
fl0c ˝ Nl0zg % fl0c ˝ l0zg. Let Nl� � �Nl C .1 � �/Nl0 2 x. From Commitment
Independence,

f�Nlc ˝ lz C .1 � �/Nl0c ˝ l0zg % f�lc ˝ lz C .1 � �/l0c ˝ l0zg:

Since O.lc ˝ lz/ D O.l/, Marginal Dominance implies flc ˝ lzg � flg. By the
same reason, fl0c ˝ l0zg � fl0g, fl�c ˝ l�z g � fl�g, and
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f.�Nlc C .1 � �/Nl0c/˝ .�lz C .1 � �/l0z/g � f�Nlc ˝ lz C .1 � �/Nl0c ˝ l0zg:

Thus,

fNl�c ˝ l�z g D f.�Nl C .1 � �/Nl0/c ˝ .�Nl C .1 � �/Nl0/zg
D f.�Nlc C .1 � �/Nl0c/˝ .�lz C .1 � �/l0z/g
� f�Nlc ˝ lz C .1 � �/Nl0c ˝ l0zg % f�lc ˝ lz C .1 � �/l0c ˝ l0zg
� f�l C .1 � �/l0g � fl�c ˝ l�z g:

Similarly, fl�c ˝ Nl�z g % fl�c ˝ l�z g. Hence, l� 2 O.x/.
(iii) Let xn ! x. We want to show O.xn/ ! O.x/. By contradiction, suppose

otherwise. Then, there exists a neighborhood U of O.x/ such that O.x`/ …
U for infinitely many `. Let fx`g1̀D1 be the corresponding subsequence of
fxng1

nD1. Since xn ! x, fx`g1̀D1 also converges to x. Since fO.x`/g1̀D1 is a
sequence in a compact metric space Z , there exists a convergent subsequence
fO.xm/g1

mD1 with a limit y ¤ O.x/. As a result, now we have xm ! x and
O.xm/ ! y. In the following argument, we will show that y D O.x/, which is
a contradiction.

Step 1: O.x/ 	 y.

Take any l 2 O.x/. Then, there exists Nl 2 x such that fNlc ˝ lzg % flc ˝ lzg and
flc ˝Nlzg % flc ˝ lzg. Since xm ! x, we can find a sequence fNlmg1

mD1 such that Nlm 2 xm

and Nlm ! Nl.
Now we will construct a sequence flmg1

mD1 with lm 2 O.xm/ satisfying lm ! l.
Let l�c 2 �.C/ be a worst element with respect to u and l�z 2 �.Z / be a
worst element with respect to W. For all sufficiently large k, let Bk.l/ be the
1=k-neighborhood of l with respect to the weak convergence topology. There
exists 0 < �k < 1 such that lk � �kl C .1 � �k/.l�c ˝ l�z / 2 Bk.l/. By
construction, lk ! l. Since u is mixture linear from Lemma 2 (ii), u.lc/ > u.lkc/
if u.lc/ > u.l�c /, and u.lc/ D u.lkc/ if u.lc/ D u.l�c /. In the case of former, since
Nlm ! Nl, by Continuity, there exists mk

1 such that for all m 
 mk
1, u.Nlmc / > u.lkc/.

In the case of latter, for all m, u.Nlmc / 
 u.l�c / D u.lkc/. In both cases, we have
u.Nlmc / 
 u.lkc/ for all m 
 mk

1. Since W is mixture linear from Lemma 2 (ii), by
the same argument, there exists mk

2 such that for all m 
 mk
2, W.Nlmz / 
 W.lkz/.

Therefore, for all m 
 mk � maxŒmk
1;m

k
2�, u.Nlmc / 
 u.lkc/ and W.Nlmz / 
 W.lkz/,

that is, fNlmc ˝ lkzg % flkc ˝ lkzg and flkc ˝ Nlmz g % flkc ˝ lkzg. Hence, we have
lk 2 O.Nlm/ 	 O.xm/ for all m 
 mk. Since mkC1 
 mk for all k, define
lm � lk for all m satisfying mk � m < mkC1. Then, flmg1

mD1 is a required
sequence.

Since lm ! l and O.xm/ ! y with lm 2 O.xm/, we have l 2 y. Thus, O.x/ 	 y.
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Step 2: y 	 O.x/.

Take any l 2 y. Since O.xm/ ! y, we can find a sequence lm 2 O.xm/ with
lm ! l. By definition, there is Nlm 2 xm such that fNlmc ˝ lmz g % flmc ˝ lmz g and
flmc ˝ Nlmz g % flmc ˝ lmz g. Since �.C � Z / is compact, we can assume fNlmg converges
to a limit Nl 2 �.C � Z /. Since Nlm ! Nl and xm ! x with Nlm 2 xm, we have Nl 2 x.
From Continuity, fNlc ˝ lzg % flc ˝ lzg and flc ˝ Nlzg % flc ˝ lzg. Thus, l 2 O.x/. ut

From Marginal Dominance, x � O.x/. Hence we can pay attention to the sub-
domain,

Z2 � fx 2 Z1jx D O.x/g:

From Lemma 3 (iii), Z2 is compact. Moreover, Lemma 3 (i) and (ii) imply that any
x 2 Z2 is compact and convex.

For each x 2 Z2 and ˛ 2 Œ0; 1�, define

�x.˛/ � max
l2x

�
.1 � ˛/u.lc/C ˛W.lz/

�
: (20.14)

Let C .Œ0; 1�/ be the set of real-valued continuous functions on Œ0; 1� with the
supnorm. The above formulation (20.14) defines the mapping � W Z2 ! C .Œ0; 1�/.

Lemma 4 (i) � is continuous.
(ii) For all x; y 2 Z2 and � 2 Œ0; 1�, ��x C .1 � �/�y D �O.�xC.1��/y/.

(iii) � is injective.

Proof (i) Let

V.x/ � f.u;w/ju D u.lc/;w D W.lz/; l 2 xg 	 R
2:

Since u and W are continuous and C � Z is compact, there exists a compact
set L 	 R

2 such that V.x/ 	 L for all x. Hence, V.x/ is also compact and,
moreover, convex because u and W are mixture linear. Let K .L/ be the set of
non-empty compact subsets of L with the Hausdorff metric.

Step 1: The map V W Z2 3 x 7! V.x/ 2 K .L/ is Hausdorff continuous.

Take a sequence xn ! x with xn; x 2 Z2. We want to show that V.xn/ ! V.x/.
By contradiction, suppose otherwise. Then, there exists a neighborhood U of V.x/
such that V.xm/ … U for infinitely many m. Let fxmg1

mD1 be the corresponding
subsequence of fxng1

nD1. Since xn ! x, fxmg1
mD1 also converges to x. Since

fV.xm/g1
mD1 is a sequence in a compact metric space K .L/, there exists a convergent

subsequence fV.x`/g1̀D1 with a limit z ¤ V.x/. As a result, now we have x` ! x
and V.x`/ ! z.

In the following argument, we will show that z D V.x/, which is a contradiction.
Take any .Nu; Nw/ 2 V.x/. There exists Nl 2 x such that Nu D u.Nlc/ and Nw D W.Nlz/.
Since x` ! x, we can find fl`g1̀D1 such that l` ! Nl with l` 2 x`. Let .u`;w`/ �
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.u.l`c/;W.l
`
z// 2 V.x`/. The conditions .u`;w`/ ! .Nu; Nw/ and V.x`/ ! z with

.u`;w`/ 2 V.x`/ imply .Nu; Nw/ 2 z. Thus, V.x/ 	 z.
For the other direction, take any .Nu; Nw/ 2 z. Since V.x`/ ! z, we can find

f.u`;w`/g1̀D1 such that .u`;w`/ ! .Nu; Nw/ with .u`;w`/ 2 V.x`/. There exists
l` 2 x` satisfying .u`;w`/ D .u.l`c/;W.l

`
z//. Since �.C � Z / is compact, there

exists a convergent subsequence flkg1
kD1 with a limit Nl. By continuity of u and W,

.u.Nlc/;W.Nlz// D .Nu; Nw/. Moreover, since lk ! Nl, xk ! x with lk 2 xk, we have Nl 2 x.
Thus .Nu; Nw/ 2 V.x/, which implies z 	 V.x/.

Step 2: dsupnorm.�x; �y/ � dHausdorff.V.x/;V.y//.

For any ˛ 2 Œ0; 1�, by definition,

ˇ̌
�x.˛/��y.˛/

ˇ̌ D
ˇ̌
ˇ̌max

l2x

�
.1�˛/u.lc/C˛W.lz/

�
� max

h2y

�
.1�˛/u.lc/C˛W.lz/

�ˇ̌ˇ̌

D
ˇ̌
ˇ̌ max
.u;w/2V.x/

..1 � ˛/u C ˛w/ � max
.u;w/2V.y/

..1 � ˛/u C ˛w/

ˇ̌
ˇ̌ :

Let .u˛x;w˛x/ 2 V.x/ and .u˛y;w˛y/ 2 V.y/ be maximizers for the maximization
problems, respectively. Without loss of generality, assume

.1 � ˛/u˛x C ˛w˛x 
 .1 � ˛/u˛y C ˛w˛y:

Let

H˛y � f.u;w/j.1 � ˛/u C ˛w D .1 � ˛/u˛y C ˛w˛yg

and .u�;w�/ 2 H˛y be a point solving

min
.u;w/2H˛y

k.u;w/ � .u˛x;w˛x/k:

Then, by the Schwarz inequality,

ˇ̌
ˇ̌ max
.u;w/2V.x/

..1 � ˛/u C ˛w/ � max
.u;w/2V.y/

..1 � ˛/u C ˛w/

ˇ̌
ˇ̌

D j..1 � ˛/u˛x C ˛w˛x/ � ..1 � ˛/u˛y C ˛w˛y/j
D j..1 � ˛/u˛x C ˛w˛x/ � ..1 � ˛/u� C ˛w�/j
D j.1 � ˛/.u˛x � u�/C ˛.w˛x � w�/j
� k.u˛x � u�;w˛x � w�/kk.1 � ˛; ˛/k � k.u˛x � u�;w˛x � w�/k
� min

.u;w/2V.y/
k.u˛x;w˛x/ � .u;w/k � dHausdorff.V.x/;V.y//:

Since this inequality holds for all ˛,



20 Subjective Random Discounting and Intertemporal Choice 555

dsupnorm.�x; �y/ D sup
˛2Œ0;1�

ˇ̌
�x.˛/ � �y.˛/

ˇ̌ � dHausdorff.V.x/;V.y//:

From Steps 1 and 2, � is continuous.

(ii) Fix ˛ 2 Œ0; 1�. Let lx 2 x and ly 2 y satisfy

.1 � ˛/u.lxc/C ˛W.lxz/ D max
l2x
..1 � ˛/u.lc/C ˛W.lz//;

.1 � ˛/u.lyc/C ˛W.lyz/ D max
l2y
..1 � ˛/u.lc/C ˛W.lz//:

Since �lx C .1 � �/ly 2 �x C .1 � �/y, mixture linearity of u and W implies

��x.˛/C .1 � �/�y.˛/

D �..1 � ˛/u.lxc/C ˛W.lxz//C .1 � �/..1 � ˛/u.lyc/C ˛W.lyz//

D .1 � ˛/u.�lxc C .1 � �/lyc/C ˛W.�lxz C .1 � �/lyz/
D max

l2�xC.1��/y..1 � ˛/u.lc/C ˛W.lz//

D max
l2O.�xC.1��/y/..1 � ˛/u.lc/C ˛W.lz// D �O.�xC.1��/y/.˛/:

(iii) Take x; x0 2 Z2 with x ¤ x0. Without loss of generality, assume x 6	 x0. Take
Ql 2 x n x0. Let Qu D u.Qlc/ and Qw D W.Qlz/. Let

V 0 � f.u;w/ju D u.lc/;w D W.lz/; l 2 x0g 	 R
2:

We will claim that .f.Qu; Qw/g C R
2C/\ V 0 D ;. Suppose otherwise. Then, there

exists l0 2 x0 such that u.l0c/ 
 Qu and W.l0z/ 
 Qw. That is, U.fl0c ˝ lzg/ 

U.fQlc˝lzg/ and U.flc˝l0zg/ 
 U.flc˝Qlzg/. From Lemma C.2 (i), U.fl0c˝Qlzg/ 

U.fQlc ˝ Qlzg/ and U.fQlc ˝ l0zg/ 
 U.fQlc ˝ Qlzg/. Thus, Ql 2 O.l0/ 	 O.x0/. Since
O.x0/ D x0, this is a contradiction.

Since the above claim holds, by the separating hyperplane theorem, there exists
˛ 2 Œ0; 1� and � 2 R such that .1 � ˛/Qu C ˛ Qw > � > .1 � ˛/u0 C ˛w0 for all
.u0;w0/ 2 V 0. Equivalently,

.1 � ˛/u.Qlc/C ˛W.Qlz/ > � > .1 � ˛/u.l0c/C ˛W.l0z/;

for all l0 2 x0. Hence,

�x.˛/ D max
l2x
..1 � ˛/u.lc/C ˛W.lz// 
 .1 � ˛/u.Qlc/C ˛W.Qlz/

> max
l02x0

..1 � ˛/u.l0c/C ˛W.l0z// D �x0.˛/:
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Therefore, �x ¤ �x0 . ut
Let C 	 C .Œ0; 1�/ be the range of � .

Lemma 5 (i) C is convex.
(ii) The zero function belongs to C.

(iii) The constant function equal to a positive number c > 0 belongs to C.
(iv) The supremum of any two points f ; f 0 2 C belongs to C. That is,

maxŒf .˛/; f 0.˛/� belongs to C.
(v) For all f 2 C, f 
 0.

Proof (i) Take any f ; f 0 2 C and � 2 Œ0; 1�. There are x; x0 2 Z2 satisfying f D �x

and f 0 D �x0 . From Lemma 4 (ii),

�f C .1 � �/f 0 D ��x C .1 � �/�x0 D �O.�xC.1��/x0/ 2 Z2:

Hence, C is convex.
(ii) Let x � O.l/ 2 Z2. Then, for all ˛,

�x.˛/ D max
l2O.l/

.1 � ˛/u.lc/C ˛W.lz/ D .1 � ˛/u.lc/C ˛W.lz/

D .1 � ˛/U.flc ˝ lzg/C ˛U.flc ˝ lzg/ D 0:

(iii) Recall that l is a maximal element of U.f�g/. Without loss of generality, assume
u.lc/ 
 W.lz/. From Nondegeneracy, there exists l�z such that W.l�z / > W.lz/ D
0. Since u.lc/ 
 W.l�z / > 0 D u.lc/, continuity of u implies that there exists l�c
such that u.l�c / D W.l�z /. Let c � W.l�z / > 0 and x � O.l�c ˝ l�z / 2 Z2. Then,
for all ˛,

�x.˛/ D max
l2O.l�c ˝l�z /

.1 � ˛/u.lc/C ˛W.lz/ D .1 � ˛/u.l�c /C ˛W.l�z / D c:

(iv) There exist x0; x 2 Z2 such that f D �x and f 0 D �x0 . Let f 00 � �O.co.x[x0// 2 C.
Then, f 00.˛/ D maxŒ�x.˛/; �x0.˛/�.

(v) There exists x 2 Z2 such that f D �x. Since O.l/ 	 x, Lemma 5 (ii) implies
f .˛/ D �x.˛/ 
 �O.l/.˛/ D 0, for any ˛. ut

Define T W C ! R by T.f / � U.��1.f //. Notice that T.0/ D 0 and T.c/ D c,
where 0 and c are identified with the zero function and the constant function equal
to c > 0, respectively. Since U and � are continuous and mixture linear, so is T .

Lemma 6 T.ˇf C � f 0/ D ˇT.f / C �T.f 0/ as long as f ; f 0; ˇf C � f 0 2 C, where
ˇ; � 2 RC.

Proof For any ˇ 2 Œ0; 1�, T.ˇf / D T.ˇf C .1 � ˇ/0/ D ˇT.f /C .1 � ˇ/T.0/ D
ˇT.f /, where 0 is the zero function. For any ˇ > 1, let f 00 � ˇf . Since
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T

�
1

ˇ
f 00
�

D 1

ˇ
T.f 00/, ˇT.f / D T.ˇf /. Additivity follows from T.f C f 0/ D

2T

�
1

2
f C 1

2
f 0
�

D T.f /C T.f 0/. ut

By the same argument as in DLR, we will extend T to C .Œ0; 1�/ step by step. For
any r 
 0, let rC � frf jf 2 Cg and H � [r�0rC. For any f 2 H n 0, there is
r > 0 satisfying .1=r/f 2 C. Define T.f / � rT..1=r/f /. From linearity of T on C,
T.f / is well-defined. That is, even if there is another r0 > 0 satisfying .1=r0/f 2 C,
rT..1=r/f / D r0T..1=r0/f /. It is easy to see that T on H is mixture linear. By the
same argument in Lemma 6, T is also linear.

Let

H� � H � H D ff1 � f2 2 C .Œ0; 1�/jf1; f2 2 Hg:

For any f 2 H�, there are f1; f2 2 H satisfying f D f1 � f2. Define T.f / � T.f1/ �
T.f2/. We can verify that T W H� ! R is well-defined. Indeed, suppose that f1; f2; f3
and f4 in H satisfy f D f1 � f2 D f3 � f4. Since f1 C f4 D f2 C f3, T.f1/C T.f4/ D
T.f2/C T.f3/ by linearity of T on H.

Lemma 7 H� is dense in C .Œ0; 1�/.

Proof From the Stone-Weierstrass theorem, it is enough to show that (i) H� is a
vector sublattice, (ii) H� separates the points of Œ0; 1�; that is, for any two distinct
points ˛; ˛0 2 Œ0; 1�, there exists f 2 H� with f .˛/ ¤ f .˛0/, and (iii) H� contains
the constant functions equal to one. By the exactly same argument as Lemma 11
(p. 928) in DLR, (i) holds. To verify condition (ii), take ˛; ˛0 2 Œ0; 1� with ˛ ¤ ˛0.
Without loss of generality, ˛0 > ˛. Let x � O.lc ˝ lz/. Then, �x 2 C 	 H�. Since
u.lc/ > 0 and W.lz/ D 0,

�x.˛/ D .1 � ˛/u.lc/C ˛W.lz/ > .1 � ˛0/u.lc/C ˛0W.lz/ D �x.˛
0/:

Finally, condition (iii) directly follows from Lemma 5 (iii) and the definition of H.
ut

Lemma 8 There exists a constant K > 0 such that T.f / � Kkf k for any f 2 H�.

Proof We use the same argument as in Theorem 2 of Dekel et al. (2007).16 First, we
claim that T is increasing in the pointwise order. Indeed, take any g0; g 2 H� with
g0 
 g. Since H� is a vector space, g0 � g 2 H�. Hence there exist f ; f 0 2 C and
r > 0 such that r.f 0 � f / D g0 � g 
 0. Thus f 0 
 f pointwise. Since T.f 0/ 
 T.f /
by Monotonicity, T.r.f 0 � f // 
 T.0/ D 0 implies T.g0 � g/ 
 0. That is, we have
T.g0/ 
 T.g/.

16They fix the argument (Lemma 12, p. 929) of DLR.
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For all f 2 H�, we have f � kf k1, where 1 2 H is the function identically equal
to 1. Since T is increasing, T.f / � kf kT.1/. Thus K � T.1/ is the desired object.

ut
By Lemma 8 and the Hahn-Banach theorem, we can extend T W H� ! R to

T W C .Œ0; 1�/ ! R in a linear, continuous and increasing way. Since H� is dense in
C .Œ0; 1�/ by Lemma 7, this extension is unique.

Now we have the following commutative diagram:

Since T is a positive linear functional on C .Œ0; 1�/, the Riesz representation
theorem ensures that there exists a unique countably additive probability measure �
on Œ0; 1� satisfying

T.f / D
Z
Œ0;1�

f .˛/d�.˛/;

for all f 2 C .Œ0; 1�/. Thus we have

U.x/ D T.�.x// D
Z
Œ0;1�

max
l2x

..1 � ˛/u.lc/C ˛W.lz// d�.˛/:

For any x 2 Z , let ıx be the degenerate measure at x. Denote W.ıx/ by W.x/.

Lemma 9 U.x/ 
 U.y/ , W.x/ 
 W.y/.

Proof First of all,

W.lz/ D
Z
�.Z /

W.x/dlz.x/:

Since

U.f.c; x/g/ D
Z
..1 � ˛/u.c/C ˛W.x// d�.˛/ D .1 � N̨ /u.c/C N̨W.x/;

Stationarity implies that U.x/ 
 U.y/ , U.f.c; x/g/ 
 U.f.c; y/g/ , W.x/ 

W.y/. ut
Lemma 10 There exist ˇ > 0 and  2 R such that W.x/ D ˇU.x/C .
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Proof Since U is mixture linear, there exists .c; z/ 2 C �Z such that flg � f.c; z/g.
Thus W.lz/ D U.fc ˝ lzg/. We have

U.f� ı .c; x/C .1 � �/ ı .c; y/g/ D U.fc ˝ .� ı x C .1 � �/ ı y/g/
D W.� ı x C .1 � �/ ı y/;

and U.f.c; �x C .1 � �/y/g/ D W.�x C .1 � �/y/. Since W is mixture linear over
�.Z /, Timing Indifference implies

�W.x/C .1 � �/W.y/ D W.� ı x C .1 � �/ ı y/ D W.�x C .1 � �/y/:

Hence, W is mixture linear over Z1. From Lemma 9, we know U.x/ and W.x/
represent the same preference. Since both functions are mixture linear, there exist
ˇ > 0 and  2 R such that W.x/ D ˇU.x/C . ut

We will claim that ˇ can be normalized to one. Define W� W �.Z / ! R by
W�.lz/ D W.lz/=ˇ. For any x 2 D , define ��

x W Œ0; 1� ! R by

��
x .˛/ � max

l2x

�
.1 � ˛/u.lc/C ˛W�.lz/

�
:

Since W� is continuous and mixture linear, the same arguments up to Lemma 9
work even for ��. Thus, there exists a probability measure �� on Œ0; 1� such that

U.x/ D
Z
Œ0;1�

max
l2x

	
.1 � ˛/u.lc/C ˛W�.lz/



d��.˛/:

By definition, W�.z/ D U.z/C =ˇ.

Lemma 11 N̨ < 1, where N̨ is the mean of ��.

Proof Since U is not constant, there exist x and x0 such that U.x/ > U.x0/. For any
fixed c, let

xt � f.c; f.c; f� � � f.c; x/g � � � g/g/g; x0t � f.c; f.c; f� � � f.c; x0/g � � � g/g/g:

Then,

U.xt/ � U.x0t/ D .1 � N̨ / N̨ tU.x/ � .1 � N̨ / N̨ tU.x0/ D .1 � N̨ /.U.x/ � U.x0// N̨ t:

Since Continuity requires U.xt/ � U.x0t/ ! 0 as t ! 1, we must have N̨ < 1. ut
Define � � =ˇ and

u�.lc/ � u.lc/C N̨
1 � N̨ 

�:



560 Y. Higashi et al.

Then

U.x/ D
Z
Œ0;1�

max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z

W�.z/ dlz.z/

�
d��.˛/

D
Z
Œ0;1�

max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z
.U.z/C �/ dlz.z/

�
d��.˛/

D
Z
Œ0;1�

max
l2x

�
.1 � ˛/

�
u.lc/C N̨

1 � N̨ 
�
�

C ˛

Z
Z

U.z/ dlz.z/

�
d��.˛/

D
Z
Œ0;1�

max
l2x

�
.1 � ˛/u�.lc/C ˛

Z
Z

U.z/ dlz.z/

�
d��.˛/:

Therefore the functional form U with components .u�; ��/ is the required represen-
tation.

Proof of Theorem 2

(i) Since mixture linear functions u and u0 represent the same conditional pref-
erence over �.C/, by the standard argument, u0 is rewritten as an affine
transformation of u. That is, u and u0 are cardinally equivalent.

(ii) From (i), there exist � > 0 and  2 R such that u0 D �uC. Since U and U0 are
mixture linear functions representing the same preference, there exist �� > 0

and � 2 R such that U0 D ��U C �. Let xc be the perfect commitment menu
to c, that is, xc � f.c; f.c; f� � � g/g/g. Since U.xc/ D u.c/ and U0.xc/ D u0.c/,
we have U0.xc/ D �U.xc/ C , which implies �� D � and � D . Now we
have

U0.x/ D
Z
Œ0;1�

max
l2x

�
.1 � ˛/u0.lc/C ˛

Z
Z

U0.z/dlz

�
d�0.˛/

D
Z
Œ0;1�

max
l2x

�
.1 � ˛/.�u.lc/C /C ˛

Z
Z
.�U.z/C /dlz

�
d�0.˛/

D �

Z
Œ0;1�

max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z

U.z/ dlz

�
d�0.˛/C :

Hence,

U00.x/ �
Z
Œ0;1�

max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z

U.z/ dlz

�
d�0.˛/

also represents the same preference. Since U0 D �U C  and U0 D �U00 C ,
we must have U.x/ D U00.x/ for all x. For all x 2 Z and ˛ 2 Œ0; 1�, let
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�x.˛/ � max
l2x

�
.1 � ˛/u.lc/C ˛

Z
U.z/ dlz.x/

�
:

Then,

U.x/ D
Z
�x.˛/ d�.˛/ D

Z
�x.˛/ d�0.˛/ D U00.x/: (20.15)

If x is convex, �x is its support function. Equation (20.15) holds also when
�x is replaced with a�x � b�y for any convex menus x; y and a; b 
 0. From
Lemma C.6, the set of all such functions is a dense subset of the set of
real-valued continuous functions over Œ0; 1�. Hence, Eq. (20.15) holds when
�x is replaced with any real-valued continuous function. Hence, the Riesz
representation theorem implies � D �0.

Proofs of Corollary 1 and Proposition 1

First we show Proposition 1. For all x, let lx denote a best element in x with respect
to commitment ranking.

Lemma 12 % satisfies Dominance if and only if, for all x, x � flxg.

Proof If % satisfies Dominance, flxg � O�.lx/ D O�.x/ � x. Conversely, by
definition of O�.x/, lx is a best element in O�.x/. Thus x � flxg � O�.x/. ut
(i) By Lemma 12, it suffices to show that Strategic Rationality is equivalent to

the condition that x � flxg for all x. First suppose that % satisfies x � flxg.
Since x % y implies flxg % flyg, lx is a best element of x [ y with respect to
commitment ranking. Hence x � flxg � x [ y.

Next suppose % satisfies Strategic Rationality. Take any finite menu x, denoted
by fl1; l2; � � � ; lNg. Without loss of generality, let lx D l1. Since fl1g % fl2g, Strategic
Rationality implies fl1; l2g � fl1g. Since fl1; l2g � fl1g % fl3g, again by Strategic
Rationality, fl1; l2; l3g � fl1; l2g � fl1g. Repeating the same argument finite times,
x � flxg. For any menu x, Lemma 0 of Gul and Pesendorfer (2001, p. 1421) shows
that there exists a sequence of finite subsets xn of x converging to x in the sense of
the Hausdorff metric. Since lx is a best element of x and xn 	 x, applying the above
claim, xn [ flxg � flxg. Thus, by Continuity, x D x [ flxg � flxg as n ! 1.

(ii) For all x, choose any l 2 O.x/. By definition, there exists l0 2 x such that l 2
O.l0/. From part (i), preference satisfies Monotonicity. Applying Commitment
Marginal Dominance and Monotonicity, we have flxg % fl0g � O.l0/ % flg.
Hence, lx is a best element in O.x/. Therefore, by Lemma 12, x � flxg �
O.x/.
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Turn to the proof of Corollary 1. If part: The representation has the form of

U.x/ D max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z

U.z/ dlz

�
;

for some ˛ 2 Œ0; 1/. Thus it is easy to verify that U.x/ 
 U.y/ implies U.x/ D
U.x [ y/.

Only-if part: From Proposition 1, % satisfies all the axioms of Theorem 1.
Hence % admits a random discounting representation U with components .u; �/.
By contradiction, suppose #supp.�/ ¤ 1. Then, there exist ˛0; ˛00 2 supp.�/ with
˛00 > ˛0. Let u.�.C// denote the image of �.C/ under u. Let U.L / denote the
image of L 	 Z under U. Since U.L / and u.�.C// are non-degenerate intervals
of RC, take p1 2 u.�.C// and p2 2 U.L / from the relative interiors. Take two
points .p0

1; p
0
2/; .p

00
1 ; p

00
2 / 2 R

2C such that p00
1 > p1 > p0

1, p0
2 > p2 > p00

2 , and

.1�˛0/p0
1C˛0p0

2 D .1�˛0/p1C˛0p2; and .1�˛00/p00
1 C˛00p00

2 D .1�˛00/p1C˛00p2:
(20.16)

Since p1 belongs to the relative interior of u.�.C//, p0
1; p

00
1 can be taken to be in

u.�.C//. Similarly, we can assume p0
2; p

00
2 belong to U.L /. Then we have

.1�˛0/p0
1C˛0p0

2 > .1�˛0/p00
1 C˛0p00

2 ; and .1�˛00/p00
1 C˛00p00

2 > .1�˛00/p0
1C˛00p0

2:

(20.17)
Indeed, by contradiction, suppose .1�˛0/p00

1C˛0p00
2 
 .1�˛0/p0

1C˛0p0
2. By (20.16),

.1 � ˛0/p00
1 C ˛0p00

2 
 .1 � ˛0/p1 C ˛0p2. Since p00
1 > p1, p00

2 < p2, and ˛00 > ˛0,
we have .1 � ˛00/p00

1 C ˛00p00
2 > .1 � ˛00/p1 C ˛00p2, which contradicts (20.16). The

same argument can be applied to the other case. Now take lotteries l0c; l00c 2 �.C/ and
l0; l00 2 L such that u.l0c/ D p0

1 ,u.l00c / D p00
1 , U.fl0g/ D p0

2, and U.fl00g/ D p00
2 . Taking

(20.17) and continuity of the inner product together, there exist open neighborhoods
B.˛0/ and B.˛00/ satisfying

.1 � ˛/u.l0c/C ˛U.fl0g/ > .1 � ˛/u.l00c /C ˛U.fl00g/; and

.1 � Q̨ /u.l00c /C Q̨U.fl00g/ > .1 � Q̨ /u.l0c/C Q̨U.fl0g/; (20.18)

for all ˛ 2 B.˛0/ and Q̨ 2 B.˛00/. Since ˛0; ˛00 belong to the support of �,
�.B.˛0// > 0 and �.B.˛00// > 0. Thus, by (20.18) and the representation,

U.fl0c ˝ fl0g; l00c ˝ fl00gg/ > maxŒU.fl0c ˝ fl0gg/;U.fl00c ˝ fl00gg/�;

which contradicts Strategic Rationality.
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Proof of Theorem 3

((a))(b)) Since %1 and %2 are equivalent on L , we have condition (i). Let
ui.�.C// denote the image of �.C/ under ui. Let Ui.L / denote the image of
L 	 Z under Ui. Let lCc and l�c be a maximal and a minimal lottery with respect to
ui. Since ui.lCc / 
 Ui.flg/ 
 ui.l�c / for all l 2 L , we have U1.L / D u1.�.C// D
u2.�.C// D U2.L /. Let supp.�i/ denote the support of �i. By contradiction,
suppose that there exists ˛� 2 supp.�1/ with ˛� 62 supp.�2/. Since supp.�2/ is
a relative closed set of Œ0; 1�, there exists a relative open interval .˛a; ˛b/ of ˛� such
that .˛a; ˛b/ \ supp.�2/ D ;. Since u1.�.C// is a non-degenerate interval of RC,
take p1 2 u1.�.C// and p2 2 U1.L / from the relative interior. Take .pa

1; p
a
2/ and

.pb
1; p

b
2/ such that pa

1 > p1 > pb
1, pb

2 > p2 > pa
2,

.1 � ˛a/pa
1 C ˛apa

2 D .1 � ˛a/p1 C ˛ap2; and

.1 � ˛b/pb
1 C ˛bpb

2 D .1 � ˛b/p1 C ˛bp2:

Then we have

.1 � ˛/pb
1 C ˛pb

2 > maxŒ.1 � ˛/p1 C ˛p2; .1 � ˛/pa
1 C ˛pa

2� forall’ > ’b;

.1 � ˛/p1 C ˛p2 > maxŒ.1 � ˛/pa
1 C ˛pa

2; .1 � ˛/pb
1 C ˛pb

2� forall’ 2 .’a; ’b/;

.1 � ˛/pa
1 C ˛pa

2 > maxŒ.1 � ˛/p1 C ˛p2; .1 � ˛/pb
1 C ˛pb

2� forall’ < ’a:

Since .pa
1; p

a
2/ and .pb

1; p
b
2/ can be chosen sufficiently close to .p1; p2/, assume

without loss of generality that pa
1; p

b
1 2 u1.�.C// and pa

2; p
b
2 2 U1.L /. Thus

there exist lc; lac ; l
b
c 2 �.C/ and l; la; lb 2 L such that ui.lc/ D p1; ui.lac/ D

pa
1; u

i.lbc/ D pb
1, Ui.flg/ D p2;Ui.flag/ D pa

2, and Ui.flbg/ D pb
2. Define x �

flc ˝ flg; lac ˝ flag; lbc ˝ flbgg 2 Z 1 and y � flac ˝ flag; lbc ˝ flbgg 2 Z 1. Since
.˛a; ˛b/ \ supp.�2/ D ;, U2.x/ D U2.y/. On the other hand, since �1..˛a; ˛b// >

0, U1.x/ > U1.y/. This contradicts the assumption that %2 desires more flexibility
in the two-period model than %1.

((b))(a)) Assume that u1 D u2 and supp.�1/ 	 supp.�2/. Since %i, i D 1; 2 are
equivalent on L , we have ˛1 D ˛2. Consequently, U1.flg/ D U2.flg/ for all l 2 L .
Now take all x; y 2 Z 1 with y 	 x and assume x �1 y. There exists ˛� 2 supp.�1/
such that

max
l2x
.1 � ˛�/u1.lc/C ˛�U1.flLg/ > max

l2y
.1 � ˛�/u1.lc/C ˛�U1.flLg/: (20.19)

By continuity of the representation, there exists an open neighborhood O 	 Œ0; 1� of
˛� such that strict inequality (20.19) holds for all ˛ 2 O. Since ˛� 2 supp.�1/ 	
supp.�2/, �2.O/ > 0. Moreover, since u1 D u2 and U1.flg/ D U2.flg/ for all
l 2 L ,
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max
l2x
.1 � ˛/u2.lc/C ˛U2.flLg/ > max

l2y
.1 � ˛/u2.lc/C ˛U2.flLg/

for all ˛ 2 O, which implies U2.x/ > U2.y/.

Proof of Theorem 4

By definition, (a) implies (b). We show that (b))(c) and (c))(a). To show (b))(c),
we prepare two lemmas.

Lemma 13 Suppose that %i satisfies all the axioms of Theorem 1. If agent 2 is more
averse to commitment in the two-period model than agent 1, then x %1 flg ) x %2

flg for all x 2 Z 1 and l 2 L .

Proof It suffices to show that x �1 flg ) x %2 flg. If agent 1 strictly prefers l to
the worst lottery l, then x �1 f�l C .1 � �/lg for all � 2 .0; 1/. By assumption,
x �2 f�l C .1 � �/lg. Thus Continuity implies x %2 flg as � ! 1. If l is indifferent
to l, consider the best lottery l. Since flg % x for all x 2 Z 1, mixture linearity of
the representation implies U1.�x C .1 � �/flg/ > U1.flg/ for all � 2 .0; 1/. By
assumption, �xC .1��/flg �2 flg. Thus Continuity implies x %2 flg as � ! 1. ut
Lemma 14 Agent 2 is more averse to commitment in the two-period model than
agent 1 if and only if there exist random discounting representations Ui with .ui; �i/,
i D 1; 2 such that (i) u1 D u2 and N̨ 1 D N̨ 2, and (ii) U1.x/ � U2.x/ for all x 2 Z 1.

Proof Necessity follows because U2.x/ 
 U1.x/ > U1.flg/ D U2.flg/ for all
x 2 Z 1. We prove sufficiency. By Lemma 13, %1 and %2 are equivalent on L . Thus
there exist random discounting representations satisfying (i), and hence U1.flg/ D
U2.flg/ for all l 2 L . Note that for all x 2 Z 1 there exists l 2 L such that
x �1 flg or U1.x/ D U1.flg/. By Lemma 13, x �1 flg implies that x %2 flg or
U2.x/ 
 U2.flg/ D U1.flg/ D U1.x/. ut

We show that, for all continuous and convex functions v of ˛, there is a sequence
fvng of functions of the form (20.8) such that v 
 vn,

sup
˛

jv.˛/ � vn.˛/j < 1

n
; and

Z
vn.˛/ d�1.˛/ �

Z
vn.˛/ d�2.˛/

for all n D 1; 2; � � � . Then the result follows from the dominated convergence
theorem.

Let v W Œ0; 1� ! R be a continuous convex function. Then, for every Ǫ 2 Œ0; 1�,
there exists a vector p Ǫ 2 R

2 such that for all ˛ 2 Œ0; 1�,

v.˛/ 
 .1 � ˛/p Ǫ ;1 C ˛p Ǫ ;2
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with equality for Ǫ . Fix n. Since v.˛/ � f.1 � ˛/p Ǫ ;1 C ˛p Ǫ ;2g is continuous with
respect to ˛, there exists an open neighborhood B. Ǫ / of Ǫ such that for every ˛ 2
B. Ǫ /

0 � v.˛/ � f.1 � ˛/p Ǫ ;1 C ˛p Ǫ ;2g < 1

n
:

It follows from the compactness of Œ0; 1� that there exists a finite set f Ǫ igM
iD1 	 Œ0; 1�

such that fB. Ǫ i/gM
iD1 is a covering of Œ0; 1�.

We define vn W Œ0; 1� ! R by

vn.˛/ D max
i
Œ.1 � ˛/p Ǫi;1 C ˛p Ǫi;2�:

Then it is straightforward that v.˛/ 
 vn.˛/ for every ˛ 2 Œ0; 1�. Moreover, we see
that

sup
˛

jv.˛/ � vn.˛/j < 1

n
:

In fact, pick an arbitrary ˛ 2 Œ0; 1�. Then there is j 2 M such that ˛ 2 B. Ǫ j/. This
implies

0 � v.˛/ � vn.˛/ � v.˛/ � f.1 � ˛/p Ǫj;1 C ˛p Ǫj;2g <
1

n
:

Finally we see that

Z
vn.˛/ d�1.˛/ �

Z
vn.˛/ d�2.˛/:

Since u.�.C// and U1.L / D U2.L / are closed intervals, we can assume, without
loss of generality, that there exist flc;igM

iD1 	 �.C/ and fligM
iD1 	 L satisfying

u1.lc;i/ D u2.lc;i/ D p Ǫi;1; andU1.flig/ D U2.flig/ D p Ǫi;2:

Thus we can rewrite vn by

vn.˛/ D max
i
.1 � ˛/u1.lc;i/C ˛U1.flig/ D max

i
.1 � ˛/u2.lc;i/C ˛U2.flig/:

Consider the menu xn D flc;i ˝ fligji D 1; � � � ;Mg 2 Z 1. Then it follows from
Lemma 14 that

Z
vn.˛/ d�1.˛/ D U1.xn/ � U2.xn/ D

Z
vn.˛/ d�2.˛/;

which completes the proof.
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((c))(a)) Let U be the Banach space of all real-valued continuous functions on
Z . Define the operator Ti W U ! U by

Ti.U/.x/ �
Z

max
l2x

�
.1 � ˛/u.lc/C ˛

Z
Z

U.z/ dlz

�
d�i.˛/:

Pick x 2 Z arbitrarily. Note that, for all U 2 U , maxl2x
	
.1 � ˛/u.lc/ C

˛
R
Z U.z/ dlz



is continuous and convex with respect to ˛. Hence it holds that

T1.U/.x/ � T2.U/.x/ for all x 2 Z .
For i D 1; 2, let Ti;n denote the operation defined as n-times iterations of Ti. We

show, by mathematical induction, that T1;n.U/.x/ � T2;n.U/.x/ for all x 2 Z and
n D 1; 2; � � � . Assume that T1;k.U/.x0/ � T2;k.U/.x0/ for all x0 2 Z . Pick x 2 Z
arbitrarily. Then it holds that T2.T1;k.U//.x/ � T2.T2;k.U//.x/. Moreover, since
T1;k.U/ is in U , we have T1.T1;k.U//.x/ � T2.T1;k.U//.x/. These together imply
T1;kC1.U/.x/ � T2;kC1.U/.x/ for all x 2 Z . Therefore, it holds that U1.x/ � U2.x/
since Ti;n.U/ converges to Ui. The desired result follows because U2.x/ 
 U1.x/ >
U1.flg/ D U2.flg/ for all x 2 Z and l 2 L .

Proof of Theorem 5

(i) We can solve (20.11) by the guess-and-verify method. Let

V�.s; ˛/ � A�.˛/
s1��

1 � � : (20.20)

Considering the F.O.C. of

max
s0

 
.1 � ˛/..1C r/s � s0/1��

1 � � C ˛

Z  
A�.˛

0/
s01��

1 � �

!
d�.˛0/

!
; (20.21)

we have

.1 � ˛/..1C r/s � s0/�� D ˛A�s0�� ;

where A� � R
A�.˛0/ d�.˛0/. By rearrangement, we can obtain the savings

function

s0 D SR.˛;A�/.1C r/s; where SR.˛;A�/ � .˛A�/
1
�

.1 � ˛/ 1� C .˛A�/
1
�

: (20.22)

Substituting (20.22) into (20.21) and comparing the coefficients with (20.20),

A�.˛/ D
�
.1 � ˛/ 1� C .˛A�/

1
�

��
.1C r/1�� : (20.23)
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For all ˛ 2 Œ0; 1� and A 
 0, define f .˛;A/ and F.A/ as

f .˛;A/ �
�
.1 � ˛/ 1� C .˛A/

1
�

��
.1C r/1�� ; F.A/ �

Z
f .˛;A/ d�.˛/: (20.24)

From (20.23), A� is characterized as a solution of A� D F.A�/. We want to show
that there exists a unique A > 0 satisfying this equation. Note first that F.0/ D
.1 � N̨ /.1C r/1�� > 0. Since limA!1 F.A/ ! 1, the L’Hopital’s rule implies

lim
A!1

F.A/

A
D lim

A!1 F0.A/:

Since

F0.A/ D
Z
@f

@A
d�.˛/ D

Z
.1C r/1��˛ 1

�

�
.1 � ˛/ 1� C .˛A/

1
�

���1
A
1
� �1d�.˛/

D
Z
.1C r/1��˛ 1

�

 �
1 � ˛

A

� 1
�

C ˛
1
�

!��1
d�.˛/;

we have limA!1 F0.A/ D N̨ .1C r/1�� < 1. Hence, there exists a sufficiently large
number QA such that F. QA/ < QA. By continuity of F, there exists A > 0 such that
A D F.A/. Finally, since

F00 D
Z
@2f

@A2
d�.˛/

D 1 � �
�

.1C r/1��
Z
˛
2
� .1 � ˛/ 1�

�
.1 � ˛/ 1� C .˛A/

1
�

���2
A
1
� �2 d�.˛/;

F is either strictly convex or concave depending on � 7 1. Since limA!1 F0.A/ <
1, A must be unique.

(ii) From (20.22), it is easy to verify that @SR.˛;A/
@A > 0. Thus it suffices to show that

A�1 7 A�2 if � 7 1. Note first that f defined as (20.24) is strictly convex or
strictly concave in ˛ according as � < 1 or � > 1. Indeed, for any ˛ 2 .0; 1/

and A > 0,

@2f

@˛2
D .1C r/1��

1 � �
�

�
.1 � ˛/ 1� C .˛A/

1
�

���2

�
�
2.˛.1 � ˛// 1� �1A

1
� C .1 � ˛/ 1� �2.˛A/

1
� C ˛

1
� �2..1 � ˛/A/ 1�

�
? 0

whenever � 7 1. Since �1 second-order stochastically dominates �2,

A�2 D
Z

f .˛;A�2/ d�2.˛/ ?
Z

f .˛;A�2/ d�1.˛/ (20.25)
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depending on � 7 1. Let F1.A/ � R
f .˛;A/ d�1.˛/. We know from the proof

of part (i) that F1.0/ > 0 and A�1 is a unique positive solution of F1.A/ D A.
Hence, F1.A/ ? A ifA 7 A�1 . Taking this observation and (20.25) together,
A�2 ? A�1 if � 7 1.

Addendum: Recent Developments17

If a DM is uncertain about her future preference, she may prefer to leave some
options open rather than choose a completely spelled-out future plan. This behavior
is called preference for flexibility and is admitted as an important aspect of sequential
decision making. Kreps (1979, 1992) and Dekel et al. (2001) provide a behavioral
foundation for preference for flexibility and derive the set of future preferences,
called the subjective state space, from observable choice behavior. Although the
preference for flexibility arises inherently in a dynamic setup, the derivation of the
subjective state space has been considered within a two-period model. Higashi et al.
(2009) extend their model to an infinite-horizon setting and specify the subjective
state space to be the set of sequences of discount factors.

In Higashi et al. (2009), the belief of future discount factors is assumed to be
constant, and hence, the DM’s attitude toward flexibility is the same over time.
Some recent works consider more general models for preference for flexibility in
a dynamic setup. Krishna and Sadowski (2014) provide a complementary result
to ours. To introduce their model, let S be a finite set of objective states. A state-
contingent infinite-horizon consumption problem (S-IHCP) is a function specifying
for each s 2 S an opportunity set of lotteries over pairs of current consumption and
an S-IHCP in the next period. They show that there exists a compact metric space
F , which is linearly homeomorphic to H .K .�.C � F ///, where H .X/ means
the set of functions from S to a compact metric space X.18 A generic element of F
is denoted by f and for lottery l 2 �.C �F / its marginals on C and F are denoted
by lc and lf , respectively. A preference % is defined on F ' H .K .�.C � F ///.

Krishna and Sadowski (2014) consider the following representation. The DM has
a subjective belief about objective states S captured by a Markov process, that is, a
pair of a transition probability … W S � S ! Œ0; 1� and a stationary distribution (or
initial prior) � over S. The subjective state space of this model is the set of all vN-M
functions over C denoted by U WD ˚

u 2 R
C W P ui D 0

�
. A belief about subjective

states depends on objective states, that is, for each s 2 S, �s is a probability measure
on U . Finally, let ı 2 .0; 1/ be a discount factor. A preference % on F admits a
representation of Dynamic Preference for Flexibility (a DPF representation) with
components ..…; �/; .�s/s2S; ı/ if V0.f / � P

s V.f ; s/�.s/ represents %, where

17This addendum has been newly written for this book chapter.
18In their model, C is assumed to be finite.
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V.�; s/ W F ! R is defined as

V.f ; s/ D
X
s02S

….s; s0/
�Z

U
max
l2f .s0/

Œu.lc/C ıV.lf ; s
0/� d�s0.u/

�
;

and V.lf ; s0/ � R
V.g; s0/ dlf .g/. Since � is a stationary distribution, which satisfies

�.s0/ D P
s �.s/….s; s

0/, the representation is rewritten as

V0.f / D
X

s

�.s/

�Z
U

max
l2f .s/

Œu.lc/C ıV.lf ; s/� d�s.u/

�
:

In this representation, the Markov process represented by … captures persistent
shocks on objective states, and the probability measures .�s/s2S correspond to
unobservable transitory shocks on future utilities. Therefore, an attitude toward
flexibility may change according to realization of objective states. Krishna and
Sadowski prove that a preference % satisfies suitable axioms if and only if it has
a DPF representation. Moreover, they prove that .�s/s2S are unique up to a common
scaling, and .…; �/ and ı are unique.19

There are two remarks related to our study (Higashi et al. 2009). First, their
DPF representation allows persistent shocks on subjective states, while preference
shocks are i.i.d. in our model. Second, a DPF representation can capture a random
discounting by specifying �s.f�Nu W � 
 0g/ D 1 for some fixed Nu 2 U . As a special
case, a random discount factor representation is behaviorally characterized.

Another attempt to accommodate a changing preference for flexibility is made
by Higashi et al. (2014). In this paper, we extend the previous model in order to
allow the situation where a prior action affects future attitude toward flexibility.
For example, imagine a DM who invested in self-improvement such as health
investment or education is more likely to expect new information about her future
preference, and hence may want to have greater demand for flexibility. More
formally, we incorporate the histories of past consumption, h D .c�T ; � � � ; c�1/,
into Higashi et al. (2009) and consider a set of preferences f%hgh2H . The following
recursive representation is axiomatized: there exist a non-constant continuous
function u W C ! R and a history-dependent probability measure �h on the set
Œ0; 1� of discount factors such that for all h, %h on Z is represented by

V.x; h/ D
Z
Œ0;1�

max
l2x

Z
C�Z

�
.1 � ˛/u.c/C ˛V.z; hc/

�
dl.c; z/ d�h.˛/;

19In the supplement to Krishna and Sadowski (2014), Krishna and Sadowski (2013) show a similar
result for a preference % on Z ' K .�.C � Z //.
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where hc D .c�TC1; � � � ; c�1; c/ denotes an updated history of h D .c�T ; � � � ; c�1/.
This representation can capture a changing future attitude toward flexibility from
past consumption.

As an application of the random discounting, Higashi et al. (2014) investigate
impatience comparisons within the random discounting model. Time preference
has been measured as the magnitude of the discount factor, which is elicited from
choices among consumption streams with a time trade-off. This elicitation implicitly
assumes that choices are made under commitment. In sequential decision making,
however, the degree of impatience may be affected by two potentially conflicting
effects: one is pure time preference, which is a preference for early consumption,
and the other is preference for flexibility, which is an attitude of leaving one’s
options open until the future.

In this paper, we consider preference over menus of consumption streams in
two periods and provide behavioral definitions for impatience comparisons among
menus having a time trade-off. If one menu includes more options allowing earlier
consumption than another menu (such as x D f.100; 0/; .70; 35/g vs y D
f.50; 60/; .0; 120/g), an agent expecting to be more impatient in the future will tend
to choose the former. Thus, if agent 2 is more impatient than agent 1, we require
that

x %1 y ) x %2 y:

This is a natural extension of impatience comparisons made under commitment.
We show that in the random discounting model, the relative degree of impatience is
measured as a probability shift in the monotone likelihood ratio order (MLR), which
is characterized via behavioral comparisons among menus defined as above.
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