Chapter 2

Non-negative Matrix Factorization
and Its Variants for Audio Signal
Processing

Hirokazu Kameoka

Abstract In this chapter, I briefly introduce a multivariate analysis technique called
non-negative matrix factorization (NMF), which has attracted a lot of attention in the
field of audio signal processing in recent years. [ will mention some basic properties
of NMF, effects induced by the non-negative constraints, how to derive an iterative
algorithm for NMF, and some attempts that have been made to apply NMF to audio
processing problems.
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2.1 Introduction

There are many kinds of real-world data given by non-negative values, such as power
spectra, pixel values and count data. In a way similar to multivariate analysis tech-
niques such as Principal Component Analysis (PCA) and Independent Component
Analysis (ICA), decomposing non-negative data into the sum of the underlying com-
ponents can be useful in many situations: For example, if we can extract the power
spectra of the underlying sources in a mixture signal, they may be useful for noise
reduction and source separation. If we can decompose face images into components
corresponding to facial features such as the eyes, nose and mouth, they may be use-
ful for face recognition, identification and synthesis. If we can decompose the word
histograms of text documents into components associated with latent topics such as
politics, sport and economy, they may be useful for document indexing and retrieval.
Similarly, if we can extract patterns reflecting users’ preferences from purchase logs,
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they may be useful for making recommendations. A multivariate analysis technique
enabling the decomposition of non-negative data into non-negative components is
called Non-negative Matrix Factorization (NMF) [1]. In this chapter, I will mention
some basic properties of NMF, how to derive an iterative algorithm for NMF, and
some attempts that have been made to apply NMF and its variants to audio processing
problems.

2.2 What Is NMF?

In the following, we will represent data by vectors. For image data, each pixel value
will correspond to a single element of the data vector. For power spectrum data, the
power at each frequency point will correspond to a single element of the data vector.
Let us assume that we are given a set of N non-negative data vectors y;, ..., yy €
R=%K_ We refer to each of them as an observed vector. Here, R="X is used to
represent an entire set of K-dimensional non-negative vectors. The aim of NMF is

to decompose each of y, ..., yy into the sum of M non-negative components: The
problem is to find the linear combinations of M basis vectors ki, ..., hy € RZ0-K
that best approximate y,, ..., yy:
M
Y= D ity (m=1,....N), 2.1)
m=1

subject to the non-negativity constraints on both the basis vectors k,, and the coef-
ficients u,, ,. Here, it is important to note that the observed data are assumed to be
quantities that are additive in nature. Although neither a pixel value nor a power
spectrum is strictly an additive quantity, we must be aware of the fact that when
applying NMF, the additivity of the data of interest will be implicitly assumed to
hold, regardless of whether this assumption is true or only approximately true. The
non-additivity of power spectra will be discussed in detail in Sect.2.7. In addition to
the additivity assumption as regards the data, the non-negativity constraint is one of
the most important features of NMF. As explained later, the non-negativity constraint
contributes to inducing sparsity of both the basis vectors and the coefficients.

Now,ifweletY = [y, ..., yyl = Ox)kxn,. H =[hy, ..., hy]l = (him)kxm
and U = (Uy.n)mxn»> Eq. (2.1) can be rewritten as Y >~ HU. NMF can thus be seen
as a problem of factorizing an observed matrix into the product of two non-negative
matrices, which gives NMF its name. To understand NMF intuitively, see Fig.2.1
for an example of NMF applied to the spectrogram of an audio signal, interpreted as
a non-negative matrix.
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Fig. 2.1 NMF applied to the i — 7
spectrogram of an audio o
signal. Each column of H b
and each row of U can be
interpreted as a spectral
template and the
corresponding temporal
activation, respectively. HU
can thus be viewed as the
sum of the spectral templates H
scaled by time-varying I
amplitudes | =

Frequency

2.3 Basic Properties of NMF

The number M of basis vectors is usually set smaller than the dimension K and
the number N of data vectors. This is because when M > K or M > N, there are
trivial solutions to the factorization Y = HU. For example, when M = K, we have
Y = IU and when M = N, we have Y = HI, where I denotes an identity matrix.
Obviously, neither of these decompositions provides information about the latent
components underlying the data. When M < min(K, N), the factorization amounts
to approximating the data matrix using a lower rank matrix, which provides mean-
ingful information about the latent components. Geometrically, while PCA (singular
value decomposition) tries to find a linear subspace to which observed vectors belong,
NMEF can be interpreted as finding a convex cone (see Fig.2.2) that is closest to the
entire set of observed vectors. The number M of basis vectors corresponds to the
dimension of the convex cone, which depends on the data and is usually unknown.
Thus, determining M is an important issue in NMF. Recent techniques for determin-
ing M will be mentioned in Sect.2.8.

With NMF, the elements of the coefficient matrix U tend to become sparse as
a side effect of the non-negativity constraint. The intuitive reason for this can be
explained as follows. First, let us consider an unconstrained optimization problem
u = argmin D(y|Hu) where D(-|-) is a measure of the difference between two

u
vectors. Hu corresponds to the closest point from y in the subspace spanned by
hy, ..., hy. If D is defined as an £, norm, for example, this point simply corre-
sponds to the orthogonal projection of y onto the subspace. Now, let us denote
the solution to this optimization problem under the non-negativity constraint by .
Except for a coincidental case where the unconstrained optimal solution & satisfies
the non-negativity constraint, Ha will be a closest point to & in the convex cone
shown in Fig.2.2, namely some point on the boundary of the cone. This means at
least one of the elements of the coefficient vector becomes 0. Therefore, the con-
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Fig. 2.2 Geometric understanding of NMF. Because of the non-negativity of H, all basis vectors
lie in the first quadrant. Because of the non-negativity of U, Hu, can only cover the area enclosed
by the extended lines of all the basis vectors. Thus, NMF can be interpreted as finding a convex
cone that is closest to the entire set of observed vectors

strained optimal solution # becomes relatively sparser (with a larger number of zero
entries) than the unconstrained optimal solution #. This explains why NMF tends to
produce sparse representations. It is important to note that sparsity is related to sta-
tistical independence (non-Gaussianity). Thus, roughly speaking, producing sparse
representations implies that each row of the coefficient matrix tends to become uncor-
related. The above property also applies to the transposition of ¥ ~ HU ,i.e., Y  ~
UTHT, meaning that H also tends to become sparse owing to the non-negativity
constraint on H.

2.4 NMF Algorithms

2.4.1 Positive Matrix Factorization and NMF

The original concept of NMF was first introduced by Paatero and Tapper in 1994 [2].
Within their formulation, they used the Frobenius norm of Y — HU as a measure of
the difference between Y and HU and a logarithmic barrier function

B(H,U) == loghin — > 10guy, 2.2)
k,m m,n

as a penalizing term for violations of the non-negativity constraint, which approaches
infinity as hy_,, or u,, , approaches zero. They proposed a gradient-based optimization
algorithm for minimizing the cost function defined as a weighted sum of these two
terms.
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Because of the property of the logarithmic barrier function, the elements of the
matrices given by this method must always be positive (they never become zero).
Thus, it is usually called “Positive Matrix Factorization (PMF)”, which distinguishes
it from NMF. Several years later, Lee and Seung proposed an iterative scheme called
the multiplicative update algorithm, which ensures the non-negativity of H and
U without using barrier functions [1]. Owing to the simplicity of its implemen-
tation, NMF has subsequently gained considerable momentum in a wide range of
research areas.

2.4.2 Divergence Measures

NMF leads to different optimization problems according to the definition of the
measure of the difference between Y and HU . Lee and Seung have proposed deriving
NMF algorithms using the Frobenius norm and the generalized Kullback-Leibler
(KL) divergence (also known as the I divergence) [3] as the goodness-of-fit criteria.
Of course, the optimal values of H and U depend on the choice of these criteria.
It is desirable that the goodness-of-fit criterion be set according to the underlying
generative process of the data Y. For example, the Itakura-Saito (IS) divergence is
often used as the model-fitting criterion for NMF when it is applied to power spectrum
data [4, 5]. This is actually based on an assumption about the generative process of
time-domain signals (as explained in Sect.2.7.3).

For y, x € R, the Euclidean distance (squared error), the generalized KL diver-
gence and the IS divergence of x from y are defined as

Deu(ylx) = (v — x)%, 2.3)

Dew(ylx) = y logf — V4, 2.4)

Dis(ylx) = > —log > — 1, 2.5)
X X

respectively. All of these metrics become 0 only when x = y and increase monoton-
ically as x and y become more distant. Figure2.3 shows the graph of each of these
measures seen as a function of x. While the Euclidean distance is symmetric about
x =y, the generalized KL divergence and the IS divergence are asymmetric and
impose larger penalties when x is below y than when x is above y. It is also impor-
tant to note that the IS divergence is invariant under the scaling of x and y since it is
represented using only the ratio of x to y. By using these metrics, we can measure
the difference between HU and Y with

D.(H,U)=> D (yk,n
k,n

E hk,mum,n) s
m

where - indicates EU, KL or IS.
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Fig. 2.3 Graph of 100
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2.4.3 Auxiliary Function Approach

The goal of NMF is to find optimal values for H and U that minimize one of these
kinds of measures subject to the non-negativity constraint. Although it is usually
difficult to obtain an analytical expression of the global optimum solution, one of
the local optimum solutions can be searched for numerically using the “auxiliary
function approach” (also known as the “Majorization-Minimization algorithm”)
[7, 25]. As explained later, the auxiliary function approach makes it possible to
locally minimize an objective function by iteratively minimizing an auxiliary func-
tion whose lower bound is exactly equal to the objective function value. It should be
noted that the Expectation-Maximization (EM) algorithm [8], a popular technique
for maximum likelihood estimation from incomplete data, is a special case of this
approach.

In NMEF, the non-negativity constraint must be considered. If the objective function
were given as the sum of individual terms, each relating to one matrix element, solving
the constrained optimization problem would be relatively simple. But of course this
is not the case. If we can use such a function as an auxiliary function, the constrained
optimization problem of NMF can be solved in an iterative manner using the auxiliary
function approach.

The definition of the auxiliary function and the principle of the auxiliary function
approach are as follows.

Definition 2.1 Given an objective function D(#) with the parameter 6 = {0;},<;</,
G (0, «) is defined as an auxiliary function of D(0) if it satisfies
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D(#) = min G0, ), (2.6)
«

where we refer to « as auxiliary variables.

Theorem 2.1 D(0) is non-increasing under the updates:
a < argmin G (0, o), 2.7

0; <—argminG(O, ) (i=1,...,1). (2.8)
0.

Proof Let us set 6 at an arbitrary value 6© and define

oY =argmin G0, o), 6“*V = {argmin G (6, a(£+l))}l<i<1. (2.9)
« 0; -

i

First, it is obvious that D(8©) = G(8©, a**D). Next, we can confirm that G (§©,
a™Dy > GO, D). By definition, it is clear that G(#“*+D o+D) >
D(H“*D) and so we can finally show that D(#) > D(@“+D). A sketch of this
proof can be found in Fig.2.4.

Fig. 2.4 Sketch of process Objective Auxiliary
of auxiliary function method function function
D(8) G(f,a)

G’(G{EJ, a{f})

[
A D(®) | GO0, oy K--

G(G(H—l), a(f+l] )
. D(g[fﬂl) ___________

4
I
1

\

G(6,a?)

(

90 ge+1) 0
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2.4.4 NMF Algorithm with Euclidean Distance

By employing the principle of the auxiliary function approach, we first derive an
NMEF algorithm using Dgy(H, U) as the goodness-of-fit criterion. By using = to
denote equality up to a term independent of z, we can write Dgy(H, U) as

H,U 2

Dey(H, U)'= D (—=2YknXin + X0, (2.10)

k.n

where

Xew = O icmltm n. Q.11)

m
We want to design an auxiliary function such that the matrix elements are sep-
arated into individual terms. Note that x,f,n is a term involving Ay 1, ..., hy u and
Ui, .., Uy, Since aquadratic function is convex, we can employ Jensen’s inequal-

ity to construct a desired auxiliary function.

Theorem 2.2 (Jensen’s inequality for convex functions with non-negative argu-
ments (Fig.2.5)) For an arbitrary convex function g with I non-negative arguments
21y ..., 271, we have

g(Zzi) SZ)\ig (i—) (2.12)

where A1, ..., \; are non-negative weights satisfying >, \; = 1. Equality in this
inequality holds when

A= (2.13)

Fig. 2.5 Jensen’s inequality q(-y)
for functions with o
non-negative arguments for 2z : 2z
I =2 case /\LQ( ) +A2g i /\-3)
SR . i
g(A‘): v g(21 + 22)
21 - z2 y

|
b
<]
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Since hy iy, > 0, we can apply this to x,f’n

2
i <Zkkmn(hk’”u'”") : (2.14)

Akmn

where Mg >0, >, Memn = 1. Here, we notice that the right-hand side of this

inequality is given as the sum of terms each relating to hy ,, and u,, ,. It is also
hi iU, _ himUumn

important to note that the equality holds when === = ... = == namely
h m*“m,n
>\k,m,n = b —. (215)
Xk,n

Hence, the function obtained by replacing the term x,f’n in Dgy(H, U) with the
right-hand side of Eq. (2.14)

Geu(H,U, A = Z(ykn 2yknzhkmumn+z km mn) (2.16)

)\kmn

satisfies the requirement of an auxiliary function for Dgy(H, U). Here, A =
{Memantkxmxn- By using Ggy(H, U, X), we can develop an iterative algorithm
for locally minimizing Dgy(H, U), that consists of performing

A <« argmin Ggy(H, U, \), 2.17)
A
H <« argmin Ggy(H,U, ), U < argmin Ggy(H, U, \). (2.18)
H U
First, Eq. (2.17) is given as Eq. (2.15) as mentioned above. Next, Eq. (2.18) must

be solved subject to non-negativity. Ggy(H, U, A) is a quadratic function of each
matrix element /i ,, which can be minimized when

Z Yik,nUWm,n
M = ———. (2.19)

Z ugl’n/)\k,m,n
n
In the same way, Ggy(H, U, A) can be minimized with respect to u,, , when

Zyk nhkm

Unp = = (2.20)
Z hk m/)‘k m,n
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If these values become negative, the minimizers of Ggy(H, U, A) within the non-
negativity constraint will obviously be #y ,, = 0 and u,, , = 0. Thus, Eq. (2.18) is
given as hy,, = max{l%k,m, 0} and u,, ,, = max{a,, ,, 0}. Note, however, that when
all the elements of H, U and \ are non-negative, both (2.19) and (2.20) necessarily
become non-negative. Hence, if the initial values of H and U are set at non-negative
values, hy,, and u,, , will always be updated to non-negative values. In such a
situation, the update equations for Ay ,, and u,, , can be written simply as hy ,, = h km
and u,, , = i, ,. By substituting Eq. (2.17) into Eq. (2.18), we obtain the following
algorithm:

NMF algorithm with the Euclidean distance

1. Set H and U at non-negative values.
2. Repeat the following updates until convergence.

zyk,num,n Z yk,nhk,m
k

n
hk,m <~ hk,m— Unpn < Unn=
E Xk,nUm,n E xk,nhk,m
n k

Since each variable is updated by multiplying the value at the previous iteration by
a non-negative factor, this kind of algorithm is often referred to as a “multiplicative
update algorithm” [1].

2.4.5 NMF Algorithm with I Divergence

An NMF algorithm using Dk, (H, U) as a goodness-of-fit criterion can be derived
in a similar way. Dk, (H, U) is equal up to a constant term to

HU
Di.(H,U) "= " (=yin 108 Xip + i) @21

k,n
Here, —yy , log xi , is a nonlinear term involving hy 1, ..., hy y and uy p, ..., Ups .y

By using the fact that a negative logarithmic function is convex and 7y ity , > 0,
we can apply Theorem 2.2

h mWm,n
- 10g Xk.n < - Z )\k,m,n 10g (k,—”,)

Ak,m,n

to construct a desired auxiliary function, from which we obtain the following
algorithm:
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NMF algorithm with generalized KL divergence (I divergence)

1. Set H and U at non-negative values.
2. Repeat the following updates until convergence.

E yk,num,n/xk,n E yk,nhk,m/xk,n
n
hk,m < hk,m Unn < Um,n

zum,n , ’ thm
n k

2.4.6 NMF Algorithm with IS Divergence

Here, we show an NMF algorithm using the IS divergence as a goodness-of-fit
criterion developed by the author in 2006 [9]. By omitting the terms that do not
depend on H and U, Dis(H, U) is written as

Dis(H,U)"= " (yk “ + log x, ) (222)

kn Xk,n

In a way similar to that described in the previous subsection, we want to design an
auxiliary function such that the matrix elements are separated into individual terms.
First, by using the fact that the reciprocal function is convex on a positive half-axis,
Ri.mum,, > 0and y;, > 0, we can apply Theorem 2.2 to the term 1/x; ,

h m,n
< ZAkmn( / b ), (223)

)\kmn

Xk,n

where Mg .., is a positive weight satisfying Ay, > 0 and D, Ak mn = 1. Next,
let us focus on the term log x; ,. Since the positive logarithmic function is concave
(not convex), the strategy using Jensen’s inequality cannot be used. However, we
can apply a different inequality as described below. Given a differentiable concave
function g, we can show that a tangent line to g at an arbitrary tangent point o € R
lies entirely above the graph of g, namely for all x € R,

9(x) < g(a) + (x — a)g' (). (2.24)
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Obviously, the equality of this inequality holds if and only if a = x. By applying
this to log x;_,, we obtain

10g Xk,n =< 10g Okon + (xk,n - ak,n)a (225)

Ok n

where oy, is an arbitrary real number. It is important to note that the right-hand side
of this inequality is given as a first order function of the matrix elements. Hence, the
function obtained by replacing the terms 1/x; , and log x; , in Dis(H, U) with the
right-hand sides of Eqgs. (2.23) and (2.25), such that

)\2

Yik,n m,n h mUm.n
Gis(H, U, X, a>=Z(Z bn 4 —1ogyk,n+1ogak.n—2),

kon ' hk,mum,n n Qg .n

(2.26)

satisfies the requirement of an auxiliary function for Dis(H, U) [9]. Note that the
equalities of Eqgs. (2.23) and (2.25) hold if and only if

hk mUm,n
)\k,m,n = ——, Okpn=Xgn- (227)

Xk,n

By applying Theorem 2.1 and deriving each update equation, we obtain the following
algorithm:

NMF algorithm with the IS divergence

1. Set H and U at non-negative values.
2. Repeat the following updates until convergence.

172 172
ZYk,n“m,n/x/?,,, / zyk,ﬂhkam/xl%,n

hiem < hiem R Um,n < Um,n S
Zum,n/xk,n zhk,m/xk,n
n k

2.4.7 NMF Algorithm with (3 Divergence

The three divergence measures given in Egs. (2.3)—(2.5) can be described in a unified
manner using a criterion called the 3 divergence [10]
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B—1 _ x/’}fl yﬁ _ xﬁ

g1 N
where 3 is a real number such that 5 # 0 and § # 1. By using the fact that
limg_o(x” — y?)/8 = log(x/y), it can be confirmed that Eq. (2.28) reduces to the IS
divergence when 3 — 0, the I divergence when 5 — 1 and the Euclidean distance
when (3 = 2, respectively. Here, we show a generalized NMF algorithm using the
(3 divergence as a goodness-of-fit criterion, that we have previously developed [11].
The first term (y*~' — x%~1)/(3 — 1) of Eq. (2.28) is convex in x when 3 < 2 and
is concave otherwise. On the other hand, the second term —(y” — x”)/f3 is concave
in x when 3 < 1 and is convex otherwise. In a way similar to the idea of [9], we
can construct an auxiliary function by applying Eq. (2.12) to the convex term and
Eq. (2.24) to the concave term. By using this auxiliary function, we can derive update
equations given in closed form in the same way as in the previous subsections. The
NMF algorithm derived using this idea is summarized as follows:

Ds(ylx) =y (2.28)

NMF algorithm with the 5 divergence

1. Set H and U at non-negative values, choose 3 and set ¢ () at

1/2-p) B<1
pB) =11 (1<B8<2).
/@B-=10 B>2)
2. Repeat the following updates until convergence.

= @ (B) 6—2 ©(B)
Zyk,nx/gnzum,n Z)’k,nxk!n hic,m

n k
hiem < hiem — 5 Um,n < Um,n 72 ﬁ_lh
X
ko tkm
k

—1
legn Um,n
n

It can be readily verified that the above algorithm reduces to the multiplicative
update algorithms with the IS divergence, the I divergence and the Euclidean distance
presented in Sects. 2.4.4, 2.4.5 and 2.4.6 when § = 0, 1, 2, respectively.

2.5 Interpretation of NMF as Generative Model

2.5.1 (3 Divergence Versus Tweedie Distribution

The optimization problems of NMF with the Euclidean distance, / divergence,
IS divergence and 3 divergence are equivalent to the problems of the maximum
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likelihood estimation of H and U, where each element y,, of Y is assumed to have
been generated independently from the normal distribution, Poisson distribution,
exponential distribution and Tweedie distribution with the mean x; ,

Yin © N(yk,n; Xk,ns 0_2)’ (229)
Yion ™ POiSSOH(yk,n; xk,n)a (230)
Yk.n ~ Exponential (Yx n; Xk.n), (2.3
Ve ~ Tweedie(Yi,ns Xkns @), (2.32)
respectively, where
Nz o 0®) = e, (2.33)
Poisson(z; ) = pufe /7! (z > 0), (2.34)
Exponential(z; ) = ﬁe‘z/“ (z = 0), (2.35)
Tweedie(z; 1, ¢) = a(z, d)es W), (2.36)
S B D LB A0
p(p) =4 - 7 R =4 " ”
logp (B=1) log pu (8 = 0).

This can be confirmed as follows. All the log-likelihoods L (xi ,) = log p(Vk.n|Xk.n)
defined by Egs. (2.29)—(2.32) are maximized when x;, = yi,. Thus, L(yk,) >
L(xx ). Hence, the log-likelihood differences L(yi ) — L(xk ) can be regarded as
non-negative measures of the dissimilarity between y; , and x; , that become O only
when xi , = yr.,. We can see that the log-likelihood differences L (yx ) — L(xk.,)
for Egs. (2.29)—(2.32) are equal to Eqgs. (2.3)—(2.5) and (2.28), respectively.

2.5.2 Bregman Divergence Versus Natural Exponential
Family

As we have seen in the four examples above, an assumption regarding the divergence
measure for a certain model-fitting problem is associated with a probability density
function assumption regarding the observed data. In this subsection, I show that
the class of probabilistic distributions belonging to the natural exponential family is
associated with the class of goodness-of-fit criteria called the Bregman divergence
and that the 3 divergence is a special case of the Bregman divergence. In the following,
I will omit the subscripts k, n for simplicity and assume that an element y of the
observed matrix follows a probability distribution belonging to the exponential family

y ~exp {nT(y) — ) +c(}, (2.37)
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where 1) is an infinitely differentiable, strictly convex function. 7 is called a natural
parameter and is a function of the parameters characterizing the distribution. Here, we
consider the case 7' (y) = y, whose distribution class is called the natural exponential
family.

First, we introduce the Legendre transform of ¢

$(2) = msix(vz — (V). (2.38)

Since 7 is a convex function, ¢ also becomes a convex function due to the property of
the Legendre transform. By using v* to denote ¢(z), i.e., v that maximizes vz — ¥ (v),
v* satisfies (vz — ¥(v))’ = 0, namely

V() =z (2.39)

Next, by using the fact that the cumulant generating function of y ~ exp {77y -
v(n) + c(y)} is given as K (t) = logEE[e”"] = ¥ (¢ + 1) — 1»(n), we can write x :=
E[y] = K’(0) as

x='(n). (2.40)

Since 1 is a convex function, v/’ is a one-to-one function. Thus, there is a one-to-one
correspondence between 7 and x. By comparing Eq. (2.40) with Eq. (2.39), we can
show that n = argmax(vx — ¥ (v)). ¢(x) can thus be written as

v

P(x) = n(x)x — Y (n(x)). (2.41)

Note that here 7 is written as 7(x) to emphasize that it is a function of x. Here, by
differentiating both sides of Eq. (2.41) with respect to x, we have

¢'(x) = n(x) +1'()x — ¢ ()N (x). (2.42)

By plugging Eq. (2.40) into Eq. (2.42), the second and third terms cancel each other
out, thus resulting in ¢'(x) = n(x).

By substituting the two relationships ¢(x) = nx — ¥ (n) and ¢'(x) = n(x) given
above into the probability density function of the natural exponential family exp{ny —
() + c(y)} = exp{nx — () + n(y — x) + c¢(y)}, we obtain

p(ylx) = exp{p(x) + ¢ ()(y — x) +c(M)}. (2.43)

Here, it is important to note that the log-likelihood of x, L(x) = log p(y|x) = ¢(x) +
@' (x)(y — x) + ¢(y), is maximized when x = y, since (¢(x) + ¢'(x)(y — x)) =
¢"(x)(y —x). Thus, L(y) > L(x). Hence, the log-likelihood difference
L(y) — L(x)
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Fig. 2.6 Bregman
divergence Dy(y | x)

Dy (ylx) = (y) — d(x) — ¢'(x)(y — x), (2.44)

can be regarded as a non-negative measure of the dissimilarity between x and y that
becomes 0 only when x = y. This measure is called the Bregman divergence [12].
As shown in Fig.2.6, D,(y|x) corresponds to the difference between the convex
function ¢ and its tangent line at point x. We can see from this figure that Dy (y|x)
is always non-negative and that D,(y|x) becomes 0 only when x and y are equal.

The (3 divergence introduced in Sect.2.4.7 is a special case of the Bregman diver-
gence with

—logx +x — 1 B=0)
Pp(x) = Jxlogx —x +1 B=1) [13]. (2.45)

3

. 1 .
00 — 77+ 75 (otherwise)

Thus, the Euclidean distance, I divergence, and IS divergence, which are special
cases of the [ divergence, are also special cases of the Bregman divergence.

An attempt was made by Dhillon and Sra to derive a multiplicative update algo-
rithm for NMF with the Bregman divergence under a limited class of ¢ [14]. However,
its generalization to an arbitrary ¢ has yet to be proposed.

2.6 Relation to Probabilistic Latent Semantic
Analysis (pLSA)

The concept of probabilistic Latent Semantic Analysis (pLSA) [15], which is a
technique that was originally developed for document clustering and indexing, is
closely related to NMF. This section describes the relationship between these two

techniques.
Let yi, be the number of times word k occurs in document n. The histogram of
all possible words y, = (Y1, - -, yK,n)T in document # is called a document data.

The number of times a particular word occurs may depend heavily on the topic of
the document such as politics, economy, sports, entertainment, and culture. The aim
of pLSA is to estimate topics from document data based on this dependence.
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Let p(k|m) be the probability that word k occurs when the topic is m and p(m|n)
be the probability that the topic of document #n is m. Then, the probability p(k|n)
that word k occurs in document n can be written as

pkln) =D p(klm)p(m|n). (2.46)

m

By putting x , = p(k|n), him = p(klm)andu,, , = p(m|n),and by arranging them
in matrices X = (x¢ )k xn, H = (hem)kxym and U = (U n) mxn, Eq. (2.46) can
be written in matrix notation as X = HU. If each word in a set of document data
is assumed to be generated independently according to the distribution p(k|n), the
probability that all the document data are generated becomes Hk’n p(k|n) . Since
both H , = p(klm) and U, , = p(m|n) are unknown, the maximum likelihood
estimation of H and U can be formulated as an optimization problem of maximizing

log p(Y[H, U) = D i, 10g xi . (2.47)
k,n

with respect to H and U subject to non-negativity and sum-to-one constraints:
hiem =0, D hem =1, >0, > upy, =1. By comparing Eqgs.(2.47) and
(2.21), we notice that the above log-likelihood is exactly opposite to the first term of
Eq. (2.21). Furthermore, as the second term of Eq. (2.21) can be seen as correspond-
ing to a Lagrange multiplier term for x; ,, the pLSA optimization problem has the
same form as that of NMF with the I divergence criterion. Indeed, it turns out that
the optimization algorithm described in Sect.2.4.5 is equivalent to the expectation-
maximization (EM) algorithm obtained by treating the topic index m as a latent
variable up to the normalization of H and U.

As described above, the way in which the likelihood function of pLSA is defined
is different from NMF described in Sect.2.5. While pLSA treats Ay, and u,, , as
probability distributions over k and m, NMF treats them as random variables. Namely,
pLSA is categorized as mixture models (models defined as the sum of probability
distributions) whereas NMF is categorized as factor models (models defined as the
distribution of the sum of random variables). The Bayesian extension of pLSA is
called the latent Dirichlet allocation (LDA) [16] and the Bayesian extension of NMF
with the I divergence criterion is discussed for example in [17].

2.7 Applications to Audio Signal Processing Problems

2.7.1 Audio Source Separation and Music Transcription

Smaragdis and Brown proposed an automatic music transcription method that
uses NMF to decompose the magnitude (or power) spectrograms of music signals
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into spectrograms associated with individual pitches [18]. With this approach, the
magnitude (or power) spectrogram of a mixture signal, interpreted as a non-negative
matrix Y, is factorized into the product of two non-negative matrices H and U
(See Fig.2.1). This can in turn be interpreted as approximating the observed spectra
at each time frame as a linear sum of basis spectra scaled by time-varying ampli-
tudes, and amounts to decomposing the observed spectrogram into the sum of rank- 1
spectrograms. As described in Sect. 2.3, an important feature of NMF is that its non-
negativity constraint usually induces sparse representations, i.e., U with a relatively
large number of zero entries. This means that each observed spectrum is parsimo-
niously represented using only a few active basis spectra. In such situations, the
sequence of observed spectra can be approximated reasonably well when each basis
spectrum expresses the spectrum of an underlying audio event that occurs frequently
over the entire observed range. Thus, with music signals, each basis spectrum usually
becomes the spectrum of a frequently used pitch in the music piece under analysis.

This approach is based on two assumptions; one is that magnitude (or power)
spectra are additive and the other is that the magnitude spectrum of each sound
source is constant up to the scale over time (i.e., only the scale of the spectrum
is time-variant). However, these assumptions do not hold in reality. This section
introduces some of the attempts that have been made to develop variants of NMF
that aim to relax these assumptions.

2.7.2 Complex NMF

Audio signals in the time domain (sound waves) are additive. Since typical methods
for time-frequency decomposition, such as the short-time Fourier transform (STFT)
and the wavelet transform, are linear, complex spectrograms of audio signals are also
additive. However, since the transformation of complex spectrograms into magni-
tude (or power) spectrograms is nonlinear, magnitude spectrograms are non-additive.
Namely, the magnitude spectrum of the sum of two waveforms is not equal to the
sum of the magnitude spectra of the two waveforms. This implies that decomposing
a magnitude spectrogram into the sum of additive components does not necessarily
lead to an appropriate decomposition of the audio signal.

To address this shortcoming of the NMF approach, I previously proposed a frame-
work called the “Complex NMF” [19], which makes it possible to realize NMF-like
signal decompositions in the complex spectrogram domain. The key idea behind the
NMF approach was to model the magnitude spectrogram of a mixture signal as the
sum of rank-1 magnitude spectrograms. By contrast, the key idea behind the pro-
posed approach is to model the complex spectrogram of a mixture signal as the sum
of complex spectrograms each having a rank-1 structure in the magnitude domain.
This idea can be formulated as follows.
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Let ay ., € C denote the complex spectrogram of source m. The complex
spectrogram of a mixture signal consisting of M sources is given as

M
fk,n = Zam,k,n = Z |am,k,n|ej@m'k'”v (248)
m=1 m

where ¢, 1., denotes the phase spectrogram of source m. Here, if we assume that
the magnitude spectrogram of each source has a rank-1 structure, we can write
|@m.k.n| = hk.mUm.n. This leads to a complex spectrogram model of the form:

fk,n = Z hk,mum,nej(pm‘k'n . (2.49)

It is important to emphasize that ¢, , is indexed by n, meaning that this model
allows the phase spectrum of each source to vary freely over time. The aim of
Complex NMF is to fit this model to an observed complex spectrogram through the
estimation of H, U and ¢. It should be noted that unlike NMF, this model allows
the components to cancel each other out (since the real and imaginary parts of the
complex spectrum of each source can take either positive or negative values), and so
when there are no constraints, it does not naturally produce sparse representations.
Thus, to obtain sparse representations similar to NMF, some constraint is needed to
induce the sparsity of U. In [19], I formulated an optimization problem of minimizing

IH U @) =D |yen = feal” +27 D lttmal”. (2.50)
k,n m,n

with respect to H, U and ¢ where the second term is a sparse regularization term, and
derived an iterative algorithm based on the auxiliary function approach. Here, 0 <
p < 2 and y > 0 are constants. The main difficulty with this optimization problem
lies in the nonlinear interdependence of ¢; f , . . . , ®m k., and the discontinuity of the
gradients with respect to u,, ,. The nonlinear interdependence of @ g, - .., Orrkon
arises from the “square-of-sum” form in the first term of Eq. (2.50). To derive closed-
form update equations using the auxiliary function approach in a similar way to
Sect.2.4.4, it is desirable to design an upper bound function that has a “sum-of-
squares” form for this term. However, unlike Sect.2.4.4, Theorem 2.2 cannot be
applied in this case, since hk,mum,ne""”‘"’-k»" is a complex number. Instead, in [19] I
proposed invoking the following inequality:

Theorem 2.3 (Jensen’s inequality for convex functions with complex arguments)
For an arbitrary convex function g with complex arguments y and zy,...,Z7],
we have

gy -2 =) SZﬁiQ(aiﬁ—iZi), 2.51)

i
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where i, ..., ay are complex variables satisfying > .o =y and 3, ..., | are
positive weights satisfying >". 3 = 1. Equality in this inequality holds when

ar=z+6(y - D). (2.52)

l

Proof Since >, a =y, we can write g(y — >, z;) = g(3 ; (e — z;)). By using
arbitrary positive weights /3y, . .., 3 that sum to one, we obtain

g(lZ(ai - Zi)) = g(lZﬁi aiﬂ_i Zi)
<> by (O"' 0 Z"), (2.53)

where the second line follows from Jensen’s inequality. Note that equality in this
inequality holds when

@] — 2 ar —2jp

s B

(2.54)

Letting Z denote the value of Eq. (2.54), ; is given as a; = z; + 3; Z. Since «;
must sum to y, ie., >, =2 .z +Z =y, Zis given by Z=y— > .z. By
substituting this into o; = z; + (; Z, we finally obtain Eq. (2.52).

As for the second term of Eq. (2.50), which is non-differentiable with respect to
Um ., We can use the fact that, when 0 < p < 2,

2—p
2

|Um,n|pv (2.55)

to construct an upper bound function. Altogether, we obtain an auxiliary function

. 2
IYH, U, ¢,a,V) := Z Qe — hk’mumynemm,m

1
knm ﬁm,k,n

9 D Plomal” 2t + @ = Plowal”}. 256)

which has a “sum-of-squares” form. Here, (3, ., is a positive weight that can be set
arbitrarily subject to Zm Bmkn = 1.y r.n and vy, , are auxiliary variables satisfying
> Qmk.n = Yk.n. By using this, we can develop a convergence-guaranteed iterative
algorithm with closed-form update equations.
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2.7.3 [Itakura-Saito NMF

Although the additivity of power spectra does not generally hold as mentioned above,
it holds in the expectation sense if the signals are assumed to be samples drawn
independently from stochastic processes.

If each underlying source signal in a mixture signal within a short-term segment
is assumed to have been generated from a zero-mean circularly-stationary Gaussian
process, each frequency component of the discrete Fourier transform of that segment
independently follows a zero-mean complex normal distribution. Namely, if we let
Sm.k.n b€ a component of frequency k of source signal m within segment n (i.e.,
the complex spectrogram of source m), s,, ., follows a zero-mean complex normal
distribution

Smk,n ™ N(C (sm,k,n; 0, Vm,k,n), (257)

with variance v, x.,, where N¢(z; p1, v) = %e"z”“z/”. Note that v, ¢, corresponds
to the expectation of the power spectrogram of source m, i.e., Vy k.n = El|S k.n 12].
Now, if we assume that the complex spectrogram yy , of an observed signal is given as
Yin = D Smk.n» and that s,, ¢, and s,y , (m # m'’) are statistically independent,
Yk.n also follows a zero-mean complex normal distribution

Yo ~ N (3005 0. X V). (2.58)

with variance ", Vu k... By putting xx, = D, Vi k.0, the log-likelihood of xy ,
given an observation y, , can be written as

_ |yk,n|2
L(xpn) = —logmxy , — . (2.59)

Xk,n

Since this log-likelihood reaches maximum only when xi, = |yi.n |2, we have
L(|yk.n1?) = L(xt.,). Wenotice that the log-likelihood difference L (| yx., |*) — L (xx..)
> 0 is actually equal to the IS divergence between |y;.,|> and x;_,, i.e., Dis(| V.. |?
|x.n)- Thus, if we assume the expectation of the power spectrogram of each source to
have a rank-1 structure, i.e., Vjy k.n = Ak mlm.n, the maximum likelihood estimation
of H = (hgm)kxm and U = (U ») mxn 1s equivalent to the problem of NMF with
the IS divergence criterion applied to the observed power spectrogram |y, | [4, 5].

2.7.4 NMF with Time-Varying Bases

When applying NMF to music spectrograms, we may expect the magnitude spec-
tra of a single musical note produced by an instrument to be represented using a
single basis spectrum scaled by time-varying amplitudes. However, its variations in
time are actually much richer. For example, a piano note would be more accurately
characterized by a succession of several basis spectra corresponding to, for example,
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“attack,” “decay,” “sustain” and “release” segments. As another example, singing
voices and string instruments have a particular musical effect, vibrato, which can be
characterized by its “depth” (the range of pitch variation), and its “speed” (the rate
at which the pitch varies). Several variants of NMF have been proposed to represent
time-varying spectra by introducing the concept of time-varying bases [20-22].

One approach involves extending NMF to a convolutional version, which finds a
decomposition of Y as

Ykon = Xkn = z Z hk,m,lum,nfh (260)
m [

where Ay, ; can be interpreted as the local time-frequency pattern of the mth audio
event and u,, , represents its temporal activation. Since the problem at hand is to
decompose the convolutive mixture, this approach is called “non-negative matrix
factor deconvolution (NMFD)” [20].

NMFD assumes that the spectrum of each audio event evolves in time in exactly
the same way every time it occurs. However, the speeds of the temporal variations are
unlikely to be the same all the time. To cope with the varying speeds of the temporal
variations of spectra, we proposed modeling the magnitude spectrogram of a mixture
signal based on a factorial hidden Markov model (FHMM) formulation [22]. The idea
is to model the spectrogram of a mixture signal as the sum of the outputs emitted
from multiple HMMs, each representing the spectrogram of an underlying audio
event (see Fig.2.7). Thus, the problem is to find a decomposition of Y as
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Fig. 2.7 Illustration of the factorial HMM approach [22]. The spectrogram of a mixture signal is
modeled as the sum of the outputs emitted from multiple HMMs, each representing the spectrogram
of an underlying audio event
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Vi 2 Xew = O . (2.61)
m

where h,((’)m denotes the basis spectrum at state i and z,,, € {1, ..., [,,} denotes
a state variable indicating which basis spectrum is activated at time n. The path
of the state variables z,, 1, ..., zm n 1S governed by a state transition probability
p(zm,n = a|zm,n—l = b) = Tm,a,b-

2.7.5 Other NMF Variants

A number of constrained and regularized variants of NMF have been proposed specif-
ically with the aim of solving audio source separation problems. Some examples are
as follows. Virtanen proposed incorporating a temporal continuity constraint in the
factorization process [23]. Raczyfiski proposed constraining each basis spectrum so
that it had a harmonic structure [24]. Several groups (including mine) independently
proposed combining the source-filter model with the NMF model [25-28]. I proposed
incorporating a subprocess that involved clustering timbrally similar basis spectra in
the factorization process [29].

2.7.6 Other Applications

NMF has found several interesting audio-related applications including speech
enhancement [30], bandwidth extension [31], singing voice separation [32], drum
sound extraction [33], formant tracking [35], echo cancellation [36], and the temporal
decomposition of speech [37]. I proposed a blind dereverberation method inspired
by the NMF algorithm in [27]. Multichannel extensions of NMF have been proposed
independently by several groups (including mine) with an expectation that the mod-
eling concept of NMF can also be useful for multichannel audio source separation
problems [39-43].

2.8 Bayesian Nonparametric NMF

2.8.1 Determination of Basis Number

The determination of the number of bases is an important issue in NMF. Cemgil and
Schmidt proposed formulating the problem of the basis number estimation for NMF
as a model selection problem [17, 44]. By using H™ and U™’ to denote the basis
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and coefficient matrices with M bases, the marginal likelihood can be thought of as
the likelihood function of M, since

p(Y|M) = / / p(Y[H U p(H™ | M)p(U ™ |M)dH U™ (2.62)

As the exact marginal likelihood involves intractable integrals, some approximation
of the log marginal likelihood is usually used as a criterion for model selection.
The Bayesian Information Criterion (BIC) [45] and the variational Bayesian lower
bound [46] are examples of such approximations. To determine the number of bases
with model selection, we need to perform NMF with all possible M settings and
find the best model structure by comparing the values of model selection criteria.
Although this approach is indeed principled and well founded, such procedures can
be time-consuming. By contrast, a framework called the Bayesian nonparameteric
approach allows us to avoid performing an explicit model selection procedure and
instead reduce this task to a single run of a parameter inference algorithm. In the
following, we briefly show some examples of attempts that have been made to apply
the Bayesian nonparameteric approach to NMF.

2.8.2 Beta Process NMF and Gamma Process NMF

A Bayesian nonparametric model is a Bayesian model on an infinite-dimensional
parameter space. The Bayesian nonparameteric approach refers to a parameter infer-
ence framework for Bayesian nonparametric models, which makes it possible to infer
the model complexity along with the model parameters by finding a minimal subset
of parameters that can explain given observed data.

Bayesian nonparametric models (also known as infinite models) are typically
described using stochastic processes. Up to now, many types of infinite models
including infinite mixture models and infinite factor models have been proposed in the
literature. For instance, infinite counterparts of mixture models, such as the Gaussian
mixture model (GMM), hidden Markov model (HMM), probabilistic context-free
grammar (PCFG), and probabilistic Latent Semantic Analysis (pLSA), can be con-
structed using a stochastic process called the Dirichlet process (DP) or its variants.
While a Dirichlet distribution is a probabilistic distribution over a finite set of non-
negative numbers that sum to 1, the Dirichlet process can be thought of as an exten-
sion of it to an infinite set. Thus, the Dirichlet process is a generative model of a
categorical distribution (probabilities of discrete random variables) with an infinite
dimension, i.e., 7y, 7, ... T € [0, 1] satisfying Zfil m; = 1, which can be used,
for example, as a prior distribution over the mixture weights of mixture models.
An important property of the Dirichlet process is its sparsity-inducing effect. The
categorical distributions generated from a Dirichlet process tend to become sparse.
Owing to this property, we can find a minimal subset of mixture components with
non-zero weights that explains given observed data through parameter inference.
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This is why the use of an infinite mixture model allows us to infer the adequate
model complexity (the number of mixture components) from observed data. As
mentioned in Sect. 2.6, pLSA can be understood as a particular case of NMF, where
the number of mixture components (i.e., the latent topics) corresponds to the basis
number. Thus, in a way similar to the NMF approach, it is technically possible to
apply pLSA to a magnitude spectrogram by regarding it as document data, where
the frequency and time indices are interpreted as the word and document indices,
respectively [47], and an infinite counterpart of this approach can be constructed
using a Dirichlet process [48]. On the other hand, infinite counterparts of factor
models, such as NMF and Independent Component Analysis (ICA), can be con-
structed using stochastic processes called the beta process (BP) or gamma process
(GP). Simply put, the beta process is a generative model of infinitely many variables
within the range [0, 1], 7, m, ..., T € [0, 1], and the gamma process is a gen-
erative model of infinitely many non-negative variables, 0y, 05, ..., O € [0, 00).
An infinite extension of NMF can be constructed using these stochastic processes.
When using the beta process, we introduce a binary variable z,, , € {0, 1} indicating
whether the m-th basis exists in data n, with z,, , = 1 if data n has a basis m and 0 oth-
erwise. By using z,, ,, we define x; , as x; , = Z;’le Zmnhk mUm.n and place a beta
process prior my, , = p(Zmn = 1) OVer 21,4, . . ., Zoo.n [49, 50]. An important feature
of the beta process is its sparsity-inducing effect. The variables generated from a
beta process tend to become sparse (most of the variables become almost 0). Owing
to this property, we can find a minimal subset of bases that explains given observed
data through parameter inference. When using the gamma process, we introduce a
non-negative variable 6,, € R=% indicating the contribution made by basis m. By
using 60,,, we define x;, as x;, = z;o:l Omhi mmn, put some constraint on the
scales of Ay, and u, , (e.g., E[ht,,] =1 and E[u,, ,] = 1), and place a gamma
process prior over 6y, ..., 05 [22, 51]. An important feature of the gamma process
is its sparsity-inducing effect as with the beta process. The variables generated from
a gamma process tend to become sparse (most of the variables become almost 0).
Owing to this property, we can find a minimal subset of bases that explains given
observed data through parameter inference.

2.9 Summary

This chapter described some basic properties of NMF, effects induced by the non-
negative constraints, how to derive an iterative algorithm for NMF, some attempts
that have been made to apply NMF to audio processing problems, and extensions to
the Bayesian nonparametric framework. Readers are referred to other review articles
such as [52-55] for further details.
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