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Preface

When the title of this book, Sugar Chains, was first proposed by the publisher, for a 
moment I thought that it may sound a bit too non-scientific, but after pondering it,  
I found that this may be a perfect title for the book, as it somewhat reflects how 
glycoscience or glycobiology has been perceived by those who are non-experts. It is 
just an enigmatic “sugar” thing (in a strict sense, it actually represents sucrose!) 
attached to lipids or proteins that gives all of us, whether experts or not, a headache 
because of its incredible structural diversity as well as the lack of simple analytical 
methods.

It has been more than two decades since the word “glycobiology” was coined. 
While this research area, due to its unique methodology not compatible with most 
biochemists, has long been regarded as a very specialized field with limited interest, 
the recent explosive research progress has provided countless examples of critical 
roles for glycan chains in various important biological phenomena. For instance, 
cell surface glycans can be regarded as a “face” of cells, and their structures are 
known to change depending on developmental stages or environment. Therefore, 
cell surface glycans are utilized for identification of stem cells such as induced 
pluripotent stem (iPS) cells or embryonic stem (ES) cells, or as valuable biomarkers 
in diagnosis/detection of cancer.

In this book, recent breakthrough results have been introduced regarding the 
roles of glycans in quality control or intracellular trafficking of proteins, immunology, 
viral infection, stem cell biology, neuroscience, and various diseases such as cancer, 
diabetes, chronic obstructive pulmonary disease (COPD), muscular dystrophy, or 
schizophrenia. In each chapter, outstanding “glyco-related” questions are also 
posed, so that researchers not familiar with glycoscience will have a clearer idea 
about what the future direction for further clarification of the role of glycans in 
respective research fields will be. We are proud of the fact that quite an impressive 
line-up of articles is gathered here. We do hope that this book will serve as a good 
“textbook” especially for those who are not familiar with, but nevertheless inter-
ested in, sugar chains in diverse research fields.



vi

We editors would like to thank Mr. Kaoru Hashimoto and Mr. Yasutaka 
Okazaki (both of Springer Japan), for giving us the opportunity of editing this book; 
Ms. Momoko Asawa and Ms. Yuko Matsumoto (both of Springer Japan); and Ms. 
Kotoko Ueno (Glycometabolome Team, RIKEN) for their devoted help in the 
editing process.

Wako, Japan Tadashi Suzuki (for the editors)

Preface



vii

Contents

1   N-Glycans and Quality Control of Proteins ......................................... 1
Nobuko Hosokawa and Tadashi Suzuki

2   Glycan-Mediated Protein Transport  
from the Endoplasmic Reticulum .......................................................... 21
Morihisa Fujita, Xiao-Dong Gao, and Taroh Kinoshita

3   Gangliosides and T-Cell Immunity ........................................................ 35
Masakazu Nagafuku and Jin-ichi Inokuchi

4   Gangliosides Regulate Tumor Properties: With Focus  
on the Suppression of Metastasis- Associated  
ppGalNAc-T13 with GM1 ...................................................................... 55
Koichi Furukawa, Yasuyuki Matsumoto, Qing Zhang,  
and Keiko Furukawa

5   Role of Glycans in Viral Infection ......................................................... 71
Tadanobu Takahashi and Takashi Suzuki

6   Discovery and Applications of a Novel Human  
Pluripotent Stem Cell-Specific Lectin Probe rBC2LCN ..................... 95
Hiroaki Tateno and Jun Hirabayashi

7   Glycan Structure and Neural Plasticity ................................................ 107
Tadahisa Mikami and Hiroshi Kitagawa

8   The Involvement of Midkine, a Heparin- Binding  
Growth Factor, in Cancer Development ............................................... 127
Satoshi Kishida and Kenji Kadomatsu

9   Tumor-Associated Glycans and Their  
Functional Roles in the Multistep Process  
of Human Cancer Progression ............................................................... 139
Reiji Kannagi, Keiichiro Sakuma,  
Bi-He Cai, and Shin-Yi Yu



viii

 10  Mammalian Sialidase and Tumor Development .................................. 159
Taeko Miyagi, Kohta Takahashi, Kazuhiro Shiozaki,  
and Kazunori Yamaguchi

 11  Roles of Glycans in Immune Evasion  
from NK Immunity ................................................................................. 177
Shigeru Tsuboi

 12  Glycomic Analysis of Cancer ................................................................. 189
Yasuhide Miyamoto

 13  Glyco-Predisposing Factor of Diabetes ................................................. 209
Kazuaki Ohtsubo

 14  Macrophages Govern Ganglioside GM3 Expression  
in Adipocytes to Regulate Adipogenesis and Insulin  
Signaling in Homeostatic and Pathogenic Conditions ......................... 219
Jin-ichi Inokuchi

 15  O-Mannosyl Glycan and Muscular Dystrophy .................................... 235
Hiroshi Manya and Tamao Endo

 16  Glycans and Chronic Obstructive Pulmonary  
Disease (COPD) ....................................................................................... 259
Congxiao Gao and Naoyuki Taniguchi

 17  α1,6-Fucosyltransferase Knockout Mice  
and Schizophrenia-Like Phenotype ....................................................... 267
Wei Gu, Tomohiko Fukuda, and Jianguo Gu

Erratum ........................................................................................................... E1

Index ................................................................................................................. 281

Contents



1© Springer Japan 2015 
T. Suzuki et al. (eds.), Sugar Chains, DOI 10.1007/978-4-431-55381-6_1

    Chapter 1   
  N -Glycans and Quality Control of Proteins 

             Nobuko     Hosokawa      and     Tadashi     Suzuki    

    Abstract     Glycosylation is one of the most ubiquitous posttranslational modifi ca-
tions for eukaryotic proteins. There are numerous examples of the attachment of 
glycans to carrier proteins resulting in changes in their physicochemical properties, 
such as solubility or heat stability, as well as physiological properties, such as bio-
activity or intra- or intercellular traffi cking. In addition, recent studies have revealed 
that  N -glycans can act as a readout for the folding status of glycoproteins in the 
endoplasmic reticulum (ER), so that only proper amounts of functional proteins are 
made and delivered to their respective destinations. This process is often called the 
glycoprotein quality control system, as a part of the ER protein homeostasis machin-
ery. After misfolded glycoproteins are targeted for destruction in the ER, they are 
eventually retrotranslocated into the cytosol for proteasomal degradation. In the 
cytosol, glycans are again used for recognition by ubiquitin ligases but are eventu-
ally removed from glycoproteins in order to effi ciently degrade misfolded glycopro-
teins. In the present review, a particular focus will be on the mannose-trimming 
processes, whereby  N -glycan-dependent ER-associated degradation signals are cre-
ated and recognized in the ER, as well as on the function of Fbs proteins and PNGase 
that recognize  N -glycans in the cytosol.  

  Keywords     Endoplasmic reticulum (ER)   •   ER-associated degradation (ERAD)   • 
  EDEM   •   Fbs protein   •   Glycoprotein   •   Mannose trimming   •    N -glycans   •   PNGase   • 
  Protein quality control   •   Ubiquitin ligase  
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1.1          N -Glycans as Signals for Glycoprotein Quality Control 
in the Endoplasmic Reticulum 

 The endoplasmic reticulum (ER) is an organelle where the majority of secretory 
and membrane proteins are synthesized, with approximately one-third of genes 
encoding proteins that enter the secretory pathway. Most of these proteins are mod-
ifi ed with glycosylation, resulting in changes in their solubility and stability, or 
biological activities. An  N -glycan comprised of 14 sugars (Glc 3 Man 9 GlcNAc 2 ) is 
covalently attached en bloc to the Asn residue in the consensus sequence (Asn-
Xaa-Ser/Thr) of newly synthesized proteins in mammalian or yeast ER (Fig.  1.1a ) 
(Kornfeld and Kornfeld  1985 ). However, immediately after the addition, process-
ing of glucose from the  N -glycan begins, followed by mannose processing 
(Helenius and Aebi  2004 ; Parodi  2000 ). Normally, it is believed that glycoproteins 
leave the ER after the removal of a (and potentially more) mannose residue(s) from 
the  N -glycans. The specifi c sugar moieties are recognized by lectins in the ER 
(Fig.  1.1b ). Nascent polypeptides are eventually folded with the assistance of chap-
erone proteins, oxidoreductases and other enzymes in the ER. The ER quality con-
trol mechanism strictly monitors the folding states of proteins, ensuring that only 
correctly folded or assembled proteins are sorted further to the secretory pathway 
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(Ellgaard and Helenius  2003 ; Sitia and Braakman  2003 ). Polypeptides that fail to 
obtain their native conformations or have unfolded structures under stress condi-
tions are prevented from being secreted. They reenter the folding cycle, whereupon 
terminally misfolded polypeptides are eventually degraded. ER-associated degra-
dation (ERAD) is a mechanism whereby misfolded ER proteins are retrotranslo-
cated to the cytosol and degraded by proteasomes (McCracken and Brodsky  2003 ; 
Plemper and Wolf  1999 ). During these processes,  N -glycans act as signals for the 
quality control of glycoproteins.  

 In the ER, monoglucosylated  N -glycan (Glc 1 Man 9 GlcNAc 2 ) is recognized by the 
lectin calnexin (CNX) and its soluble homologue calreticulin (CRT), thereby assist-
ing protein folding (Helenius and Aebi  2001 ; Maattanen et al.  2010 ). Once the ter-
minal glucose is removed by glucosidase II, glycoproteins are released from CNX/
CRT. UDP-glucose:glycoprotein-glucosyltransferase (UGGT) is an enzyme that 
adds monoglucose back to  N -glycans on the polypeptides that still have not acquired 
their native conformations, thus, directing the nonnative conformer back to CNX/
CRT (CNX/CRT cycle or monoglucose cycle) (Caramelo and Parodi  2008 ; 
D’Alessio et al.  2010 ). Since  S. cerevisiae  possesses calnexin (Cne1p) but lacks 
UGGT, glycoproteins do not enter this extensive folding cycle in this organism. 

 Glycoproteins that fail to obtain their native conformations are removed from the 
ER, thereby preventing deleterious effects such as aggregation formation or inter-
ference with the folding of newly synthesized polypeptides. Mannoses are pro-
cessed from  N -glycans on the polypeptides while remaining in the ER, and hence 
unfolded glycoproteins with mannose-processed  N -glycans are targeted for degra-
dation (mannose timer model) (Helenius  1994 ; Jakob et al.  1998 ). Removal of the 
mannose from the A branch terminates reentry to the CNX/CRT cycle. Recently, 
 N -glycans lacking the terminal mannose of the C branch, or the exposure of the 
α1,6-linked mannose, have been identifi ed as the signal for ERAD (Aebi et al.  2010 ; 
Hosokawa et al.  2010a ; Lederkremer  2009 ; Smith et al.  2011 ). Yos9p in  S. cerevi-
siae  and OS-9 and XTP3-B/Erlectin in mammals are resident ER proteins that con-
tain sugar recognition domains for mannose 6-phosphate homology (MRH) 
(Castonguay et al.  2011 ; Munro  2001 ) and recognize  N -glycan signals for ERAD. 

 Membrane-embedded ubiquitin ligases (E3) play central roles in ERAD. The 
Hrd1p-Hrd3p ubiquitin ligase complex in  S. cerevisiae  and its mammalian homo-
logue HRD1-SEL1L form large membrane complexes by the association of various 
ERAD components including ubiquitination enzymes (E2) and Der1p (Derlins in 
mammals) (Claessen et al.  2012 ; Hampton and Sommer  2012 ; Smith et al.  2011 ). In 
the luminal side of the complex, a large domain of Hrd3p/SEL1L acts as a scaffold 
for the recognition of misfolded cargo by the association of lectins and chaperone 
proteins. Hrd3p/SEL1L also directly binds to the misfolded proteins; thus, in coor-
dination with lectins and chaperones, the client proteins are transported to the cyto-
sol through the retrotranslocation channel. 

 In the following sections, we will review the current knowledge of the role of 
various mannosidases/mannose-binding lectins for the creation/recognition of 
“degradation signals” on misfolded glycoproteins.  

1 N-Glycans and Quality Control of Proteins
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1.2     Enzymes That Process Mannose Residues 
from the  N -Glycans for ERAD: ER Mannosidase, 
Golgi Mannosidases, and EDEM Proteins 

 In mammals, three subfamilies of Class I α-mannosidases (glycosyl hydrolase fam-
ily 47 (Herscovics  1999a ; Mast and Moremen  2006 )) are known: ER processing 
α1,2-mannosidase (ER ManI), Golgi α1,2-mannosidases (Golgi ManIA, IB, and 
IC), and ER degradation enhancing α-mannosidase-like proteins (EDEM1, 2, and 3) 
(Fig.  1.2a ). This class of α-mannosidases trims α1,2-linked mannoses, although the 
mannose-processing activity of EDEM proteins remains controversial.  S. cerevisiae  
possesses ER mannosidase (Mns1p) and EDEM homologues (Htm1p/Mnl1p and 
Mnl2p) but lacks Golgi α1,2-mannosidase.  

 The mannose-processing specifi city of ER ManI and Golgi ManI has been well 
characterized using purifi ed recombinant proteins in vitro. ER ManI (Mns1p in 
yeast) preferentially removes mannose from the B branch, creating Man 8 GlcNAc 2  
isomer B (Man8B) (Gonzalez et al.  1999 ; Herscovics  1999b ; Tremblay and 
Herscovics  1999 ). However, ER ManI is also able to remove mannoses from other 
branches when high concentrations of this enzyme are incubated with  N -glycans for 
a prolonged time period (Aikawa et al.  2012 ; Herscovics et al.  2002 ). This suggests 
that  N -glycans that are recognized as degradation signals can be created by the sole 
function of ER ManI. In agreement with this, overexpression of ER ManI in  cultured 
cells enhances glycoprotein ERAD (Hosokawa et al.  2003 ; Wu et al.  2003 ) and 
increases mannose trimming from ERAD substrates, whereas knockdown of ER 
ManI greatly inhibits mannose processing (Avezov et al.  2008 ). Under normal con-
ditions, ER ManI is concentrated in a specifi c ER subcompartment termed the ER 
quality control compartment (Avezov et al.  2008 ), in which misfolded proteins des-
tined for degradation are enriched. ER ManI is short-lived and is degraded in the 
lysosome (Wu et al.  2007 ). This mechanism is thought to prevent clearance of 
nascent polypeptides during the folding process by the presence of excess ER ManI, 
which would otherwise impair normal cellular function. 

 Golgi α1,2-mannosidases preferentially process mannoses from the A and C 
branches once the B-branch terminal mannose is removed (Lal et al.  1998 ). Thus, it is 
also possible that Golgi α1,2-mannosidases create the  N -glycan tags recognized as 
ERAD signals during the recycling of misfolded substrates between the ER and Golgi 
(Hammond and Helenius  1994 ; Hosokawa et al.  2007 ). It was recently reported that 
ER ManI resides in the Golgi apparatus (Pan et al.  2011 ), and a model was proposed 
whereby misfolded glycoproteins that escaped the ER quality control checkpoint are 
sorted to the Golgi apparatus, where ER ManI captures, demannosylates, and assists 
the substrates sent back to the ER for degradation (Pan et al.  2013b ). In this scenario, 
the question is which enzyme processes mannoses from the folded proteins in the ER? 
Is there another α1,2-mannosidase in the ER that normally creates  N -glycan degrada-
tion signals? Several issues remain unresolved regarding mannose processing in the 
early secretory pathway. 

N. Hosokawa and T. Suzuki
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 ER ManI (gene name  MAN1B1 ) was recently revealed to be one of the genes that 
cause autosomal recessive cognitive disorders (Najmabadi et al.  2011 ; Rafi q et al. 
 2011 ). Homozygous nonsense mutations or missense mutations in both alleles were 
identifi ed. Furthermore, using exome analysis,  MAN1B1  was identifi ed as one of the 
genes that cause congenital disorders of glycosylation (CDG) (Rymen et al.  2013 ), 
producing developmental delay, facial dysmorphism, and obesity in addition to 
intellectual disability. Involvement of ER ManI in liver disease (Pan et al.  2009 ) 
or in liver carcinogenesis, independent of its enzyme activity, was also reported 
(Pan et al.  2013a ). 

 Mammalian EDEM1 and yeast Htm1p/Mnl1p were identifi ed as homologues of 
the ER α-mannosidase required for glycoprotein ERAD (Hosokawa et al.  2001 ; 
Jakob et al.  2001 ; Nakatsukasa et al.  2001 ). There are three EDEM proteins in mam-
mals and two in yeast, although little is known about the recently identifi ed Mnl2p 
(Martinez Benitez et al.  2011 ). Several mechanisms are proposed for the require-
ment of EDEM proteins in ERAD. Initially, they were proposed to be lectins 
since  mannose-processing activity was not detected, although lectin activity has 
not been shown in vitro either. The second mechanism is that EDEMs process man-
nose to generate  N -glycan signals for degradation. A third mechanism is the glycan- 
independent recognition of ERAD substrates by EDEMs. Recently, the 
α-mannosidase activity of Htm1p/Mnl1p was shown to process mannose from the C 
branch in yeast cells (Clerc et al.  2009 ; Quan et al.  2008 ) and was followed by an 
in vitro experiment using recombinant protein purifi ed in complex with an 
 oxidoreductase Pdi1p (PDI in mammals) (Gauss et al.  2011 ). As for mammalian 
EDEMs, however, in vitro activity assays have not been successful to date. Transient 
cellular expression of EDEM1 processes terminal mannose from the C branch 
(Hosokawa et al.  2010b ) or from the A branch (Olivari and Molinari  2007 ) of 
 N -glycans on model ERAD substrates. Also, transient expression of EDEM3 
enhances mannose processing, creating M7-M6  N -glycans on total cellular glyco-
proteins as well as on misfolded ERAD substrates (Hirao et al.  2006 ). However, 
EDEM2 mannose- processing activity appears lacking (Mast et al.  2005 ). Enzyme 
activity and its specifi city require future in vitro experimentation. Mammalian 
EDEMs are also reported to recognize misfolded proteins in a glycan-independent 
manner. EDEM1 point mutants lacking mannosidase activity (Cormier et al.  2009 ) 
or deletion mutants that lack the mannosidase domain (Ron et al.  2011 ) are able to 
associate and degrade ERAD substrates. An intrinsically disordered region close to 
the N-terminus of EDEM1 is suggested to associate with the misfolded polypep-
tides (Marin et al.  2012 ). 

 In the case of EDEM1 binding to misfolded proteins independently of glycans, its 
mannosidase domain is used to associate with SEL1L, which has fi ve  N -glycosylation 
sites. Thus, a model was proposed whereby EDEM1 acts as a quality control receptor 
that links ERAD substrate to dislocation machinery (Cormier et al.  2009 ). This is 
similar to the proposed function of OS-9 and XTP3-B, in which the lectin domains 
of OS-9 and XTP3-B recognize  N -glycans on SEL1L (Christianson et al.  2008 ) (dis-
cussed further in the next section). Morphological study has revealed that EDEM1, 
in addition to its ER localization, is concentrated in vesicles that lack the COPII coat 
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(Zuber et al.  2007 ). These vesicles are termed EDEMosomes (Cali et al.  2008 ) or 
ERAD tuning vesicles (Bernasconi et al.  2012 ) and have been demonstrated to con-
tain OS-9 and SEL1L in addition to EDEM1. Hence, these vesicles are proposed to 
regulate the ERAD machinery by removing ERAD factors through lysosomal degra-
dation (Bernasconi et al.  2012 ). Based on these observations,  N -glycans are sug-
gested to act as signals for docking with other ER resident proteins (Hebert and 
Molinari  2012 ) (Fig.  1.3b ), which awaits further verifi cation.  

 A number of EDEM partner proteins have been elucidated. Yeast Htm1p/Mnl1p 
tightly associates with Pdi1p through intermolecular disulfi de bonding (Gauss et al. 
 2011 ; Sakoh-Nakatogawa et al.  2009 ), which is required for its mannosidase activ-
ity. In mammals, ERdj5, another PDI family member that functions as a disulfi de 
reductase in the ER, forms a trimeric complex including BiP and EDEMs for ERAD 
(Ushioda et al.  2008 ). The association of ER ManI with EDEM1 is also reported, 
which enhances glycoprotein ERAD by suppressing the degradation of ERManI 
under ER stress conditions (Termine et al.  2009 ). SEL1L is another partner of 
EDEMs (Bernasconi et al.  2012 ; Cormier et al.  2009 ). Thus, the function of EDEMs 
could be modifi ed by these partner proteins or may represent the coordinated roles 
of proteins incorporated in different functional complexes.  

1.3     Lectins That Recognize  N -Glycan Tags for ERAD: 
Yos9p, OS-9, and XTP3-B, the MRH Domain-Containing 
Lectins in the ER 

 Misfolded polypeptides that have  N -glycan tags for degradation are recognized by 
specifi c lectins.  S. cerevisiae  Yos9p (yeast OS-9) was found to associate with Hrd3p 
and Kar2p and discriminates ERAD cargo for degradation (Bhamidipati et al.  2005 ; 
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Buschhorn et al.  2004 ; Kim et al.  2005 ; Szathmary et al.  2005 ). OS-9 (osteosarcoma 
amplifi ed 9) (Kimura et al.  1998 ; Su et al.  1996 ) and XTP3-B (XTP3-transactivated 
gene B protein)/Erlectin (Cruciat et al.  2006 ) are the mammalian homologues 
(Fig.  1.2b ). Yos9p and OS-9 have one MRH domain, while XTP3-B has two. While 
several splice variants are reported in mammals, their functional differences remain 
unclear. 

 Using recombinant proteins, both yeast Yos9p and mammalian OS-9 have been 
shown to recognize  N -glycan structures in which the C-arm α1,2-mannose residue 
is trimmed (Hosokawa et al.  2009 ; Mikami et al.  2010 ; Quan et al.  2008 ), reveal-
ing that the mechanisms are conserved in budding yeast and mammals. Recently, 
the human OS-9 MRH domain was crystallized in a complex with M5  N -glycan, 
which revealed the characteristic P-type lectin fold, similar to the mannose 
6-phosphate receptor domain, as well as the structural basis for the recognition of 
specifi c mannose linkage (Satoh et al.  2011 ). In yeast, mannose residues are 
sequentially processed from  N -glycans by Mns1p and Htm1p/Mnl1p as described 
above; however, the equivalent mammalian enzymes remain unidentifi ed. In 
yeast, the lectin domain of Yos9p recognizes  N -glycans on misfolded cargo. Yos9p 
also assists the degradation of non-glycosylated proteins, which is conducted in 
an MRH domain- independent manner (Benitez et al.  2011 ; Jaenicke et al.  2011 ). 
In mammals, OS-9 is required for glycoprotein ERAD; however, two mechanisms 
are suggested: OS-9 MRH domain recognizes  N -glycans on the ERAD substrates 
(Hosokawa et al.  2008 ; Mikami et al.  2010 ; Satoh et al.  2011 ; Tyler et al.  2012 ) or 
 N -glycans on SEL1L (Christianson et al.  2008 ) (Fig.  1.3 ).  N -glycan structures on 
SEL1L remain unidentifi ed; however, mannose trimming would proceed from 
 N -glycans on long-lived ER resident proteins. We estimate that approximately 
one-half of the OS-9 associates with SEL1L and that all endogenous XTP3-B 
binds to SEL1L under steady- state conditions (Fujimori et al.  2013 ; Hosokawa 
et al.  2008 ). Further study will reveal the dynamic regulation of how chaperones 
and lectins act in the recognition and sorting of misfolded glycoproteins to the 
retrotranslocation machinery. 

 Relatively little is known about the function of XTP3-B. XTP3-B has two 
MRH domains and despite its sequence homology, only the C-terminal MRH 
domain exhibits lectin activity (Cruciat et al.  2006 ; Fujimori et al.  2013 ; 
Yamaguchi et al.  2010 ). XTP3-B was shown to recognize cell surface-expressed 
M5-6 glycans, the same species that OS-9 associates with (Yamaguchi et al. 
 2010 ). The function of OS-9 and XTP3-B is considered to be redundant, since 
simultaneous knockdown of both OS-9 and XTP3-B inhibits the degradation of 
soluble ERAD substrates (Bernasconi et al.  2010 ), whereas knockdown of 
XTP3-B normally does not affect glycoprotein ERAD (Christianson et al.  2008 ; 
Hosokawa et al.  2008 ). However, for some ERAD substrates, such a redundancy 
is not observed (Fujimori et al.  2013 ; Tyler et al.  2012 ). Instead, another mecha-
nism is suggested whereby XTP3-B recognizes M9-glycans and inhibits the deg-
radation of misfolded cargo bearing M9 glycans (Fujimori et al.  2013 ), which 
requires further study.  
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1.4     Cytosolic Events of Glycoprotein ERAD; Fbs Proteins 

 Once in the cytosol, misfolded proteins destined for elimination are ultimately 
degraded by the ubiquitin-proteasome-dependent pathway. For most ERAD sub-
strates, polyubiquitination serves as a targeting signal, and occurs by the concerted 
action of activating E1, conjugating E2 and ligating E3 enzymes (Hershko et al. 
 2000 ; Pickart  2001 ). Among the various E3 enzymes, one of the most interesting is 
the SCF complex (complex containing Skp1, Cul1, and Roc1) containing Fbs1 
(Fbg1/NFB42/Fbx2/Fbxo2/OCP1) or Fbs2 (Fbg2/Fbx6) as  N -glycan-recognizing 
ubiquitin ligases (Yoshida and Tanaka  2010 ). Fbs1/Fbs2 has carbohydrate-binding 
properties, preferably binding to high mannose-type glycans (Yoshida et al.  2002 , 
 2003 ), and structural studies have revealed that the core Man 3 GlcNAc 2  structure of 
 N -glycans is important for recognition by Fbs1 (Mizushima et al.  2004 ,  2007 ). 
Therefore, this complex can serve as an  N -glycoprotein-specifi c ubiquitin ligase. 
While this protein shows high homology with other F-box proteins, i.e. ,  Fbg3 
(Fbx44), Fbg4 (Fbx17), and Fbg5 (Fbx27) (Ilyin et al.  2002 ; Yoshida and Tanaka 
 2010 ), the carbohydrate-binding properties of Fbg3 have not been demonstrated. 
On the other hand, Fbg4 and Fbg5 appear to bind to glycoproteins/glycans with 
lower effi ciency (Glenn et al.  2008 ). A recent study indicated that, by co-expressing 
with Skp1 proteins, Fbg5 appears to show signifi cant binding to concanavalin 
A-reactive glycoproteins (Yoshida et al.  2011 ), while evidence for carbohydrate 
binding of Fbs4 was lacking, even in the presence of Skp1. Thus, the nature of car-
bohydrate binding to Fbg3/4 requires clarifi cation in future studies.  

1.5     Physiological Functions of Fbs Proteins 

 Of the Fbs protein family, Fbs1 is the most well-characterized protein in terms of its 
physiological function. The expression of Fbs1 is mainly restricted to the adult 
brain and testes, whereas Fbs2 exhibits wide tissue distribution (Yoshida et al. 
 2003 ). Fbs1 is shown to be involved in glycoprotein ERAD (Shenkman et al.  2013 ; 
Yoshida et al.  2002 ), and, consistent with this observation, Fbs1 is shown to interact 
with CHIP, a co-chaperone with ubiquitin ligase activity (Nelson et al.  2006 ). 
Furthermore, overexpression of Fbs1 in Alzheimer disease model mice reduced 
BACE1 levels and led to reduced synaptic defi cits (Gong et al.  2010 ), indicating that 
Fbs1 may have a protective role in the progression of this devastating disease. Most 
recently Nogo receptor 2 was identifi ed as a binding protein for Fbs1 protein (Kern 
et al.  2012 ). This is of particular interest as Nogo receptors are known to bind 
amyloid- beta precursor protein (APP) (Park et al.  2006 ; Park and Strittmatter  2007 ; 
Zhou et al.  2011 ) and Alzheimer disease model mice lacking Nogo receptor 2 show 
reduced amyloid plaque formation (Zhou et al.  2011 ). 

 While known to have a limited tissue distribution, Fbs1 was previously iden-
tifi ed as a protein highly expressed in the organ of Corti and named organ of 
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Corti protein 1 (OCP1; (Thalmann et al.  1997 )). Another protein abundant in 
organ of Corti, OCP2, is Skp1 (Thalmann et al.  1997 ). Mice lacking Fbx2/Fbs1 
developed age- related hearing loss (Nelson et al.  2007 ). It was found that OCP1 
(Fbs1) and OCP2 (Skp1) appear to form a complex, which co-localizes with the 
epithelial gap- junction system (Henzl et al.  2001 ). Moreover, Fbs1 was found to 
bind with connexin 26 (Henzl et al.  2004 ). As mutations in the connexin26 gene 
are the most common cause of hereditary deafness (Denoyelle et al.  1997 ; 
Kelsell et al.  1997 ), the interaction of Fbs1-Skp1-connexin26 may somehow be 
critical for the hearing system. 

 While Fbs1 is known to be a component of the SCF fbs1  complex, the majority 
of Fbs1 was shown to exist as a monomer or alternatively as an Fbs1-Skp1 het-
erodimer (Yoshida et al.  2007 ). As Fbs1 can prevent the aggregation of glycopro-
teins, Fbs1 may have an E3 ubiquitin ligase-independent function, assisting the 
clearance of aberrant glycoproteins in neuronal cells by suppressing their aggre-
gation (Yoshida et al.  2007 ). On the other hand, SCF fbs1  or SCF fbs2  complexes can 
associate with a p97/VCP/Cdc48, an AAA ATPase, and a protein that plays a 
central role in extracting proteins from the ER into the cytosol during the ERAD 
process (Yoshida et al.  2005 ).  

1.6     Cytoplasmic PNGase 

 For substrates to effi ciently enter the interior of the cylinder-shaped 20S proteasome, 
where the active sites of proteases reside, the bulky modifi cation of polypeptide side 
chains such as glycans or polyubiquitin may need to be removed prior to proteolysis. 
The cytoplasmic peptide:  N -glycanase (PNGase, Png1 in yeast (Suzuki et al.  2000 ), 
Ngly1 in mammalian cells (Suzuki et al.  2003 )) is responsible for the removal of 
 N -glycans from glycoproteins (Suzuki  2007 ; Suzuki et al.  2002 ). This enzyme is 
found ubiquitously, from yeast to mammals, and was demonstrated to be involved in 
the glycoprotein ERAD process (Hirsch et al.  2003 ; Hosomi et al.  2010 ; Kim et al. 
 2006 ; Masahara-Negishi et al.  2012 ; Tanabe et al.  2006 ; Wiertz et al.  1996a ,  b ). 

 The removal of glycans by PNGase is required for the effi cient degradation of at 
least a subset of misfolded glycoproteins in yeast. Considering its biochemical 
activity, this enzyme may also constitute an  N -glycan-specifi c component for 
ERAD. Interestingly, like Fbs1/Fbs2, cytoplasmic PNGase in mice can bind to p97/
VCP/Cdc48 (Li et al.  2005 ,  2006 ), in addition to other ERAD or ubiquitin- 
proteasome pathway-related proteins (Katiyar et al.  2004 ,  2005 ; Park et al.  2001 ; 
Suzuki et al.  2001a ). Moreover, recent studies suggest that, at least in vitro, Fbs1 
protects the misfolded glycoproteins from the action of cytoplasmic PNGase 
(Yamaguchi et al.  2007 ). These protein-protein interactions may be critical in estab-
lishing complex protein networks and regulates the sequential reactions in a concerted 
manner, as formation of such a complex may greatly enhance the effi ciency of 
ERAD by carrying out a number of reactions, i.e., ubiquitination, deglycosylation, 
deubiquitination, and proteolysis in one place (Suzuki and Lennarz  2003 ). 
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 It is also interesting to note that, while the gene encoding the cytoplasmic 
PNGase is highly conserved from yeast to human, its structural organization differs 
signifi cantly (Fig.  1.4 ). For instance, the mammalian Ngly1 protein retains the 
N-terminal PUB domain, which is shown to be critical for protein-protein interac-
tions (Allen et al.  2006 ; Kamiya et al.  2012 ; Madsen et al.  2009 ; Suzuki et al. 
 2001b ), and the C-terminal PAW domain (Doerks et al.  2002 ), which contains a 
mannose-binding module (Zhou et al.  2006 ). This observation may imply that this 
protein acquired diverse domains as an evolutional consequence.  

 In addition to enzyme activity, cytoplasmic PNGases also exhibit a carbohydrate- 
binding property (Suzuki et al.  1994 ,  1995 ). Subsequently, it was found that the core 
PNGase domain, besides the mannose-binding module found in C-termini of ortho-
logues in higher eukaryotes, binds with high affi nity to glycans bearing  N,N’ -
diacetylchitobiosyl structures (Suzuki et al.  2006 ; Zhao et al.  2009 ) (Fig.  1.4 ). This 
carbohydrate-binding property is conserved, even in  Neurospora  PNG1 protein, 
while this protein is enzymatically inactive (Maerz et al.  2010 ) (see below). It is 
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  Fig. 1.4    Schematic representation of the primary structure of various eukaryotic PNGase ortho-
logues. Accession numbers for the protein sequences used are  S. cerevisiae , Q02890;  N. crassa , 
BAI53085;  A. thaliana , Q9FGY9;  D. discoideum , Q55FC8;  C. elegans , Q9TW67;  D. melanogas-
ter , Q7KRR5;  M. musculus , Q9JI78; and  H. sapiens , Q96IV0. The domain structure is based on 
the conserved domain database of NCBI (  http://www.ncbi.nlm.nih.gov/cdd    ), and common regions 
aligned in all PNGase orthologues are shown; PUB domain (domain ID, cd10459; residue 11–93), 
TGase superfamily domain (domain ID, pfam01841; residue 37–107), PAW (mannose-binding) 
domain (domain ID, smart00613; residue 1–89), thioredoxin family domain (domain ID, cd02947; 
residue 2–92), and L-type lectin domain (domain ID, cd01951; residue 11–223). TGase transglu-
taminase (This fi gure is reproduced from Suzuki  2015 )       
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therefore tempting to speculate that the carbohydrate-binding property of the 
 cytoplasmic PNGase orthologue may, at least to some degree, play a role in their 
enzyme-independent function.  

1.7     Physiological Functions of the Cytoplasmic PNGases 

 While the Png1 mutant in budding yeast (Suzuki et al.  2000 ) or in  Arabidopsis thali-
ana  (Diepold et al.  2007 ) did not show any signifi cant phenotypic consequences, 
more recent studies suggest that it may play important physiological roles in other 
eukaryotes. For instance, a defect in the orthologue of  PNG1  in  Caenorhabditis 
elegans  was shown to result in an increase of axon branching of specifi c neurons 
during morphogenesis of the vulval egg-laying organ (Habibi-Babadi et al.  2010 ). 
While the  C. elegans  PNG1 protein is a dual enzymatic protein (PNGase and 
 thioredoxin) (Kato et al.  2007 ; Suzuki et al.  2007 ), it appears that PNGase activity, 
but not the thioredoxin domain, is critical for normal axonal branching (Habibi-
Babadi et al.  2010 ). Moreover, a defect in Pngl, an orthologue of Ngly1, was shown 
to result in severe developmental defects in the fruit fl y (Funakoshi et al.  2010 ). The 
PNGase orthologue in  Dictyostelium discoideum  was also shown to have a signifi -
cant physiological role in its aggregation during multicellular development (Gosain 
et al.  2012 ). Most recently, exome analysis identifi ed human patients with mutations 
in the Ngly1 gene (Enns et al.  2014 ; Need et al.  2012 ). These patients exhibited 
multiple symptoms that included developmental delay, movement disorder, and 
hypotonia (Enns et al.  2014 ; Need et al.  2012 ). Other common symptoms include 
alacrima and abnormal liver function. Mechanistic insight into these phenotypic 
consequences remains elusive. Whatever the mechanism may be, however, these 
observations clearly indicate the functional importance of cytoplasmic PNGases in 
various organisms, including humans. 

 It was also shown that a PNG1 mutant ( PNG1 orthologue ) in  Neurospora crassa  
showed temperature sensitive growth with strong polarity defects (Seiler and 
Plamann  2003 ). Interestingly, the PNG1 in  N. crassa  contains intrinsic mutations in 
two out of three essential amino acids in the catalytic triad (i.e., Cys-to-Ala and His-
to- Tyr mutations) (Maerz et al.  2010 ), which consists of Cys, His, and Asp (Katiyar 
et al.  2002 ; Makarova et al.  1999 ). It is therefore predicted that, at least in some 
organisms, PNGase orthologues will also have enzyme-independent functions.  

1.8     Future Perspectives 

 As reviewed in this article, it is now clear to cell biologists that  N -glycans play 
pivotal roles in the homeostasis and quality control of glycoproteins in the 
ER. One should note, however, that the situation is not as simple as originally 
envisaged. For example, the importance of mannosidases or lectins on ERAD is 
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now known to be substrate-specifi c (Christianson et al.  2011 ; Hosomi et al.  2010 ), 
and we currently have little information on the molecular mechanism behind this 
substrate dependency. Moreover, even the possibilities of carbohydrate-binding-
independent functions of lectins (Benitez et al.  2011 ; Jaenicke et al.  2011 ) or 
enzyme-independent functions of enzymes (Cormier et al.  2009 ; Maerz et al. 
 2010 ; Ron et al.  2011 ) are currently proposed. Efforts should therefore be directed 
at accumulating comprehensive data on the effects of mannosidases/lectins on the 
degradation of varied ERAD substrates, rather than simplifying the scheme based 
on the results of a limited number of substrates. The extensive efforts of numerous 
researchers are imperative for a complete understanding of the functional impor-
tance of the players involved in recognition/degradation of misfolded glycopro-
teins in the ERAD process.     

  Acknowledgement   We thank Dr. Akira Hosomi (Glycometabolome Team, RIKEN) for critically 
reading our manuscript. 

 Note Recently, it is reported that EDEM2 processes mannose from the middle (B) branch of 
N-glycans in the vertebrate ER (Ninagawa et al.  2014 ).  
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    Chapter 2   
 Glycan-Mediated Protein Transport 
from the Endoplasmic Reticulum 

             Morihisa     Fujita     ,     Xiao-Dong     Gao    , and     Taroh     Kinoshita    

    Abstract     Protein sorting in the secretory pathway is an essential step to route pro-
teins to their proper locations. A number of secretory proteins contain intrinsic 
 sorting signals that are recognized by transport machineries. Effi cient sorting of 
several secretory proteins requires cargo receptors that recognize the sorting signals 
of specifi c proteins and sort them into transport vesicles. In the early secretory path-
way from the endoplasmic reticulum (ER), the cargo receptors function as linkers 
between the secretory proteins and coat protein complex II (COPII). Most secretory 
proteins are posttranslationally modifi ed by the addition of sugar chains in the 
ER. Several lines of evidence indicate that these glycan structures act as signals for 
transport of the modifi ed proteins and determine their fi nal destinations. In the 
secretory pathway, there are several lectin-type cargo receptors that recognize 
 specifi c glycan structures on proteins. The interactions between glycoproteins and 
cargo receptors are dependent upon the environment, such as the pH in organelles, 
as well as the glycan structures. Impairment of cargo receptors causes several 
 diseases through ineffi cient delivery of their target molecules. In this review, we 
describe the current understanding of the sorting and transport mechanisms of 
 glycoproteins from the ER in mammalian cells.  

  Keywords     Asparagine ( N )-linked oligosaccharide   •   Cargo receptor   •   Endoplasmic 
reticulum (ER)   •   ER exit site   •   ERGIC-53   •   ER-Golgi intermediate compartment 
(ERGIC)   •   Glycosylphosphatidylinositol (GPI)   •   Golgi apparatus   •   Lectin   
•   p24 family  
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2.1         Introduction 

 Secretory protein synthesis begins in the endoplasmic reticulum (ER), where pro-
teins receive posttranslational modifi cations including glycosylation and disulfi de 
bond formation and are prompted to undergo correct folding and assembly. After 
proteins achieve their proper conformations, they exit from the ER to the ER-Golgi 
intermediate compartment (ERGIC) or Golgi apparatus via coat protein complex II 
(COPII)-coated transport vesicles (Bonifacino and Glick  2004 ; D’Arcangelo et al. 
 2013 ; Jensen and Schekman  2011 ). Some proteins are retrieved from the Golgi to 
the ER by coat protein complex I (COPI)-coated vesicles (Lee et al.  2004 ). In the 
Golgi, the glycans on the proteins and the proteins themselves are further modifi ed 
and sorted to vesicles or carriers toward their proper destinations. During the trans-
port steps, proteins must be correctly selected and sorted into transport carriers. A 
number of secretory proteins contain intrinsic sorting signals in their polypeptide 
sequences (Apodaca et al.  2012 ; Barlowe  2003 ). Some membrane proteins are 
directly associated with coat proteins or secretory machineries via these signals. 
However, soluble secretory proteins that are luminally localized in the membrane 
and even some membrane proteins cannot directly bind to coat proteins that are 
localized in the cytoplasm. Instead, cargo receptors act as adaptors to link the secre-
tory proteins and coat proteins (Braulke and Bonifacino  2009 ; Dancourt and 
Barlowe  2010 ). The cargo receptors are usually transmembrane proteins that shuttle 
between organelles. The cargo receptors for soluble secretory proteins have binding 
sites for cargo proteins in their luminal regions, while their cytoplasmic regions 
contain binding motifs for coat proteins (Dancourt and Barlowe  2010 ). Therefore, 
the cargo receptors sort their target proteins into the transport carriers. 

 In addition to the polypeptide sequences, posttranslational modifi cations are 
used for protein sorting. For example, mono-ubiquitination of proteins on the 
plasma membrane acts as a transport signal for internalization (Mukhopadhyay and 
Riezman  2007 ). Ubiquitination also functions as a sorting signal for substrate pro-
teins from endosomes to the interior of multivesicular bodies, which is the fi rst step 
in the degradation of substrate proteins in lysosomes. Several lines of evidence indi-
cate that carbohydrates on proteins also function as sorting signals in the early and 
late secretory pathways (Fujita and Kinoshita  2012 ; Kim et al.  2009 ; Potter et al. 
 2006 ). The interactions between specifi c carbohydrates and their cargo receptors are 
essential for effi cient delivery of the modifi ed proteins to their target organelles. 

 In the late secretory pathway, it has been well characterized that mannose (Man)-
6-phosphate (Man-6-P) residues on asparagine ( N )-linked oligosaccharides act as 
protein sorting signals to lysosomes (Braulke and Bonifacino  2009 ; Kim et al. 
 2009 ). There are two types of Man-6-P receptors, cation dependent and cation inde-
pendent, on the trans-Golgi network (TGN), which bind to Man-6-P residues on 
lysosomal proteins and sort them into clathrin-coated vesicles bound for late endo-
somes. Impairment of Man-6-P formation caused by mutations in  N -acetyl- 
glucosamine (GlcNAc) phosphotransferase, which transfers phospho-GlcNAc to 
the 6-position of Man residues in  N -linked oligosaccharides, causes missorting of 
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lysosomal proteins. It is known that mutations in GlcNAc phosphotransferase cause 
I-cell disease (mucolipidosis II), one of the lysosomal storage diseases (Kollmann 
et al.  2010 ). Apical protein traffi cking mediated by galectins is another example of 
glycan-mediated protein transport in the late secretory pathway (Delacour et al. 
 2009 ). Galectins possess carbohydrate recognition domains for β-galactose or lac-
tose but have oligosaccharide specifi cities, as described previously (Hirabayashi 
et al.  2002 ). In polarized epithelial cells, the plasma membranes are separated by 
tight junctions into two distinct domains, termed the apical and basolateral mem-
branes. It has been reported that some galectins (galectin-3, galectin-4, and galectin-
 9) directly infl uence the apical sorting of proteins from the TGN or endosomes 
(Delacour et al.  2006 ; Mishra et al.  2010 ). Galectin-4 seems to be required for the 
recruitment of proteins into lipid rafts for apical transport, whereas galectin-3 is 
involved in apical sorting of lipid raft-independent proteins (Delacour et al.  2009 ). 
In addition to the late secretory pathway, oligosaccharides also function as sorting 
signals for proteins in the early secretory pathway between the ER and Golgi. In this 
review, we focus on two different types of glycan-mediated transport in mammalian 
cells. In particular, the interactions of  N -linked glycoproteins and glycosylphospha-
tidylinositol (GPI)-anchored proteins with their cargo receptors are described.  

2.2     ERGIC-53 Family Members for the Transport 
of High-Man- Type  N -Linked Oligosaccharides 

  N -linked oligosaccharide synthesis starts from dolichol-linked oligosaccharides 
(DLOs) in the ER (Aebi  2013 ). The dolichol-diphosphate-linked oligosaccharide 
in DLO structure prior to transfer to proteins in yeast and mammalian cells consists 
of three glucose (Glc) residues, nine Man residues, and two GlcNAc residues, here 
named Glc3-Man9-GlcNAc2. This structure is transferred to nascent proteins by 
the oligosaccharyltransferase (OST) complex. The terminal Glc of the three resi-
dues in Glc3-Man9-GlcNAc2 is removed by α-glucosidase I (Fig.  2.1 ) (Roth et al. 
 2010 ; Ruddock and Molinari  2006 ). The remaining two Glc residues are trimmed 
by α-glucosidase II. The structure Glc1-Man9-GlcNAc2 is recognized by two 
lectin- type chaperones, calnexin and calreticulin (Helenius and Aebi  2004 ). These 
chaperones form complexes with the co-chaperone ERp57, a member of the pro-
tein disulfi de isomerase family, and facilitate protein folding. The calnexin/calre-
ticulin chaperones cannot bind to the Man9-GlcNAc2 structure after complete 
trimming of Glc by α-glucosidase II. When the protein folding is incomplete even 
after Glc trimming, one Glc is retransferred to the Man9-GlcNAc2 structure by 
uridine diphosphate (UDP)-Glc:glycoprotein glucosyltransferase (UGGT), gener-
ating Glc1-Man9-GlcNAc2, which is again recognized by calnexin/calreticulin to 
prompt the glycoprotein folding (D’Alessio et al.  2010 ). This folding process 
series involving calnexin/calreticulin is termed the calnexin cycle (Fig.  2.1 ). When 
the glycoproteins are properly folded, α-glucosidase II trims a Glc. Thereafter, 
trimming of a Man on the middle arm of the oligosaccharide by ER mannosidase I 
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usually occurs. The oligosaccharide after the Man trimming ceases to be a sub-
strate for UGGT (Sousa et al.  1992 ). In the folding process, proteins that fail to 
become correctly folded are recognized as misfolded proteins and subsequently 
degraded by a process known as ER-associated degradation (ERAD) (Olzmann 
et al.  2013 ). Several glycan-processing enzymes and lectins including EDEMs and 
OS-9 are also involved in the ERAD pathway for the recognition of misfolded 

  Fig. 2.1    Folding and sorting of  N -glycosylated proteins in the ER. DLO is synthesized through a 
series of reactions and transferred to nascent proteins by the OST complex, forming  N -glycosylated 
proteins. After protein transfer, three Glc residues are trimmed by α-glucosidase I (Glc I) and II 
(Glc II). The Glc1-Man9-GlcNAc2 structure on the protein is recognized by calnexin and calre-
ticulin, which are lectin-type molecular chaperones, to prompt the protein folding. Calnexin and 
calreticulin are associated with ERp57, a protein disulfi de isomerase family protein. After com-
plete trimming of the Glc residues by Glc II, the chaperones dissociate from  N -linked oligosac-
charides. When the protein folding is incomplete, however, a Glc residue is retransferred to the 
Man9-GlcNAc2 structure by UGGT, regenerating Glc1-Man9-GlcNAc2 that is again recognized 
by calnexin/calreticulin. ER mannosidase I (ER Man I) usually trims a Man residue from the 
Man9-GlcNAc2 structure after Glc trimming and before the exiting of glycoproteins from the 
ER. Proteins that are correctly folded are then transported from the ER to the Golgi. ERGIC-53 
acts as a cargo receptor for several  N -glycosylated proteins in their transport from the ER. The 
cytoplasmic tail of ERGIC-53 binds to Sec24A or B, components of COPII. MCFD2 is associated 
with ERGIC-53 and contributes to the transport of coagulation factors V and VIII through protein- 
protein interactions and enhancement of ERGIC-53 recognition. After glycoproteins reach the 
ERGIC or cis-Golgi, they dissociate from ERGIC-53. VIP36 is probably involved in the retrieval 
of some glycoproteins. VIPL is localized in the ER and may have some interaction with ERGIC- 53. 
 CRD , carbohydrate recognition domain;  TMD  transmembrane domain; *, COPII binding site; +, 
COPI binding site       
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glycoproteins (Clerc et al.  2009 ; Hosokawa et al.  2010 ), as described in other 
excellent reviews (Araki and Nagata  2011 ; Lederkremer  2009 ). Glycoproteins cor-
rectly folded in the ER possess oligosaccharide(s) consisting of Man8-GlcNAc2 or 
Man9-GlcNAc2.  

 The secretory glycoproteins are then transported from the ER to the Golgi. Cargo 
receptors containing leguminous (L)-type lectin domains are involved in the traf-
fi cking of some proteins containing  N -linked oligosaccharides between the ER and 
Golgi (Fig.  2.1 ). ERGIC-53, VIP36, VIPL, and ERGL are type I single-spanning 
membrane proteins with an L-type lectin domain (Nufer et al.  2003 ). ERGIC-53 is 
the best-characterized member of the family (Hauri et al.  2000 ). It is a 53-kDa pro-
tein originally found in the ERGIC (Schweizer et al.  1988 ). ERGIC-53 has a signal 
sequence for ER insertion, a large N-terminal luminal domain, a transmembrane 
domain, and a short C-terminal sequence. The short C-terminal sequence faces the 
cytoplasmic side and has a di-phenylalanine motif (FF) that preferentially associ-
ates with Sec24A and B, subunits of the COPII complex (Nyfeler et al.  2008 ), and 
a di-lysine motif (KKxx) that binds with the COPI complex. Using these motifs, 
ERGIC-53 recycles between the ER, ERGIC, and Golgi. The N-terminal domain 
contains a carbohydrate recognition domain (CRD) and an α-helical stalk domain. 
The α-helical stalk domain contains conserved cysteine residues and forms intermo-
lecular disulfi de bonds that mediate the dimerization or hexamerization of ERGIC- 53 
(Lahtinen et al.  1999 ; Schweizer et al.  1988 ). Crystal structure analyses indicated 
that the CRD domain of ERGIC-53 is similar to other L-type lectins that have a 
β-sandwich structure with a concave face comprising seven β-strands and a convex 
face comprising six β-strands forms (Velloso et al.  2002 ). ERGIC-53 is a Ca 2+ -
binding protein and its cargo binding is pH and Ca 2+  dependent. A conserved histi-
dine residue at the carbohydrate-binding site may serve as a pH sensor for cargo 
binding (Appenzeller-Herzog et al.  2004 ). In the ER, where the pH is neutral, the 
histidine residue is deprotonated, and Ca 2+  in the pocket of the carbohydrate recog-
nition site of ERGIC-53 contributes to the carbohydrate binding. In contrast, in the 
environment of the ERGIC and Golgi, which is more acidic, the histidine residue is 
protonated and the Ca 2+  in ERGIC-53 is released, leading to dissociation of the 
cargo. 

 In mammalian cells, several specifi c proteins including coagulation factors V 
and VIII, cathepsin Z, cathepsin C, and α1-antitrypsin have been determined as 
ERGIC-53-dependent cargo proteins (Appenzeller et al.  1999 ; Kamiya et al.  2008 ; 
Nichols et al.  1998 ). It has been identifi ed that mutations in ERGIC-53 cause auto-
somal recessive bleeding disorders with combined defi ciency of coagulation factors 
V and VIII (Nichols et al.  1998 ). Loss of function of ERGIC-53 causes ineffi cient 
ER export of glycosylated coagulation factors V and VIII. In patients with defective 
ERGIC-53, the plasma levels of factors V and VIII are signifi cantly decreased. 
ERGIC-53 recognizes both the  N -linked oligosaccharide and polypeptide of the 
coagulation factors. In addition to the loss of function of ERGIC-53, mutations in 
MCFD2 have been found to cause defi ciency in factors V and VIII (Zhang et al. 
 2003 ). MCFD2 encodes a 16-kDa soluble protein with a signal sequence and two 
EF-hand motifs that bind to Ca 2+  (Fig.  2.1 ). MCFD2 is likely to bind to the 
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 polypeptide segments of coagulation factors (Nishio et al.  2010 ). Additionally, 
MCFD2 associates with ERGIC-53 and enhances its sugar-binding ability, particu-
larly for the Man8B structure, which is a Man8-GlcNAc2 structure obtained after 
Man trimming by ER mannosidase I (Kawasaki et al.  2008 ). The association 
between MCFD2 and ERGIC-53 is pH independent and Ca 2+  dependent. Cathepsin 
Z and cathepsin C are other examples of cargo proteins with transport mediated by 
ERGIC-53 (Appenzeller et al.  1999 ). Similar to factor VIII, these cathepsins inter-
act with ERGIC-53 via both their oligosaccharides and peptide β-hairpin loop struc-
tures (Appenzeller-Herzog et al.  2005 ). MCFD2 is dispensable for the binding of 
cathepsin Z and cathepsin C to ERGIC-53 (Nyfeler et al.  2006 ). The reason why 
only limited proteins are dependent on ERGIC-53 is that protein-protein interac-
tions as well as protein-oligosaccharide interactions are required for the binding 
between ERGIC-53 and its cargo proteins. 

 As mentioned above, there are three cargo receptor-like L-type lectins, VIP36, 
VIPL, and ERGL, other than ERGIC-53 in mammalian cells (Nufer et al.  2003 ). 
VIP36 is localized in the ERGIC and cis-Golgi (Reiterer et al.  2010 ). VIPL stands 
for VIP36-like, and the protein is ER resident (Nufer et al.  2003 ). It is widely 
expressed in mammalian cell lines. It has been reported that VIPL associates with 
ERGIC-53 (Qin et al.  2012 ). Although ERGIC-53 has low affi nity and broad speci-
fi city for high-Man oligosaccharides and does not distinguish between monogluco-
sylated and deglucosylated forms, VIPL and VIP36 display a preference for 
deglucosylated forms of high-Man oligosaccharides (Kamiya et al.  2008 ). VIPL 
and VIP36 exhibit distinct pH profi les in binding assays. VIPL binds optimally at 
about pH 7.5, while VIP36 binds optimally at around pH 6.5 (Kamiya et al.  2008 ). 
ERGL is not well characterized but has cell type and tissue specifi cities in its expres-
sion (Yerushalmi et al.  2001 ). Based on their localizations and carbohydrate speci-
fi city, a model has been proposed for the function of L-type lectins in mammalian 
cells (Fig.  2.1 ) (Dancourt and Barlowe  2010 ; Kamiya et al.  2008 ). VIPL localizes in 
the ER, binds to glycoproteins that are deglucosylated and have completed their 
folding in the ER, and delivers them to ERGIC-53. The cargo glycoproteins associ-
ated with ERGIC-53 are then sorted and incorporated into COPII vesicles. In the 
post-ER compartment, the lower pH causes dissociation between ERGIC-53 and its 
cargo proteins. VIP36 is involved in the retrieval of misfolded proteins from the 
Golgi to the ER. 

 In yeasts, there are two homologues of ERGIC-53, named Emp46p and Emp47p. 
In a double-mutant yeast for these homologues, secretion of glycoproteins to the 
culture medium is decreased (Sato and Nakano  2002 ). Based on a structural analy-
sis, the CRDs of Emp46p and Emp47p have a β-sandwich fold that is similar to that 
of ERGIC-53 (Satoh et al.  2006 ). However, these homologues do not bind Ca 2+ , 
while Emp46p binds K +  at a distinct position from the corresponding site for Ca 2+  
binding in ERGIC-53. This K +  binding is essential for Emp46 functions. Emp47 
does not bind to any metal ions.  
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2.3     p24 Family of Proteins for Sorting and Transport 
of GPI-Anchored Proteins (GPI-APs) from the ER 

 GPI anchoring of proteins is one of the conserved posttranslational modifi cations 
occurring in the ER (Ikezawa  2002 ; Kinoshita et al.  2008 ; Orlean and Menon  2007 ). 
About 60 proteins in budding yeasts and about 150 different proteins in mammalian 
cells are modifi ed by GPI, respectively. Proteins that receive GPI anchoring contain 
a signal sequence for ER insertion at their N-terminus and a GPI-attachment signal 
at their C-terminus. GPI is biosynthesized from phosphatidylinositol (PI) by step-
wise addition of sugars, an acyl chain, and phosphoethanolamine (EtNP) on the ER 
membrane (Kinoshita  2014 ). The structure of the mammalian GPI complete precur-
sor is EtNP-Man-(EtNP)Man-(EtNP)Man-GlcN-(acyl)PI or EtNP-(Man)Man-
(EtNP)Man-(EtNP)Man-GlcN-(acyl)PI, where GlcN stands for glucosamine. The 
GPI complete precursor is transferred to nascent proteins with a GPI-attachment 
signal at the C-terminus, thereby generating GPI-APs. The transfer is mediated by 
the GPI transamidase complex, which consists of fi ve subunits, PIGK, GPAA1, 
PIGS, PIGT, and PIGU (Fig.  2.2 ). After GPI attachment to proteins, GPI-APs are 
transported from the ER to the Golgi. During their transport, the GPI moieties are 

  Fig. 2.2    Structural remodeling and sorting of GPI-APs in the ER. GPI is biosynthesized in the ER 
through an enzymatic reaction pathway consisting of ten steps. A preformed GPI complete precur-
sor is attached to the C-terminus of a newly synthesized protein by GPI transamidase (TA), gener-
ating a GPI-AP. After GPI attachment to a protein, an acyl chain linked to inositol is removed by 
PGAP1, a GPI deacylase. A side-chain EtNP attached to the second mannose is then removed by 
PGAP5, a GPI-EtNP phosphodiesterase. These two GPI-remodeling reactions in the ER are criti-
cal for sorting of GPI-APs to the ER exit sites. The remodeled GPI-APs are effi ciently recognized 
by a p24 complex that concentrates GPI-APs into COPII-coated vesicles. The α-helical region 
(AH) of p24γ2 may specify the GPI-AP recognition. The p24 proteins form hetero-oligomeric 
complexes. Each p24 family member protein has an ER export signal that is recognized by Sec24C 
or D, components of COPII.  GOLD  Golgi dynamics domain;  TMD  transmembrane domain; *, 
COPII binding site; +, COPI binding site       
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remodeled. Before exiting from the ER, GPI-APs receive two remodeling reactions 
in mammalian cells (Fig.  2.2 ). One is removal of an acyl chain from the inositol 
moiety of the GPI anchors, and the other is removal of the EtNP from the second 
Man of the GPI (Fujita and Kinoshita  2010 ,  2012 ). The fi rst reaction is mediated by 
PGAP1, which is a multi-spanning membrane protein containing a lipase motif, 
GxSxG (Tanaka et al.  2004 ). The second reaction is carried out by PGAP5, which 
is a membrane protein containing a metal-dependent phosphodiesterase motif in the 
luminal side of the ER (Fujita et al.  2009 ). Actually, PGAP5 requires manganese for 
its activity. The remodeling reactions by both PGAP1 and PGAP5 are prerequisite 
for effi cient transport of GPI-APs from the ER, particularly for their sorting into the 
ER exit sites (Fujita et al.  2011 ).  

 Since GPI-APs are luminally localized and do not span the membrane to the 
cytosol, they cannot directly bind with COPII. Instead, they associate with cargo 
receptors for linking with COPII. A hetero-oligomeric complex of proteins from 
p24 family is involved in effi cient transport of GPI-APs from the ER and seems to 
function as a cargo receptor (D’Arcangelo et al.  2013 ; Herzig et al.  2012 ). The p24 
proteins are type I membrane proteins of about 24 kDa, which can be divided into 
four subfamilies (α, β, γ, and δ) based on the primary sequences (Strating and 
Martens  2009 ; Strating et al.  2009 ). In most vertebrates, ten of the p24 paralogs [α1, 
α2, α3, β1, γ1, γ2, γ3, γ4, γ5, and δ1 (p24α1 is a pseudogene in humans)] are 
encoded. All p24 proteins share similar domain architectures consisting of a signal 
sequence, a GOLD domain, and an α-helical region, followed by a transmembrane 
region and a short C-terminal tail (Fig.  2.2 ). The C-terminal tail faces the cytoplasm, 
and some of the tails of the family members possess the ER exit signal recognized 
by COPII and the ER retrieval signal recognized by COPI. Therefore, they are 
mainly recycled between the ER and Golgi. The p24 proteins form hetero- oligomeric 
complexes with proteins from other subfamilies. Although it has been reported that 
they exist as monomers and dimeric or larger complexes, several reports suggest 
that they form heterotetrameric complexes consisting of proteins from each of four 
subfamilies as the basic units (Fullekrug et al.  1999 ; Hirata et al.  2013 ; Marzioch 
et al.  1999 ). It seems possible that the compositions of p24 complexes vary in dif-
ferent locations, such as the ER and Golgi (Jenne et al.  2002 ). Further studies are 
needed to clarify this point and to determine the exact compositions of the p24 
complexes. Knockdown of p24δ1 in mammalian cells and deletion of  EMP24  
(p24β) or  ERV25  (p24δ) in yeast cells result in destabilization of all the other p24 
family members, suggesting that they stabilize one another, probably by forming 
complexes (Marzioch et al.  1999 ; Theiler et al.  2014 ). On the other hand, overex-
pression of each p24 family member causes mislocalization and accumulation in the 
ER (Blum and Lepier  2008 ; Blum et al.  1999 ; Rojo et al.  2000 ), suggesting that the 
balance of the protein expression levels is important for the correct complex 
formation. 

 Several studies have revealed that the transport of GPI-APs is delayed in yeast 
 emp24   (p24β),  erv25   (p24δ),  erp1   (p24α), or  erp2   (p24γ) cells (Belden and 
Barlowe  1996 ; Copic et al.  2009 ; Marzioch et al.  1999 ; Schimmoller et al.  1995 ). 
Furthermore, Emp24p can be chemically cross-linked with several GPI-APs 
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(Castillon et al.  2011 ; Muniz et al.  2000 ), suggesting their direct association. In 
mammalian cells, knockdown of p24δ1 or p24β1 results in delayed transport of 
GPI-APs, supporting the fi ndings in yeast cells (Bonnon et al.  2010 ; Takida et al. 
 2008 ). In p24δ1-knockdown cells, sorting of GPI-APs into the ER exit sites is 
impaired (Fujita et al.  2011 ), suggesting that the p24 proteins act as cargo receptors 
to concentrate GPI-APs at the ER exit sites for effi cient packaging into COPII vesicles 
in mammalian cells. In yeast cells, however, sorting and concentration of GPI- APs 
to the ER exit sites are independent of Emp24p (Castillon et al.  2011 ). It seems that 
the yeast p24 complex may act as a linker that facilitates and stabilizes vesicle for-
mation by recruiting COPII components to sites with pre-concentrated GPI-APs. 

 Two GPI-anchor remodeling reactions mediated by PGAP1 and PGAP5 in the 
ER, which occur after the transfer to proteins, are crucial for interaction with the 
p24 proteins and effi cient sorting into the ER exit sites (Fujita et al.  2011 ). Therefore, 
only correctly processed GPI-APs can be associated with a p24 complex and trans-
ported from the ER. Additionally, it has been reported that p24α2, p24β1, p24γ2, 
and p24δ1 are associated with GPI-APs depending on the pH. Under mild alkali and 
neutral pH conditions corresponding to the ER, p24 proteins are associated with 
GPI-APs, whereas they dissociate in mild acidic conditions that refl ect the pH in the 
Golgi. Recently, it has been reported that p24γ2 among the fi ve p24γ subfamily 
members is primarily involved in the effi cient transport of GPI-APs (Theiler et al. 
 2014 ). In particular, the α-helical region of p24γ2 is pivotal for the recognition and 
transport of GPI-APs. The p24 complex containing p24γ2 recognizes GPI-APs and 
seems to sort them into COPII vesicles (Fig.  2.2 ). 

 The cytosolic regions of p24 proteins are used to bind with COPII. Sec24 iso-
forms, components of COPII, directly associate with the sorting signals of cargo 
proteins (Mancias and Goldberg  2008 ; Miller et al.  2002 ,  2003 ). There are three 
Sec24p isoforms (Sec24p, Sfb2p, and Lst1p) in yeasts and four isoforms (Sec24A, 
B, C, and D) in mammalian cells (Bonifacino and Glick  2004 ). While these iso-
forms have overlapping functions for cargo binding, the p24 complex seems to be 
preferentially recognized by Lst1p in yeasts and Sec24C and D in mammalian cells 
(Bonnon et al.  2010 ; Castillon et al.  2011 ). Conversely, ERGIC-53 is recognized by 
Sec24A and B via the di-phenylalanine motif, when proteins are sorted into COPII 
vesicles as described above (Nyfeler et al.  2008 ). 

 Although the p24 proteins play key roles in maintaining the fi delity of GPI-AP 
transport in the ER, the functions of the p24 family members are diverse. There are 
many reports regarding other functions, including the unfolded protein response in 
the ER, retrograde transport from the Golgi, and maintenance of Golgi structures 
(Bremser et al.  1999 ; Strating and Martens  2009 ). In particular, it appears interest-
ing that the p24 family proteins are involved in the transport of other proteins, such 
as invertase in yeasts and Wnt proteins in  Drosophila  and mammalian cells 
(Buechling et al.  2011 ; Port et al.  2011 ; Schimmoller et al.  1995 ). In HEK293T 
cells, knockdown of p24γ2, which is also utilized in GPI-AP transport, results in 
ineffi cient secretion of Wnt1, suggesting that a similar p24 protein complex may be 
used for ER-to-Golgi transport. Further analyses are required to clarify how these 
distinct cargo proteins are selected and recognized by the p24 complex.  
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2.4     Concluding Remarks 

 We have described two types of glycan-mediated protein transport in the early 
secretory pathway. The protein sorting and transport processes are regulated by the 
structures of  N -linked oligosaccharides or GPI anchors on proteins and by recogni-
tion molecules. The sorting mechanisms of proteins in the ER are closely linked to 
the protein folding. There are several checkpoints for monitoring the folding status 
of proteins, and only properly folded proteins are delivered to the subsequent sort-
ing steps. Glycan processing participates in both glycoprotein folding and sorting. 
We still do not know how ERGIC-53 recognizes specifi c glycoproteins in vivo and 
how p24 family proteins switch between GPI-APs and other cargo proteins. 

 Both ERGIC-53 and p24 proteins form oligomers, but the oligomer formation 
appears to be dynamic. It remains unknown how the oligomers are formed, main-
tained, and dissociated. Recently, it has been reported that p24β1 binds with sphin-
gomyelin containing a specifi c acyl chain (C18) via the cytoplasmic face of the 
transmembrane region, which induces dimerization of p24β1 and COPI-dependent 
retrograde transport from the Golgi (Contreras et al.  2012 ). Several transmembrane 
proteins possess a consensus motif (VxxTLxxIY) found in the transmembrane 
region of p24β1. Interactions between specifi c (glyco)sphingolipids and these trans-
membrane and juxtamembrane regions may be involved in regulating the protein 
oligomerization and localization.     
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    Chapter 3   
 Gangliosides and T-Cell Immunity 

             Masakazu     Nagafuku      and     Jin-ichi     Inokuchi    

    Abstract     Gangliosides are sialic acid-containing glycosphingolipids separated 
into several series on the basis of the absence or presence of one or more sialic acid 
residues linked to the galactose residue in the second position from the ceramide 
backbone. Gangliosides are fundamental constituents of lipid rafts in eukaryotic 
cell membranes and are considered to play a variety of roles in cell physiology such 
as modulation of signal transduction. As with gangliosides, T cells, key players of the 
adaptive immune response, are phenotypically divided into several subpopulations, 
and each of them preferentially expresses differential series of gangliosides. Recent 
studies have shown that the differential ganglioside expression is likely to contribute 
to the appropriate lipid raft structures for T-cell activation via the antigen receptor, 
T-cell receptor. Furthermore, the abnormal ganglioside levels in T cells are associated 
with the pathogenesis of autoimmune and allergic disorders. Therefore, a variety 
of lipid rafts with different gangliosides are conceivably formed on the plasma 
membrane of individual T-cell subsets, suggesting the regulation of gangliosides is 
a therapeutic target for immune system diseases.  

  Keywords     Gangliosides   •   Glycosphingolipids   •   Lipid rafts   •   T cells   •   T-cell receptor   
•   Autoimmune diseases   •   Allergic diseases  

3.1         Introduction 

 Gangliosides are a family of glycosphingolipids (GSLs) which contain sialic acid 
(SA) and are separated into several series on the basis of the absence (o-series) or 
presence of one (a-series) or two (b-series) SA residues linked to the galactose 
residue in the second position from ceramide backbone (Tidhar and Futerman  2013 ; 
Hakomori  2008 ) (Fig.  3.1a ). Gangliosides are ubiquitous components of eukaryotic 
cell membranes and have important regulatory functions such as cell recognition, 
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  Fig. 3.1    Ganglio-series ganglioside biosynthetic pathways. ( a ) Gangliosides, SA-containing 
GSLs, are enzymatically synthesized from ceramide and are divided into o-, a-, and b-series spe-
cies. These pathways consist of a highly ordered consecutive and stepwise process catalyzed by 
specifi c glycosyltransferases which can transfer one monosaccharide residue (glucose, galactose, 
 N -acetylgalactosamine, or sialic acid) at a time.  GlcCer  glucosylceramide,  LacCer  lactosylce-
ramide. ( b ) Acidic lipids obtained from thymocytes (Thy), CD4 +  T cells, and CD8 +  T cells of 
normal mice were separated on TLC plates and were stained with HRP-conjugated CTx-B. An 
 arrow  indicates the origin for TLC.  Std  standard lipids,  Fuc-GM1a  fucosylated-GM1a       
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ligand–receptor interactions, cell adhesion, and cell growth control (Regina 
Todeschini and Hakomori  2008 ). Membrane lipids are not distributed uniformly 
within the outer leafl et of the plasma membrane, but gangliosides are thought to 
segregate together with cholesterol and sphingomyelin to form highly organized 
membrane microdomains, called lipid rafts (Simons and Ikonen  1997 ; Brown and 
London  1998 ). Lipid rafts are involved in a variety of cell functions, including serving 
as receptors for bacterial toxins, mediators of cell adhesion, and modulators 
of signal transduction. Although lipid rafts have catapulted gangliosides into the 
limelight, many studies only utilize gangliosides (usually GM1a, which can be easily 
detected with cholera toxin) as a raft marker. It is, however, fortunate for ganglio-
side biology that numerous membrane gangliosides have been found to be altered in 
situations such as cell differentiation and cell activation in many cell types. These 
revelations have encouraged the development of new concepts for the treatment of 
cancers, metabolic diseases, and immune system disorders by modifi cation of 
ganglioside levels (Inokuchi  2011 ; Liu et al.  2013 ; Kidani and Bensinger  2014 ).  

 T cells are lymphocytes that have differentiated under the infl uence of the thymus 
and are responsible for cell-mediated immunity. T cells are functionally divided into 
T helper (Th) cells and T cytotoxic (Tc) cells that generally express specifi c cell 
surface molecules CD4 and CD8, respectively. CD4 +  Th cells and CD8 +  Tc cells 
employ closely similar mechanisms in T-cell antigen receptor (TCR)-mediated 
signaling despite playing distinct immune functions (Rudolph et al.  2006 ; Li et al. 
 2013 ). Interestingly, the two T-cell subsets express different levels of gangliosides as 
well as different kinds of ganglioside species, which provide the appropriate distinct 
intracellular signaling events for immune function of each T-cell subset (Nagafuku 
et al.  2012 ). T-cell activation via TCR together with costimulatory receptors requires 
the recruitment of both extracellular and intracellular molecules into lipid rafts 
(Dykstra et al.  2003 ; Tuosto et al.  2001 ; Harder et al.  2007 ) (Fig.  3.2 ). Immunological 
synapses are dynamic structures formed at the T-cell–antigen- presenting cell (APC) 
interface during antigen recognition (Fooksman et al.  2010 ; Monks et al.  1998 ; Davis 
and Dustin  2004 ; Saito and Yokosuka  2006 ) and are proposed to be incredibly diverse 
both in structure and function (Alarcon et al.  2011 ; Thauland and Parker  2010 ). 
Although lipid rafts have been thought to be involved in the immunological synapse 
formation, the composition and behavior of membrane gangliosides during the 
immunological synapse formation remain controversial (Harder et al.  2007 ; Bi et al. 
 2001 ; Alarcon et al.  2011 ; Hashimoto Tane et al.  2010 ).   

3.2     T-Cell Development and Activation 

3.2.1     T-Cell Development 

 T cells, also called T lymphocytes, are central components of adaptive immunity, 
which is characterized by high specifi city for distinct molecules and diversity of the 
response based on the presence of an antigen receptor. T cells arise from bone 
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marrow precursors, which migrate to the thymus and differentiate under the infl uence 
of the thymic microenvironment (Boehm and Bleul  2006 ; Ladi et al.  2006 ). The most 
important biological purpose of T-cell development is to generate a fully competent 
T-cell population with differentiated effector functions, capable of quickly identifying 
and suffi ciently eliminating pathogens. Thymic immature T cells (called thymo-
cytes) develop in an ordered manner, characterized by the expression of TCR and 
specifi c surface markers (Rothenberg and Taghon  2005 ) (Fig.  3.3a ). The early T-cell 
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  Fig. 3.2    TCR signal transduction and lipid rafts. Antigen recognition by TCR leads to rapid 
activation in a variety of intracellular signaling molecules, resulting in cytokine gene expression 
and clonal expansion. Lipid rafts are specialized microdomains of the plasma membrane, consisting 
of concentrated amounts of gangliosides, sphingomyelin, and cholesterol. The signals mediated 
through TCR are thought to depend on raft integrity. Some raft-associated proteins such as Lck and 
LAT are indispensable for TCR signaling, indicating the importance of lipid rafts as platforms on 
the plasma membrane       
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thymus: landmark stages, checkpoints, and developmental choices. T-cell precursors come from 
bone marrow to the thymus where they differentiate into mature T-cell subsets. Potentially harmful 
cells that strongly recognize self-antigen as well as cells that fail to express useful antigen recep-
tors can be eliminated during maturation stages. Mature CD4 +  and CD8 +  T cells are released 
into the circulation and reside in the peripheral lymphoid tissues.  APC  antigen-presenting cell. 
( b ) Functional maturation of CD4 +  T cells. Naïve CD4 +  T cells differentiate into distinct subsets of 
effector Th cells by recognizing an antigen presented by APC. Cytokines produced by self and 
neighboring cells promote differentiation steps by activating specifi c transcription factors that 
stimulate production of the cytokines of each subset. Note that these cytokines can promote the 
development of each Th subset and suppress the development of the other subset. ( c ) Naïve CD8 +  
T cells differentiate into CTLs. Both the appropriate antigen recognition and cytokines from 
Th cells are required for the generation of effector CTLs       
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progenitors express neither CD4 nor CD8 and are therefore termed double negative 
(DN) thymocytes. In the DN stage productive rearrangement of TCRβ chain genes 
takes place and leads to the expression of a functional pre- TCR. The pre-TCR sig-
naling induces cell survival, proliferation, and both CD4 and CD8 coreceptor 
expressions. The resulting cells are termed double positive (DP) thymocytes. In this 
stage DP cells rearrange their TCRα genes and express a mature TCR. Only cells 
that successfully express a TCR on their cell surface subsequently undergo positive 
and negative selection to generate a T-cell repertoire that responds to foreign antigens 
but not self-antigens (termed repertoire selection). The surviving cells ultimately 
become mature CD4 and CD8 single positive (SP) thymocytes. SP cells maintain 
the expression of one coreceptor and are referred to as lineage-committed 
CD4 +  or CD8 +  mature T cells, which exit the thymus to circulate to the periphery. 
It is well known that sphingosine 1-phosphate, a metabolite of ceramide, and its 
receptors are required for the emigration of mature SP thymocytes from the thymus 
as well as the traffi cking and migration of lymphocytes into the follicular areas 
of secondary lymphoid organs (spleen and lymph nodes) (Rosen et al.  2003 ; 
Allende et al.  2004 ).   

3.2.2     Mature T-Cell Subsets and Their Activation 

 CD4 +  T cells participate in a wide variety of immune functions including humoral 
immunity, allergic responses and autoimmune diseases   . CD4 +  T cells are also called 
Th cells because they can recognize foreign antigens presented by MHC class II 
molecules on APCs (Fig.  3.3b ) and turn on B cells to produce antibodies that act 
against these antigens. On the other hand, CD8 +  T cells possess a killing ability 
against cancer cells and virus- infected cells, so they are also called killer T cells or 
Tc cells. CD8 +  T cells can recognize intracellular antigens, such as viral compo-
nents and mutated proteins, presented by MHC class I molecules on virtually all 
nucleated cells (Fig.  3.3c ). The initial activation of naïve CD4 +  and CD8 +  T cells is 
triggered by the recognition of antigens by their TCR. TC R interacts with APC that 
bears a cognate antigen peptide–MHC. This interaction is responsible for the forma-
tion of a unique “immunological synapse” (Monks et al.  1998 ; Fooksman et al.  2010 ; 
Yokosuka and Saito  2010 ; Kupfer and Kupfer  2003 ). T-cell activation via TCR 
together with costimulatory receptors requires the recruitment of both extracellular 
and intracellular molecules into the specifi c cell membrane regions known as lipid 
rafts (Dykstra et al.  2003 ). CD4 +  T cell and CD8 +  T cell share closely similar mecha-
nisms in the TCR-mediated signaling despite playing different immune functions. 
Interestingly, the two T-cell subsets express different levels of gangliosides as well 
as different kinds of ganglioside species, which may provide the appropriate distinct 
intracellular signaling events for each T-cell subset (Nagafuku et al.  2012 ). 

 The combination of TCR and costimulatory signaling induces several immune 
responses: cytokine secretion (primarily IL-2) and proliferation of T cells, leading 
to an increase in the cell numbers (called clonal expansion), and differentiation of 
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the naive T cells into effector T cells (Smith-Garvin et al.  2009 ). Naïve CD4 +  T cells 
are activated and differentiate into polarized effector Th cell subsets (Th1, Th2, and 
Th17 cells) and regulatory T cells (Treg) (Zhu et al.  2010 ) (Fig.  3.3b ). The defi ning 
characteristics of these subsets are the cytokine production: IFN-γ for Th1; IL-4, 
IL-5, and IL-13 for Th2; IL-17 and IL-22 for Th17; and TGF-β and IL-10 for Treg. 
These cytokines determine their effector functions and pathophysiological roles. 
Although the mechanisms that allow naïve T cells to generate distinct effector T-cell 
subsets remain poorly understood (Gerlach et al.  2010 ; Tubo et al.  2013 ; Plumlee 
et al.  2013 ), several studies have shown that asymmetric division is one of the mech-
anisms that generate this diversity by regulating the differentiation of CD4 +  T cells 
and CD8 +  T cells (Chang et al.  2007 ; King et al.  2012 ). More than one decade ago, 
it was discovered that plasma membrane ganglioside levels and de novo sphingo-
lipid biosynthesis are increased during the differentiation from naïve to effector T 
cells (Tuosto et al.  2001 ). The expression patterns and levels of ganglioside species 
also alter among Th subsets, which may provide the appropriate membrane micro-
environments for each Th subset development and activation (Balamuth et al.  2001 ; 
Leitenberg et al.  2001 ; Izsepi et al.  2013 ). In addition, recent studies suggest that 
ganglioside composition in T cells is associated with immune system disorders such 
as autoimmune diseases and allergy, as will hereinafter be described in detail.   

3.3     Ganglioside Biosynthesis and Lipid Rafts 

 All eukaryotic cells are surrounded with a plasma membrane that defi nes their shape 
and acts as a selective barrier against diffusion of ions, proteins, and charged 
molecules, into and out of the cytoplasm. In the plasma membrane there are specifi c 
microdomains, called lipid rafts, in which GSLs, sphingomyelin, and cholesterol 
are major structural components. Lipid rafts are thought to be involved in multiple 
cellular functions such as receptor-mediated signal transduction, endocytic pro-
cesses, membrane traffi cking, and protein and lipid sorting (Simons and Ikonen 
 1997 ; Brown and London  1998 ). 

 Sphingolipids are a family of membrane lipids that have a long-chain base (called 
the sphingoid base) with an amide-linked fatty acid that is synthesized de novo from 
serine and palmitate, consisting of free sphingoid bases (sphingosine and sphinga-
nine), ceramide, sphingomyelin, and GSLs (Tidhar and Futerman  2013 ) (Fig.  3.1a ). 
GSLs are divided into multiple subcategories according to their characteristic struc-
tures: globo-series, lacto-series, neolacto-series, and ganglio-series (Hakomori 
 2008 ). Ganglio-series gangliosides contain one or more SA residues, which are 
negatively charged in the physiological pH range; therefore, they could contribute 
to the cell surface charge and related properties of the plasma membrane microen-
vironments by interacting with positively charged molecules (Kabayama et al.  2007 ; 
Sonnino et al.  2007 ). Thus, gangliosides play an important role in the formation and 
stabilization of lipid rafts (Hakomori  2002 ; Sonnino et al.  2007 ). Gangliosides 
are also subdivided into several groups on the basis of the absence (o-series) or 
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presence of one (a-series) or two (b-series) SA residues linked to the galactose 
residue in the second position from ceramide (Fig.  3.1a ). 

 GM3, the simplest of the “a-series” gangliosides, is synthesized by ST3Gal5 
(also named GM3S), which catalyzes the transfer of SA to the nonreducing terminal 
galactose (Gal) of lactosylceramide (LacCer). GM3 can be altered by β4Galnt1 
(also named GM2/GD2S), which transfers  N -acetylgalactosamine (GalNAc) to 
GM3, to form GM2 (a downstream a-series ganglioside), or by GD3 synthase to 
form GD3, the simplest of the “b-series” gangliosides. β4Galnt1 also elongates 
LacCer to form GA2, the simplest precursor of the “o-series” gangliosides. Each 
branch of GSL biosynthesis is a committed pathway (Fig.  3.1a ); competition 
between enzymes at a key branch point determines the relative expression levels of 
o-, a-, and b-series gangliosides. Gangliosides are known to be preferentially pack-
aged with cholesterol to form lipid rafts in specifi c cell membrane regions (Simons 
and Ikonen  1997 ). As gangliosides expose SA residues to the exterior of outer leafl et 
membranes and membrane fl uidity is directly determined by the physicochemical 
characteristics of lipid molecules composing the lipid bilayer, it is very interesting 
to investigate their true physiological counterparts for electrostatic interactions in 
lipid rafts. It has been proposed that metabolic disorders, such as type 2 diabetes, are 
membrane microdomain disorders caused by aberrant expression of gangliosides 
(Inokuchi  2011 ).  

3.4     Ganglioside Expression in T-Lineage Cells 

3.4.1     Ganglioside Analysis with Cholera Toxin 

 Cholera toxin is a protein secreted by the bacterium  Vibrio cholerae . The B subunit 
of cholera toxin (CTx-B) has long been used for the detection, visualization, and 
functional analysis of GM1a (considered a representative for gangliosides and 
lipid rafts) because CTx-B, compared to other antibodies against gangliosides, is 
able to bind to GM1a with much higher affi nity (Cuatrecasas  1973 ; Masserini et al. 
 1992 ; Kuziemko et al.  1996 ). Staining with CTx-B has demonstrated that CD8 +  T 
cells express higher levels of GM1a in rafts than CD4 +  T cells (de Mello Coelho 
et al.  2004 ). Although CTx-B is widely known to specifi cally recognize ganglio-
side GM1a (a-series species), this toxin also reacts with other types of gangliosides 
including fucosylated-GM1a and extended-GM1b, both of which have a mono-
sialo-ganglio-triose structure, Galβ1-3GalNAcβ1-4(SAα2-3)Galβ1- (Fig.  3.1b ) 
(Nakamura et al.  1987 ). In fact, two CTx-B-reactive gangliosides, GM1a (a-series) 
and extended-GM1b (o-series), are expressed in different quantities in individual 
mouse T-cell subsets (Nagafuku et al.  2012 ): GM1a was expressed in both thymo-
cytes and CD4 +  T cells but only trace amounts in CD8 +  T cells, and extended-
GM1b was expressed much more than GM1a in CD8 + T cells (Fig.  3.1b ). The 
presence in a single cell of a variety of rafts with different gangliosides has been 
suggested (Kovacs et al.  2002 ; Gomez-Mouton et al.  2001 ). It has been reported 
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that cross-linking of gangliosides using CTx-B or a homologue, the heat-labile 
enterotoxin of  Escherichia coli , can induce apoptosis in CD8 +  T cells but not in 
CD4 +  T cells (Trambley et al.  1999 ). The apoptosis is caused by the activation of 
NF-κB and c-Myc via the induction of caspase-dependent signaling (Sorice et al. 
 1997 ). While this process is known to proceed in a Fas- and p55 tumor necrosis 
factor receptor- independent pathway (Salmond et al.  2002 ), the events in rafts 
following the ganglioside cross-linking remain undetermined. Considering the 
difference in the expression of CTx-B-binding gangliosides between CD4 +  T cells 
and CD8 +  T cells, it seems possible that the apoptosis caused by CTx-B cross-
linking may involve extended-GM1b rafts but not GM1a rafts (Nagafuku et al.  2012 ). 
This suggests that each T-cell subset has a unique raft in the plasma membrane and 
that the raft provides a distinct function in different intracellular events following 
receptor- mediated stimulation. Taken together, the raft structure recognized by 
CTx-B represents only a part of them, and rafts must be heterogeneous and grouped 
into subclasses. Thus, to understand the role of rafts in the differentiation, matura-
tion, and activation processes of CD4 +  T cells and CD8 +  T cells, it is critical to 
defi ne the ganglioside composition in each respective T-cell lineage. It is, however, 
noted that there are apparent differences in the ganglioside composition among 
primary T cells freshly isolated from lymphoid organs and cultured T cells (cloned 
cell lines and blasted cells stimulated with activators), as well as among animal 
species (Suzuki et al.  1987 ; Potapenko et al.  2007 ).  

3.4.2     Ganglioside Expression in T-Cell Subsets 

 Ganglioside expression in whole T-cell populations (a mixture of all T-lineage cells) 
has previously been examined using biochemical analyses, thin-layer chromatogra-
phy, and high-performance liquid chromatography (Marusic et al.  2004 ; Kiguchi 
et al.  1990 ; Tani-ichi et al.  2005 ). Whole T-cell populations are, however, truly a 
“mixed population”; therefore, any such results would be of limited value to study 
specifi c T-cell subsets. Since fl ow cytometry allows multiparameter analysis of cells 
at a single-cell level, it is a valuable tool to determine the amounts of a specifi c 
ganglioside species in individual T-cell subsets. FACS analyses with monoclonal 
antibodies (mAbs) against several ganglioside species previously determined that 
mature CD4 +  T cells and CD8 +  T cells express differential species of gangliosides 
(Marusic et al.  2004 ; Nakamura et al.  1995 ). More recently, the structures of gan-
gliosides in immature thymocytes and CD4 +  and CD8 +  T cells isolated from mouse 
lymphoid organs were investigated by LC-MS/MS analysis (Nagafuku et al.  2012 ). 
All T-cell subsets commonly express the six distinct species (GM1a, GM1b, 
GD1b, GD1c, GalNAcGM1b, and extended-GM1b), but their expression levels 
are remarkably different in each subset. The expression of o-series gangliosides 
(GalNAcGM1b and extended-GM1b) is greatly enhanced by the differentiation 
from thymocytes to CD4 +  T cells and CD8 +  T cells. It is noteworthy that almost all 
gangliosides expressed in CD8 +  T cells are o-series species. The expression of 
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GM1b is maintained among T-cell subsets, but GM1a is expressed in both thymocytes 
and CD4 +  T cells but only in trace amounts in CD8 +  T cells. Human CD4 +  T cells 
isolated from peripheral blood mainly express a-series gangliosides (GM3 and 
GM1a), as is the case in murine CD4 +  T cells expressing the same series gangliosides 
(GM1a) (Garofalo et al.  2002 ; Sorice et al.  1997 ; Misasi et al.  1993 ). Human CD8 +  
T cells also express a-series gangliosides (GM3 and GM1a) in contrast to murine 
CD8 +  T cells expressing o-series gangliosides. 

 β4Galnt1 gene expression is markedly increased in both CD4 +  T cells and CD8 +  
T cells compared to thymocytes. ST3Gal5 gene expression is increased in CD4 +  T 
cells and is decreased in CD8 +  T cells compared to the expression in thymocytes 
(Nagafuku et al.  2012 ). These gene expression patterns could partially explain the 
abovementioned distinct expression profi le of gangliosides during the differentia-
tion processes from immature thymocytes to mature CD4 +  T cells and CD8 +  T cells. 
In the case of GD1c, Nakamura et al. reported that CD4 +  T cells can be separated 
into GD1c-positive IL-2-producing Th1-like cells and GD1c-negative IL-4- 
producing Th2-like cells (Nakamura et al.  1995 ). In non-obese diabetic (NOD) 
mice, both resting CD4 +  effector T cells and CD8 +  effector T cells contain GM1a 
and GD1a as the major gangliosides detected by TLC analysis and CTx-B staining 
assay; CD8 +  effector cells express higher levels of GD1a than CD4 +  effector cells, 
and both GM1a and GD1a are upregulated by the activation with anti-CD3 and 
anti- CD28 (Misasi et al.  1993 ; Wang et al.  2009 ). Although in these studies the pos-
sibility that GD1a assigned in their analysis might contain extended-GM1b, this 
possibility is supported by the following lines of evidence: extended-GM1b is 
sialidase resistant, migrates like GD1a on TLC, exhibits CTx-B binding activity 
very similar to GM1a, and is detected in a higher amount in CD8 +  T cells than CD4 +  
T cells (Nakamura et al.  1987 ; Nagafuku et al.  2012 ). These fi ndings suggest that 
T-cell subsets can be classifi ed into the distinct functional subpopulations based on 
the differences of ganglioside expression profi les. 

 Polarization of the ganglioside GM1a occurs only in CD4 +  T cells after TCR 
clustering (Kovacs et al.  2002 ). In addition, GM1a and GM3 gangliosides defi ne 
different types of raft membrane domains that segregate either to the leading pole or 
the trailing uropod of the polarized human T cell, respectively (Gomez-Mouton 
et al.  2001 ). In the surface of a T cell, there may be two or more types of lipid rafts 
that are formed by distinct ganglioside species according to different developmental 
stages and activation status.   

3.5     T-Cell Gangliosides and T-Cell Activation 

3.5.1     T-Cell Activation and Lipid Rafts 

 T-cell activation is initiated and sustained by engagement of the TCR with 
MHC–peptide complex on APC as well as engagement of costimulatory molecules 
(e.g., CD28 on T cells with CD80/86 on APC). CD4 and CD8 are coreceptors that 
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bind to nonpolymorphic regions of MHC and facilitate signaling by the TCR during 
T-cell activation. Cross-linking of TCR and CD28 with anti-CD3 and anti-CD28 
mAbs can also activate T cells without APC. In each case T-cell activation requires 
the recruitment of both extracellular and intracellular molecules into the specifi c 
cell membrane regions known as lipid rafts (Dykstra et al.  2003 ; Harder et al.  2007 ) 
(Fig.  3.2 ). 

 Lipid rafts are highly enriched in cholesterol, gangliosides, and sphingomyelin 
(Simons and Toomre  2000 ). Among these lipid components, cholesterol is thought 
to have the critical function of maintaining raft structure. Cholesterol can fi ll the 
space between the hydrocarbon chains of the sphingolipids and functions as glue 
that keeps the raft assembly together. In fact, cholesterol depletion from cell 
membranes using drugs, such as methyl-β-cyclodextrin, generally results in the dis-
ruption of raft-mediated cellular functions (Simons and Toomre  2000 ). Thus, despite 
some concerns regarding side effects of the drug on signaling events (Pizzo et al. 
 2002 ), this experimental approach has been widely used to verify the importance 
of cholesterol in rafts. In contrast to many studies manipulating the cholesterol 
level in lipid rafts, reports that address a role for gangliosides in raft function are 
much fewer.  

3.5.2     T-Cell Activation via TCR and Ganglioside 
Composition in T-Cell Subsets 

    ST3Gal5 is responsible for a-series and b-series ganglioside synthesis; therefore, 
 ST3GAL5 -null mice lack all of a- and b-series gangliosides (GM3, GD3, GM2, and 
GM1a), resulting in LacCer accumulation and compensatory increase of o-series 
gangliosides (GA1, GM1b, GalNAcGM1b, and extended-GM1b) (Fig.  3.1 ) 
(Yoshikawa et al.  2009 ; Nagafuku et al.  2012 ). CD4 +  T cells from control mice 
express reliable levels of a-series GM1a compared to CD8 +  T cells. CD4 +  T cells 
(but not CD8 +  T cells) from  ST3GAL5 -null mice exhibit severe impairments in 
TCR-mediated proliferation and cytokine production (Nagafuku et al.  2012 ; Zhu 
et al.  2011 ). However, the defect is rescued by preincubation of the cells with 
a-series gangliosides (GM3 and GM1a), but with neither of b-series gangliosides. 
Human CD4 +  T cells isolated from peripheral blood mainly express a-series 
ganglioside GM3 (Garofalo et al.  2002 ), which forms GM3-containing rafts 
available as a platform for TCR signal transduction. The importance of GM3-
containing rafts may be corroborated by the observation that GM3 forms a complex 
with both CD4 and Lck (Src family of tyrosine kinases) on plasma membranes and 
is co-immunoprecipitated with ZAP-70 (Syk family of tyrosine kinases) after cross-
linking with anti-CD3 plus anti-CD28 mAbs (Garofalo et al.  2002 ; Barbat et al.  2007 ). 
Taken together, a-series gangliosides are essential for TCR-mediated activation of CD4 +  
T cells. Consequently, the future challenge will be to examine immune responses in 
primary T-cell subpopulations separated on the basis of ganglioside species. 
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 Almost all gangliosides expressed in mouse CD8 +  T cells are o-series species 
(GA1, GM1b, GalNAcGM1b, and extended-GM1b). Mice carrying an altered form 
of  B4GALNT1  lack all other ganglio-series gangliosides except GM3 and GD3 
(Fig.  3.1 ) (Takamiya et al.  1996 ; Nagafuku et al.  2012 ). CD8 +  T cells (but not 
CD4 +  T cells) from  B4GALNT1 -null mice also exhibit severe impairments in 
TCR- mediated proliferation and cytokine production (Nagafuku et al.  2012 ). 
Correspondingly, they are rescued by preincubation with GA1 and GM1b (o-series), 
but with neither of the a-series nor b-series gangliosides. FACS analyses show that 
CD4 +  T cells and CD8 +  T cells each include subpopulations expressing a particular 
GSL not observed in the rest of the population; GA1-positive CD8 +  T cells exhibit more 
robust activation via the TCR and play a critical role in CD40-/CD28- costimulated 
and blockade-resistant allograft rejection, compared with GA1- negative CD8 +  T 
cells (Trambley et al.  1999 ; Kosaka et al.  2007 ; Sorice et al.  1997 ). These fi ndings 
imply that each subpopulation of CD4 +  T cells and CD8 +  T cells has a unique 
ganglioside expression pattern in its rafts, which may be responsible for exerting 
specifi c functions of Th and Tc effector cells. GA1-positive mouse CD8 +  T cells 
produce higher levels of IFN-γ in vitro upon TCR stimulation than GA1- negative 
CD8 +  T cells, and both clonal expansions of CD8 +  T cells and cytotoxic T-cell 
(CTL)-dependent allograft rejection are suppressed by the administration of anti-
GA1 mAb in vivo (Trambley et al.  1999 ). It remains unclear whether, in addition to 
GA1, the other o-series species expressed in primary CD8 +  T cells are essential for 
TCR-mediated activation. 

 Collectively, o-series ganglioside expression is essential for TCR-mediated 
activation of CD8 +  T cells, and a-series ganglioside is indispensable for that of 
CD4 +  T cells (Fig.  3.4 ). These results strongly suggest that each T-cell subset has a 
specifi c raft microenvironment consisting of different gangliosides and that these 
rafts provide distinct functions in different events following stimulation via the 
TCR. Although they share the common mechanisms of TCR-mediated signaling, 
the two T-cell subsets do have different cellular and molecular modifi cations 
(Li et al.  2013 ; Marrack et al.  2008 ; Rudolph et al.  2006 ). CD4 and CD8 can localize 
to lipid rafts by palmitoylation (a posttranslational lipid modifi cation of proteins 
for membrane localization), yet raft targeting does not seem to be determined by 
that process alone (Kroczek et al.  2004 ; Greenwald et al.  2005 ). To ensure that CD4 
and CD8 are moved to a proper place on the membrane, it might be critical for 
CD4/CD8 to interact with rafts carrying a specifi c ganglioside species. CD28, a 
costimulatory molecule, provides functional differences between CD4 +  T cells and 
CD8 +  T cells (Kroczek et al.  2004 ; Greenwald et al.  2005 ). In human and murine 
CD4 +  T cells, CD28 promotes the clustering of CTx-B-detectable rafts at the 
immunological synapse through its downstream signaling molecule protein kinase 
Cθ (Huppa and Davis  2003 ; Bi et al.  2001 ). However, CD8 +  T cells do not reorient 
CTx-B-detectable rafts to the T-cell–APC interface during activation (Kovacs et al. 
 2002 ; O’Keefe et al.  2004 ). Further studies are needed to understand the specifi c roles 
of each ganglioside in the regulation of different membrane microenvironments.    
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3.6     Immune System Disorders and T-Cell Gangliosides 

 Adaptive immunity plays an important role in host defense but can cause tissue 
injury and disease. Although the T cells that recognize self- or harmless antigens are 
killed or inactivated in normal individuals, failure of the normal mechanisms of 
self-tolerance leads to the development of autoimmune diseases and allergy. Each 
T-cell subpopulation (Th1, Th2, Th17, and Treg) is able to produce different cyto-
kines and display distinct effector functions (Fig.  3.3b ), suggesting the different 
organizations of TCR signaling complexes in lipid rafts in each subpopulation 
(Leitenberg et al.  2001 ). The lipid composition of lipid rafts as well as the TCR 
signaling ability itself differs in Th1 and Th2 cells (Balamuth et al.  2001 ; Izsepi 
et al.  2013 ; Sloan Lancaster et al.  1997 ; Smith et al.  1998 ). Recent studies of human 
cases and mouse models have shown that pathologies of some of these diseases are 
correlated with ganglioside composition in T cells. 
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   :  a-series gangliosides 

B4GANLT1 
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  Fig. 3.4    Quantitative and qualitative changes in ganglioside species expressed during T-cell 
development. The differentiation from immature thymocytes to mature T-cell subsets is accompanied 
by selective ganglioside expression. The gene expression patterns together with ganglioside analysis 
confi rm that CD4 +  T cells express a-series gangliosides due to upregulation of ST3Gal5 gene and 
CD8 +  T cells carry almost only o-series gangliosides due to downregulation of ST3Gal5 gene and 
upregulation of B4Galnt1 gene expression. This suggests that each T-cell subset has a unique raft 
composed of different ganglioside species and that these different rafts provide distinct functions 
in the intracellular events following the TCR- and coreceptor-mediated stimulation. The ganglioside 
selection process may be indispensable in the formation of distinct and functional lipid rafts in 
mature T-cell subsets       
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3.6.1     Allergic Asthma and Gangliosides 

 Allergic asthma is classifi ed as a type 1 hypersensitivity reaction and is a manifesta-
tion of immediate and late-phase reactions in the lung. Innate immune cells such as 
mast cells, basophils, and eosinophils are the effector cells of airway infl ammation 
(Orihara et al.  2010 ; Holgate  2011 ). Adaptive immunity contributes to the initiation 
of allergic reactions. CD4 +  T cells play a crucial role via Th2 cytokine (IL-4 and 
IL-13) production, which then helps B cells to produce IgE antibodies that are spe-
cifi c for the “harmless” antigens (Levine and Wenzel  2010 ; Hamid and Tulic  2009 ). 
An experimental model to study mechanisms of allergic airway infl ammation and 
airway hyperresponsiveness is established by inhalation of ovalbumin (OVA) anti-
gen in OVA-sensitized mice.  ST3GAL5 -null mice dramatically alleviate the allergic 
airway responses induced by OVA inhalation: extensive mucus hypersecretion, a 
cardinal feature of asthma, airway infi ltration of infl ammatory cells, OVA-specifi c 
IgE production, and increased Th2 cytokine levels in serum (Nagafuku et al.  2012 ). 
Adoptive transfer experiments in which CD4 +  T cells isolated from OVA-sensitized 
control and  ST3GAL5 -null mice were transferred into naïve control mice and the 
recipient mice were challenged with OVA demonstrate that the immune function of 
CD4 +  T cells in vivo is selectively defi cient in the mutant mice. CD4 +  T cells from 
the mutant mice lack GM1a, and self-reactive CD4 +  T cells exhibit the enhanced 
GM1a expression which causes persistence of abnormal cell activation (Dong et al. 
 2010 ; Kabouridis and Jury  2008 ). A recent report shows that airway infl ammation 
is suppressed by the administration of antisense oligonucleotides against the 
ST3Gal5 gene (Karman et al.  2010 ). These fi ndings strongly suggest that a-series 
ganglioside GM1a is essential for T-helper-cell function. Recently, novel CD4 +  
T-cell subsets, Th17 cells and Treg cells, have been described. In allergic airway 
infl ammation, the balance between effector Th2 cells and suppressive Treg cells is 
skewed toward Th2 predominance (Shalaby and Martin  2010 ). Th17 cells have been 
suggested to contribute to neutrophilic, steroid-resistant, severe asthma and to 
enhance Th2-mediated airway infl ammation, although a role for the cells in asthma 
remains to be determined (Lloyd and Hessel  2010 ). Reportedly,  ST3GAL5 -null 
mice exhibit a decreased number of Th17 cells skewed by in vitro culture (Zhu 
et al.  2011 ).  

3.6.2     Systemic Lupus Erythematosus and Gangliosides 

 Systemic lupus erythematosus (SLE) is an autoimmune disease and develops 
multisystem clinical manifestations such as rashes, arthritis, glomerulonephritis, 
hemolytic anemia, thrombocytopenia, and central nervous system involvement 
(Rahman and Isenberg  2008 ; Tsokos  2011 ). Many different autoantibodies are 
typically found in SLE patients, and so autoreactive T and B cells are involved in 
this pathogenesis. T cells from SLE patients have intrinsic alterations in lipid 
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components of lipid rafts (Jury et al.  2004 ; Krishnan et al.  2004 ; Dong et al.  2010 ). 
GM1a expression levels in CD4 +  T cells (but not in CD8 +  T cells) from SLE patients 
are signifi cantly higher than those from healthy individuals. In addition, quantitative 
analysis by HPLC reveals that LacCer, GA2, Gb3, GM1a, and GD1a are upregu-
lated in CD4 +  T cells from SLE patients compared to healthy individuals (McDonald 
et al.  2014 ). Strikingly, the increased expression of GM1a is more marked on 
CD45RO- positive CD4 +  T cells, phenotypically memory cells, from active SLE 
patients (but not those from inactive SLE patients) (Dong et al.  2010 ). Activated 
human T cells show increased GM1a levels (Tani-ichi et al.  2005 ; Tuosto et al. 
 2001 ; Dong et al.  2010 ; Krishnan et al.  2004 ). GM1a expression is enhanced in self-
reactive CD4 +  T cells, causing the persistence of abnormal cell activation (Dong 
et al.  2010 ; Kabouridis and Jury  2008 ). These data implicate gangliosides as key 
factors in the pathogenesis and pathology of SLE. More recently, CD4 +  T cells from 
SLE patients were stimulated with anti-CD3 plus anti-CD28 mAbs together with a 
GlcCer synthase inhibitor, NB-DNJ, for 72 h. In NB-DNJ-treated T cell from SLE 
patients, the expression levels of GM1a and LacCer were normalized to those of 
healthy individuals, and the defects in TCR signaling in SLE T cells were partially 
restored (McDonald et al.  2014 ). Cellular GSL expression levels are controlled 
through the orchestrated effects of de novo synthesis, turnover, and recycling 
(Degroote et al.  2004 ). Interestingly, the increased GSL expression in SLE CD4 +  T 
cells was associated with accelerated internalization of GSLs from the plasma 
membrane into intracellular compartments and rapid recycling of GSLs back to the 
plasma membrane, leading to a net increase in plasma membrane expression. SLE 
T cells exhibit both increased GSL biosynthesis and accelerated traffi cking to 
and from the plasma membrane, perhaps resulting in an aberrant accumulation of 
gangliosides in lipid rafts (Kidani and Bensinger  2014 ).  

3.6.3     Rheumatoid Arthritis and Gangliosides 

 Rheumatoid arthritis (RA) is an autoimmune disease, which is characterized by 
infl ammation of the synovium associated with destruction of the joint cartilage 
and bone (McInnes and Schett  2011 ). Both cell-mediated and humoral immune 
responses are thought to contribute to the development of RA. In fact, various 
infl ammatory cells including Th1 and Th17 cells, activated B cells, and macro-
phages as well as numerous cytokines including IL-1, IL-8, TNF-α, IL-6, IL-17, and 
IFN-γ are found in the infl amed synovium and joint fl uid (Gizinski and Fox  2014 ; 
Kobezda et al.  2014 ). A recent report shows that both GM3 and ST3Gal5 gene 
expressions are higher in the synovium of RA patients than in that of osteoarthritis 
(OA), which is not an autoimmune disease, patients (Tsukuda et al.  2012 ).  ST3GAL5 -
null mice accelerate the progression of collagen-induced infl ammatory arthritis, a 
mouse model of RA, and promote the induction of IL-17-producing cells in the 
regional lymph nodes after collagen immunization (Tsukuda et al.  2012 ). 
Contrastingly, it has also been reported that  ST3GAL5 -null mice exhibit a decreased 
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number of Th17 cells induced by in vitro culture (Zhu et al.  2011 ). Thus, further 
studies are needed to determine whether a-series gangliosides expressed in Th17 
cells are involved in the development of RA. CD4 +  T cells can be separated into 
GD1c-positive IL-2-producing Th1-like cells and GD1c-negative IL-4-producing 
Th2-like cells (Nakamura et al.  1995 ). It is highly possible that each subpopulation 
of CD4 +  T cells has a unique ganglioside expression pattern in its rafts, which may 
be responsible for exerting specifi c functions of Th effector cells.   

3.7     Future Directions 

 It is certain that the presence of a variety of rafts with different gangliosides in 
individual CD4 +  T-cell subsets is involved in the pathogenesis of allergic and auto-
immune diseases. The selection of specifi c T cells from the thymocytes (repertoire 
selection) seems to be accompanied by selective ganglioside expression in individual 
T-cell subsets. In addition, the different subpopulations of effector CD4 +  T cells 
developed in peripheral lymphoid organs may have a unique ganglioside expression 
pattern in their rafts, which is responsible for exerting specifi c Th functions. This 
suggests that the ganglioside selection process is indispensable for the formation of 
distinct and functional lipid rafts in mature T cells (Fig.  3.4 ). All allergic reactions 
share common features although they differ greatly in the types of antigens. 
Lowering a-series gangliosides by ST3Gal5 inhibition would be a powerful treatment 
for immune system disorders by controlling ganglioside expression in lipid rafts. 
At present there is no selective inhibitor of GM3 synthesis, and so the development 
of an ST3Gal5 inhibitor is expected.     
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    Chapter 4   
 Gangliosides Regulate Tumor Properties: 
With Focus on the Suppression of Metastasis- 
Associated ppGalNAc-T13 with GM1 

             Koichi     Furukawa     ,     Yasuyuki     Matsumoto    ,     Qing     Zhang    , and     Keiko     Furukawa   

    Abstract     Sialic acid-containing glycosphingolipids, gangliosides are expressed in 
various tissues and cells in our bodies. However, some relatively simple ganglio-
sides are expressed in a tumor-specifi c manner in neuroectoderm-derived cancers 
and T-cell leukemias. They are also expressed in small cell lung cancers and osteo-
sarcomas. Not only as tumor markers but as functional molecules on the cell surface 
membrane, they have been of interest, and indeed their roles in cancer cells have 
gradually been clarifi ed. Recently, disialyl gangliosides and monosialyl ganglio-
sides have been demonstrated to have opposite functions in the regulation of cancer 
properties. In particular, ganglioside GM1 showed suppressive effects on cell pro-
liferation, invasion, and cancer metastasis in contrast with cancer-associated disialyl 
gangliosides such as GD3 and GD2. Based on the gene profi ling with DNA array, it 
was demonstrated that the reduction of GM1 levels resulted in the increased expres-
sion of ppGalNAc-T13 and caused increased integrin functions, leading to enhanced 
metastatic potential of Lewis lung cancers. Trimeric Tn structure on syndecan-1 
seems to be a key molecule to cause high metastasis. Both enhancing and suppress-
ing actions of gangliosides on cancer properties have been shown to take place in 
membrane microdomains named lipid rafts. Therefore, regulatory functions of 
individual gangliosides in lipid rafts exerted by interacting with membrane molecules 
should be topics to be investigated now.  
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4.1         Introduction 

 There have been a number of cancer-associated carbohydrate antigens, and some of 
them have been used as tumor markers (Brockhausen  1999 ; Hakomori  2002 ). While 
mechanisms for neo-synthesis and expression of cancer-associated carbohydrate 
antigens have been investigated by a number of researchers (Dall’Olio et al.  2012 ; 
Aksoy and Akinci  2004 ), mechanisms by which these cancer-associated complex 
carbohydrates play roles in cancer cells have been not well understood. 

 Among cancer-associated carbohydrate antigens, gangliosides, sialic acid- containing 
glycosphingolipids, have been considered to be useful markers for various neuroecto-
derm-derived cancers and some of leukemias (Old  1981 ; Siddiqui et al.  1984 ; Furukawa 
et al.  1993 ). In particular, ganglioside GD3 was detected as a melanoma-associated 
antigen (Portoukalian et al.  1979 ; Dippold et al.  1980 ; Furukawa and Lloyd  1990 ), and 
GD2 was identifi ed as a neuroblastoma-associated ganglioside (Saito et al.  1985 ). GD2 
was also reported as a characteristic antigen for small cell lung cancers (SCLC) (Cheresh 
et al.  1986 ), osteosarcomas (Heiner et al.  1987 ), breast cancers (Cazet et al.  2010 ), and 
advanced melanomas (Thurin et al.  1986 ). GD2 was also reported as one of oncofetal 
antigens in melanomas (Watanabe et al.  1982 ; Cahan et al.  1982 ). On the other hand, 
monosialyl gangliosides, such as GM1, have been reported to play roles in the suppres-
sion of malignant properties of cancer cells (Furukawa et al.  2012b ). Virtually, distinct 
effects between disialyl and monosialyl gangliosides on malignant properties of cancer 
cells have been defi ned (Furukawa et al.  2012b ), while modes of action of these two 
main groups of glycolipid antigens have not been well understood to date. The synthetic 
pathway of these structures is shown in Fig.  4.1 .  

 Cancer metastasis is a major cause of death and the most serious issue in almost 
all cancers. Unless cancer metastasis is overcome, apparent improvement of prog-
nosis of cancer patients cannot be expected (Yilmaz et al.  2013 ). Mechanisms for 
the evolution of cancer metastasis have not been well understood mainly because 
metastasis consists of multiple steps such as expansion and invasion into surround-
ing normal tissues, release from primary tumor sites, intravasation, adhesion to vas-
cular walls, extravasation, and formation of new foci (Meng et al.  2012 ). Although 
a number of studies on cancer metastasis and ganglioside expression have been 
reported, defi nite molecular evidences for the involvement of gangliosides in cancer 
metastasis have not been demonstrated. 

 In this review, the involvement of gangliosides in cancer metastasis and its mech-
anisms elucidated mainly by our own results, and related reports from other labora-
tories have been summarized.  

4.2     Monosialyl Gangliosides Often Suppress Malignant 
Properties in Cancer Cells 

     1.    GM1 synthase expression resulted in the suppression of PDGF/PDGF receptor- 
derived signals in mouse Swiss3T3 
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 Several examples of suppressive functions of GM1 synthase and/or GM1 
have been reported by our group using transfectant cell lines of GM1/GD1b 
synthase cDNA (Miyazaki et al.  1997 ). The fi rst example to demonstrate that 
GM1 expression suppressed cancer properties is a study using a mouse fi broblast 
cell line, Swiss3T3 cell. Overexpression of GM1 synthase resulted in the low-
ered growth rates and reduced responses to PDGF treatment (Mitsuda et al. 
 2002 ). A shift of PDGF receptors from glycolipid-enriched microdomain 
(GEM)/rafts to non-GEM/rafts with reduced phosphorylation levels was 
observed in GM1 synthase cDNA-transfectant cells.   

   2.    GM1 synthase in human melanomas 
 In a human melanoma cell line, SK-MEL-37, overexpression of GM1 syn-

thase also induced reduced cell growth and invasion activity (Dong et al.  2010 ). 
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  Fig. 4.1    Major gangliosides described in this review and their synthetic pathway. GD3 synthase 
(ST8SIA1) is a key enzyme for the synthesis of b-series gangliosides, such as GD3 and GD2       
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The transfectant cells showed not only neo-expression of GM1 and GD1b but 
also reduced expression levels of GD3 and GD2. While ganglioside GD3 was 
enriched in GEM/rafts in the parent cells (Haraguchi et al.  1994 ), dispersion of 
GD3 to non-GEM/raft fractions was detected in the cDNA transfectant cells. 
Consequently, cell growth and invasion activity were suppressed, suggesting the 
suppressive function of GM1 synthase/GM1. Interestingly, ratios of saturated 
fatty acids/unsaturated fatty acids in ceramides of GD3 in GEM/rafts were 
reduced in GM1 synthase cDNA-transfectant cells   . Interestingly, intracellular 
distribution of GD3 was also changed in a melanoma cell line, SK-MEL-28, 
transfected with caveolin-1 cDNA (   Nakashima et al.  2007 ). Namely, increased 
ratios of GD3 with unsaturated fatty acids were detected outside of GEM/rafts. 
Thus, GM1 synthase (or GM1) and caveolin-1 might have a common function in 
the suppression of signaling transduced via GEM/rafts and also affect intracel-
lular distribution pattern of GD3 with changes in saturated/unsaturated patterns 
of fatty acids in ceramides. 

 Consequently, the suppressive function of GM1 synthase/GM1 appears to be 
similar with that of caveolin-1 (Quann et al.  2013 ; Razani et al.  2001 ). It is very 
interesting that both GM1 and caveolin-1 have been considered as GEM/rafts 
markers, while neither essential linkages between them nor common actions in 
these molecules have been demonstrated to date.      

4.3     Regulation of Metastatic Potential of Mouse Lewis Lung 
Cancer (LLC) by Monosialyl Gangliosides 

     1.    Overexpression of GM2/GD2 synthase cDNA resulted in the suppression of 
metastatic potential of LLC. 

 LLC has been used as a useful model for cancer metastasis (Takenaga  1986 ). 
To clarify roles of gangliosides in cancer metastasis, an expression vector of 
GM2/GD2 synthase cDNA was transfected into a low metastatic LLC subline 
(Chen et al.  2003 ). An increase of metastatic potential in the transfectants was 
expected, because GM2 has been considered as a tumor-associated antigen in 
lung cancers (Hanibuchi et al.  1996 ) as well as in melanomas (Irie et al.  1989 ; 
Yamaguchi et al.  1990 ). Consequently, GM2/GD2 synthase cDNA-transfectant 
cells showed reduction in number of metastasis foci in the lung. Phosphorylation 
levels of focal adhesion kinase (FAK) were also reduced in the transfectant cells 
compared with the controls. Thus, these results suggested that neo-expression of 
GM2 suppressed cancer metastasis based on the reduced adhesion signals (Chen 
et al.  2003 ). 

 Suppression of activation levels of EGF receptor and EGF signals by ganglio-
side GM3 in A431 cells was also reported (Yoon et al.  2005 ), suggesting that the 
suppressive regulation of growth signals by monosialyl gangliosides is a univer-
sal phenomenon.   
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   2.    GM1 was identifi ed as an altered surface molecule in high metastatic sublines 
of LLC. 

 To identify molecules and genes responsible for the cancer metastatic, low 
metastatic LLC subclones were repeatedly injected into C57BL/6 mice (iv or sc) 
(Zhang et al.  2006 ). In order to examine an alteration in the expression levels of 
surface molecules, various surface antigens were analyzed, i.e., integrin families, 
cadherin, CD44, and gangliosides. None of those antigens except GM1 showed 
defi nite reduced expression along with increased metastatic potential, i.e., only 
GM1 showed signifi cant reduction in common among all high metastatic sub-
lines when compared with individual parent lines (Zhang et al.  2006 ). These 
results suggested that GM1 suppresses metastatic potential in LLC. 

 To examine implication of GM1 in cancer metastasis, knockdown of GM1 
synthase was performed, and silencing of GM1 synthase indeed resulted in the 
establishment of GM1 low LLC sublines with high metastatic potentials. Thus, 
it was shown that reduction in GM1 expression resulted in a shift of MMP-9 and 
integrins to GEM/rafts and in promotion of secretion and activation of MMP-9, 
leading to the enhancement of metastatic property (Zhang et al.  2006 ). 

 All these results suggested that GM1 and/or GM1 synthase induced suppres-
sion of cancer properties such as cell growth, invasion, and metastasis, at least 
partly, by the alteration in the intracellular localization of cognate membrane 
receptors and by modulation of their functions in GEM/rafts. However, clear 
modes of action of GM1 and/or GM1 synthase products have not yet been 
clarifi ed.   

   3.    Identifi cation of responsible genes for the enhancement of LLC metastasis. 
 Gene expression profi ling using DNA microarray was performed to compre-

hensively understand the mechanisms for the increased metastatic potentials in 
high metastatic LLC sublines (Matsumoto et al.  2012 ). A unique advantageous 
point of our study was to search metastasis-associated genes by multiple combi-
nations of “high” metastatic lines and “low” metastatic lines on the same basis 
and to pick up genes that are upregulated commonly among individual combina-
tions along with increased metastatic property (Matsumoto et al.  2012 ). Thus, 
we could obtain more universal molecules possibly involved in the cancer 
metastasis. 

 One of the genes upregulated in high metastatic lines both in GM1 synthase 
gene-silenced lines and in high metastatic sublines to lymph nodes after repeated 
injection was ppGalNAc-T13 (Matsumoto et al.  2012 ). ppGalNAc-T13 is a 
member of GalNAc transferase family involved in the fi rst step of O-glycan syn-
thesis by their activity to transfer alpha-GalNAc to Ser/Thr residues in mucins 
(Zhang et al.  2003 ). Twenty family members of ppGalNAc-Ts have been reported 
so far, and 16 out of them are known to have actual enzyme activities (Brooks 
et al.  2007 ). Among them, ppGalNAc-T13 is unique because of its restricted 
expression in brain tissues (Zhang et al.  2003 ). One more unique function of 
ppGalNAc-T13 is the activity to synthesize trimeric Tn antigen. 

 Tn antigen is a most famous tumor antigen (Ju et al.  2011 ,  2013 ). While Tn 
has been long known as a tumor antigen, concrete implication of Tn structure in 
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tumor phenotypes has not been demonstrated so far. Furthermore, its involve-
ment in cancer metastasis has never been well recognized.   

   4.    Mechanisms for the enhancement of metastasis by trimeric Tn. 
 Trimeric Tn structures were reported fi rst by Nakada et al. ( 1992 ; Matsumoto- 

Takasaki et al.  2012 ) in colon cancer cell lines as a unique Tn structure detected 
by a monoclonal antibody LS186. This unique O-glycan structure was distrib-
uted in cancer tissues (Ohshio et al.  1995 ) and was shown to be involved in the 
malignant properties of colon cancers (Morita et al.  2009 ), while mechanisms 
for its function in cancer cells have not been reported to date. 

 While it has been considered to be a tumor-associated antigen, the real func-
tion of Tn antigen has been long unknown. To clarify the meaning of trimeric Tn 
in cancer metastasis, carrier proteins of trimeric Tn structure was examined by 
immunoprecipitation with the anti-trimeric Tn antibody. Consequently, syn-
decan 1 was identifi ed as a representative carrier protein in high metastatic sub-
lines of LLC (Matsumoto et al.  2013 ). 

 Syndecan 1 has been known as a typical heparan sulfate proteoglycan involved 
in various cell events such as cell adhesion, proliferation, and motility (Munesue 
et al.  2002 ). In many cases, roles of glycosaminoglycan attached to the mole-
cules have been considered as a key moiety in the interaction with other mole-
cules (Munesue et al.  2007 ). Since ppGalNAc-T13-transfectant cells exhibited 
markedly enhanced cell adhesion to fi bronectin in an integrin-dependent manner 
using real-time cell-electronic sensing (RT-CES) (Matsumoto et al.  2013 ), the 
interaction between syndecan 1 and integrins was suspected. As expected, it was 
eventually demonstrated that binding of syndecan 1 to integrins via trimeric Tn 
markedly enhanced integrin functions. 

 Tertiary complex consisting of trimeric Tn-carrying syndecan 1, MMP-9, and 
integrin β1/α5 was demonstrated. This molecular complex could be found in 
GEM/rafts of high metastatic lines including ppGalNAc-T13-transfectant cells. 
These results indicated that strong cell adhesion promoted cancer metastasis 
mainly in GEM/rafts (Simons and Ikonen  1997 ; Simons and Gerl  2010 ). 

 There have been a number of reports on integrin-mediated signaling 
(Margadant et al.  2011 ). Upon adhesion of cells to extracellular matrix, activa-
tion of FAK and/or Src family kinase(s) occurs, and subsequent activation of 
p130Cas, ILK, and paxillin is brought about (Margadant et al.  2011 ). In the case 
of LLC, strong activation of FAK and subsequent phosphorylation of paxillin 
were induced based on the expression of ppGalNAc-T13 as shown in Fig.  4.2 .       

4.4     Interaction Between GM1 and ppGalNAc-T13 in Cancer 
Metastasis 

 ppGalNAc-T13 was identifi ed as one of the responsible genes for metastasis of 
LCC using GM1 synthase-silenced cell lines (Zhang et al.  2006 ; Matsumoto et al. 
 2012 ). Actually, knockdown of GM1 synthase resulted in the upregulation of ppGal-
NAc-T13 with increased invasion activity. Therefore, GM1 expression- mediated 
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signals might regulate the gene expression of ppGalNAc-T13, while precise mecha-
nisms are not clear now. In addition, intracellular localization of ppGalNAc-T13 
appears to be affected by the presence/absence of GM1 (unpublished data), suggest-
ing the possibility of the direct interaction between GM1 and ppGalNAc-T13.  

4.5     ppGalNAc-T13 and Human Diseases 

 When ppGalNAc-T13 gene was detected, it was found almost exclusively in brain 
tissues. Interestingly, it was reported that ppGalNAc-T13 was expressed in the 
bone marrow metastasis of neuroblastomas (Berois et al.  2006 ). The most inter-
esting point is that ppGalNAc-T13 gene is expressed not only in LLC but also in 
human lung cancer cell lines including both non-small cell and small cell lung 
cancers (unpublished data). Moreover, it was detected in the blood of patients 
with heart diseases (Desai et al.  2012 ). The fact that ppGalNAc-T13 might be 
expressed in noncancerous diseases as well as in normal brain tissues suggests 
that ppGalNAc- T13 is expressed in some particular stage of neuronal differentia-
tion and/or in activated cells in nonneuronal cell lineage. Therefore, induction 
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  Fig. 4.2    Reduced expression of ganglioside GM1 resulted in the neo-expression of ppGalNAc-
 T13 and eventually enhanced cancer metastasis. Unique product of ppGalNAc-T13, trimeric Tn is 
key structure to bind integrins, resulting in the dramatic increase of cell adhesion to ECM. These 
interactions occur mainly in GEM/rafts and highly activate FAK and paxillin       
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mechanisms for ppGalNAc-T13 gene expression should be very interesting and 
remain to be investigated.  

4.6     Disialyl Gangliosides Enhance Cancer Properties 
in Various Cancers in Contrast with GM1 

     1.    Malignant melanomas: Gangliosides GD3 and GD2 (or GM2) have been considered 
as melanoma-associated glycolipid antigens (Lloyd and Old  1989 )   , based on 
early biochemical analysis (Portoukalian et al.  1979 ; Carubia et al.  1984 ) and 
immunological studies using monoclonal antibodies (Pukel et al.  1982 ; Thurin 
et al.  1986 ; Ravindranath et al.  1991 ). Many human origin mAbs reactive with 
melanoma gangliosides were generated (Yamaguchi et al.  1987 ; Irie and Morton 
 1986 , Furukawa and Lloyd  1990 ). Recently, genetic approaches using cDNAs of 
glycosyltransferases were performed to analyze gangliosides in cancers (Daniotti 
et al.  2013 ). Using a GD3-lacking mutant of SK-MEL-28, GD3 synthase- 
transfectant cells were compared with control cells, and highly tyrosine- 
phosphorylated molecules were searched, resulting in the detection of adaptor 
molecules, p130Cas and paxillin, undergoing strong activation in GD3+ cells 
(Hamamura et al.  2005 ). Subsequently, focal adhesion kinase (FAK) was also 
identifi ed as a critical molecule to be activated in GD3+ cells (Hamamura et al. 
 2008 ). Furthermore, a Src family kinase, Yes was identifi ed as a kinase to be 
constitutively activated under GD3 expression (Hamamura et al.  2011 ). All these 
molecules were shown to form a molecular complex in the vicinity of the cell 
membrane (Furukawa et al.  2006 ), and these molecules seemed to be candidates 
for the molecular-targeted therapy of melanomas (Furukawa et al.  2008 ). In 
addition to the signaling via growth factor/receptor, adhesion-mediated signaling 
is also intimately regulated by gangliosides. GD3 expression enhanced cell 
adhesion to various extracellular matrices (Ohkawa et al.  2010 ). Gene silencing 
of integrin (β1) resulted in marked reduction of phosphorylation levels of 
p130Cas, FAK, and paxillin as well as of adhesion activity (Ohkawa et al.  2008 ). 
Then, copresence of adhesion signals and FCS (growth) signals was critical to 
induce defi nite activation of p130Cas, FAK, and paxillin. Furthermore, it was 
demonstrated that integrins shifted to GEM/rafts only in GD3+ cells after serum 
stimulation, suggesting the interaction of GD3 with integrins and/or these signal-
ing molecules in GEM/rafts to generate signals for malignant properties of mela-
noma cells (Hakomori et al.  1998 ; Furukawa et al.  2006 ; Patra  2008 ) as shown in 
Fig.  4.3 .    

   2.    Expression analysis of gangliosides on human lung cancer cell lines revealed 
that small cell lung cancer (SCLC) cells express GD2, while NSCLC cells mainly 
express GM2 (Yoshida et al.  2001 ). Although these fi ndings were reported many 
years ago (Hanibuchi et al.  1996 ; Grant et al.  1996 ), the responsible glycosyl-
transferase gene for each group was demonstrated for the fi rst time in 2001. 
Namely, GM2/GD2 synthase was expressed commonly in all cell types of lung 
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cancers, while GD3 synthase was expressed exclusively in SCLC cell lines (Yoshida 
et al.  2001 ) as shown in Fig.  4.1 . Furthermore, it was shown that anti-GD2 mAb 
induced apoptosis by reducing tyrosine phosphorylation levels of FAK, leading 
to anoikis (Aixinjueluo et al.  2005 ). These results strongly encouraged the appli-
cation of anti-GD2 mAbs for the treatment of SCLC patients (Yoshida et al.  2002 ).   

   3.    GD2 expression in breast cancer cell lines resulted in the increased cell prolifera-
tion and invasion (Cazet et al.  2010 ). Recently, GD2 was reported to be a stem 
cell marker of breast cancers (Battula et al.  2012 ). As a mechanism for action of 
GD2, activation of HGF receptor cMET in GD2+ cells was shown (Cazet et al. 
 2010 ). In turn, expression of GD3 in melanoma cells did not increase cMET 
activation after HGF treatment (Furukawa et al.  2014 ), in which it was shown 
that GD3 expression resulted in the convergence and synergy between HGF/
cMET signals and adhesion signals.   

   4.    Majority of osteosarcoma cell lines expressed high levels of GD2 as reported pre-
viously (Heiner et al.  1987 ). GD2/GD3 expression enhanced cell invasion and 
motility with increased activation of either FAK or Lyn, leading to the activation 
of a common target, paxillin (Shibuya et al.  2012 ). In contrast with melanoma 
cells, cell growth was not affected by the expression of disialyl gangliosides in 
osteosarcoma cells (Hamamura et al.  2005 ). Interestingly, the intensity in the phos-
phorylation of paxillin and that in cell adhesion was completely opposite. This 
paradoxical relationship between the weakest adhesion and the strongest activation 
of paxillin in GD3+/GD2+ is hard to be explained (Furukawa et al.  2012a ).   
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  Fig. 4.3    Signaling enhanced by GD3 expression in melanoma cells. Expression of GD3 induced 
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   5.    Neuroblastoma cells specifi cally express GD2, and therefore, anti-GD2 antibody 
therapy has been widely tried (Fukuda et al.  1998 ). Antibody therapies with 
human-mouse chimeric antibody or mouse mAb 3F8 have been performed. 
Consequently, antibody therapies performed during the disease remission can 
cause an extension of 5-year survival and/or disease-free duration in severe cases 
(Raffaghello et al.  2003 ; Matthay et al.  2012 ; Parsons et al.  2013 ).   

   6.    Ganglioside expression on human leukemia cells has been reported since a long 
time ago. GD3 was detected in T-cell acute lymphoblastic leukemia (T-ALL) 
cells (Siddiqui et al.  1984 ; Merritt et al.  1987 ) and also activated T lymphocytes 
(Welte et al.  1987 ; Yamashiro et al.  1995 ). Adult T-cell leukemia cell lines and 
human lymphotropic virus type I-infected T cells also expressed ganglioside 
GD2 (Furukawa et al.  1993 ), while leukemia cells from patients with adult T-cell 
leukemia expressed signifi cant levels of GD2 only after culture in vitro (Okada 
et al.  1996 ).      

4.7     Ending Remarks 

    Many of studies analyzing the roles of monosialyl and disialyl gangliosides suggest 
that gangliosides regulate natures of GEM/rafts (Furukawa et al.  2012b ), resulting 
in the controlling of cell signaling. Contrastive effects of GD3 synthase and GM1 
synthase on cell proliferation and differentiation were demonstrated in PC12 cells 
by our group (Fukumoto et al.  2000 ; Nishio et al.  2004 ). Why so little differences in 
the carbohydrate structures induce opposite effects as shown in Fig.  4.4  has not been 
well understood. Molecules interacting with monosialyl gangliosides and those 
with disialyl gangliosides, particularly with tandem-disialyl structures formed in 
b-series gangliosides, may belong to distinct protein groups with opposite func-
tions. The former might be suppressive, and the latter may play enhancing roles in 
the cancer properties. Therefore, identifi cation of molecules interacting with gan-
gliosides in GEM/rafts seems to be crucial for further understanding modes of 
action of gangliosides (Hashimoto et al.  2012 ).  

 There have been a number of studies on cancer-associated carbohydrate antigens 
(Hakomori S  1985 ; Zhang et al.  1997 ).    In addition to their roles as tumor markers, 
functional implications in their cancer phenotypes have been demonstrated 
(Hollingsworth and Swanson  2004 ; Furukawa et al.  2012a ). Particularly, it is 
intriguing that the involvement of integrins in the functions of sugar chains has been 
very frequently found in our studies (Zhang et al.  2006 ; Ohkawa et al.  2010 ; 
Matsumoto et al.  2013 ) and others’ studies (Hakomori and Handa  2002 ; Cabodi 
et al.  2010 ; Hakomori  2010 ). Furthermore, cell-to-cell interaction in cancer niche 
via cytokines (Miyata et al.  2014 ) and other unknown vesicles also seems essential 
(Peinado et al.  2012 ). Environmental factors around micro-foci of transforming 
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cells could be subjects of studies on carcinogenesis with focus on the alteration in 
glycosylation machineries.     
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Chapter 5
Role of Glycans in Viral Infection

Tadanobu Takahashi and Takashi Suzuki

Abstract A variety of viruses show specific binding to glycans on the cellular 
surface, such as sialoglycoconjugates, glycosaminoglycans, and histo-blood 
group antigens. The viral surface proteins recognize terminal sugar chain moieties 
of glycan and select glycans for binding to specific tissues and hosts. For example, 
orthomyxoviruses (influenza viruses) and paramyxoviruses recognize terminal 
moieties of sialic acid linked to galactose for infecting target cells. In most cases, 
glycans are thought to be involved in cellular surface attachment and cell entry of 
viruses, as viral receptors and/or coreceptors. Expression of sugar chain moieties 
is generally dependent on specific tissues, cells, and hosts. Therefore, the specific 
interactions of viruses with glycans significantly affect tissue tropism and pathoge-
nicity by selection of the viral replication site. For example, human influenza A 
virus preferentially binds to sialic acid α2,6 linkage to galactose, which is expressed 
in the human upper respiratory tract. On the other hand, avian influenza A virus 
preferentially binds to sialic acid α2,3 linkage to galactose, which is expressed in 
chicken eggs and trachea. The difference in recognition is believed to determine 
host specificity of influenza A virus. Platforms of the sugar chain are N-linked 
glycan, O-linked glycans (containing proteoglycans), and sphingolipid. Difference 
in these platforms also affects functions of viral receptors. This chapter presents 
a review about glycans bound and recognized by representative viruses including 
coronavirus, flavivirus, herpesvirus, norovirus, orthomyxovirus, paramyxovirus, 
parvovirus, polyomavirus, retrovirus, and reovirus.

Keywords Binding • Heparan sulfate • Histo-blood group antigens • Infection • 
Glycan • Receptor • Sialic acid • Sugar chain • Sulfatide • Virus

T. Takahashi • T. Suzuki (*) 
Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka,  
52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
e-mail: takahasi@u-shizuoka-ken.ac.jp; suzukit@u-shizuoka-ken.ac.jp

The original version of this chapter was revised. An erratum to this chapter can be found at  
http://dx.doi.org/10.1007/978-4-431-55381-6_18

mailto:takahasi@u-shizuoka-ken.ac.jp
mailto:suzukit@u-shizuoka-ken.ac.jp
http://dx.doi.org/http://dx.doi.org/10.1007/978-4-431-55381-6_18


72

Abbreviations

AAV Adeno-associated virus
AAV1 AAV type 1
AAV2 AAV type 2
AAV4 AAV type 4
AAV5 AAV type 5
AAV6 AAV type 6
AAV9 AAV type 9
AIBV Avian infectious bronchitis virus
ApoE Apolipoprotein E
BCV Bovine coronavirus
BKV BK virus
BPV Bovine parvovirus
CPV Canine parvovirus
DEN Dengue virus
GAG Glycosaminoglycan
GalCer Galactosylceramide
HA Hemagglutinin
HCoV-OC43 Human coronavirus OC43 strain
HCV Hepatitis C virus
HE Hemagglutinin-esterase
HN Hemagglutinin-neuraminidase
HIV Human immunodeficiency virus
HPAI Highly pathogenic avian IAV
FPV Feline parvovirus
hPIV Human parainfluenza virus
hPIV1 hPIV type 1
hPIV3 hPIV type 3
HSV Herpes simplex virus
HSV-1 HSV serotype 1
HSV-2 HSV serotype 2
IAV Influenza A virus
IBV Influenza B virus
ICV Influenza C virus
JCV JC virus
JEV Japanese encephalitis virus
MHV Mouse hepatitis virus
MVM Parvovirus minute virus of mice
MPV Murine polyomavirus
Neu5Ac N-Acetylneuraminic acid
MuV Mumps virus
NDV Newcastle disease virus
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Neu5Acα2,3Gal Neu5Ac α2,3-linked to galactose
Neu4,5Ac2 N-Acetyl-4-O-acetylneuraminic acid
Neu5,9Ac2 N-Acetyl-9-O-acetylneuraminic acid
Neu5,9Ac2α2,3Gal Neu5,9Ac2 α2,3-linked to galactose
Neu5,9Ac2α2,6Gal Neu5,9Ac2 α2,6-linked to galactose
Neu5Gc N-Glycolylneuraminic acid
NoV Human norovirus
NSP4 Nonstructural glycoprotein 4
ReV Reovirus
ReV1 ReV type 1
ReV3 ReV type 3
RoV Rotavirus
RSV Human respiratory syncytial virus
SeV Sendai virus
SV40 Simian virus 40
TGEV Porcine transmissible gastroenteritis virus
TNF Tumor necrosis factor
VLP Virus-like particle
vRNP Viral ribonucleoprotein complexes
WNV West Nile virus

5.1  Introduction

All viruses replicate in host cells only and show host (cell) ranges and specificities. 
Glycans on the cellular surface are highly diverse and species specific. Viral  
host (cell) ranges and specificities are often dependent on specificity and diversity 
of glycans on the surface membranes of host cells. In fact, various viruses bind 
to glycans on the surface membranes of host cells as specific receptors. Typical 
receptors are sialic acid-containing glycans and sulfated glycans, for example,  
gangliosides and heparan sulfate, respectively. In many cases, the minus charge of 
sialic acid and sulfate is likely to play an important role in viral binding with  
glycans. The typical life cycle of an enveloped virus consists of receptor binding, 
entry, uncoating of the viral capsid, synthesis of viral components (genomes and 
proteins), glycosylation of viral proteins, intracellular traffic of viral components, 
packaging of viral particles, and budding and release of progeny viruses on the 
cellular surface. Functions of glycans in these steps except for receptor binding 
mostly remain unknown. This chapter presents a review, mainly in terms of a viral 
receptor, about glycans recognized by viruses including coronavirus, flavivirus, 
herpesvirus, norovirus, orthomyxovirus, paramyxovirus, parvovirus, polyomavirus, 
retrovirus, and reovirus.
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5.2  Viruses that Bind to Glycans

5.2.1  Coronavirus

Coronaviruses are positive-stranded RNA viruses and enveloped viruses that are 
classified within the family Coronaviridae. They are a diverse group of viruses that 
infect various mammalian and avian species. The viruses often affect the respiratory 
or intestinal tract. It has been shown that many coronaviruses agglutinate erythro-
cytes (Bingham et al. 1975; Pokorný et al. 1975). Coronaviruses recognize a type of 
sialic acid as a receptor on cell surface components. Bovine coronavirus (BCV) and 
human coronavirus OC43 strain (HCoV-OC43) have binding activity to glyco-
conjugates containing N-acetyl-9-O-acetylneuraminic acid (Neu5,9Ac2), through 
hemagglutinin- esterase (HE) protein and/or spike (S) protein on the viral surface 
membrane (Schultze et al. 1991a, b; Künkel and Herrler 1993). The HE protein only 
agglutinates cells that contain a high content of Neu5,9Ac2 such as mouse and rat 
erythrocytes (Schultze et al. 1991b). The S protein is able to agglutinate chicken 
erythrocytes, but the HE protein cannot (Schultze et al. 1991a). Bovine corona-
virus is more efficient in recognizing Neu5,9Ac2 α2,3-linked to galactose 
(Neu5,9Ac2α2,3Gal), whereas HCoV-OC43 is superior with respect to Neu5,9Ac2 
α2,6-linked to galactose (Neu5,9Ac2α2,6Gal) (Krempl et al. 1995). BCV and 
HCoV-OC43 use Neu5,9Ac2 as a receptor to initiate infection of cultured cells 
(Schultze and Herrler 1992; Künkel and Herrler 1993). These viruses also have 
esterase activity in the HE protein to cleave the 9-O-acetyl group of Neu5,9Ac2, as 
does influenza C virus (ICV). The esterase activity is believed to help release of 
progeny viruses from cellular surfaces of host cells. In contrast to most of the coro-
naviruses, mouse hepatitis virus (MHV) recognizes N-acetyl-4-O-acetylneuraminic 
acid (Neu4,5Ac2) rather than Neu5,9Ac2 (Regl et al. 1999; Langereis et al. 2012). 
Receptor recognition of MHV may reflect change in host tropism from other 
species to mice.

Porcine transmissible gastroenteritis virus (TGEV) and avian infectious bron-
chitis virus (AIBV) bind to N-acetylneuraminic acid (Neu5Ac) α2,3-linked to 
galactose (Neu5Acα2,3Gal) (Schultze et al. 1992, 1993) via viral S protein. TGEV 
infects the porcine small intestine, brush border membranes of which express 
mucin-like and Neu5Ac-rich glycoprotein. Although TGEV uses aminopeptidase 
N as the main cellular receptor, TGEV S protein may support viral attachment to 
the brush border membranes (Schwegmann-Wessels and Herrler 2008). TGEV 
also recognizes N-glycolylneuraminic acid (Neu5Gc) (Schultze et al. 1996), which 
is expressed in pigs (Suzuki et al. 1997). S protein of AIBV shows much higher 
binding activity to Neu5Acα2,3Gal than does that of TGEV. AIBV uses only 
Neu5Ac as the main cellular receptor (Winter et al. 2006; Shahwan et al. 2013). 
AIBV Beaudette strain shows binding activity to heparan sulfate (HS). This virus 
is an embryo- adapted virus that has the extended tropism in cell culture. HS may 
in part contribute to extended tropism of AIBV Beaudette strain (Madu et al. 2007) 
(Table 5.1).
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5.2.2  Flavivirus

Flaviviruses are positive-stranded RNA viruses and enveloped viruses that are 
classified within the family Flaviviridae. Dengue virus (DEN) is the most important 
mosquito-mediated human pathogen. Clinical manifestations of the virus range 
from a simple self-limited febrile illness known as dengue fever to a hemor-
rhagic fever and potentially fatal hemorrhagic shock syndrome. All serotypes 
(1–4) of DEN recognize nLc4Cer (Galβ1,4GlcNAcβ1,3Galβ1,4Glc1,1’Cer) from 
mammalian cells (Aoki et al. 2006). DEN type 2 also recognizes Ar3Cer 
(GlcNAcβ1,3Manβ1,4Glcβ1,1’Cer) from mosquito cells (Wichit et al. 2011). It is 
thought that neutral glycosphingolipids share the important determinant for DEN 
binding and that the β-GlcNAc residue may play a key role in DEN binding. 
Chemically synthesized derivatives carrying multiple carbohydrate residues of nLc4 
inhibit binding of DEN type 2, indicating that a binding inhibitor based on nLc4 
could be as a potential DEN drug (Aoki et al. 2006). DEN also binds to some 
glycosaminoglycans (GAGs) such as HS (Chen et al. 1997; Watterson et al. 2012), 
heparin (Marks et al. 2001), fucoidan (Hidari et al. 2008), and chondroitin sulfate E 
(Kato et al. 2010) through the virus envelope E glycoprotein, but does not bind to 
chondroitin sulfates A, B, C, and D or hyaluronic acid (Kato et al. 2010). DEN 
infection is inhibited by some GAGs such as heparin (Marks et al. 2001), fucoidan 
(Hidari et al. 2008), and chondroitin sulfate E (Kato et al. 2010). Most GAGs 
include GlcA and sulfated GlcA. 3-O-Sulfated GlcA inhibits DEV infection, but 
2-O-sulfated and 3,6-di-O-sulfated ones do not (Hidari et al. 2012). It is thought that 
3-O-GlcA is in part a key structure in DEN binding to GAGs. DEN causes leakage 
of the vascular endothelium, resulting in dengue hemorrhagic fever. Human endo-
thelial cells are highly susceptible to infection by DEN. The susceptibility may be 
attributed to DEN attachment directed to HS-containing proteoglycan receptors on 
endothelial cells (Dalrymple et al. 2011). Two encephalitis flaviviruses, Japanese 
encephalitis virus (JEV) and West Nile virus (WNV), have a binding activity to 
heparin (Lee et al. 2004). JEV also binds to and is inhibited by HS (Su et al. 2001). 

Table 5.1 Binding activities of coronaviruses to glycans

Virus Glycan (references)

BCV Neu5,9Ac2α2,3Gal (Krempl et al. 1995; Künkel and Herrler 1993; Schultze 
et al. 1991a, b)

HCoV-OC43 Neu5,9Ac2α2,6Gal (Krempl et al. 1995; Künkel and Herrler 1993; Schultze 
et al. 1991a, b)

MHV Neu4,5Ac2 (Langereis et al. 2012; Regl et al. 1999)

TGEV Neu5Acα2,3Gal (Schultze et al. 1993; Schwegmann-Wessels and Herrler 2008)

Neu5Gc (Schultze et al. 1996)

AIBV Neu5Acα2,3Gal (Schultze et al. 1992, 1993; Shahwan et al. 2013; Winter  
et al. 2006)

HS (Madu et al. 2007)
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The binding affinity of WNV and JEV for GAG has been suggested to be a 
 determinant for the neuroinvasiveness of encephalitic flaviviruses (Lee et al. 2004).

E1 and E2 envelope glycoproteins of hepatitis C virus (HCV) recognize HS 
through an important structure such as 6-O-sulfation and N-sulfation, not through 
simple ionic interactions (Barth et al. 2003; Kobayashi et al. 2012). Since HCV 
strongly binds to HS from liver tissues, HS appears to be one of the molecules that 
confer the liver-specific tissue tropism of HCV infection (Kobayashi et al. 2012). 
Binding of HCV to the cell surface is not markedly inhibited by heparin, different 
from other flaviviruses such as DEN and JEV. Cellular HS may act as an alternative 
receptor for HCV, not a primary receptor (Heo 2008). However, chondroitin sulfate 
E from squid cartilage strongly interacts with both E1 and E2 proteins and inhibits 
the entry of pseudotype HCV into cells, suggesting that chondroitin sulfate E is a 
potential candidate of an anti-HCV drug (Kobayashi et al. 2012). Apolipoprotein E 
(ApoE), which has a heparin-binding activity, mediates HCV attachment to the cell 
surface through specific interactions with cellular HS (Jiang et al. 2012). Syndecan-1, 
which is a core protein to form HS proteoglycans, serves as the major receptor 
protein for HCV attachment to cells (Shi et al. 2013).

Sulfated GAGs (especially HS) may serve as receptor proteoglycans for the 
attachment of flaviviruses to target cells. Elucidation of the mechanism by which 
flaviviruses bind to sulfated GAGs would contribute to the discovery and develop-
ment of anti-flavivirus drugs (Table 5.2).

5.2.3  Herpesvirus

Herpesviruses are double-stranded linear DNA viruses and enveloped viruses that 
are classified within the family Herpesviridae. The most common manifestations 
of herpes simplex virus (HSV) infection are mucocutaneous lesions. The initial 
contact of HSV serotypes 1 and 2 (HSV-1 and HSV-2) with the cellular surface is 

Table 5.2 Binding activities 
of flaviviruses to glycans

Virus Glycan (references)

DEN nLc4Cer (Aoki et al. 2006)

Ar3Cer (Wichit et al. 2011)

HS (Chen et al. 1997; Watterson et al. 2012)

Heparin (Marks et al. 2001)

Fucoidan (Hidari et al. 2008)

Chondroitin sulfate E (Kato et al. 2010)

JEV Heparin (Lee et al. 2004)

HS (Su et al. 2001)

WNV Heparin (Lee et al. 2004)

HCV HS (Barth et al. 2003; Kobayashi et al. 2012)

Chondroitin sulfate E (Kobayashi et al. 2012)
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believed to be binding of the virus to HS through the viral envelope glycoproteins 
gB and gC (Herold et al. 1991; Trybala et al. 2000). However, interactions of gB and 
gC with HS are not sufficient for HSV entry into cells. After adsorption of HSV 
with HS on the cellular surface, cell entry requires engagement of the viral envelope 
glycoprotein gD with one of three classified coreceptors, herpesvirus entry mediator, 
tumor necrosis factor (TNF) receptor family, and immunoglobulin superfamily 
(Spear et al. 2000). Additionally, 3-O-sulfation of glucosamine residues in HS 
generated by multiple D-glucosaminyl 3-O-sulfotransferase isoforms is a key 
determinant of the gD binding site. HSV-1 cell entry requires interactions of gD 
with 3-O-sulfated HS or other coreceptors described above (Shukla et al. 1999). 
3-O-Sulfated HS appears to play an important role in HSV-1 entry into many 
different cell lines (O’Donnell et al. 2010). The glycoprotein gB has a sequence of 
a putative fusion activity, suggesting that interactions of gB with cellular surface 
molecules allow the fusion process for cell entry. However, HS-deficient cells are 
susceptible to HSV-1 infection (Banfield et al. 1995). HSV-1 bearing gB lacking an 
HS binding site also maintains cell infectivity (Laquerre et al. 1998). Soluble gB, 
which was generated by a baculovirus protein expression system, also binds to 
HS-deficient cells and inhibits HIV-1 infection (Bender et al. 2005). Interaction of 
gB with other molecules except HS may play an important role in HSV-1 infection. 
3-O-Sulfated HS and HS-binding peptide have been investigated as anti-HSV 
agents (Copeland et al. 2008; Ali et al. 2012) (Table 5.3).

5.2.4  Norovirus

Human noroviruses (NoVs) are single-stranded positive-sense RNA viruses and 
small, round, non-enveloped viruses with a diameter of 38 nm that are classified 
within the family Caliciviridae. These viruses are the major causative pathogens of 
acute viral gastroenteritis characterized by severe diarrhea. NoV virus-like particles 
(VLPs) bind to histo-blood group antigens demonstrating A, B, and O phenotypes, 
through the P domain of viral capsid protein, VP1 (Harrington et al. 2002; Marionneau 
et al. 2002; Chen et al. 2011). For example, the VLPs derived from Norwalk/68 strain 
bind to H1 antigen (Fucα1,2Galβ1,3GlcNAc; O phenotype), H2 antigen 
(Fucα1,2Galβ1,4GlcNAc; O phenotype), Leb antigen [Fucα1,2Galβ1,3(Fucα1,4)
GlcNAc], A1 antigen [GalNAcα1,3(Fucα1,2)Galβ1,3GlcNAc; A phenotype], 
and A2 antigen [GalNAcα1,3(Fucα1,2)Galβ1,4GlcNAc; A phenotype] but not to 
B1 antigen [Galα1,3(Fucα1,2)Galβ1,3GlcNAc, B phenotype] or B2 antigen 
[Galα1,3(Fucα1,2)Galβ1,4GlcNAc, B phenotype] (Harrington et al. 2002; 

Table 5.3 Binding activities of herpesviruses to glycans

Virus Glycan (references)

HSV-1, 2 HS (especially 3-O-sulfated) (Herold et al. 1991; Shukla et al. 1999; Trybala 
et al. 2000)
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Huang et al. 2003, 2005; Hutson et al. 2003; Lindesmith et al. 2003). Humans with 
O phenotype, but not those with B phenotype, are susceptible to NoV Norwalk/68 
strain infection (Hutson et al. 2002; Lindesmith et al. 2003). These studies 
suggested that histo-blood group antigens are receptors of NoV. However, other 
NoV VLPs display different ABH and Lewis carbohydrate-binding profiles 
(Harrington et al. 2002; Huang et al. 2005; Shirato et al. 2008; Shirato-Horikoshi 
et al. 2007). Indeed, Rockx’s epidemiological research indicated that some NoVs 
can infect individuals with different ABH phenotypes (Rockx et al. 2005). For 
example, VLPs derived from BUDS strain bind to A and B antigens but not to H 
antigens. The binding activities of NoVs to histo-blood group antigens vary greatly 
in a strain-dependent manner. NoVs include at least 36 genotypes in VP1 nucleotide 
sequence. Various genotype NoVs appear to infect humans with any blood types 
through binding combinations of some histo-blood group antigens (Table 5.4).

5.2.5  Orthomyxovirus

Representative orthomyxoviruses are influenza A virus (IAV), influenza B virus 
(IBV), and ICV, which are classified within the family Orthomyxoviridae. Influenza 
viruses are enveloped viruses with a diameter of 100 nm and are respiratory patho-
gens with strong infection spread. IAVs and IBVs are eight-segmented single-
stranded negative- sense RNA viruses, and ICVs are seven-segmented single-stranded 
negative- sense RNA viruses. Viral hosts are wide species including humans, pigs, 
birds, and horses for IAVs and mainly humans for IBVs and ICVs. Host receptors 
on the cellular surface membrane are sialic acid residues existing at the terminal 
position of glycoconjugates, Neu5Ac for IAVs and IBVs and Neu5,9Ac2 for ICVs 
(Rogers et al. 1986; Suzuki et al. 1992). IAVs and IBVs have sialidase activity (an 
enzyme cleaving Neu5Ac from glycoconjugates), and ICVs also have esterase 
activity (an enzyme cleaving 9-O-acetyl group from Neu5,9Ac2) to prevent trapping 
of progeny viruses to sialic acid residues on the cellular surface and on viral glyco-
proteins. These receptors containing sialic acids are thought to be gangliosides and/
or N-glycans (Suzuki 1994; Chu and Whittaker 2004). In general, human IAVs 
show preferential binding to Neu5Acα2,6Gal linkage, whereas avian IAVs show 
preferential binding to Neu5Acα2,3Gal linkage. Swine IAVs bind to both 
Neu5Acα2,3Gal and Neu5Acα2,6Gal linkages, equally or with predominance 
toward Neu5Acα2,6Gal linkage (Ito et al. 1997a; Suzuki et al. 1997). IBVs show 
preferential binding to Neu5Acα2,6Gal linkage (Suzuki et al. 1992). IAVs and IBVs 
strongly recognize Neu5Acα2,6(or 3)Galβ1,3GlcNAc and Neu5Acα2,6(or 3)

Table 5.4 Binding activities of noroviruses to glycans

Virus Glycan (references)

NoV ABH and Lewis antigens in human blood (Harrington et al. 2002; Marionneau 
et al. 2002)
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Galβ1,4GlcNAc through interactions of the viral surface glycoprotein, hemagglutinin 
(HA) (Suzuki et al. 1992, 2000; Suzuki 1994). The human trachea predominantly 
expresses Neu5Acα2,6Gal linkage (Baum and Paulson 1990). The pig trachea 
expresses both Neu5Acα2,3Gal and Neu5Acα2,6Gal linkages (Suzuki et al. 1997, 
2000). Chicken eggs and trachea express Neu5Acα2,3Gal linkage (Ito et al. 1997b; 
Abd El Rahman et al. 2009). Glycoconjugates recognized by respective IAVs 
coincide with respective virus replication sites expressing their glycoconjugates, 
strongly suggesting that their glycoconjugates are receptors of IAVs. Some H5N1 
highly pathogenic avian IAVs (HPAIs) and H7N9 avian IAVs, isolated from humans, 
show increased binding activity to Neu5Acα2,6Gal linkage (Yamada et al. 2006; 
Watanabe et al. 2013; Zhang et al. 2013). Acquisition of Neu5Acα2,6Gal linkage 
binding activity of H5N1 HPAIs is one of the factors that lead to airborne transmis-
sion among ferrets (human infection and transmission model) (Imai et al. 2012; 
Herfst et al. 2012). Increased binding activity of avian IAVs and animal IAVs other 
than human IAVs to Neu5Acα2,6Gal linkage could cause a pandemic of a new 
subtype of IAV among humans. As an alternate pandemic mechanism, a new 
subtype of IAV could arise by genetic reassortment among segmented viral RNAs 
from simultaneous infections of human and avian IAVs in pigs, which express both 
Neu5Acα2,3Gal and Neu5Acα2,6Gal linkages in the trachea. In this way, Neu5Ac 
binding properties of IAVs may be involved in the pandemic occurrence of a new 
subtype of IAV.

Since 2008, it has been reported that some IAVs, 2009 pandemic H1N1 IAVs  
and avian IAVs including H5, H6, H7, and H9 subtypes, show preferential binding 
to 6-sulfo sialyl Lewis X. These IAVs appear to recognize terminal tri- or  
tetra- oligosaccharides [Neu5Acα2,3Galβ1,4(6-O-SO3H)GlcNAc and Neu5Acα2, 
3Galβ1,4(Fucα1,3)(6-O-SO3H)GlcNAc] of 6-sulfo sialyl Lewis X (Gambaryan 
et al. 2008, 2012; Childs et al. 2009).

Major sialic acids are classified into two types: Neu5Ac and Neu5Gc. Almost all 
equine IAVs show strong preferential binding to Neu5Gc α2,3-linked to galactose 
(Neu5Gcα2,3Gal) (Ito et al. 1997a; Suzuki et al. 2000). Almost all avian IAVs also 
show binding activity to one, although Neu5Gc binding activity is weaker than their 
Neu5Ac binding activity (Ito et al. 1997a, 2000). Some human and swine IAVs 
show binding activity to Neu5Gc (preferentially to Neu5Gcα2,6Gal linkage) 
(Suzuki et al. 1997; Masuda et al. 1999; Takahashi et al. 2009). Neu5Gc and 
Neu5Gcα2,3Gal linkage is expressed in the horse trachea, duck intestine, and pig 
trachea, which are natural replication sites of IAVs (Suzuki et al. 1997, 2000; Ito 
et al. 2000). The function of Neu5Gc is predicted to be an IAV receptor, like 
Neu5Ac. There is a possibility that human and avian IAVs facilitate transmission to 
pigs through interactions with Neu5Gc. As described above, pigs are potential inter-
mediate hosts that produce a new subtype of IAV between human IAV and avian 
IAV. Neu5Gc binding properties of these IAVs may also be involved in a pandemic 
occurrence.

Sulfatide is a 3-O-sulfated galactosylceramide (GalCer). IAV specifically binds 
to sulfatide, even though it does not contain any sialic acids (Suzuki et al. 1996). 
Sulfatide is not an IAV receptor for initial infection, different from sialic acids. 
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Caspase-3-dependent apoptosis enhances IAV replication through enhancement of 
nuclear export of viral ribonucleoprotein complexes (vRNP) (Wurzer et al. 2003). 
Sulfatide has interacted with newly synthesized HA transferred to the surface 
membranes of infected cells. The interaction of HA with sulfatide facilitates forma-
tion and replication of progeny virus particles through enhancement of nuclear 
export of vRNP by inducing caspase-3-independent apoptosis (Takahashi et al. 
2008, 2010, 2013b). The binding mechanism of the HA ectodomain with sulfatide 
is thought to be different from that with Neu5Ac (Takahashi et al. 2013a). An inhibitor 
of HA binding with sulfatide would become a novel drug that inhibits formation 
of IAV particles and IAV replication. Sulfatide is involved in various biological 
properties such as the immune system, nervous system, kidney functions, insulin 
control, hemostasis/thrombosis, cancer, and other microbes (Takahashi and Suzuki 
2012). Further study on sulfatide binding of IAVs would contribute to elucidation of 
these biological mechanisms and diseases associated with sulfatide (Table 5.5).

5.2.6  Paramyxovirus

Paramyxoviruses are single-stranded negative-sense RNA viruses and enveloped 
viruses with a diameter of 150–250 nm that are classified within the family 
Paramyxoviridae. Some paramyxoviruses have the envelope glycoprotein, 
hemagglutinin- neuraminidase (HN), displaying both sialic acid binding activity and 
sialidase activity. Such viruses that infect humans are human parainfluenza virus 
(hPIV) and mumps virus (MuV), which are members of the genus Respirovirus and 
Rubulavirus, respectively. hPIVs [mainly type 1 (hPIV1) and type 3 (hPIV3)] 
account for 20 % of causative pathogens isolated from children with pneumonia 
(Sinaniotis 2004). hPIV1 causes most cases of laryngotracheobronchitis (croup) 
in children, and hPIV type 3 (hPIV3) often causes pneumonia and bronchiolitis 

Table 5.5 Binding activities of orthomyxoviruses to glycans

Virus Glycan (references)

Human IAV Neu5Ac (Neu5Gc) α2,6Gal (Masuda et al. 1999; Suzuki et al. 1992; Suzuki 
1994; Takahashi et al. 2009)

Avian IAV Neu5Ac (Neu5Gc) α2,3Gal (Ito et al. 1997a, 2000; Suzuki et al. 1992; 
Suzuki 1994)

Swine IAV Neu5Acα2,6Gal (Suzuki et al. 1997)

Neu5Ac (Neu5Gc) α2,3Gal (Suzuki et al. 1997)

Equine IAV Neu5Gcα2,3Gal (Ito et al. 1997a; Suzuki et al. 2000)

IAV 6-Sulfo sialyl Lewis X (Gambaryan et al. 2008, 2012; Childs et al. 2009)

Sulfatide (Suzuki et al. 1996; Takahashi et al. 2008, 2010, 2013a, b)

IBV Neu5Acα2,6Gal (Suzuki et al. 1992)

ICV Neu5,9Ac2 (Rogers et al. 1986; Suzuki et al. 1992)
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in infants younger than 6 months of age. hPIV1 shows preferential binding  
to Neu5Acα2,3Galβ1,3GlcNAc (Suzuki et al. 2001; Tappert et al. 2011),  
whereas hPIV3 shows binding activity to both Neu5Acα2,3Galβ1,3GlcNAc and 
Neu5Acα2,6Galβ1,3GlcNAc, in addition to Neu5Gcα2,3Galβ1,3GlcNAc. Higher 
pathogenicity of hPIV3 may be involved in the broader range of receptor recogni-
tion than that of hPIV1. Interestingly, both hPIVs strongly bind to oligosaccharides 
containing branched N-acetyllactosaminoglycans (Suzuki et al. 2001). Blood group 
I-type polylactosamine antigens may be major receptors of hPIVs. Also, HS binding 
of hPIV3 suggests that HS may play an important role in cell entry of hPIV3 (Bose 
and Banerjee 2002). On the other hand, sulfatide, which binds to hPIV3, inhibits 
hPIV3 infection and multinucleated syncytial giant cell formation of infected cells 
through suppression of viral fusion activity (Takahashi et al. 2012). MuV is a caus-
ative pathogen of childhood disease manifested by swelling of parotid glands and 
salivary glands, sometimes accompanied by complications such as aseptic meningitis, 
meningoencephalitis, and orchitis. MuV also has an HN spike protein, which 
was shown to be sensitive to the sialidase inhibitor 2-deoxy-2,3-didehydro-N- 
acetylneuraminic acid (Waxham and Wolinsky 1986). However, binding of MuV 
with sialoglycoconjugates remains unknown.

Sendai virus (SeV) is a highly transmissible animal respiratory virus in mice, 
hamsters, guinea pigs, and rats. SeV is a member of the genus Respirovirus pos-
sessing HN. Gangliosides and glycophorin were investigated as host cell receptors 
for SeV (Markwell et al. 1981; Hansson et al. 1984; Suzuki et al. 1985; Wybenga 
et al. 1996). SeV recognizes ganglio-series gangliosides (GD1a, GT1b, and GQ1b) 
containing the sequence NeuAcα2,3Galβ1,3GalNAc as viral receptors (Markwell 
et al. 1981). SeV shows preferential binding to neolacto-series gangliosides 
containing Neu5Acα2,3Galβ1,4GlcNAc, especially branched blood group I-type 
and/or linear i-type gangliosides (Suzuki et al. 1985). SeV can also bind to bovine 
erythrocyte glycoprotein GP-2 containing blood group I-type branched polylactos-
amine oligosaccharides with Neu5Gcα2,3Gal (Suzuki et al. 1983, 1984). Neu5Gc is 
expressed in animals other than humans (genetically lacking an active enzyme for 
synthesis of Neu5Gc in humans). SeV can utilize both species of sialic acid Neu5Ac 
and Neu5Gc to infect animals.

Newcastle disease virus (NDV) is a transmissible pathogen of bird disease 
and sometimes of mild conjunctivitis and influenza-like symptoms for human 
infection. NDV is a member of the genus Avulavirus possessing HN. NDV shows 
preferential binding to gangliosides such as sialylparagloboside (IV3Neu5Acα-
nLc4Cer or IV3Neu5Gcα-nLc4Cer) containing Neu5Acα2,3Galβ1,4GlcNAc  
or Neu5Gcα2,3Galβ1,4GlcNAc and GM3 containing Neu5Acα2,3Gal or 
Neu5Gcα2,3Gal. NDV also binds to blood group I-type gangliosides, GD3, GM1a, 
and GD1b, although their binding is weaker than that of sialylparagloboside and 
GM3 (Suzuki et al. 1985). Gangliosides (GM1, GM2, GM3, GD1a, GD1b, and 
GT1b) may act as primary receptors, and N-linked glycoproteins may function as 
secondary receptors for NDV entry into cells (Ferreira et al. 2004). On the other 
hand, pretreatment of chicken East Lansing Line ELL-0 cells with both α2,3- and 
α2,6-specific sialidases and α2,3(N)- and α2,6(N)-sialyltransferase incubation 
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showed that both α2,3- and α2,6-linked sialic acids containing glycoconjugates may 
be used for NDV infection (Sánchez-Felipe et al. 2012). Receptor binding properties 
of NDVs may depend on the viral strain.

Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory 
tract diseases in infants and young children. RSV is a member of the genus 
Pneumovirus possessing viral surface glycoproteins, attachment G and fusion F 
proteins, but not including sialidase unlike all paramyxoviruses described above. 
For virus infection, RSV requires interactions of the G protein and/or the F protein 
with heparin, HS, and chondroitin sulfate B on the cell surface (Bourgeois et al. 
1998; Feldman et al. 1999; Hallak et al. 2000). The G protein and the F protein 
independently recognize heparin and HS (Feldman et al. 2000). These GAGs and 
their destroying enzymes also have inhibitory activity against RSV infection (Hallak 
et al. 2000) (Table 5.6).

5.2.7  Parvovirus

Parvoviruses are non-enveloped viruses that belong to the family Parvoviridae. 
Adeno-associated virus (AAV) is a nonpathogenic human parvovirus with diameters 
of 20–30 nm. Recombinant AAV has been used for gene transfer to various cells 
and several organs. AAV type 1 (AAV1), type 4 (AAV4), type 5 (AAV5), and 
type 6 (AAV6) recognize sialic acids and use them as receptors of infection, but 
AAV type 2 (AAV2) and type 9 (AAV9) do not. AAV4 specifically recognizes 
Neu5Acα2,3Gal of O-linked glycans, whereas AAV1 and AAV6 specifically recog-
nize both Neu5Acα2,3Gal and Neu5Acα2,6Gal of N-linked glycans. Therefore, 
AAV4 infection is inhibited by mucin that possesses rich O-glycans, but AAV1 and 

Table 5.6 Binding activities of paramyxoviruses to glycans

Virus Glycan (references)

hPIV1 Neu5Acα2,3Gal (Suzuki et al. 2001; Tappert et al. 2011)

hPIV3 Neu5Acα2,3Gal (Suzuki et al. 2001)

Neu5Acα2,6Gal (Suzuki et al. 2001)

Neu5Gcα2,3Gal (Suzuki et al. 2001)

HS (Bose and Banerjee 2002)

Sulfatide (Takahashi et al. 2012)

MuV Sialic acid? (Waxham and Wolinsky 1986)

SeV Neu5Acα2,3Gal (Suzuki et al. 1985)

Neu5Gcα2,3Gal (Suzuki et al. 1983, 1984)

NDV Neu5Acα2,3Gal (Suzuki et al. 1985; Ferreira et al. 2004)

Neu5Gcα2,3Gal (Suzuki et al. 1985)

RSV Heparin (Bourgeois et al. 1998; Feldman et al. 1999; Hallak et al. 2000)

HS (Bourgeois et al. 1998; Feldman et al. 1999; Hallak et al. 2000)

Chondroitin sulfate B (Hallak et al. 2000)
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AAV6 infections are not. AAV5 binds to Neu5Acα2,3Gal of N-glycans. Binding of 
AAV5 to Neu5Acα2,6Gal of N-glycans remains unknown. AAV1 efficiently binds 
to N-linked sialylated glycans possessing lactosamine (Galβ1,4GlcNAc) (Walters 
et al. 2001; Kaludov et al. 2001; Wu et al. 2006). AAV2 infection is strongly or 
moderately inhibited by heparin or chondroitin sulfate B, respectively. HS mediates 
AAV2 attachment to the cellular surface and infection (Summerford and Samulski 
1998). AAV9 uses the terminal Gal residue of N-linked glycans as a receptor (Shen 
et al. 2011).

Animal parvoviruses sometimes cause fetal diseases for hosts such as dogs and 
cats. Canine, feline, bovine, and mouse parvoviruses also bind to sialic acids. Bovine 
parvovirus (BPV) binds to Neu5Acα2,3Gal of both N- and O-linked glycans for 
attachment to the cellular surface (Johnson et al. 2004). BPV can strongly bind to 
glycophorin A through the Neu5Acα2,3Gal moiety of O-linked glycans (Blackburn 
et al. 2005). Parvovirus minute virus of mice (MVM) shows specific binding to 
terminal moieties, Neu5Acα2,3Galβ1,4GlcNAc such as sialyl Lewis X and 
Neu5Acα2,8Neu5Ac linkages such as gangliosides GD2, GD3, and GT3 (Nam et al. 
2006). Canine parvovirus (CPV) has hemagglutination activity, indicating virus 
binding to sialic acid (Tresnan et al. 1995). CPV and feline parvovirus (FPV) recog-
nize Neu5Gc but not Neu5Ac. However, Neu5Gc on the cellular surface is unlikely 
to be a receptor for CPV and FPV infections because overexpression of Neu5Gc has 
no effect on virus infectivities of some cell lines (Löfling et al. 2013) (Table 5.7).

5.2.8  Polyomavirus

JC virus (JCV) and BK virus (BKV) are non-enveloped viruses with diameters of 
40–45 nm that are classified within the family Polyomaviridae, closely related to 
simian virus 40 (SV40) and murine polyomavirus (MPV). Initial JCV infection is 

Table 5.7 Binding activities of parvoviruses to glycans

Virus Glycan (references)

AAV1, AAV6 Neu5Acα2,6Gal (N-linked) (Wu et al. 2006)

Neu5Acα2,3Gal (N-linked) (Wu et al. 2006)

AAV2 HS (Summerford and Samulski 1998)

AAV4 Neu5Acα2,3Gal (O-linked) (Kaludov et al. 2001)

AAV5 Neu5Acα2,3Gal (Neu5Acα2,6Gal?) (N-linked) (Kaludov et al. 2001; 
Walters et al. 2001)

AAV9 Terminal Gal (N-linked) (Shen et al. 2011)

BPV Neu5Acα2,3Gal (N- and O-linked) (Johnson et al. 2004)

MVM Neu5Acα2,3Galβ1,4GlcNAc (Nam et al. 2006)

Neu5Acα2,8Neu5Ac linkages (Nam et al. 2006)

CPV Neu5Gc (Löfling et al. 2013)

FPV Neu5Gc (Löfling et al. 2013)
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thought to occur in childhood and not to cause symptomatic illness but to be a risk 
factor for progressive multifocal leukoencephalopathy. JCV shows stronger binding 
to Neu5Acα2,6Gal linkage (of N-linked glycans), in addition to binding to 
Neu5Acα2,3Gal linkage such as gangliosides GM3, GD2, GD3, GD1b, GT1b, and 
GQ1b, through the major viral capsid protein VP1 (Gee et al. 2004). A linear 
sialylated pentasaccharide with the sequence LSTc (Neu5Acα2,6Galβ1,4GlcNAcβ
1,3Galβ1,4Glc) binds with JCV and inhibits JCV infection of target cells, strongly 
suggesting that LSTc is a functional receptor of JCV infection (Neu et al. 2010). 
JCV binds to an asialoglycolipid, lactosylceramide, but not to GalCer. Therefore, 
JCV can also bind to GM3 and GD3 after sialidase treatment (i.e., lactosylce-
ramide). JCV weakly binds to GD1a but does not bind to GM1a or GM2 (Liu et al. 
1998; Komagome et al. 2002). These studies suggest that both Neu5Acα2,3Gal and 
Neu5Acα2,6Gal of N-linked glycans are also used for cellular surface binding and 
infection of JCV (Dugan et al. 2008).

BKV infection rarely causes symptom illness in humans but can lead to 
polyomavirus- associated nephropathy in renal transplant recipients undergoing 
immunosuppressive therapy. BKV binds to a cellular receptor, Neu5Acα2,3Gal 
of N-linked glycans, via VP1 protein (Dugan et al. 2005, 2007). For nonhuman 
polyomaviruses, VP1s specifically bind to GD1a and GT1b for MPV and to GM1 
for SV40, suggesting that Neu5Acα2,3Gal is a key determinant in the interactions. 
Gangliosides appear to transport polyoma and SV40 from the cellular surface to the 
endoplasmic reticulum, and then the viruses enter the nucleus to initiate infection 
(Tsai et al. 2003) (Table 5.8).

5.2.9  Retrovirus

Retroviruses are single-stranded positive-sense RNA and round enveloped viruses 
with a diameter of 100 nm that are classified within the family Retroviridae. Human 
immunodeficiency virus (HIV), which is a member of the genus Lentivirus, is a 
pathogen causing long-term and chronic disease that gradually progresses to acquired 
immunodeficiency syndrome. The viral surface glycoprotein gp120 of HIV binds to 
some glycolipids containing GalCer (Delézay et al. 1997; Hammache et al. 1998; 
Harouse et al. 1991), Gb3Cer (Galα1,4Galβ1,4Glc1,1’Cer) (Mahfoud et al. 2002; 

Table 5.8 Binding activities of polyomaviruses to glycans

Virus Glycan (references)

BKV Neu5Acα2,3Gal (N-linked) (Dugan et al. 2005, 2007)

JCV Neu5Acα2,6Gal (strong binding, N-linked) (Komagome et al. 2002; Liu et al. 1998)

Neu5Acα2,3Gal (gangliosides) (Komagome et al. 2002)

LSTc (the strongest binding) (Neu et al. 2010)

MPV Neu5Acα2,3Gal? (GD1a and GT1b) (Tsai et al. 2003)

SV40 Neu5Acα2,3Gal? (GM1) (Tsai et al. 2003)
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Lund et al. 2006), GM3 (Hammache et al. 1998), and sulfatide (Delézay et al. 1996; 
van den Berg et al. 1992), in addition to heparin (and HS) (Crublet et al. 2008). CD4 
is a main primary receptor of HIV for viral attachment to the cellular surface. After 
interaction of the gp120 with CD4, these glycolipids and HS are thought to interact 
with gp120 and to act as coreceptors for the fusion process between the cellular 
membrane and viral membrane of HIV for entry into cells. However, sulfatide may 
not be a coreceptor for HIV because the fusion process is initiated by mediating 
binding to GalCer but not to sulfatide (Delézay et al. 1997; Harouse et al. 1991) 
(Table 5.9).

5.2.10  Reovirus

Reoviruses (ReV) are double-stranded RNA viruses and non-enveloped regular 
icosahedra non-enveloped viruses with a diameter of 60–80 nm that are classified 
within the family Reoviridae. ReVs can infect the gastrointestinal and respiratory 
tracts of various mammals. For humans, most children are infected by the age of 
5 years. The viral attachment σ1 protein of ReVs recognizes sialic acids of glyco-
conjugates on the cellular surface. ReV type 1 (ReV1) binds to Neu5Acα2,3Gal 
and binds strongly to ganglioside GM2, which contains sialic acid linked to the 
inner galactose residue. The interaction of ReV1 with GM2 is involved in viral 
infection (Helander et al. 2003; Reiss et al. 2012). ReV type 3 (ReV3) binds to 
Neu5Acα2,3Gal, Neu5Acα2,6Gal, and Neu5Acα2,8Neu5Ac linkages, in addition 
to Neu4,5Ac2 (Gentsch and Pacitti 1987; Reiter et al. 2011). Interactions of ReV 
with sialic acids are believed to act for cellular surface attachment of ReV by rapid 
but low-affinity adhesion, followed by transition to a higher affinity interaction with 
an unidentified receptor for cell entry. Therefore, sialic acid is considered to be a 
coreceptor rather than a main receptor for ReV infection (Barton et al. 2001). 
ReV1 spreads to the central nervous system via a hematogenous route and infects 
ependymal cells in the brain, leading to nonlethal hydrocephalus. In contrast, ReV3 
spreads to the central nervous system via neural and hematogenous routes and 
infects neurons, causing lethal encephalitis. These serotype-dependent differences 
in tropisms and pathogenesis are thought to be involved in the distinct binding 
with glycochain moieties.

Table 5.9 Binding activities of retroviruses to glycans

Virus Glycan (references)

HIV GalCer (Delézay et al. 1997; Hammache et al. 1998; Harouse et al. 1991)

Gb3Cer (Lund et al. 2006; Mahfoud et al. 2002)

GM3 (Hammache et al. 1998)

Sulfatide (Delézay et al. 1996; van den Berg et al. 1992)

Heparin (HS?) (Crublet et al. 2008)
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Rotavirus (RoV) is a member of the genus Rotavirus and the most important 
pathogen of severe gastroenteritis in children. There are two groups of RoV in the 
hemagglutination activity of erythrocytes and sialidase sensitivity of viral infection: 
sialic acid-dependent and sialic acid-independent RoVs (Isa et al. 2006). A few animal 
RoVs are sialic acid dependent on the interactions of the viral surface spike VP8* 
protein, which is formed from the viral VP4 protein by proteolytic cleavage, with 
sialic acids, whereas human RoVs and the majority of animal RoVs are sialic acid 
independent. For cell entry, sialic acid-dependent RoVs require gangliosides con-
taining Neu5Ac and/or Neu5Gc, such as GM1(a), GM2, GM3, GD1a, GD1b, GD3, 
and GT1b, which can inhibit RoV infection (Guo et al. 1999; Martínez et al. 2013; 
Rolsma et al. 1998; Superti and Donelli 1991; Yu et al. 2012). In addition, some sialic 
acid-independent RoVs, such as Wa and KUN strains, bind to GM1(a) containing 
internal Neu5Ac, which can also inhibit infections of these viruses (Guo et al. 1999; 
Haselhorst et al. 2009; Martínez et al. 2013). These studies suggest that sialic 
acid-dependent RoVs bind to gangliosides containing terminal Neu5Ac, whereas 
sialic acid-independent RoVs bind to gangliosides containing internal Neu5Ac. 
The VP8* protein of human sialic acid-independent RoVs also recognizes histo-
blood group antigens, trisaccharide GalNAcα1,3(Fucα1,2)Gal of A antigen for 
HAL1166 P[11] viral genotype strain (Hu et al. 2012), H1 antigen for P[4] and 
P[8] viral genotypes, and Leb antigen for the P[6] viral genotype (Huang et al. 
2012). The interactions of RoVs with sialo- or asialo-receptors are dependent on viral 
strains and genotypes. Nonstructural glycoprotein 4 (NSP4) encoded by RoVs is 
believed to function as an enterotoxin. NSP4 is secreted as an oligomeric lipoprotein 
from infected cells and binds to sulfated GAGs (Didsbury et al. 2011). Thus, gly-
cans appear to be involved in the infection and pathogenesis of RoVs and NSP4 
through cellular surface attachment (Table 5.10).

Table 5.10 Binding activities of reoviruses to glycans

Virus Glycan (references)

ReV1 Neu5Acα2,3Gal (Helander et al. 2003)

GM2 (Reiss et al. 2012)

ReV3 Neu5Acα2,3Gal (Reiter et al. 2011)

Neu5Acα2,6Gal (Reiter et al. 2011)

Neu5Acα2,8Neu5Ac (Reiter et al. 2011)

Neu4,5Ac2 (Gentsch and Pacitti 1987)

RoV Gangliosides (Neu5Ac and/or Neu5Gc) (Guo et al. 1999; Martínez et al. 2013; 
Rolsma et al. 1998; Superti and Donelli 1991; Yu et al. 2012)

Histo-blood group A1 antigen (Hu et al. 2012)

Histo-blood group H1 antigen (Huang et al. 2012)

Histo-blood group Leb antigen (Huang et al. 2012)

RoV NSP4 Sulfated GAGs (Didsbury et al. 2011)
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5.3  Conclusion

A variety of viruses recognize glycans such as sialoglycoconjugates, GAGs, and 
histo-blood group antigens. These glycans are often thought to serve as receptors 
and/or coreceptors for cellular surface attachment and cell entry of viruses and viral 
toxins. The interactions of viruses with glycans determine virus-dependent tissue 
tropism, host, and pathogenicity. In rare cases, the interaction of IAV HA with sul-
fatide functions as a start switch of progeny virus particle formation, not as a recep-
tor for IAV infection. It may be important to evaluate the interactions of viruses with 
glycans in terms of insights different from a receptor function. Further studies com-
bining virology and glycobiology should lead to the elucidation and discovery of 
novel infection and replication mechanisms of a variety of viruses.
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    Chapter 6   
 Discovery and Applications 
of a Novel Human Pluripotent Stem 
Cell-Specifi c Lectin Probe rBC2LCN 

             Hiroaki     Tateno      and     Jun     Hirabayashi   

    Abstract     The cellular glycome of human pluripotent stem cells (hPSCs) such as 
embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) 
was exhaustively analyzed using the cutting-edge glycan profi ling technology 
called high-density lectin microarray. Despite the different glycan profi les of the 
original somatic cells for each tissue, it was found that hiPSCs derived from various 
origins showed almost the same profi le, indicating that the introduction of repro-
gramming genes caused uniform convergence into glycan structures analogous to 
those of hESCs. Furthermore, three characteristic features of glycan epitopes 
expressed in hPSCs were identifi ed: α2-6Sia, α1-2Fuc, and type-1 LacNAc. In 
addition, a recombinant lectin probe rBC2LCN highly specifi c to hPSCs was dis-
covered. rBC2LCN is a practical hPSC-specifi c probe, which enables the live stain-
ing of hPSCs just supplemented into cell culture media without visible toxicity. 
Recently, a noninvasive and quantitative assay of hPSCs with tumorigenic potential 
using rBC2LCN was also successfully developed. Now rBC2LCN is commercial-
ized as a novel type of detection reagent of hPSCs, which is suitable for industrial 
application in regenerative medicine. Here, we describe our recent fi ndings about 
the cellular glycome of hPSCs and the discovery and application of rBC2LCN to 
regenerative medicine.  
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6.1         Introduction 

    Human pluripotent stem cells (hPSCs) with the ability to self-renew and differentiate 
into any cell types have attracted attention because they are not only applied to drug 
discovery screening (Egawa et al.  2012 ; Yahata et al.  2011 ) and elucidation of 
disease mechanism (Brennand and Gage  2011 ; Imaizumi and Okano  2014 ; Yoshida 
and Yamanaka  2010 ) but also cell sources for  regenerative medicine (Kamao et al. 
 2014 ; Okano et al.  2013 ). Two types of human pluripotent stem cells have been 
generated: human embryonic stem cells (hESCs) derived from blastocysts (Thomson 
et al.  1998 ) and induced pluripotent stem cells (hiPSCs) (Takahashi et al.  2007 ). 
hiPSCs were fi rst generated in 2007 by introducing a combination of four transcrip-
tion factors, POU domain, class 5, transcription factor 1 (OCT3/4), sex-determining 
region Y-box 2 (SOX2), Kruppel-like factor 4 (KLF4), and myelocytomatosis 
oncogene (c-MYC) into adult human fi broblasts (Takahashi et al.  2007 ). hiPSCs 
originating in Japan have great advantage that they have a low ethical road back 
because of the no use of fertilized embryos and can be established from autologous 
tissues (Yamanaka  2009 ). Thus hiPSCs are receiving high expectations from the 
fi eld of regenerative medicine. In 2010, the world’s fi rst clinical trial using hESCs 
was conducted by a biotechnology company Geron to treat spinal cord injury, 
although this trial was halted on November 14, 2011, by an economical reason 
(Strauss  2010 ). In the USA, there are currently two active clinical trials using 
hESCs, both being conducted by a biotechnology company called ACT, to treat 
patients with Stargardt’s macular dystrophy and age-related macular degeneration 
(Schwartz et al.  2012 ). In Foundation for Biomedical Research and Innovation, 
Japan, the world’s fi rst clinical trial using hiPSCs was recently conducted for 
age-related macular degeneration patients. Keio University is also planning to start 
clinical studies for spinal cord injury patients (Okano et al.  2013 ). Although the 
clinical application of hPSCs is started as just described above, a system to supply 
cells by securing quality and safety is not suffi ciently developed. One of the most 
important safety concerns to be addressed to apply hPSCs for regenerative medicine 
is that residual hPSCs in transplanting cells could form tumors in patients (Andrews 
 2011 ; Ben-David and Benvenisty  2011 ; Goldring et al.  2011 ; Itskovitz-Eldor  2011 ; 
Okano et al.  2013 ). The residual tumorigenic hPSCs thus have to be detected and 
removed from transplanting cells prior to introduction into patients, since even 245 
undifferentiated hESCs spiked into 10 6  fi broblasts could produce a teratoma (Hentze 
et al.  2009 ). 

 A practical strategy for overcoming the tumorigenic risk of hPSCs is based on 
the use of cellular biomarkers, which are useful for the detection and targeted 
elimination of tumorigenic hPSCs (Tang et al.  2011 ). Cell surface glycans are con-
sidered to be ideal targets for cell surface markers, which can be used to detect and 
isolate each cell type by the following reasons: (1) Glycans are located at the 
outermost cell surface. (2) Glycan structures are complex and diverse within a cell 
type or even a single glycosylation site. (3) Glycans are dynamic, which change in 
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response to intrinsic and extrinsic signals (Gagneux and Varki  1999 ; Lanctot et al. 
 2007 ; Varki  1993 ). Therefore, cell surface glycans are often referred to as “cell 
signature,” which represent cell properties (Tateno et al.  2010 ). In fact, all of the 
cell surface markers, generally used to evaluate hPSCs, are glycans such as stage-
specifi c embryonic antigens (SSEA-3, SSEA-4) and tumor-rejection antigens 
(Tra-1-60 and Tra-1-81). SSEA-3 and SSEA-4 are carried by globo-series glyco-
lipids, consisting of Galβ1-3GalNAcβ1- 3Galα1-4Galβ1-4Glcβı-Cer and its 
α2-3sialylated form (Siaα2-3Galβ1- 3GalNAcβ1-3Galα1-4Galβ1-4Glcβ1-Cer) 
(Kannagi et al.  1983 ). On the other hand, TRA-1-60 and TRA-1-81 markers have 
been reported to be expressed on podocalyxin, a heavily glycosylated membrane 
protein (Schopperle and DeWolf  2007 ). Their carbohydrate epitopes were fi rst 
reported to be keratan sulfate (Badcock et al.  1999 ), but were recently identifi ed 
by glycan microarray analysis to be type-1  N -acetyl-lactosamine linked to type-2 
 N -acetyl-lactosamine (Galβ1-3GlcNAcβ1- 3Galβ1-4GlcNAc) (Natunen et al. 
 2011 ). More recently, SSEA-5 was proposed as a novel marker for hPSCs that 
consists of H type-1 glycan (Fucα1-2Galβ1-3GlcNAc) (Tang et al.  2011 ). 
However, only little is known why these structures could function as biomarkers 
of hPSCs, since the overall feature of cell surface glycans of hPSCs has not been 
well understood.  

6.2     Recombinant Shift of Lectins and Development 
of High- Density Lectin Microarray 

 To analyze the cellular glycome of hPSCs, we utilized a lectin microarray technol-
ogy developed by ourselves (Hirabayashi et al.  2013 ; Kuno et al.  2005 ). Before 
challenging this subject, the quality of lectin microarray was improved. In the pre-
vious evanescent-type lectin microarray, 43 lectins with diverse glycan-binding 
specifi cities prepared from natural sources were selected and used due to various 
reasons (history, commercial availability, stability, and cost-effectiveness)
(Hirabayashi et al.  2013 ; Kuno et al.  2005 ). However, lectins from natural sources 
have many issues with respect to glycan-detection reagents, e.g., in terms of purity, 
lot-to-lot difference, and instable supply (Tateno et al.  2011 ). To solve these sub-
jects, we fi rst challenged “recombinant shift” of lectins from naturally prepared 
ones (Hirabayashi et al.  2013 ; Tateno et al.  2011 ). For this purpose, lectins were 
selected from diverse lectin families intending to cover a wider range of glycan-
binding specifi cities (Tateno et al.  2011 ). For production, the  E. coli  expression 
system was chosen to avoid glycosylation of the produced lectins, which might 
cause nonspecifi c binding to lectin-like molecules in the objective samples (Tateno 
et al.  2011 ). By incorporating 38 recombinant lectins, a high-density lectin microar-
ray containing an almost doubled number of lectins (96 lectins) was developed 
(Tateno et al.  2011 ) (Fig.  6.1 ).   
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6.3     Comprehensive Glycan Profi ling 
Using High-Density Lectin Microarray 

 Using the developed high-density lectin microarray, we performed comprehensive 
glycome analysis of 114 hiPSCs, 9 hESCs, and 11 somatic cells, all of which were 
of human origins (Tateno et al.  2011 ). hiPSCs were generated from four different 
cells: human fetal lung fi broblast cell line (MRC5), amniotic mesoderm (AM), 
uterine endometrium (UtE), and placental artery endothelial (PL). We also  analyzed 
hiPSCs generated from human dermal fi broblasts with four (201B7) (Takahashi 
et al.  2007 ) and three (253G1) transcription factors developed by Dr. Yamanaka’s 
group (Nakagawa et al.  2008 ). Cell membrane fractions were prepared, labeled 
with Cy3- N -hydroxysuccinimide ester, and 50 ng of protein was analyzed by a 
high- density lectin microarray as previously described (Tateno et al.  2010 ) 
(Fig.  6.1 ). The obtained data were fi rst analyzed by unsupervised hierarchical 
 clustering. Differentiated somatic cells and undifferentiated hPSCs were separated 
into two large clusters, indicating that cell surface glycans are clearly different 
between them (Tateno et al.  2011 ). All of the hiPSCs of different origins gave gly-
can profi les similar to hESCs. This indicates that the introduction of reprogram-
ming factors caused uniform convergence into glycan profi les analogous to hESCs. 
The close analysis of high-density lectin microarray data also revealed drastic 
change in glycan profi les upon the induction of pluripotency, which can be regarded 
as “glycome shift” (Tateno et al.  2011 ). That is, a dozen of lectins were statistically 
selected, showing signifi cantly different binding signals between differentiated 
somatic cells and undifferentiated hPSCs, which represent the glycome shift upon 
the induction of pluripotency. Among them, based on the lectin signals, the expres-
sion levels of α2-6Sia, α1-2Fuc, and type-1 LacNAc were presumed to be mark-
edly increased in undifferentiated hPSCs (Fig.  6.2 ). These results could also be 
supported by the differential expression of the corresponding glycosyltransferase 
genes: expression levels of glycosyltransferase genes,  ST6Gal1 ,  FUT1/2 , and 
 B3GalT5 , were apparently elevated in hPSCs compared with somatic cells (Tateno 
et al.  2011 ).   

hiPSCs/hESCs
Somatic cells
Mouse feeder cells

Prepare cell
membrane
fractions

Cy3 labeling High-density lectin microarray Statistical analysis

  Fig. 6.1    Glycan profi ling using high-density lectin microarray       
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6.4     Quantitative Glycan Analysis Using Mass 
Spectrometry (MS)/High-Performance Liquid 
Chromatography (HPLC) Mapping 

 To confi rm the results obtained by high-density lectin microarray analysis, quantita-
tive glycan analysis of 201B7 hiPSCs was performed compared to human dermal 
fi broblasts using glycosidase-assisted MS/HPLC mapping (Hasehira et al.  2012 ). 
Forty-seven glycans ( N -glycans, 37;  O -glycans, 10) for 201B7 hiPSCs and 27 gly-
cans ( N -glycans, 20,  O -glycans, 7) for human dermal fi broblasts were determined. 
Differences in glycan structures between 201B7 hiPSCs and human dermal fi bro-
blasts were summarized below:

    1.    The total ratio of high-mannose-type  N -glycans in 201B7 cells (86.1 % molar 
fraction) was higher than that in fi broblasts (69.9 %).   

   2.    A signifi cant amount of hybrid-type  N -glycans was identifi ed in 201B7 cells 
(1.9 %), but not in fi broblasts (0 %).   

   3.    All of the identifi ed Sia-linkages on  N -glycans were found to be the α2-6 type in 
201B7 cells, while that was in contrast with the α2-3 type in fi broblasts.   
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  Fig. 6.2    Glycome shift upon induction of pluripotency       
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   4.    α1-2Fuc and type-1 LacNAc were specifi cally identifi ed in 201B7 cells on both 
 N -glycans (α1-2Fuc, 1.7 %; type-1 LacNAc, 0.6 %) and  O -glycans (α1-2Fuc, 
8 %; type-1 LacNAc, 9.6 %), but were not detected at all in fi broblasts.    

These results fully confi rmed the above results obtained by lectin microarray; 
i.e., the expression of α2-6Sia, α1-2Fuc, and type-1 LacNAc increased upon the 
induction of pluripotency (Fig.  6.2 ).  

6.5     Discovery of a Novel hPSC-Specifi c Probe, rBC2LCN 

 Among the 96 lectins immobilized on the high-density lectin microarray, a lectin, 
previously known as rBC2LCN ( N -terminal domain of BC2-L lectin derived from 
 Burkholderia cenocepacia ), was found to bind all of the undifferentiated cells 
tested, but not at all to any of the differentiated cells (Fig.  6.3 ) (Tateno et al.  2011 ). 
Moreover, two advanced methods, comprehensive glycan microarray (Tateno 
et al.  2008 ) and analytical frontal affi nity chromatography (FAC) (Tateno et al. 
 2007 ), revealed that rBC2LCN recognizes the unique glycan epitopes, Fucα1-
2Galβ1- 3GlcNAc/GalNAc-containing glycans such as H type-1 (Fucα1-2Galβ1-
3GlcNAc), H type-3 (Fucα1-2Galβ1-3GalNAc), Lewis b (Fucα1-2Galβ1-3(Fucα1-4)
GlcNAc), and Globo-H (Fucα1-2Galβ1-3GalNAcβ1-3Galα1-4Galβ1-4Glc). 
Notably, all these structures comprise two of the above characteristics of 
 pluripotency, i.e., α1-2Fuc and type-1 LacNAc (Tateno et al.  2011 ). In fact, 
rBC2LCN ligands are well related to the previously reported hPSC markers such 
as SSEA-3/SSEA-4/SSEA-5 and Tra-1-60/81, all of which are synthesized by the 
key enzymes,  B3GalT5  and  FUT1/2 .  

 Among the 47 types of glycans derived from hiPSCs described above (Hasehira 
et al.  2012 ), one  O -glycan containing an H type-3 was identifi ed, which was a 
core2-type  O -glycan, Fucα1-2Galβ1-3(Galβ1-3GlcNAcβ1-6)GalNAc (Fig.  6.4 ) 
(Tateno et al.  2013 ). In contrast, no glycan constituting H type-1 structure 

Statistically selected 
the best lectin probe

LectinA
rBC2LCN signal

Somatic cells 
(differentiated)

-

hiPSCs/hESCs
(undifferentiated)

+++

  Fig. 6.3    rBC2LCN is a hPSC-specifi c probe       
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(Fucα1-2Galβ1- 3GlcNAc) was detected in glycoproteins derived from 201B7 hiP-
SCs. The affi nity constant of rBC2LCN to the core2-type  O -glycan was determined 
to be 2.5 × 10 5  M −1  by FAC (Fig.  6.4 ). These results suggest that the core2-type 
 O -glycan is an actual target glycan to rBC2LCN in hPSCs (Tateno et al.  2013 ).  

 Then, what is a glycoprotein ligand of rBC2LCN? For this search, cell lysates of 
differentiated somatic cells and undifferentiated hPSCs were run on SDS-PAGE and 
blotted with peroxidase-labeled rBC2LCN (Tateno et al.  2013 ). Evident high-
molecular- weight protein bands ranging from 150 to >240 kDa were specifi cally 
detected for undifferentiated hPSCs, but not for differentiated somatic cells (Tateno 
et al.  2013 ). Immunoprecipitation and western blotting analyses revealed that these 
high-molecular-weight bands found to correspond to heavily glycosylated podoca-
lyxin (Tateno et al.  2013 ). Human podocalyxin is a type-1 transmembrane protein 
consisting of 528 amino acids (Kershaw et al.  1997 ) (Fig.  6.5 ). The extracellular 
domain of podocalyxin has a mucin domain, fi ve potential  N -linked glycosylation 
sites, and three putative glycosaminoglycan sites (Kershaw et al.  1997 ) (Fig.  6.5 ). 
The reactivity of rBC2LCN to podocalyxin was greatly reduced by the alkaline 
hydrolysis to remove  O -glycans by β-elimination, indicating that the carbohydrate 
antigens of rBC2LCN are expressed on  O -glycans of podocalyxin (Tateno et al. 
 2013 ). Taken together, it is most likely that the cell surface ligands of rBC2LCN are 
podocalyxin-expressing glycan  a  described above (H3+podocalyxin), although the 
direct evidence whether glycan  a  is actually displayed on podocalyxin remains to be 
obtained (Fig.  6.5 ).   

6.6     Live Cell Staining of hPSCs Using rBC2LCN 

 To investigate whether rBC2LCN could be used as a probe for hiPSCs, various 
types of hPSCs were stained with fl uorescence-labeled rBC2LCN (Onuma et al. 
 2013 ). hPSCs were fi xed and stained with fl uorescence-labeled rBC2LCN at a con-
centration of 1 μg/mL hiPSCs (253G1, 201B7), and hESCs (KhES-1, KhES-3, and 
H1) of various strains were strongly stained with fl uorescence-labeled rBC2LCN 
(Onuma et al.  2013 ). rBC2LCN staining was observed on the cell membrane of 
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hiPSCs by confocal microscopy, which agrees well with the result that the glyco-
protein ligand of rBC2LCN is the transmembrane protein, podocalyxin (Onuma 
et al.  2013 ) (Fig.  6.5 ). rBC2LCN was then applied to the live staining of hPSCs 
(Fig.  6.6 ). Cy3-labeled rBC2LCN was added into cell culture media at a fi nal con-
centration of 0.1 μg/mL. After 2-h culture, a clear live cell image could be observed 
under a conventional fl uorescence microscope (Onuma et al.  2013 ). No signifi cant 
change of morphology and gene expression of hPSCs was observed in the presence 
of fl uorescence-labeled rBC2LCN (Onuma et al.  2013 ). The sensitivity and 
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  Fig. 6.5    A cell surface glycoprotein ligand of rBC2LCN, podocalyxin, is secreted into cell culture 
media       
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  Fig. 6.6    Live cell staining of hPSCs using fl uorescently labeled rBC2LCN       
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specifi city of rBC2LCN were comparable to those of the established pluripotent 
marker antibodies, such as anti-TRA-1–60 and anti-SSEA-4 antibodies (Onuma 
et al.  2013 ). These results demonstrate the utility of rBC2LCN for monitoring the 
 properties of hPSCs during culture.   

6.7     Noninvasive and Quantitative Detection of Tumorigenic 
hPSCs Using Cell Culture Supernatants 

 The most obvious concern to apply hPSCs to regenerative medicine is that hPSCs 
could form tumors in patients. To minimize patient risk, hPSC-based cell products 
should be assessed for potential safety concerns prior to the introduction of the cells 
into a patient. However, all of the currently available methods, such as qRT-PCR 
and fl ow cytometry, require a signifi cant number of invaluable transplanting tissues 
for quality assessments (Kuroda et al.  2012 ). To solve these subjects, a noninvasive 
technology to detect residual hPSCs contaminated in transplanting cells has been 
desired. As described above, H3+podocalyxin is a putative cell surface ligand of 
rBC2LCN (Tateno et al.  2013 ). We found that H3+podocalyxin is secreted into cell 
culture supernatants from various types of hPSCs, but not differentiated human 
somatic cells (Tateno et al.  2014 ) (Fig.  6.5 ). Based on this unexpected observation, 
we have developed a noninvasive and quantitative detection method of hPSCs using 
cell culture supernatants (Tateno et al.  2014 ) (Fig.  6.7 ). Usually, proteins are 
detected with antibodies, which recognize a particular peptide sequence. However, 
podocalyxin is a large, heavily  O -glycosylated sialomucin with a molecular weight 
of >250 kDa. Such “hyperglycosylated” podocalyxin could not be suffi ciently 
detected with any types of antibodies. We then challenged a novel system of 
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  Fig. 6.7    Detection of residual hPSCs contaminated in transplanting cells using cell culture media       
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“lectin- lectin” sandwich assay, termed Glycostem test, which utilizes two lectins by 
focusing on characteristic glycan structures displayed on podocalyxin (Tateno et al. 
 2014 ) (Fig.  6.8 ). The detailed methods are as follows:  

    1.    Immobilize rBC2LCN recognizing soluble H3+podocalyxin on a reaction plate.   
   2.    Incubate a drop (50 μL) of cell culture media for 1 h to capture soluble 

H3+podocalyxin onto the rBC2LCN-immobilized plate.   
   3.    After washing, incubate peroxidase-labeled recombinant  Agaricus bisporus  

 lectin (rABA) with the bound H3+podocalyxin on the reaction plate.   
   4.       Add substrate to develop peroxidase-labeled rABA to measure the color 

strength.   
   5.    Estimate the cell number of hPSCs from the amount of H3+podocalyxin.    

  There are two important points for the developed system:  First , rBC2LCN is 
used as a “discriminator” to capture H3+podocalyxin specifi cally secreted from 
hPSCs.  Second , rABA, an  O -glycan-binding lectin, is used as a “signal enhancer,” 
which detects  O -glycans, typically Galβ1-3GalNAc, heavily displayed on podoca-
lyxin (Fig.  6.8 ). Using the two lectins, a high-selective and high-sensitive detection 
system could be developed. The developed system allows rapid diagnosis (<3 h) of 
a large number of samples in a high-throughput ELISA (enzyme-linked immuno-
sorbent assay) manner. Since the rate of contamination of hPSCs in transplanting 
cells could be quantitatively measured, the developed system is expected as a novel 
method for safety assessments of hPSC-based cell therapy.  

6.8     Practical Applications of Lectins into Industry 

 rBC2LCN is a new hPSC-specifi c probe suitable for industrial applications. It has a 
great advantage over an antibody, because it is small in size (16 kDa), and its 
 produce in  Escherichia coli  (~0.1 g/L) is cost-effective. rBC2LCN is now commer-
cialized as a novel type of hPSC-specifi c probe from Wako Pure Chemical Industries. 

rBC2LCN
(discriminator)

Peroxidase-labeled
rABA
(signal enhancer)

H3+podocalyxin

  Fig. 6.8    Principle of the Glycostem test       
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Other 37 recombinant lectins and the Glycostem test described above are also 
planned to be commercialized from the same company. Although no description has 
been made in this review, a novel method to effi ciently and conveniently remove 
tumorigenic hPSCs using rBC2LCN has also been successfully developed. 
Therefore, the practical applications of glycans/lectins into regenerative medicine 
would be more and more accelerated and fruitful in the near future.     
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    Chapter 7   
 Glycan Structure and Neural Plasticity 

             Tadahisa     Mikami      and     Hiroshi     Kitagawa    

    Abstract     Extracellular factors that surround cell surfaces play essential roles in a 
wide spectrum of neurobiological functions, including neuronal development and 
neuronal plasticity. Glycans are ubiquitous throughout the extracellular and pericel-
lular spaces, and they may function as microenvironmental cues during neuronal 
development and remodeling. Recent advances in the fi eld of glyco-neuroscience 
clearly indicate that distinct glycans, especially sulfated glycosaminoglycan (GAG) 
chains, are functionally relevant to neuronal plasticity. This chapter reviews current 
research fi ndings on neuroregulatory glycans and focuses primarily on structural 
divergence among sulfated GAG chains and their unique and/or partially overlap-
ping contributions to neuronal plasticity during development and during regenera-
tion after central nervous system injury.  

  Keywords     Central nervous system injury   •   Chondroitin sulfate   •   Extracellular 
matrix   •   Glycosaminoglycan   •   Heparan sulfate   •   Hyaluronan   •   Keratan sulfate   • 
  Perineuronal net   •   Plasticity   •   Proteoglycan   •   Sulfotransferase  

7.1         Introduction 

 Neuronal plasticity is the ability of the nervous system to react and change  adaptively 
in response to intrinsic and/or extrinsic inputs. These adaptive changes are typically 
accompanied by reorganization of neuronal circuits. Early in mammalian develop-
ment, neuronal circuit formation is highly plastic and therefore can be greatly infl u-
enced by the external environment. Such experience-dependent neuronal plasticity 
is most evident during developmental windows, often called critical periods, after 
which the established neuronal connections become less plastic (Hensch  2005 ; 
Jiang et al.  2005 ; Tropea et al.  2009 ). Long-standing evidence indicates that a tightly 
controlled balance between excitatory and inhibitory circuits is crucial for deter-
mining the exquisite timing of critical periods (Fagiolini et al.  2004 ; Feldman  2000 ; 

        T.   Mikami      •    H.   Kitagawa      (*) 
  Department of Biochemistry ,  Kobe Pharmaceutical University , 
  Higashinada-ku ,  Kobe   658-8558 ,  Japan   
 e-mail: tmikami@kobepharma-u.ac.jp; kitagawa@kobepharma-u.ac.jp  

mailto: tmikami@kobepharma-u.ac.jp
mailto: kitagawa@kobepharma-u.ac.jp


108

Huang et al.  1999 ; Sugiyama et al.  2008 ; Yazaki-Sugiyama et al.  2009 ). In fact, 
onset and closure of critical periods can be accelerated by enhanced inhibitory syn-
aptic transmissions (Fagiolini et al.  2004 ), and conversely reductions in inhibitory 
transmissions can reactivate experience-dependent plasticity even after the termina-
tion of the critical period (Harauzov et al.  2010 ). 

 The extracellular matrix (ECM) is essential for proper regulation of neuronal 
plasticity. Notably, the ECM in the central nervous system (CNS) has a unique com-
position that is distinct from those in nonneuronal tissues; specifi cally, the CNS 
ECM has relatively small amounts of fi brous proteins (e.g., collagens) and high 
levels of proteoglycans (PGs) (Novak and Kaye  2000 ). PGs are a class of heavily 
glycosylated macromolecules that bear sulfated glycosaminoglycan (GAG) chains. 
Some GAG chains are principal components of perineuronal nets (PNNs), special-
ized ECMs in CNS, whose emergence during development is tightly linked with the 
limitation of critical period plasticity (Pizzorusso et al.  2002 ; Yamaguchi  2000 ; 
Yazaki-Sugiyama et al.  2009 ). Moreover, sulfated glycans play critical roles in syn-
aptic and anatomical plasticity by controlling synaptic properties and rewiring of 
neuronal network after CNS injury, respectively (Dityatev and Schachner  2003 ; 
Galtrey and Fawcett  2007 ). Therefore, this chapter focuses on the structural charac-
teristics of GAG chains and their functional importance in various aspects of neuro-
nal plasticity.  

7.2     Structure and Biosynthesis of GAG Chains 

 GAG chains are long linear polysaccharides that consist of repetitive disaccharide 
units; each unit comprises an amino sugar,  N -acetylgalactosamine (GalNAc) or 
 N -acetylglucosamine (GlcNAc), and a galactose (Gal) or a hexuronic acid, either 
glucuronic acid (GlcA) or iduronic acid (IdoA). Each GAG chain can be classifi ed 
based on constituent disaccharide building blocks into one of four classes: chon-
droitin sulfate (CS)/dermatan sulfate (DS), heparin (Hep)/heparan sulfate (HS), 
keratan sulfate (KS), or hyaluronan (HA) (Fig.  7.1 ). Three of these classes (CS/DS, 
Hep/HS, and KS) can also be categorized as sulfated GAG chains that are constitu-
ents of proteoglycans (PGs); the respective sulfated polysaccharide chains (CS, HS, 
or KS) are covalently linked to a panel of core proteins. In contrast, HA is the sole 
non-sulfated polymer, and HA is never attached to a protein core.  

7.2.1      CS and HS Chains 

 CS and HS chains consist of repetitive disaccharide units [(–4GlcAβ1-3GalNAcβ1–) n ] 
or [(–4GlcAβ1-4GlcNAcα1–) n ], respectively. Notably, both CS and HS are  synthesized 
onto a GAG-protein linkage region (GlcAβ1–3Galβ1–3Galβ1–4Xylβ1– O -Ser) that is 
covalently linked to specifi c serine (Ser) residues embedded in core proteins. The 
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tetrasaccharide linkage is assembled through the sequential stepwise addition of 
 individual monosaccharide units, a single Xyl (xylose), two successive Gal residues, 
and a single GlcA, by the corresponding glycosyltransferases (Fig.  7.2a ) (Silbert and 
Sugumaran  2002 ; Sugahara and Kitagawa  2000 ; Uyama et al.  2007 ). When a GalNAc 
is the fi rst residue transferred to the nonreducing terminal GlcA residue of the linkage 
region, a chondroitin (Chn) backbone is synthesized; alternatively, when a GlcNAc 
instead of a GalNAc is transferred to the linker, HS chains is synthesized. Therefore, 
the fi rst  N -acetylhexosamine transfer is critical for the selective assembly of CS versus 
HS chains (Fig.  7.2a ) (Silbert and Sugumaran  2002 ; Sugahara and Kitagawa  2000 ; 
Uyama et al.  2007 ). Chn polymerization, i.e., the synthesis of a Chn backbone, is cata-
lyzed by a combination of six homologous glycosyltransferases, some of which con-
stitute Chn polymerase complexes (Mikami and Kitagawa  2013 ). Likewise, the 
repetitive disaccharide region characteristic of HS chains is synthesized via the action 
of two HS polymerases, EXT1 and EXT2 (Nadanaka and Kitagawa  2008 ; Sugahara 
and Kitagawa  2000 ; Uyama et al.  2007 ).  

 The polysaccharide backbones of CS and HS chains acquire remarkable  structural 
variability via further enzymatic modifi cations, such as sulfation and uronate 
epimerization (Fig.  7.3a, b ) (Kusche-Gullberg and Kjellén  2003 ; Uyama et al. 
 2007 ). Sulfation of CS can result from the 4- O -sulfation or the 6- O -sulfation path-
ways based on the substrate preferences of multiple Chn sulfotransferases (Fig.  7.3a ) 
(Kusche-Gullberg and Kjellén  2003 ; Mikami and Kitagawa  2013 ). The non-sulfated 
O unit [GlcA−GalNAc] serves as a common acceptor substrate for two types of 
sulfotransferases, chondroitin 4- O -sulfotransferases (C4STs) and chondroitin 
6- O -sulfotransferase-1 (C6ST-1); the former catalyzes 4- O -sulfation and the latter 
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  Fig. 7.1    Schematic structures of the repeating disaccharide units found in CS, DS, HS, and HA 
GAG chains. CS chains comprise GlcA and GalNAc residues. DS is a stereoisomer of CS that 
contains IdoA instead of or in addition to GlcA. HS chains comprise GlcA and GlcNAc residues. 
These sugar residues can be sulfated at various positions as indicated by “S.” In contrast, HA is a 
non-sulfated GAG composed of GlcA and GlcNAc residues       
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  Fig. 7.2    Biosynthetic pathways for GAG synthesis. ( a ) A number of glycosyltransferases and 
specifi c kinase/phosphatase(s) participate in the synthesis of the common tetrasaccharide linkage 
region and repeating disaccharide regions characteristic of CS and HS chains. “±2P” denotes a 
transient phosphorylation of Xyl residue in the linkage region.  XylT  xylosyltransferase,  XYLK  
xylose 2- O -kinase,  XYLP  2- O -phosphoxylose phosphatase,  GalT-I  β1,4-galactosyltransferase-I, 
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synthase,  ChPF  chondroitin polymerizing factor,  ChGn  chondroitin GalNAc transferase,  C4ST  
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biosynthesis is catalyzed by plasma membrane-bound HA synthases (HASs)       
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chains are classifi ed into O, A, C, D, or E units based on their sulfation patterns, and their biosyn-
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4-sulfate 6- O -sulfotransferase. ( b ) Modifi cation of an HS backbone is initiated by  N -deacetylation/ N   -
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of the nascent polymers.  NDST N -deacetylase/ N -sulfotransferase,  GLCE  uronyl C5 epimerase, 
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3- O -sulfotransferase. ( c ) During KS biosynthesis, GlcNAc-6- O -sulfation is tightly coupled with 
chain elongation. In contrast, Gal-6- O -sulfation occurs after completion of chain elongation. 
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6- O -sulfation of GalNAc residues to form monosulfated A [GlcA−GalNAc(4- O  - 
sulfate)] or C [GlcA−GalNAc(6- O -sulfate)] units, respectively. Subsequent sulfa-
tion of the A and C units can also occur, forming disulfated disaccharide E 
[GlcA−GalNAc(4,6- O -disulfate)] or D [GlcA(2- O -sulfate)−GalNAc(4- O -sulfate)] 
units, respectively. Recently, production of CS versus HS chains is fi ne-tuned via 
alternative mechanisms, including a transient phosphorylation of Xyl residue in the 
linkage region and an EXTL2-mediated biosynthetic suppression of the polymer-
ization of CS and HS chains (Koike et al.  2009 ,  2014 ; Nadanaka et al.  2013 ). This 
diversity of modifi cations creates functional sugar domain structures with diverse 
biological activities.   

7.2.2     KS Chains 

 KS chains are made up of repetitive disaccharide units; each comprises a Gal and a 
GlcNAc; therefore, the polymer backbone is identical to poly- N -acetyllactosamine 
structure found on conventional glycoproteins and mucins. Unlike CS and HS 
GAGs, KS chains are covalently linked to core proteins via either  N - or  O -linkages 
(Fig.  7.2b ) (Funderburgh  2000 ). Sulfation can occur on the C6 position of either or 
both sugar constituents, and sulfation patterns are strictly regulated during KS 
 biosynthesis (Funderburgh  2000 ; Kusche-Gullberg and Kjellén  2003 ). GlcNAc-6- 
  O -sulfation mediated by GlcNAc 6- O -sulfotransferases (GlcNAc6STs) occurs only 
on nonreducing terminal GlcNAc residues and not internal GlcNAc residues; more-
over, this sulfation is coupled to chain elongation (Figs.  7.2b  and  7.3c ). In contrast, 
Gal-6- O -sulfation mainly occurs after completion of chain elongation, and this type 
of sulfation at a nonreducing terminal Gal residue may serve as a signal that termi-
nates chain elongation (Funderburgh  2000 ; Kusche-Gullberg and Kjellén  2003 ). 
Highly sulfated forms of KS chains rich in the disulfated disaccharides that are 
immunoreactive with a monoclonal antibody, 5D4, are distributed in the brain 
(Zhang et al.  2006 ). However, this immunoreactivity is not evident in the brains of 
mice that lack GlcNAc6ST-1 (Zhang et al.  2006 ).  

7.2.3     HA Chains 

 HA chains are non-sulfated GAGs that consist of repetitive disaccharide units 
[(–4GlcAβ1-3GlcNAcβ1–) n ]; they are the largest glycans found in vertebrates. 
Unlike biosynthesis of sulfated GAGs, HA biosynthesis occurs on cell surfaces via 
the action of a family of plasma membrane-bound enzymes, hyaluronan synthases 
(HASs) (Fig.  7.2c ) (Itano and Kimata  2002 ). Each member of the HAS family—
HAS-1, HAS-2, and HAS-3—can polymerize HA chains on its own, and each has 
characteristic processivity (Itano and Kimata  2002 ). HA chains constitute major 
components of PNNs; therefore, they accumulate massively amid PNNs in CNS 
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(Carulli et al.  2007 ; Köppe et al.  1997 ; Kwok et al.  2010 ). Notably, HASs that are 
associated with the surfaces of neurons might act as anchors for HA chains, thus 
allowing for the formation and stabilization of PNNs (Carulli et al.  2007 ; Kwok 
et al.  2010 ).   

7.3     Functions of GAGs in Experience-Dependent 
Neuronal Plasticity 

7.3.1     CS Sulfation Pattern-Dependent Cortical Plasticity 

 Each PNN is a well-organized pericellular matrix that encapsulates the cell soma, 
proximal dendrites, and axonal segments of a particular class of neurons; most of 
these neurons are parvalbumin (PV)-positive inhibitory interneurons (Fig.  7.4a ) 
(Yamaguchi  2000 ; Yazaki-Sugiyama et al.  2009 ). The appearance of PNNs coin-
cides with the end of experience-dependent plasticity during postnatal development 
(Pizzorusso et al.  2002 ). Because of the abundance of CSPGs in PNNs, the func-
tional involvement of CSPGs in limiting plasticity following closure of the critical 
periods is well documented (Pizzorusso et al.  2002 ). Monocular deprivation during 
the critical period leads to a reduction in the responses by visual cortical neurons 
that innervate the deprived eye and to an increase in the responses to the nonde-
prived eye (Fig.  7.4b ); however, this capacity for ocular dominance plasticity is 
absent after the critical period ends (Gordon and Stryker  1996 ; Hensch  2005 ; Wiesel 
and Hubel  1963 ). Notably, removal of CS moieties via treatment with a bacterial 
CS-degrading enzyme chondroitinase ABC (ChABC) disrupts PNNs and permits 
reactivation of ocular dominance plasticity even after closure of the critical period 
(Fig.  7.4c ) (Pizzorusso et al.  2002 ,  2006 ). Similar to its effects on ocular dominance 
plasticity, ChABC treatment of PNNs in the amygdala, which is involved in the 
formation of erasure-resistant fear memories, can render subsequently acquired fear 
memories susceptible to erasure even in adult animals (Gogolla et al.  2009 ). These 
reports suggest that CS moieties of CSPGs are responsible for PNN formation and 
restriction of critical period plasticity. However, the importance of sulfation patterns 
of CS chains in such plasticity has been overlooked in these previous studies because 
only ChABC has been used and ChABC degrades all CS chains, irrespective of CS 
sulfation status.  

 During brain development, sulfation profi les of CS chains change dramatically 
(Kitagawa et al.  1997 ; Mitsunaga et al.  2006 ; Properzi et al.  2005 ). In general, the 
proportion of 6- O -sulfation gradually decreases, and that of 4- O -sulfation progres-
sively increases; consequently, there is a substantial increase in the 4S/6S ratio dur-
ing development. Consistent with the notion that C4ST and C6ST competitively 
utilize the acceptor Chn disaccharide structures (see Sect.  2.1 ), systemic overex-
pression of human C6ST-1 in mice results in a substantially lower 4S/6S ratio 
throughout development (Miyata et al.  2012 ). This reduced 4S/6S ratio in the trans-
genic mice is due to an increase in the proportion of 6- O -sulfation and a decrease in 
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  Fig. 7.4    Neuroregulatory functions of GAG chains in the CNS. ( a ) A schematic diagram of PNNs. 
Each PNN is a ternary complex of HA, CSPGs, and tenascin-R. Link proteins stabilize interactions 
between HA and CSPGs. PNNs are mainly localized around PV-expressing interneurons and may 
act as structural scaffolds that support neuronal functions. In addition, PNNs may also restrict 
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the proportion of 4- O -sulfation compared to that in wild-type mice. Interestingly, 
the transgenic mice that overexpress C6ST-1 retain juvenile level of ocular domi-
nance plasticity even in adulthood (Fig.  7.4c ) (Miyata et al.  2012 ), indicating that 
sulfation patterns of CS chains regulate the plasticity characteristic of the critical 
period. Furthermore, reduced PNN formation and decreased accumulation of Otx2 
homeoprotein around PV +  interneurons are also evident in these transgenic mice 
(Miyata et al.  2012 ). Otx2 regulates ocular dominance plasticity via its effect on the 
maturation of PV +  inhibitory interneurons (Spatazza et al.  2013 ; Sugiyama et al. 
 2008 ). Therefore, the 4S/6S ratio of CSPGs may regulate the Otx2-mediated matu-
ration of PV +  interneurons that determines the critical period for cortical plasticity. 
Consistent with this notion, PNNs that bear specifi c CS chains are reportedly 
required for effective accumulation of Otx2 in PV-expressing interneurons 
(Beurdeley et al.  2012 ); these fi ndings indicate that CS chains function as a struc-
tural scaffold (Fig.  7.4d ).  

7.3.2     CSPGs in PNN Formation 

 HA chains, link proteins, and tenascin-R are, along with CSPGs, major components 
of PNNs (Fig.  7.4a ) (Galtrey and Fawcett  2007 ; Kwok et al.  2011a ). In a recent 
model of PNN formation, secreted CSPGs interact with pericellular HA chains; 
these interactions are stabilized by the presence of link proteins, a group of proteins 
that bind to both CSPGs and HA chains. Interactions between C-terminal domains 
in the core protein of CSPGs and tenascin-R are also established, and, consequently, 
massive macromolecules form in the pericellular spaces (Galtrey and Fawcett  2007 ; 
Kwok et al.  2011a ). Among CSPGs, lectican family members including aggrecan, 
versican, neurocan, and brevican are principal constituents of PNNs (Galtrey and 
Fawcett  2007 ; Kwok et al.  2011a ). However, mice defi cient for versican, neurocan, 
or brevican have largely normal PNNs (Dours-Zimmermann et al.  2009 ). In con-
trast, cortical primary neurons derived from aggrecan-defi cient mice are abnormal 
in that they are not stained by lectin  Wisteria fl oribunda  agglutinin (WFA), a broad 
PNN marker, indicating an essential role of aggrecan in PNN formation (Brakebusch 
et al.  2002 ; Giamanco et al.  2010 ; Zhou et al.  2001 ). Despite the lack of WFA 

Fig. 7.4 (continued) lateral diffusion of neurotransmitter receptors. ( b ) Ocular dominance 
 plasticity in the visual cortex. In the left visual cortex, cortical neurons are dominated by the right 
eye (ocular dominance). Following closure of the right eye, responses of visual cortical neurons to 
stimulation from the right eye are depressed and those to stimulation from left eye are potentiated 
(ocular dominance plasticity). These altered responses result in permanent loss of visual acuity 
through the right eye. ( c ) The critical period for ocular dominance plasticity in mice peaks around 
postnatal day 25 (P25). ChABC treatment reactivates ocular dominance plasticity in adult animals. 
In addition, systemic overexpression of C6ST-1 in mice results in a juvenile level of ocular domi-
nance plasticity even in adulthood. ( d ) Mechanisms of action of CS chains. CS chains can act as 
structural scaffolds that regulate humoral factor-mediated signal transduction ( left ); alternatively, 
CS chains can act as extracellular signaling molecules that trigger CS-receptor-mediated signal 
transduction ( right )       
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staining, pericellular accumulation of other PNN components seems unaffected by 
the absence of aggrecan. This fi nding indicates that WFA has a binding preference 
for CS moieties of aggrecan. Therefore, distinct sugar domain structures on aggre-
can that probably depend on the CS sulfation status may be determinants of PNN 
formation. Furthermore, given that the CS moieties of CSPGs affect their own inter-
action with other PNN components, identifi cation of PNN components that recog-
nize such functional sugar domains is an important task.   

7.4     The Roles of GAGs in Neural Plasticity After CNS Injury 

7.4.1     Bifunctional Nature of CS Chains in Neuronal 
Extension and Regeneration 

 Traumatic injury to the adult CNS induces glial scar formation. During wound heal-
ing following injury, the glial scar prevents further spread of damage and controls 
infl ammatory responses (Rolls et al.  2009 ). However, these scars can act as major 
impediments to axonal regeneration (Rhodes and Fawcett  2004 ; Silver and Miller 
 2004 ). When confronted with glial scar tissue, regenerating axons cease extending 
and display a retracted growth cone with morphologically characteristic dystrophic 
endings (Raman y Cajal  1928 ). CSPG deposition is upregulated during glial scar 
formation, and CSPGs are generally recognized as inhibitors of axon regrowth after 
CNS injury (Rhodes and Fawcett  2004 ; Silver and Miller  2004 ). In fact, the forma-
tion of dystrophic growth cone, a hallmark of regeneration failure, is highly repro-
ducible in vitro on a substrate that constitutes a crude gradient of CSPGs (Tom et al. 
 2004 ). Conversely, suppression of CSPG synthesis and/or treatment with ChABC 
promotes axon growth over scar-like surfaces in vitro (McKeon et al.  1995 ; Smith- 
Thomas et al.  1995 ). Moreover, removal of CS moieties from CSPGs via ChABC 
treatment of lesion sites improves axonal regeneration and functional recovery 
in vivo. These fi ndings indicate that the CS moieties are a critical component that 
determines the inhibitory nature of CSPGs (Bradbury et al.  2002 ; Moon et al.  2001 ; 
Silver and Miller  2004 ). 

 The inhibitory effect of CS chains on axon growth is amply documented and 
widely recognized; nevertheless, CS chains do not always impede neurite outgrowth 
(Sugahara et al.  2003 ). In fact, several CS preparations such as CS-E, which com-
prises typical CS chains that are rich in E units, serve as stimulatory substrates for 
neurite outgrowth of cultured primary neurons in a cell-type-dependent manner 
(Brown et al.  2012 ; Gama et al.  2006 ; Sugahara and Mikami  2007 ). Such apparently 
contradictory functions are presumably attributable to the structural diversity of CS 
chains. The prominent CS subclasses found in mammalian tissues are composed of 
monosulfated A and C units. CS chains rich in A units (CS-A) negatively regulate 
axonal guidance and growth of cerebellar granule neurons (Wang et al.  2008 ). In 
contrast, CS chains rich in C units (CS-C) do not appear to be inhibitory, but rather 
to be relatively permissive for axonal regeneration, based on a knockout study of 
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C6ST-1, which is responsible for the synthesis of C units, in mice (Lin et al.  2011 ; 
Sugahara et al.  2003 ). Thus, the upregulation of C6ST-1 expression under injury- 
related conditions (Liu et al.  2006 ; Properzi et al.  2005 ) may be involved in the 
protective roles of glial scar.  

7.4.2     Molecular Mechanisms for CS-Mediated Regulation 
of Neuronal Extension 

 As described above, CS chains promote or inhibit neuronal extension depending on 
CS structure and the context. Furthermore, accumulating evidence indicates that 
extracellular CSPGs can affect several intracellular signaling pathways (Kwok et al. 
 2011b ). Such fi ndings may indicate that neuronal cells have distinct CS-recognition 
mechanisms; therefore, studies to identify functional CS receptor molecules have 
ensued (Carulli et al.  2005 ). Contactin-1 (CNTN-1), a glycosylphosphatidylinositol- 
anchored cell adhesion molecule in the immunoglobulin superfamily, is now recog-
nized as a neuronal cell surface receptor for CS-E; this fi nding is the fi rst 
demonstration that distinctive CS chains indeed behave as extracellular signaling 
molecules that trigger intracellular signaling cascades (Fig.  7.4d ) (Mikami et al. 
 2009 ). The stimulatory effects of CS chains propagated by CNTN-1 promote neu-
ronal extension; conversely, four other CS receptors—including a protein tyrosine 
phosphatase PTPσ—mediate the inhibitory effects of CS chains on axonal regen-
eration (Dickendesher et al.  2012 ; Fisher et al.  2011 ; Shen et al.  2009 ). Notably, the 
primary role of PTPσ is as a HSPGs receptor (Chien and Ryu  2013 ); therefore, 
PTPσ propagates CSPG-mediated inhibition and HSPG-mediated axon outgrowth. 
In this context, CS chains have been shown to serve as inhibitors of the HS-induced 
oligomerization of PTPσ that promotes neurite growth (Fig.  7.4d ) (Coles et al. 
 2011 ). Functional redundancy among the four inhibitory CS receptors may indicate 
that there are unidentifi ed CS receptors, in addition to CNTN-1, that propagate in 
CS-induced neurite outgrowth. 

 The GAG-mediated switch between counteracting PTPσ functions is reminis-
cent of the bifunctional guidance cue semaphorin 5A (Sema5A). Sema5A interacts 
with GAG moieties of both CSPGs and HSPGs, and its HSPG-mediated attraction 
can be converted to inhibitory by extrinsic CSPGs (Kantor et al.  2004 ). Additionally, 
Sema3A, which is from another class of semaphorins and acts as a repulsive guid-
ance cue, is reportedly anchored to PNNs via interactions with CS chains (Dick 
et al.  2013 ). In view of the fact that Sema3A expression is induced in the scar- 
associated meningeal cells after adult CNS injury (Pasterkamp et al.  1999 ), the 
inhibitory nature of CS chains in glial scars may result, at least in part, from 
CS-mediated modulation of semaphorin functions. 

 Alternatively, the CSPG-mediated inhibition may be relevant to the activation 
status of integrins, which are involved in neuronal cell adhesion and axon growth. 
Actually, a substrate pre-coated with some CSPGs (e.g., aggrecan) results in neuro-
nal axon growth inhibition that is accompanied by reduced integrin activation; 
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 however, pharmacological or genetic activation of integrins overcomes CSPG-
mediated inhibition of axon outgrowth (Afshari et al.  2010 ; Condic et al.  1999 ; Tan 
et al.  2011 ). In addition, the suppressive effect of CSPGs is reduced by ChABC 
treatment (Afshari et al.  2010 ). Collectively, these data indicated that CS chains are 
important to the control of integrin activation, but currently no direct evidence indi-
cates that there are physical interactions between CS chains and integrins.  

7.4.3     KS Chains in Axonal Regeneration/Sprouting 

 Recent evidence demonstrates that KSPGs also have indispensable roles in axonal 
regeneration after CNS injury. A genetic defi ciency of GlcNAc6ST-1 in mice leads 
to loss of the 5D4-reactive KS chains in brain samples and a marked reduction of 
scarring following CNS injury (Zhang et al.  2006 ). Surprisingly, neuronal regenera-
tion and functional recovery are clearly enhanced in GlcNAc6ST-1-defi cient mice, 
even though the characteristic increase in CS expression around lesion sites is unal-
tered (Ito et al.  2010 ). Local administration of keratanase II (K-II), a specifi c 
KS-degrading enzyme, to sites of injury also promotes anatomical and functional 
recovery after spinal cord injury (Imagama et al.  2011 ). Consistent with these 
in vivo fi ndings, K-II-catalyzed selective digestion of KS moieties permits neurite 
outgrowth even on in vitro PG preparations derived from chick brain; such prepara-
tions are commonly used as axon growth inhibitory substrata that contain both 
CSPGs and KSPGs (Imagama et al.  2011 ). Notably, the promotional effects of K-II 
in vitro and in vivo are comparable to those of ChABC, but a combined application 
of both enzymes does not result in additive or synergistic effects (Imagama et al. 
 2011 ). These fi ndings indicate that both CS and KS chains are independently 
required for PG-mediated inhibition of axonal regeneration/sprouting. Identifi cation 
and characterization of KS receptors that mediate inhibitory effects of KSPGs may 
further illuminate this phenomenon.  

7.4.4     GAG Chains in Plasticity of Spinal Neural Circuitry 
After Injury 

 Poor recovery after CNS injury is attributed to the limited capacity of adult CNS for 
functional rewiring. Upregulation of CSPGs following injury may also restrict plas-
ticity in a recovering CNS. This notion is strongly supported by recent studies on a 
combination therapy for spinal cord injury (García-Alías and Fawcett  2012 ). It is 
generally known that rehabilitation has benefi cial effects on the recovery processes 
(Biernaskie and Corbett  2001 ), and therefore rehabilitation, as well as environmen-
tal stimuli, can enhance the neuronal plasticity, which may be largely restricted by 
CSPGs (Edgerton et al.  2004 ). In fact, animals subjected to a specifi c motor reha-
bilitation regime after spinal cord injury and acute ChABC treatment reportedly 
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exhibit better functional recovery than those who received either ChABC treatment 
or rehabilitation alone (García-Alías et al.  2009 ). Therefore, ChABC treatment may 
enhance spinal cord plasticity, and the subsequent training may strengthen pre-
cisely functioning connections and also exclude imprecise ones. Taken together, 
these fi ndings indicate that CSPGs indeed restrict neuronal plasticity within the 
spinal cord and that such combination therapies are promising strategies that may 
promote spinal cord repair. In view of the indispensable roles of KSPGs in axonal 
regeneration (Hilton et al.  2012 ; Kadomatsu and Sakamoto  2014 ), an alternative 
use of K-II in the combination therapy might be useful for validation of KSPG 
functions.  

7.4.5     HS Chains in Axonal Regeneration 

 In view of the widely accepted roles of HSPGs in axonal growth promotion (Maeda 
et al.  2011 ; Nadanaka and Kitagawa  2008 ; Yamaguchi et al.  2010 ), HSPGs are 
thought to have a supportive role in axonal regeneration. Based on several studies, 
HS chains and their core proteins, including syndecan family members, are upregu-
lated within and/or surrounding the lesion core following CNS injury (Iseki et al. 
 2002 ; Moon et al.  2002 ; Properzi et al.  2008 ). Notably, mice carrying a gene knock-
out for CS  N -acetylgalactosaminyltransferase-1 (ChGn-1), a key enzyme in CS bio-
synthesis, have signifi cantly better recovery from spinal cord injury than do 
wild-type or ChABC-treated mice (Takeuchi et al.  2013 ). This superior recovery is 
attributed to the expected reduction in CS synthesis and to an unexpected induction 
of HS biosynthetic machinery (Takeuchi et al.  2013 ). These fi ndings provide sup-
port for notion that HS chains promote axon regeneration, although the underlying 
mechanisms remain elusive.   

7.5     GAGs in Synaptic Plasticity 

7.5.1     CS and HA Chains in Synaptic Plasticity 

 During postnatal development, CSPGs infl uence synaptic properties. Enzymatic 
digestion of CS chains impairs synaptic plasticity, as judged by reduced levels of 
long-term potentiation (LTP) or long-term depression (LTD); these electrophysio-
logical indexes underlie learning and memory (Bukalo et al.  2001 ). Additionally, 
ChABC treatment reportedly enhances the motility of dendritic spines and induces 
the appearance of spine protrusions in a glutamate receptor-independent manner 
(Orlando et al.  2012 ); these fi ndings indicate that CS moieties of CSPGs restrict 
dendritic spine dynamics. Such inhibitory action of CSPGs in cortical neurons oper-
ates, at least in part, via targeting of neurotrophin receptors and therefore neuro-
trophin action (Kurihara and Yamashita  2012 ). 
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 Lateral diffusion of glutamate receptors is essential for their postsynaptic 
 accumulation, and such accumulation is relevant to the synaptic plasticity of excit-
atory neurons. Many neurons in mature synapses are wrapped by a net-like ECM 
that contains CSPG and HA chains. Removal of these CS and HA chains promotes 
lateral diffusion of glutamate receptors and modulates receptor density and activity 
in subsynaptic sites (Frischknecht et al.  2009 ; Pyka et al.  2011 ). These fi ndings indi-
cate that perisynaptic GAGs (e.g., CS and HA chains) also affect glutamate receptor- 
dependent short-term synaptic plasticity.  

7.5.2     HS Chains in Synaptic Plasticity 

 Studies involving conditional knockout of EXT1, the rate-limiting enzyme for HS 
biosynthesis, have demonstrated the various in vivo functions of HS chains in mam-
malian brain development (Yamaguchi et al.  2010 ). However, there is little direct 
evidence that supports the notion that HS chains are functionally relevant to synap-
tic plasticity. For example, the HSPG agrin is a well-known synaptic stabilizer in 
neuromuscular junctions (Ngo et al.  2007 ). Lack of agrin reduces excitatory, but not 
inhibitory, synaptogenesis (Gingras et al.  2002 ; Ksiazek et al.  2007 ). Other HSPGs 
such as syndecan family members are also reportedly involved in spine formation 
(Lin et al.  2007 ; Yamaguchi et al.  2010 ). However, there is no evidence that the HS 
moieties of agrin or syndecan HSPGs are required for synaptic functions. 

 In contrast, a recent study of conditional EXT1-knockout mice provides a sig-
nifi cant breakthrough in the understanding of HS functions in synaptic plasticity 
(Irie et al.  2012 ). This EXT1-knockout is targeted to postnatal neurons, and the 
mutant mice recapitulate almost the full range of autistic symptoms. Moreover, 
electrophysiological analysis of the pyramidal neurons in the mutant amygdala 
revealed attenuated excitatory synaptic transmission, presumably due to a reduced 
number of glutamate receptors in synapses. This fi nding elucidates critical roles of 
HS chains for normal functioning of glutamatergic synapses.   

7.6     Conclusion 

 This chapter provides a brief overview of functional relevance of glycans in neuro-
nal plasticity. While this review sheds light on sulfated GAG chains only, the roles 
of the respective GAGs in CNS plasticity can be highly divergent and occasionally 
redundant. Such functional complexity is attributable to a characteristic feature of 
the glycans that exhibit structural plasticity. Accumulating evidence indicates that 
GAG chains may be involved in neural disorders such as Alzheimer’s disease, 
schizophrenia, and neuropathy (Berretta  2012 ; Cui et al.  2013 ;    Izumikawa et al. 
 2013 ; Saigoh et al.  2011 ; Soleman et al.  2013 ). Therefore, comprehensive analyses 
of the relationships between the structure and function of GAGs are needed not only 
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for a better understanding of the molecular mechanisms underlying GAG-associated 
neuronal disorders but also for the development of promising new therapeutic 
approaches to treatments for the related neuronal disorders.     
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    Chapter 8   
 The Involvement of Midkine, 
a Heparin- Binding Growth Factor, 
in Cancer Development 

             Satoshi     Kishida      and     Kenji     Kadomatsu    

    Abstract     Midkine is a secreted growth factor identifi ed as a retinoic acid-induced 
gene in embryonal carcinoma cells. In terms of its molecular structure, a midkine 
consists of two domains, an N-terminal and a C-terminal domain. Previous reports 
have emphasized the signifi cance of the C-terminal domain, which contains clusters 
of basic amino acids (clusters I and II). Cluster I is mainly responsible for the strong 
affi nity of midkine to heparin. In addition to heparin, two other glycosaminogly-
cans, chondroitin sulfate and heparan sulfate, can also bind to midkine. The binding 
between cluster I in the C-terminal domain of midkine and glycosaminoglycans 
would mainly mediate the ligand-receptor interaction. Midkine is broadly expressed 
in various cancers and could have potential as both a tumor marker and prognostic 
factor. In neuroblastoma, the serum midkine level has been established as a reliable 
poor prognostic factor. Furthermore, it was recently revealed that midkine is physi-
ologically involved in the tumorigenesis of neuroblastoma. Notch2 is likely to func-
tion as a receptor of midkine in neuroblastoma cells. Although anaplastic lymphoma 
kinase (ALK), another candidate receptor of midkine, was shown to be one of the 
predisposition genes of neuroblastoma, their ligand-receptor relationship in neuro-
blastoma has yet to be elucidated. Interestingly, it was reported that both Notch2 
and ALK were glycosylated and that these glycosylations were necessary for their 
functions. Midkine could be an effi cient molecular target in cancer therapy. Several 
molecular tools to target midkine have been developed, such as siRNA, antibodies, 
and RNA aptamers. Each of them exhibits certain therapeutic activities. Future 
investigation into the role of sugar chains in these activities would be of benefi t. 
Progress in this and other matters pertaining to the clinical application of these 
molecular tools is eagerly anticipated.  

  Keywords     Midkine   •   Glycosaminoglycan   •   Heparin   •   Neuroblastoma   •   Chondroitin 
sulfate   •   Heparan sulfate  
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     The growth factor midkine was identifi ed through the search for genes that are dif-
ferentially expressed during the retinoic acid-induced differentiation of embryonal 
carcinoma cells (Kadomatsu et al.  1988 ). The secreted midkine protein, whose 
molecular weight is 13 kDa, is rich in basic amino acids and cysteines and consists 
of two domains, an N- and a C-terminal domain (Iwasaki et al.  1997 ) (Fig.  8.1 ). 
Each domain is composed of three antiparallel β-sheets linked by fl exible linker 
regions. It is interesting that the C-terminal domain alone exhibits certain biological 
activities, such as the induction of neurite outgrowth, fi brinolysis, and nerve cell 
migration. There are two clusters (clusters I and II) of basic amino acids in the 
C-terminal domain of midkine (Asai et al.  1997 ; Akhter et al.  1998 ; Maeda et al. 
 1999 ) (Fig.  8.1 ). These amino acids, and particularly those in cluster I, are thought 
to be critical for the biological function of midkine, as described later. Midkine 
shares around 50 % sequence identity with the only other member of the midkine 
family, pleiotrophin (Tomomura et al.  1990 ).  

 The sugar chains, the title of this book, is one of the key concepts underlying the 
biological activity and function of midkine. While it has not been reported that the 
midkine protein itself could be glycosylated, midkine possesses signifi cant and 
implicative affi nity with glycosaminoglycans. At the beginning of this study, it was 
shown that midkine had heparin-binding ability (Tomomura et al.  1990 ). Cluster I 
located in the C-terminal domain of midkine was revealed to be mainly responsible 
for its binding to heparin (Asai et al.  1997 ). The mutation at arginine 78 (cluster I in 
mouse midkine) (Fig.  8.1 ) resulted in a signifi cant reduction of heparin-binding 
activity. In contrast, mutation at either arginine 83 or 84 (cluster II) had only slight 
effects. However, the fi nding that the mutations at both the 83 and 84 arginines 
caused even a slight reduction in heparin-binding activity indicates that cluster II is 
also involved in the binding to heparin. On the other hand, the sulfations in heparin 
are important for binding to midkine. All three sulfate groups in the heparin disac-
charide unit (6-O-sulfate, 2-O-sulfate, and N-sulfate) were involved in the  interaction 

  Fig. 8.1    Amino acid sequence of mouse midkine.   Mouse midkine consists of 140 amino acids 
(including 22 amino acids of an unnumbered signal sequence). The N-terminal domain (12–49), 
C-terminal domain (59–101), cluster I (76, 78, 99), and cluster II (83, 84, 86) are indicated       
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with midkine. In particular, the N-sulfate group among them was shown to be 
 critically important (Kaneda et al.  1996a ). Although the heparin-binding activity 
and neurite-promoting activity were found to be well correlated among a series of 
midkine mutants (Asai et al.  1997 ), the signifi cance of heparin binding to midkine 
remains to be determined. Interestingly, binding to heparin might affect the dynam-
ics of secreted midkine. Various types of cancer cells express midkine at high levels, 
which is the main topic of this section. When such cancer cell lines are cultured 
 in vitro , they continuously express and secrete midkine. But few midkine proteins 
can be found in the conditioned media, because most of the secreted midkine is eas-
ily captured on the cell surface and/or extracellular matrix. These phenomena 
should result from the high affi nity of midkine to glycosaminoglycans. There are 
many proteoglycans on the cell surface and extracellular matrix. When an excess 
amount of heparin is added to the media, the secreted midkine binds to the heparin 
and stays in the media as a soluble form. Some reports have suggested that the hepa-
rin could inhibit the midkine function to induce neurite outgrowth (Raulo et al. 
 1994 ; Kinnunen et al.  1996 ; Kaneda et al.  1996a ,  b ). Nonetheless, it remains unclear 
whether the soluble midkine and cell surface- or extracellular matrix-bound mid-
kine are biologically active, particularly in cancers. In addition, what about the 
behavior of midkine  in vivo ? One possible clue to this question was observed in a 
mouse model of neuroblastoma. Neuroblastoma is a pediatric solid tumor that arises 
from sympathetic organs, such as the adrenal gland and sympathetic ganglion 
(Nakagawara and Ohira  2004 ). Neuroblastoma is one of the cancers in which mid-
kine is closely involved in the tumorigenesis, and the oncogenic transcription factor 
 MYCN  is thought to be a very important predisposition gene. As an animal model of 
neuroblastoma,  MYCN  transgenic (Tg) mice have been generated (Weiss et al. 
 1997 ). The neuroblastoma tumor tissue developed in  MYCN  Tg mice signifi cantly 
expresses and secretes midkine. Interestingly, the midkine protein, but not the 
mRNA, was detected in the normal, metastasis-free liver tissue of these mice. These 
results indicate that midkine proteins are secreted from tumor cells and circulate 
through the blood vessels and that some of them are captured on the endothelial 
surface of the blood vessels in the liver. These bindings might be mediated by the 
interaction with glycosaminoglycans. On the other hand, the circulating midkine in 
the bloodstream might also bind to glycosaminoglycans in order to maintain its 
soluble status. Although the functional signifi cance of and the differences between 
the captured and released midkine  in vivo  are also not addressed yet, glycosamino-
glycans, such as heparin, might regulate these midkine statuses. 

 It is worth noting that heparin is not the only glycosaminoglycan that binds to 
midkine. Protein tyrosine phosphatase ζ (PTPζ), syndecans, and glypican-2 are can-
didate receptors of midkine. PTPζ is a chondroitin sulfate proteoglycan. Syndecans 
and glypican-2 are heparan sulfate proteoglycans. PTPζ is a single-pass transmem-
brane protein and possesses protein tyrosine phosphatase activity in its intracellular 
domain. Midkine binds to PTPζ with signifi cantly high affi nity, and this binding can 
be inhibited by the addition of heparin, heparan sulfate, and chondroitin sulfates 
(Maeda et al.  1999 ). In addition, PTPζ treated with chondroitinase ABC shows sig-
nifi cantly reduced affi nity to midkine. These results indicate that midkine binds to 
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PTPζ by recognizing chondroitin sulfate on it. Furthermore, the C-terminal domain 
of midkine is responsible for binding to PTPζ and mutation at arginine 78 (cluster I) 
(Fig.  8.1 ) causes a reduction in affi nity. Mutations at lysine 83 and lysine 84 have no 
effect. Taking these results together, cluster I in the C-terminal domain of midkine 
should be involved in the binding to chondroitin sulfate on PTPζ, just as in the 
 binding to heparin. Midkine-PTPζ interaction mediated by chondroitin sulfate 
seems to be involved in the haptotaxis of osteoblast-like cells (Qi et al.  2001 ). 
Midkine-induced haptotaxis was abrogated by the addition of chondroitin sulfates 
B and E, treatment with chondroitinases ABC and B, and addition of protein tyro-
sine phosphatase inhibitor. 

 In terms of chondroitin sulfate proteoglycans, it has been reported that PG-M/
versican, an extracellular matrix protein, is bound to midkine (Zou et al.  2000 ). By 
examining midkine-binding proteoglycans in day 13 mouse embryos in which mid-
kine was intensively expressed, PG-M/versican was identifi ed. PG-M/versican is a 
huge chondroitin sulfate proteoglycan expressed in various developing and differ-
entiated tissues. Digestion of PG-M/versican with chondroitinase ABC, AC-I, or B 
abolished the binding to midkine. Furthermore, heparin and chondroitin sulfates D 
and E inhibited the binding between midkine and PG-M/versican. These results 
indicated that midkine interacts with PG-M/versican by recognizing chondroitin 
sulfate. The biological signifi cance of this interaction is yet to be elucidated. 

 Syndecans are heparan sulfate proteoglycans, and syndecan-1, syndecan-3, and 
syndecan-4 (also known as ryudocan) have been reported to bind to midkine 
(Mitsiadis et al.  1995 ; Kojima et al.  1996 ; Nakanishi et al.  1997 ). Syndecan-4 bind-
ing to midkine was inhibited by the pretreatment of syndecan-4 with heparitinase 
and the addition of heparin or heparan sulfate (Kojima et al.  1996 ). These results 
suggest that the C-terminal domain of midkine (particularly cluster I) recognizes 
heparan sulfate on syndecans, which is responsible for the interaction between mid-
kine and syndecans. Based on their expression patterns, the midkine-syndecans 
bindings appear to play roles in the embryogenesis of the central nervous system 
(Nakanishi et al.  1997 ). Glypican-2 is also a heparan sulfate proteoglycan. Midkine 
recognizes heparan sulfate chains of glypican-2, and the interaction participates in 
neuronal cell migration and neurite outgrowth (Kurosawa et al.  2001 ). 

 As described above, PG-M/versican was identifi ed as a midkine-binding glyco-
protein expressed in day 13 mouse embryos (Zou et al.  2000 ). A similar screening 
also identifi ed LDL receptor-related protein 1 (LRP1) as a midkine-binding glyco-
protein expressed in day 13 mouse embryos (Muramatsu et al.  2000 ). LRP1 is a 
large transmembrane glycoprotein, and its involvement in midkine signaling has 
been reported. Upon the binding of midkine to LRP1, the complex is endocytosed 
and midkine is degraded in lysosomes (Shibata et al.  2002 ; Suzuki et al.  2004 ). A 
portion of the endocytosed midkine can escape from degradation and is released 
from endosomes into the cytosol. Cytosol midkine binds to nucleolin, a nucleocyto-
plasmic shuttle protein, and translocates into the nucleus. This nuclear translocation 
of midkine seems to play a role in promoting cell survival. LRP1 is also glycosyl-
ated in a different manner in each tissue (May et al.  2003 ). The midkine-binding 
domain in LRP1 has been investigated in detail, and a peptide consisting of 169 
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amino acids in its extracellular domain was revealed to possess signifi cant affi nity 
to midkine (Chen et al.  2007 ). Interestingly, when the peptide (named MK-TRAP) 
was expressed in cells, it appeared as a smear band in SDS-PAGE gels. This result 
implies that the midkine-binding domain of LRP1 would be glycosylated and that 
midkine-sugar chains binding would be responsible for the ligand-receptor complex 
formation. The proteins and their sugar chains that bind to MK are listed in Table  8.1 .

   One of the major fi elds in which midkine is involved is cancer. The physiological 
expression of midkine is especially remarkable during the embryonic period 
(Kadomatsu et al.  1990 ). In contrast, its postnatal expression is totally restricted. 
The expression of midkine in postnatal animals tends to be closely related with vari-
ous pathogeneses (Kadomatsu et al.  2014a ,  b ; Kishida and Kadomatsu  2014 ; 
Muramatsu  2014 ). In the early stages of the study of midkine, it was reported that 
midkine was highly expressed in a variety of cancers, including Wilms’ tumor 
(Tsutsui et al.  1993 ), gastrointestinal cancer (Aridome et al.  1995 ), astrocytoma 
(Mishima et al.  1997 ), colorectal cancer (Ye et al.  1999 ), prostate cancer (Konishi 
et al.  1999 ), and neuroblastoma (Nakagawara et al.  1995 ). On the other hand, the 
ectopic expression of midkine has been shown to transform NIH3T3 cells  in vitro  
(Kadomatsu et al.  1997 ). Because midkine is a secreted protein released into the 
bloodstream, it has been established as a tumor marker, as well as a prognostic 
factor in several cancers (Ikematsu et al.  2000 ,  2003 ,  2008 ; Obata et al.  2005 ; Jia 
et al.  2007 ; Ota et al.  2008 ; Ibusuki et al.  2009 ). Particularly in neuroblastoma, the 
plasma midkine level was shown to be correlated with existing prognostic factors, 
such as stages 3 and 4, over 1 year of age,  MYCN  amplifi cation, low TrkA expres-
sion, and diploidy/tetraploidy (Ikematsu et al.  2003 ). Furthermore, the plasma 
midkine level itself has been shown to be an independent prognostic factor (Ikematsu 
et al.  2008 ). 

 In order to address the physiological role of midkine, it is necessary to analyze 
the phenotype of  Mdk  (mouse midkine gene) knockout mice (Nakamura et al. 
 1998 ). Because midkine is mainly expressed during the embryonic stage, it is likely 
that there would be some defects in embryogenesis. Unexpectedly, although  Mdk  
knockout mice showed some behavioral phenotypes related with postnatal develop-
ment of the hippocampus, there was no gross abnormality related with embryogen-
esis. In terms of cancers, there has been no direct and conclusive evidence showing 
its involvement in tumorigenesis despite many years of investigations. Recently, 
the phenotype of  MYCN  Tg mice, the neuroblastoma model mice, crossed with 
 Mdk  knockout mice was reported (Kishida et al.  2013 ). Neuroblastoma arises from 

   Table 8.1    MK-binding proteins and their sugar chains   

 Protein  Sugar chain  Function 

 None  Heparin  – 
 PTPζ  Chondroitin sulfate  Haptotaxis of osteoblast-like cells 
 PG-M/versican  Chondroitin sulfate  Unknown 
 Syndecans  Heparan sulfate  Embryogenesis of the central nervous system 
 Glypican-2  Heparan sulfate  Neuronal cell migration, neurite outgrowth 
 LRP1  Unknown  Cell survival 
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a sympathetic neuronal lineage derived from the neural crest in early embryogen-
esis (Nakagawara and Ohira  2004 ). Despite the vigorous basic and clinical researches, 
the prognosis of malignant neuroblastoma is still poor.  MYCN  Tg mice were gener-
ated in 1997 (Weiss et al.  1997 ) and have been recognized as an excellent model in 
which human neuroblastoma is accurately reproduced. The human  MYCN  gene, 
which is under the control of the rat tyrosine hydroxylase (sympathetic neuron- 
specifi c enzyme) promoter, is integrated in  MYCN  Tg mice. These animals sponta-
neously develop neuroblastoma that originates from the superior mesenteric 
ganglion (SMG), one of the sympathetic ganglia. The tumors developed in  MYCN  
Tg mice are pathologically equivalent to human neuroblastoma in terms of histol-
ogy and molecular biological characteristics (e.g., gene expressions and chromo-
somal aberrations) (Weiss et al.  1997 ,  2000 ; Hackett et al.  2003 ). They have been 
utilized in various basic studies as a reliable model. Around 70 % of  MYCN  Tg 
mice (hemizygotes) develop tumors derived from SMG. It has been reported that 
the tumor incidence is partially suppressed, up to 60 %, in  Mdk  knockout mice 
(Kishida et al.  2013 ). This is the fi rst physiological result indicating the involve-
ment of midkine in tumorigenesis. But the suppressive effect in the absence of 
midkine was not striking. Many of the  MYCN  Tg mice still developed neuroblas-
toma via a midkine- independent mechanism. There are several possible interpreta-
tions for these phenotypes. The simplest would be that midkine does not have a 
particularly dominant effect on the tumorigenesis of neuroblastoma. Second, 
because neuroblastoma is famous for its intensive and various chromosomal aber-
rations (gain and loss), a secondary event that compensates for the absence of mid-
kine might occur. In neuroblastoma, a candidate receptor of midkine, Notch2, is 
thought to function in mediating midkine signaling (Kishida et al.  2013 ). Notch 
family receptors, including Notch2, are single transmembrane proteins whose 
canonical ligands are other transmembrane proteins, such as DLLs and JAGs, on 
the surface of adjacent cells. Upon the binding of ligand, the intracellular domain 
(ICD) of Notch is cleaved and directly translocates into the nucleus to activate the 
transcription of target genes. In  Mdk   −/−   MYCN  Tg mice, the protein level of nuclear 
Notch2 ICD (activated form) in tumor cells was found to be signifi cantly decreased 
compared with that in  Mdk   +/+  mice (Kishida et al.  2013 ). These results indicate that 
Notch2 signaling was attenuated in the absence of midkine. Consistent with this, 
the expression of a typical Notch target gene, HES1, was also decreased in  Mdk   −/−  
mice. These physiological data strongly suggest that the midkine-Notch2-HES1 
axis is involved in the tumorigenesis of neuroblastoma. It has also been reported 
that this axis functions in pancreatic cancer (Güngör et al.  2011 ). The midkine-
Notch2-HES1 pathway has been shown to induce epithelial-mesenchymal transi-
tion and drug resistance in pancreatic cancer cells. Although direct evidence of a 
ligand-receptor relationship between midkine and Notch2 is limited so far, it is 
interesting that Notch proteins undergo essential glycosylation in their extracellular 
domains (Rana and Haltiwanger  2011 ). 

 Glioma is another cancer in which a relationship between midkine and a particu-
lar receptor has been suggested (Lorente et al.  2011 ). In glioma, the suggested 
 functional receptor of midkine is anaplastic lymphoma kinase (ALK). ALK was 
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originally known for its involvement as a hyperactive fusion gene resulting from 
chromosomal translocation in leukemia and lung cancer. In glioma cells, midkine 
signaling through ALK suppresses cannabinoid-induced autophagic cell death. 
Although a previous study  in vitro  originally suggested that ALK was a putative 
receptor of midkine (Stoica et al.  2002 ), this glioma case was the fi rst report showing 
the midkine-ALK axis in cancer cells. Interestingly, ALK was established as a pre-
disposition gene in neuroblastoma (Mossé et al.  2008 ; Janoueix-Lerosey et al.  2008 ; 
Chen et al.  2008 ; George et al.  2008 ). Some hyperactive mutations in ALK were 
found in both familial and sporadic neuroblastomas. Because the involvement of 
midkine in neuroblastoma has also been independently reported, it would seem nat-
ural to speculate that the midkine-ALK axis also functions in neuroblastoma cells. 
But so far, there has been no supporting evidence of its presence. For example, the 
knockdown of midkine in neuroblastoma cell lines harboring ALK mutation resulted 
in growth suppression (Kishida and Kadomatsu  2014 ). This result suggests that 
midkine exerts an ALK-independent (possibly Notch2-dependent) function to pro-
mote the proliferation of neuroblastoma cells. Finally, ALK also undergoes glyco-
sylation, which is necessary for the pro-survival signal of neuroblastoma cells (Del 
Grosso et al.  2011 ). 

 The expression pattern of midkine—i.e., high expression in various tumor cells 
and low expression in normal postnatal tissues—suggests that it has potential not only 
as a tumor marker but also as a target of cancer therapy. Several tools targeting mid-
kine have been developed, and their effectiveness has also been revealed (Table  8.2 ). 
They are mainly classifi ed into two groups: RNAi-based nucleotides to block the 
midkine protein synthesis and molecules to inhibit secreted midkine function.

    Table 8.2    Possible molecular tools to target midkine in cancer therapy   

 Molecular tools  Note  References 

 Oligonucleotide  Intratumor injection to rectal carcinoma 
xenograft 

 Takei et al. ( 2001 ) 
 Takei et al. ( 2002 ) 

 i.v. to in situ hepatocellular carcinoma  Dai et al. ( 2007a ) 
 Dai et al. ( 2007b ) 

 i.v. of oligonucleotide-loaded nanoparticle to 
in situ hepatocellular carcinoma 

 Dai et al. ( 2009 ) 

 Morpholino oligomer  Intratumor injection to prostate and colon 
carcinoma xenografts 

 Takei et al. ( 2005 ) 

 siRNA  Intratumor injection to prostate carcinoma 
xenograft 

 Takei et al. ( 2006 ) 

 Intratumor injection to glioma xenograft  Lorente et al. ( 2011 ) 
 Binding peptide  MK-TRAP (LRP1-derived midkine-binding 

peptide)-expressing rectal carcinoma xenograft 
 Chen et al. ( 2007 ) 

 Polyclonal antibody  Anchorage-independent colony formation of 
Wilms’ tumor and rectal carcinoma cells 

 Chen et al. ( 2007 ) 

 Monoclonal antibody  i.p. to osteosarcoma xenograft  Sueyoshi et al. ( 2012 ) 
 RNA aptamer  Intratumor injection to neuroblastoma 

xenografts 
 Kishida et al. ( 2013 ) 

   i.v.  intravenous injection;  i.p.  intraperitoneal injection  
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   The RNAi-based oligonucleotides have been examined by two groups. Intratumor 
injection to CMT-93 mouse rectal carcinoma cell-derived xenografts (Takei et al. 
 2001 ,  2002 ) effectively suppressed tumor growth  in vivo . Intravenous injection to 
an  in situ  human hepatocellular carcinoma model in combination with antitumor 
drugs was also indicated to exert moderate suppressive effects (Dai et al.  2007a ,  b ). 
The same group attempted intravenous injection of oligonucleotide-loaded nanopar-
ticles in the same model (Dai et al.  2009 ). Intratumor injections of morpholino 
oligomer to PC-3 prostate carcinoma cell-derived and SW620 colon carcinoma cell- 
derived xenografts also exerted moderate effects (Takei et al.  2005 ). More recently, 
siRNA, rather than oligonucleotide, has become a major tool in the knockdown of 
specifi c genes. There are two reports examining the therapeutic effects of siRNA 
against midkine (Takei et al.  2005 ; Lorente et al.  2011 ). Because the stability  in vivo  
is the main obstacle of siRNA usage in therapy, the siRNAs were mixed with atelo-
collagen as a carrier and intratumorally injected in both reports. siRNA in combina-
tion with paclitaxel markedly suppressed the growth of PC-3-derived xenografts 
(Takei et al.  2005 ). On the other hand, siRNA with cannabinoid inhibited the growth 
of T98 glioma cell-derived xenografts (Lorente et al.  2011 ). Because the induction 
of drug resistance seems to be one of the important functions of midkine in cancer 
cells, the combination of targeting midkine and an anticancer drug would be 
 synergistically effective. 

 Another strategy to target midkine is the neutralization of the secreted midkine 
protein. It has been shown that a polyclonal antibody can suppress anchorage- 
independent colony formation of G401 Wilms’ tumor cells (Chen et al.  2007 ). 
Although the results of this  in vitro  assay have frequently been correlated with ther-
apeutic effects  in vivo , no further experiments have yet been reported. However, the 
therapeutic effects of a monoclonal antibody were examined in an orthotopic xeno-
graft model of 143B osteosarcoma cells (Sueyoshi et al.  2012 ). Intraperitoneal 
injection of monoclonal antibody moderately suppressed the xenograft tumor 
growth and effi ciently inhibited lung metastasis. Thus far, however, the therapeutic 
results utilizing antibodies are limited. Progress in the near future is expected. 

 As described, a small peptide named MK-TRAP was developed for the purpose 
of targeting midkine (Chen et al.  2007 ). MK-TRAP consists of 169 amino acids 
derived from a part of the extracellular domain of LRP1 and strongly binds to mid-
kine. Both the transfection of MK-TRAP-expressing plasmid and the addition of 
secreted MK-TRAP-containing medium to G401 and CMT-93 cells resulted in the 
suppression of anchorage-independent colony formation. Furthermore, the xeno-
grafts derived from CMT-93 cells expressing MK-TRAP showed attenuated growth 
 in vivo . MK-TRAP might be as useful as an antibody for the molecular targeting of 
midkine. 

 Finally, another candidate tool was recently reported (Kishida et al.  2013 ). This 
candidate, an RNA aptamer, consists of 20–80-mer RNA and forms a particular 
three-dimensional structure. Their molecular structure enables RNA aptamers to 
directly recognize and bind to particular proteins. This is why RNA aptamers are 
considered nucleic acid analogues to antibodies. An RNA aptamer against a particu-
lar molecule is screened from a library containing 10 14  different molecules 

S. Kishida and K. Kadomatsu



135

(Miyakawa et al.  2006 ,  2008 ; Ishiguro et al.  2011 ). Intratumor injection of an RNA 
aptamer against midkine to TNB1 and YT-nu neuroblastoma cell-derived xenografts 
signifi cantly attenuated tumor growth  in vivo . Since a single administration was 
quite effective, the therapeutic effects of RNA aptamers seem to be superior to those 
of the other molecular tools listed in Table  8.2 . Because RNA aptamers consist of 
RNA, their stability  in vivo  should be the major subject to be addressed. One of the 
characteristics of RNA aptamers is their applicability to chemical modifi cation. In 
fact, certain modifi cations have been shown to make RNA aptamers stable enough 
for systemic administration (Ishiguro et al.  2011 ). 

 No current molecular tools against midkine are especially based and focused on 
the interaction between midkine and sugar chains. The involvement of those inter-
actions in cancer has also yet to be addressed. Because its relationship with sugar 
chains is likely to be one of the most important aspects of midkine, it is quite impor-
tant that researchers studying midkine and its relation to cancers consider the impact 
of sugar chains.    
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    Chapter 9   
 Tumor-Associated Glycans and Their 
Functional Roles in the Multistep Process 
of Human Cancer Progression 

             Reiji     Kannagi     ,     Keiichiro     Sakuma     ,     Bi-He     Cai    , and     Shin-Yi     Yu   

    Abstract     Cancer develops through a multistep process of carcinogenesis. This pro-
cess accompanies incremental alterations of expression of biologically functional 
glycans on the surface of cancer cells. A variety of glycans are expressed in nonma-
lignant epithelial cells, including several normal glycans serving as ligands for 
siglecs, the immunosuppressive molecules carried by interstitial immune cells. 
These normal glycans decrease or disappear and are replaced by cancer-associated 
glycans at the early stages of carcinogenesis. This glycan transition facilitates pro-
duction by mucosal immune cells of infl ammatory mediators that are known to 
promote cancer progression. Expression of glycans that regulate growth factor 
receptor functions is also affected at the early stages of cancers. The major mecha-
nism involved in glycan alteration at the early stages is epigenetic silencing through 
DNA methylation and/or histone deacetylation/methylation of genes responsible for 
synthesis of normal glycans, leading to their incomplete synthesis. In the locally 
advanced stages, multiple glycan-related genes are induced transcriptionally and 
posttranscriptionally by tumor hypoxia and epithelio-mesenchymal transition, thus 
further culminating in abnormal expression of cancer-associated glycans. Some 
such glycans serve as specifi c ligands for selectins, the cell adhesion molecules car-
ried by vascular endothelial cells, and facilitate tumor vascularization and ultimately 
hematogenous metastasis. Advanced cancer cells which have undergone epithelio- 
mesenchymal transition share biological characteristics with so-called cancer stem 
cells, and glycans associated with such cells are currently known to be frequently 
expressed in human embryonic stem cells as well.  
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silencing   •   DNA methylation   •   Histone deacetylation/methylation   •   Sulfate trans-
porter   •   Siglec   •   Selectin   •   Hypoxia inducible factor   •   Epithelio-mesenchymal tran-
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9.1         Introduction 

 Cancer develops through a multistep process of carcinogenesis. Tumor progression 
is caused by genetic and epigenetic alterations of a variety of key regulatory mole-
cules, and this process accompanies an incremental alteration of expression of bio-
logically functional glycans on the surface of cancer cells. Here we will review 
recent fi ndings on the mechanisms through which genetic and epigenetic alterations 
affect glycan expression in cancer cells and the pathophysiological roles of altered 
glycan expression during the course of cancer progression.  

9.2     Epigenetic Silencing of Glycan-Related Genes Causing 
“Incomplete Synthesis” of Normal Glycans at Early 
Stages of Cancer 

 It has long been known that glycans undergo drastic changes upon carcinogene-
sis. We had classifi ed the cancer-associated changes of glycan expression into 
two categories almost three decades ago; one had been “incomplete synthesis” of 
normal glycans and the other “ neo synthesis” of abnormal glycans (Hakomori 
and Kannagi  1983 ). 

 The concept of “incomplete synthesis” had referred to the accumulation of 
structurally simpler abnormal glycans due to disturbance of synthetic pathways for 
normal glycans, which mainly occurs during the course of early carcinogenesis. 
This concept assumed some suppression to occur in the transcription/translation of 
genes involved in the synthesis of normal glycans during carcinogenesis. At pres-
ent, the major suppression mechanism is regarded to be epigenetic silencing. The 
process of “incomplete synthesis” is known to start working at relatively early 
stages of carcinogenesis. 

 On the other hand, the concept of “ neo synthesis” had referred to the appearance 
of abnormal glycans in cancers, which are not present, or present only in a negligi-
ble amount, in normal cells. This had been assumed to be due to transcriptional 
induction of genes involved in the synthesis of abnormal glycans along with pro-
gression of cancers. Nowadays, acceleration of transcription/translation of genes 
involved in the synthesis of these abnormal glycans is known to occur frequently 
along with the multistep progression of cancers at advanced stages.  
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9.3     Examples of Key Glycan-Related Genes Exhibiting 
Epigenetic Silencing at Early Stages of Cancer 

 A variety of glycans are expressed in normal epithelial cells, expression of some of 
which is conventional in that they are also constitutively expressed in cancers. In 
contrast, some other glycans exhibit preferential expression in nonmalignant epithe-
lial cells and tend to decrease or disappear and be replaced by cancer-associated 
glycans upon malignant transformation. These glycans are aptly named “normal” 
glycans, although in a narrow defi nition of the word (Fig.  9.1 ).  

 Such normal glycans include disialyl Lewis A, which was found to be preferen-
tially expressed in nonmalignant epithelial cells of the digestive organs (Kannagi 
et al.  1988 ; Itai et al.  1990 ,  1991 ), and clinical evaluation of it in patients’ sera was 
proposed to be useful for making differential diagnoses of benign and malignant 
diseases, especially when routine serum determination of sialyl Lewis A, a well- 
known cancer-associated glycan, gave false-positive results (Kannagi  2007 ). Soon 
it was found that the disialyl Lewis A glycan is a normal counterpart of the cancer- 
associated glycan, sialyl Lewis A, and that epigenetic silencing of  ST6GalNAc6 , a 
gene for α2,6sialyltransferase, is the key for diminishing expression of disialyl 
Lewis A and inducing sialyl Lewis A in cancers (Miyazaki et al.  2004 ). 
Downregulation of  ST6GalNAc6  was observed at the early stages of colon carcino-
genesis in the normal-adenoma-carcinoma sequence (Bowden et al.  2007 ). This 
interconversion of glycans seems to be applicable to a wider range of cancers than 
initially expected. In addition to the cancers of digestive organs, preferential loss of 
disialyl Lewis A expression is also noted in prostate cancers (Young et al.  1988 ), 
and cancer-associated decrease of the  ST6GalNAc6  mRNA level is noted in breast 
(Potapenko et al.  2010 ) and renal (Senda et al.  2007 ) cancers, as well as glioblas-
toma (Kroes et al.  2007 ). 

 Another example of a “normal” glycan is sialyl 6-sulfo Lewis X, which was 
found to be preferentially expressed in nonmalignant epithelial cells of the colon 
and to disappear in colonic cancer cells (Izawa et al.  2000 ). This fi nding was in line 
with the classical histochemical fi nding on colon cancer glycans that the amount of 
sulfomucin is decreased in cancers compared to nonmalignant colonic tissues 
(Shamsuddin et al.  1981 ). Sialyl 6-sulfo Lewis X glycan is a normal counterpart of 
the well-known cancer-associated glycan, sialyl Lewis X, and epigenetic silencing 
of  SLC26A2 , a gene for sulfate transporter DTDST, was found to be a key mecha-
nism responsible for diminished expression of sialyl 6-sulfo Lewis X and appear-
ance of sialyl Lewis X in cancers (Yusa et al.  2010 ). Downregulation of  SLC26A2  
was also observed at the early stages of colon carcinogenesis (Lee et al.  2006 ). It is 
notable that not only the genes for glycosyltransferases, which are directly involved 
in glycan synthesis, but also those for some transporters or enzymes in the interme-
diate carbohydrate metabolism are capable of playing a key role in the cancer- 
associated glycan alteration.  
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  Fig. 9.1    Examples of interconversion of normal glycans into cancer-associated glycans.  Panel 
a , transition of normal glycan, disialyl Lewis A, to cancer-associated glycan, sialyl Lewis A, 
upon malignant transformation.  Panel b , conversion of normal glycan, sialyl 6-sulfo Lewis X, to 
a cancer- associated glycan, sialyl Lewis X glycan, upon malignant transformation. Typical dis-
tribution patterns shown were obtained by immunohistochemical staining using specifi c anti-
glycan antibodies of consecutive sections prepared from colon cancer tissues.  Ca  cancer cells,  N  
nonmalignant epithelial cells (Adopted from references Izawa et al.  2000 ; Miyazaki et al.  2004 ; 
Lim et al.  2008 )       
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9.4     Biological Functions of Normal Glycans 

 The hallmark of early carcinogenesis is the acquisition of a highly proliferative 
activity and/or suppression of apoptosis by the transforming cells. Several glycans 
are known to affect cell proliferation. GM3 and other monosialogangliosides have 
long been known to suppress EGF receptor signaling by their direct interaction 
with the receptor molecule (Bremer and Hakomori  1982 ; Hakomori  2010 ). 
Likewise, GM2 is known to suppress c-Met kinase pathway (Todeschini et al. 
 2008 ). On the other hand, disialogangliosides, such as GD3 and GD2, are reported 
to enhance cell proliferation through activation of FAK and Lyn kinases (Furukawa 
et al.  2012 ). N-glycans and related genes including  MGAT5  are also known to 
affect growth factor receptor signaling (Matsumoto et al.  2008 ; Park et al.  2012 ; 
also reviewed in Lau and Dennis  2008 ). The glycan-related genes involved in 
O-glycan synthesis such as  GALNT14 ,  GALNT2 , and  C1GALT1  on death recep-
tors, and growth factor receptors such as c-Met and EGFR have recently been 
 suggested to affect cancer cell apoptosis and proliferation (   Wagner et al.  2007 ; 
Wu et al.  2011 ,  2013 ). Altered expression of these glycans may well play signifi -
cant roles during the course of carcinogenesis. 

 There are other indications for a more indirect association of cell proliferation 
status with glycan expression. For instance, the decreased transcription of  SLC26A2  
in cancers mediates the loss of normal glycan sialyl 6-sulfo Lewis X and induction 
of cancer-associated glycan sialyl Lewis X and at the same time strongly induces 
cell proliferation (Yusa et al.  2010 ). The growth suppressive effect of the  SLC26A2  
gene was clearly reproduced in experiments using a Tet-off expression vector for 
 SLC26A2  (Yusa et al.  2010 ) (Fig.  9.2 ). It is not clear whether or not the growth sup-
pression conferred by this gene is due to its effects on glycan sulfation, because 
 SLC26A2  is a sulfate transporter gene which can affect not only glycan sulfation but 
also sulfation of other molecules such as proteins and lipids. Still, it can at least be 
proposed that this is another example indicating the close link between change in 
glycan expression and cell proliferation status.  

 Cancer microenvironments also play crucial roles during the course of carcino-
genesis. In the mouse model of colon carcinogenesis, mutation in the APC gene 
induces proliferation of epithelial cells leading to multiple benign polyp formation. 
Meanwhile, Taketo’s group found that the malignant transformation of adenoma 
cells was observed selectively at the locus where interstitial cells in colonic mucosal 
membranes produce COX2, which is a pro-infl ammatory molecule known to pro-
mote cancer progression (Oshima et al.  1996 ). This fi nding became the theoretical 
basis for developing COX2 inhibitors for the chemoprevention of colon carcinogen-
esis. Although diffi culty was encountered during the development of specifi c COX2 
inhibitors because they have intrinsic toxic cardiac effects, it is still true that infl am-
matory signaling pathways are activated in various cancers including colon cancer 
linking chronic infl ammation to oncogenesis. Alternative modalities are now 
awaited for the chemoprevention of colon carcinogenesis. 
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 In this context, it is noteworthy that the normal glycans in colonic epithelial 
cells such as disialyl Lewis A and sialyl 6-sulfo Lewis X were both shown to 
serve as ligands for siglecs, which are glycan-recognition molecules having 
immunosuppressive ITIM motifs in their cytoplasmic domains and are expressed 
by a variety of immune cells. The sialyl 6-sulfo Lewis X glycan was shown to be 
the ligand for siglec-7, and disialyl Lewis A was found to serve as a ligand for 
both siglec-7 and siglec-9 (Miyazaki et al.  2004 ,  2012 ) (Fig.  9.3 ). A signifi cant 
number of tissue macrophage- like cells expressing siglec-7 or siglec-9 were 
present in normal colonic mucosal membranes, and ligation of either siglec had 
suppressive effects on the production of COX2 and IL-12 by macrophage-like 
cells (Miyazaki et al.  2012 ) (Fig.  9.3 ). Based on these results, it was proposed 
that normal glycans may play a role in maintaining immunological homeostasis 
and preventing cancer progression. The loss of these normal glycans due to epigen-
etic silencing of the key genes upon malignant transformation is expected to further 
facilitate carcinogenesis.   

  Fig. 9.2    Possible link between glycan expression change and cancer cell growth. Results of 
RT-PCR ( panel a ), fl ow-cytometry ( panel b ), and cell proliferation assays ( panel c ) are shown on 
colon cancer cell line HT29 that was transfected with Tet-off inducible expression vector for 
 SLA26A2 . When cultured without doxycycline, the  SLA26A2  gene is actively transcribed, resem-
bling nonmalignant epithelial cells, and the normal glycan, sialyl 6-sulfo Lewis X, is strongly 
expressed on the cell surface. This is associated with suppression of cell proliferation. In contrast, 
when cultured with doxycycline, transcription of  SLA26A2  is repressed and resembles cancer 
cells, leading to the extinction of normal glycan expression and induction of the cancer-associated 
glycan, sialyl Lewis X, which is coupled with enhanced cell proliferation. The difference was 
statistically signifi cant at *,  p  < 0.05; **,  p  < 0.01; and ***,  p  < 0.001 (Adopted from reference 
Yusa et al.  2010 )       

 

R. Kannagi et al.



145

  Fig. 9.3    Normal glycans serve as ligands for siglecs.  Panel a , normal glycans such as disialyl 
Lewis A and sialyl 6-sulfo Lewis X, but not cancer-associated glycans, serve as specifi c ligands for 
siglecs, which are immunosuppressive receptors carried by immune cells in mucosal membranes. 
 Panel b , a human colon tissue stained with anti-siglec and anti-glycan MoAbs, suggesting possible 
interaction between tissue macrophage-like cells expressing siglec-7 ( green ) and colonic epithelial 
cells expressing its ligand disialyl Lewis A ( red ).  Panel c , suppression of LPS-induced COX2 
and IL-12 in cultured macrophage-like cells by ligation of siglec-7/-9. TPA-treated U937 cells 
transfected with siglec-7 or siglec-9 were stimulated with LPS with or without a F(ab′) 2  fragment 
of an anti-siglec-7 or anti-siglec-9 antibody (Adopted from references Miyazaki et al.  2004 ,  2012 )       
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9.5     Mechanisms for Epigenetic Silencing of Glycan-Related 
Genes During the Course of Carcinogenesis 

 Aberrant promoter CpG island hypermethylation is one of the most common and 
well-established epigenetic abnormalities in cancer. In earlier studies, DNA meth-
ylation of A- and B-enzymes was shown to cause a decrease of normal A- and 
B-blood type glycans in cancers (Kominato et al.  1999 ; Chihara et al.  2005 ). 
Likewise, loss of the Sd a  blood group substance in colon cancer was shown to be 
due to DNA methylation of the  B4GALNT2  gene promoter (Kawamura et al.  2008 ). 
The decrease in all these glycan epitopes attached to the lactosamine or polylactos-
amine backbone structures is proposed to facilitate expression of cancer-associated 
glycan epitopes such as sialyl Lewis A and sialyl Lewis X, synthesized from common 
precursors, by leaving the surplus substrates for the enzymes responsible for synthe-
sis of the latter two cancer-associated glycans (Kannagi et al.  2008 ). 

 Table  9.1  summarizes hitherto known glycan-related genes in cancers which rep-
resent epigenetic silencing. There are many examples of genes involved in glycan 
synthesis which are regulated by DNA methylation.  HS3ST2  ( 3OST2 ) is a typical 
example of genes known to be strongly hypermethylated in a variety of cancers 
(Miyamoto et al.  2003 ) and is sometimes utilized even as a positive control in DNA 
methylation analyses. The biological signifi cance of this gene was not known until 
the heparan sulfate 3-O-sulfotransferase encoded by this gene was recently reported 
to suppress cell proliferation and migration (Hwang et al.  2013 ). The exact mecha-
nisms behind these observed phenomena await further investigation, but this is an 
indication of another link between glycan expression and cancer cell proliferation. 
The roles of extracellular heparan sulfates as extracellular coreceptors for growth 
factors have been well documented (Fuster and Esko  2005 ).

   Histone modifi cation is also intimately involved in cancer-associated epigenetic 
silencing of glycan-related genes. Transcription of  ST6GalNAc6  was initially 
reported to be recovered either by treatment with histone deacetylation inhibitor 
(butyrate) or DNA methylation inhibitor (5-aza-2′-deoxycytidine) (Miyazaki et al. 
 2004 ), but the effect of the DNA methylation inhibitor was later found to be depen-
dent on the cell lines used in experiments, and histone deacetylation turned out to be 
the major mechanism for silencing this gene. Histone modifi cation was also pro-
posed to be the major mechanism for epigenetic silencing of the sulfate transporter 
gene  SLC26A2 , and in the case of this gene, signifi cant participation of histone tri-
methylation at H3K27 was suspected in addition to histone deacetylation (Yusa 
et al.  2010 ) (Fig.  9.4 ). Accordingly, addition of not only HDAC inhibitors, but his-
tone methyltransferase inhibitor DZNep, was shown to stoichiometrically induce 
 SLC26A2  transcription (Fig.  9.4 ). Participation of DNA methylation in cancer- 
associated suppression of this gene was recently reported for papillary thyroid can-
cer (Zhang et al.  2012 ).  

 Epigenetic drugs are not yet actively utilized for therapy of cancers, but several 
reports suggest them to be benefi cial for chemoprevention of cancers (Ravillah et al. 
 2014 ; Timp and Feinberg  2013 ). Assessment of normal glycan expression may be 
useful for monitoring therapeutic effects in such regimens.  
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   Table 9.1    Examples of glycan-related genes in cancers which are known to represent epigenetic 
silencing   

 Genes  Glycans involved  Mechanisms  References 

  ABO   ABO(H) blood group 
substance 

 DNA methylation  Kominato et al. 
( 1999 ) 

  HS3ST2  ( 3OST2)   Heparan sulfate (3S)  DNA methylation  Miyamoto et al. 
( 2003 ) 

  GNE   CMP-sialic acid  DNA methylation  Oetke et al. 
( 2003 ) 

  ST6GALNAC6   Sialyl Lewis A/disialyl 
Lewis A 

 Histone 
acetylation, DNA 
methylation 

 Miyazaki et al. 
( 2004 ) 

  EXT1   Heparan sulfate  DNA methylation  Ropero et al. 
( 2004 ) 

  EXTL3   Heparan sulfate  DNA methylation  Karibe et al. 
( 2008 ) 

  FUT3   Lewis A  DNA methylation  Serpa et al. ( 2006 ) 
  MGAT5    N -glycan branching  DNA methylation  Chakraborty et al. 

( 2006 ) 
  MGAT4A    N -glycan branching  DNA methylation, 

histone acetylation 
 Ide et al. ( 2006 ) 

  SULF1   Heparan sulfate (6S)  DNA methylation, 
histone acetylation 

 Staub et al. ( 2007 ) 

  B4GALNT2 , 
 ST3GAL6  

 Sd a /sialyl Lewis A  DNA methylation  Kawamura et al. 
( 2008 ) 

  B4GALNT2   Sd a   DNA methylation  Wang et al. 
( 2008 ) 

  SLC26A2  (DTDST, 
sulfate transporter) 

 Sialyl Lewis X/sialyl 6-sulfo 
Lewis X 

 Histone 
methylation, 
histone acetylation 

 Yusa et al. ( 2010 ) 

  FX ,  SLC35C1  
(GDP-fucose 
transporter),  FUT4  

 Fucose in TRAIL signaling  DNA methylation  Moriwaki et al. 
( 2010 ) 

  HS3ST1 ,  HS3ST2 , 
 HS3ST3A1  ( 3-OST1 , 
 3-OST2 ,  3-OST3A ) 

 Heparan sulfate (3S)  DNA methylation  Bui et al. ( 2010 ) 

  C4ST1 ,  DSE   Chondroitin/dermatan sulfate  DNA methylation  Kalathas et al. 
( 2010 ) 

  GMDS ,  FX , 
 MGAT4A ,  MGAT5  

 Core fucose/ N -glycan 
branching 

 DNA methylation  Saldova et al. 
( 2011 ) 

  ST3GAL6   Sialyl Lewis X  DNA methylation  Chachadi et al. 
( 2011 ) 

  HS3ST3B1  
( 3-OST-3B1 ) 

 Heparan sulfate (3S)  DNA methylation, 
histone acetylation 

 Song et al. ( 2011 ) 

  B4GALNT1 , 
 ST8SIA1  

 Gangliosides  histone acetylation  Suzuki et al. 
( 2011 ) 

(continued)

9 Tumor-Associated Glycans and Their Functional Roles in the Multistep Process…



148

Table 9.1 (continued)

 Genes  Glycans involved  Mechanisms  References 

  MGAT5B    N -glycan branching  DNA methylation, 
histone 
acetylation, 
histone 
methylation 

 Kizuka et al. 
( 2011 ) 

  B3GALT5   Sialyl Lewis A  DNA methylation, 
histone 
acetylation, 
histone 
methylation 

 Caretti et al. 
( 2012 ) 

  Cosmc   Mucin core 1  DNA methylation  Mi et al. ( 2012 ) 
  B3GALT1   Sialyl Lewis A  Histone acetylation  Chachadi et al. 

( 2013 ) 
  B3GNT7   Sialyl Lewis A/X  DNA methylation  Lu et al. ( 2014 ) 

  Candidate glycans which are expected to be affected by these alterations are also included  

  Fig. 9.4    Epigenetic silencing of  SLC26A2  gene in colon cancer cells.  Panel a , results of ChIP 
assays in human colon cancer HT29 cells cultured with or without an HDAC inhibitor, butyrate. 
 Panel b , effect of histone methyltransferase inhibitor DZNep on the transcription level of the 
 SLC26A2  gene (Adopted from reference Yusa et al.  2010 )       

9.6     Acquisition of Resistance to Hypoxia by Cancer Cells 
in Advanced Stage of Cancers 

 At the locally advanced stages, cancer cells must cope with hypoxic environments 
to survive and proliferate, and some cancer cell clones having hypoxia-resistant 
characteristics appear through accumulation of genetic anomalies. Such hypoxia- 
resistant cancer cells usually exhibit a higher proliferating rate, enhanced cell 
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mobility, greater angiogenic activity, and stronger multidrug resistance, thus having 
multiple advantages over other cancer cell clones, and will eventually occupy all 
cancer cell nests. The transcription factor HIF-1α plays a central role for cancer 
cells in acquiring hypoxia-resistant characteristics. 

 Intense changes of glycan expression are observed in advanced-stage cancers, 
and this is partly because HIF-1α induces the transcription of a variety of genes 
involved in the synthesis of glycans (Kannagi  2004 ,  2010 ). For instance, tumor 
hypoxia induces, through the action of HIF-1α, transcription of genes for sialyl-
transferase, fucosyltransferase, and UDP-galactose transporter, which are involved 
in the synthesis of sialyl Lewis A and sialyl Lewis X (Koike et al.  2004 ). Tumor 
hypoxia thus enhances expression of sialyl Lewis A and sialyl Lewis X in cancer 
cells, which further help cancer cells in coping with hypoxic environments, since 
these glycans serve as ligands for vascular E-selectin and mediate adhesion of 
 cancer cells to endothelial cells. Interaction between E-selectins on endothelial cells 
and its ligands on cancer cells is known to facilitate tumor vascularization (Tei et al. 
 2002 ). HIF-1α also induces transcription of genes for several enzymes in the syn-
thetic pathway of the lipid moiety of glycolipids, and this is expected to affect their 
localization in cell membrane microdomains (Yin et al.  2010 ). 

 The gene for sialin,  SLS17A5 , is also induced by HIF-1α (Yin et al.  2006 ). 
Normal cells synthesize sialic acid, usually from the de novo synthetic pathway 
starting from UDP-GlcNAc. Cancer cells seem to enhance the de novo synthetic 
pathway to some extent to meet the increased demands for sialoconjugate synthe-
sis (Go et al.  2007 ), but upon progression, cancer cells tend to rely more on the 
salvage pathway, which reutilizes the sialic acid residues cleaved from exogenous 
glycoconjugates in lysosomes. Sialin is a lysosomal sialic acid transporter that 
pumps in free sialic acids released in lysosomes to cytoplasm and is closely 
involved in the salvage pathway. In humans, sialic acid species provided by the de 
novo synthetic pathway is limited to NeuAc but not NeuGc, because humans 
lack the enzyme which converts NeuAc to NeuGc. On the other hand, sialic acids 
transported by sialin contain NeuGc, the nonhuman sialic acid derived from fetal 
calf serum under cell culture conditions and from a dietary origin under in vivo 
conditions. Consequently, the amount of glycans containing NeuGc in cancer cells 
having enhanced sialin activity is usually higher than that in nonmalignant cells. A 
glycan containing NeuGc was sometimes known to be antigenic to humans and 
was termed Hanganatziu-Deicher antigen. This antigen was for a long time counted 
as a member of cancer-associated glycans, as cancers have a higher amount of 
NeuGc- containing glycans than normal tissues. The Hanganatziu-Deicher antigen 
occurs late during cancer progression, mainly in the advanced stages of cancers, 
because its appearance is driven by HIF-1α, which starts to work in the advanced 
stages. Recently, cultured ovarian cancer cells having an extremely high NeuGc 
content were reported, and other mechanisms, in addition to enhanced sialin 
transcription, were suggested to be involved in this extremely high NeuGc expres-
sion (Inoue et al.  2010 ).  
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9.7     Glycan Alteration by Epithelio-Mesenchymal Transition 
of Cancer Cells in Advanced Stages of Cancers 

 Epithelio-mesenchymal transition (EMT) is a critical event in the advanced stages 
of cancers which prepares cancer cells for metastasis. EMT is caused by a well- 
defi ned set of transcription factors and is found to induce several genes related to 
glycan expression such as sialyltransferases, fucosyltransferases, and galactosyl-
transferases, which are also involved in the synthesis of sialyl Lewis A and sialyl 
Lewis X glycans (Sakuma et al.  2012 ). Consequently, cancer cells which had 
undergone EMT have a higher expression of the sialyl Lewis A and sialyl Lewis X 
glycans and strongly bind to vascular E-selectin (Fig.  9.5 ). Several decades ago, it 
had been noticed that cancer cells in the invasion front having a mesenchymal cell-
like morphology frequently express these glycans strongly (Ono et al.  1996 ). 
Judging from the recent fi ndings mentioned above, this must have been due to the 
EMT- induced transcription of glycan-related genes.  

 The best-known function of cancer-associated glycans is that sialyl Lewis A 
and sialyl Lewis X glycans serve as vascular E-selectin and mediate hematoge-
nous metastasis of cancer cells (Phillips et al.  1990 ; Takada et al.  1991 ,  1993 ). For 
adhesion to occur, however, these glycans need to be expressed in a density high 

  Fig. 9.5    Induction of cancer-associated glycans sialyl Lewis A and sialyl Lewis X in cancer cells 
underwent epithelio-mesenchymal transition (EMT). Human colon cancer cells DLD-1 were cul-
tured with EGF/bFGF in serum-free medium to induce EMT. Morphological changes ( left panel ) 
and results of fl ow-cytometric analyses of sialyl Lewis A and sialyl Lewis X expression ( right 
panel ) upon EMT are shown (Adopted from reference Sakuma et al.  2012 )       
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enough to be recognized by E-selectin. As disialyl Lewis A and sialyl 6-sulfo 
Lewis X are only minor components among the glycans in nonmalignant epithe-
lial cells, their interconversion through the “incomplete synthesis” mechanism, 
i.e., epigenetic silencing of  ST6GalNAc6  or  SLC26A2 , would confer, although 
signifi cant, only a weak expression of sialyl Lewis A and sialyl Lewis X glycans. 
The high-density expression of these cancer-associated glycans could be achieved 
only after further enhancement of their synthesis through transcriptional induc-
tion by hypoxia and/or EMT of additional glycan-related genes, the mechanism 
defi ned as “ neo synthesis” in our previous proposition. The two mechanisms, 
“incomplete synthesis” and “ neo synthesis,” are not mutually exclusive; they 
sometimes work on the same glycans in a stepwise manner during the multistep 
progression of cancers. In contrast, appearance of the NeuGc-containing glycans 
(Hanganatziu-Deicher antigens) in cancer cells can be regarded to have stemmed 
exclusively from the “ neo synthesis” mechanism, which specifi cally occurs in the 
advanced stages of cancer progression.  

9.8     Glycans Associated with Cancer Stem Cells 
and Embryonic Stem Cells 

 Characteristics of EMT-induced cancer cells are known to be very similar to those 
of so-called cancer stem cells (Mani et al.  2008 ). Expression of sialyl Lewis A and 
sialyl Lewis X was enhanced in cancer cells after EMT, while a paradoxical decrease 
was noted in the expression of some other glycans that had been assumed to be 
cancer associated, such as Lewis Y glycan (Sakuma et al.  2012 ). This unexpected 
fi nding suggested that some hitherto known cancer-associated glycans, exemplifi ed 
by sialyl Lewis A/X, are linked to a more malignant population of cancer cells such 
as cancer stem cells, whereas others are not. Examples of glycan-related genes 
which have been reported to exhibit altered transcription levels in EMT-induced 
cancer cells and/or cancer stem cells are shown in Table  9.2 , together with the can-
didate glycan species which are expected to be affected by these alterations.

   Cell surface glycans are known to be good markers for embryonic stem (ES) 
cells in the fi eld of stem cell research. Good examples are SSEA-1 for murine ES 
cells and SSEA-3/-4 for human ES cells. However, the mechanisms of how these 
glycans appear specifi cally on the surface of ES cells have not been elucidated yet. 
It is well known that a combination of several transcription factors such as OCT3/4, 
Nanog, and Sox-2 plays critical roles in maintaining the stemness in these cells 
(Takahashi et al.  2007 ), while transcriptional regulation of ES cell-associated 
glycan expression still remains largely unknown. There were sporadic publications 
reporting that SSEA-3/-4 glycans sometimes appear in human cancer cells (Schrump 
et al.  1988 ; Suzuki et al.  2013 ; Gottschling et al.  2013 ; Lou et al.  2014 ), and it was 
recently reported that these glycans are specifi cally expressed in cancer stem-like 
cells (Chang et al.  2008 ; Noto et al.  2013 ). 
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   Table 9.2    Examples of glycan-related genes reported to exhibit altered transcription levels in 
EMT-induced cancer cells and/or cancer stem cells   

 Genes  Glycans involved  Mechanisms  References 

  B3GALT4  (decrease)  Gg4  EMT induced 
by hypoxia 

 Guan et al. 
( 2010 ) 

  HAS2  (increase)  Hyaluronan  EMT induced 
by TGFβ 

 Craig et al. 
( 2010 ) 

  HAS2 ,  HAS3  (increase)  Hyaluronan  EMT induced 
by EGF and IL-1β 

 Chow et al. 
( 2010 ) 

  GCNT2  (increase)  I-branching  EMT induced 
by TGFβ 

 Zhang et al. 
( 2011 ) 

  ST3GAL1/3/4 ,  FUT3  
(increase);  FUT2  (decrease) 

 Sialyl Lewis 
A/sialyl Lewis X 

 EMT induced 
by EGF/bFGF 

 Sakuma et al. 
( 2012 ) 

  MGAT3  (decrease)   N -glycan  EMT induced 
by TGFβ 

 Xu et al. 
( 2012 ) 

  MGAT3  (decrease)   N -glycan  EMT induced 
by TGFβ 

 Pinho et al. 
( 2012 ) 

  GCNT1  (increase)   O -glycan  Breast cancer 
tumor-initiating cells 

 Kim et al. 
( 2012 ) 

  ST8SIA1  (increase)  GD2  Cancer stem cells 
induced through 
EMT 

 Battula et al. 
( 2012 ) 

  UGCG  (increase)  Glycolipids, Gb3  Breast cancer stem 
cells 

 Gupta et al. 
( 2012 ) 

  HAS2  (increase)  Hyaluronan  Breast cancer stem 
cells 

 Okuda et al. 
( 2012 ) 

  MGAT5 ,  FUT8 , and  B3GALT5  
(increase);  MGAT3  (decrease) 

 Lectin binding  EMT induced 
by HGF 

 Li et al. ( 2013 ) 

  ST6GAL1    N -glycan  Colon cancer stem 
cells 

 Swindall et al. 
( 2013 ) 

  FUT8  (increase)   N -glycan  EMT induced 
by TGFβ 

 Chen et al. 
( 2013 ) 

  ST3GAL5  (increase)  GM3  EMT induced 
by TGFβ 

 Kim et al. 
( 2013 ) 

  ST3GAL5 ,  B4GALNT1 , 
 ST8SIA1 ,  ST3GAL2  (increase) 

 GD2, GD3, GM2, 
GD1a 

 Cancer stem cells 
induced through 
EMT 

 Liang et al. 
( 2013 ) 

  Candidate glycans expected to be affected by these alterations are also included  

 SSEA-3/-4 glycans are classifi ed into the globo-series glycolipids (Kannagi et al. 
 1983 ), which compose a unique series of glycolipids having glycan structures  confi ned 
to glycolipids, and are not easily detectable in glycoproteins. Recently, another classi-
cal stem cell-specifi c glycan, TRA-1-60, was reported to be a type 1 chain glycan, 
having common backbone structures with glycans carried by both glycolipids and 
glycoproteins (Natunen et al.  2011 ). This glycan is structurally very similar to that of 
sialyl Lewis A, sharing the same enzymes in most steps of their synthetic pathways. 
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The recently introduced fucosylated stem cell-associated glycan, SSEA- 5, again had 
the backbone structure of the type-1 chain glycan (Tang et al.  2011 ). Finally, sialyl 
Lewis A itself was shown to be expressed in human ES cells and to disappear upon ES 
cell differentiation, thus behaving as a stem cell-specifi c glycan (Tang et al.  2011 ). 
These fi ndings strongly suggest that there are some common features between glycans 
specifi c to ES cells and those associated with cancer stem cells.     
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    Chapter 10   
 Mammalian Sialidase and Tumor 
Development 

             Taeko     Miyagi     ,     Kohta     Takahashi     ,     Kazuhiro     Shiozaki     , 
and     Kazunori     Yamaguchi    

    Abstract     Sialidases are glycosidases responsible for the removal of α-glycosidically 
linked sialic acid residues from carbohydrate portions of glycoproteins and glyco-
lipids. They are found widely distributed in common in metazoan animals, from 
echinoderms to mammals, and also in viruses and other microorganisms. In mam-
mals, there are four types of sialidase (NEU1, NEU2, NEU3, and NEU4), encoded 
by different genes differing in their major subcellular localization and enzymatic 
properties. They have been implicated to participate in the regulation of various cel-
lular functions, with roles in cell differentiation, cell growth, and cell adhesion and 
motility, depending on their particular properties, whereas in microorganisms the 
same enzymes appear to play roles limited to nutrition and pathogenesis. Aberrant 
expression of mammalian sialidases has been demonstrated in cancer, causing dys-
regulation of cell homeostasis and contributing to tumor development. The present 
review aims to provide a brief overview of our recent investigations into the signifi -
cance of mammalian sialidases and mechanisms underlying their actions relevant to 
neoplasia.  
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10.1         Introduction 

 Sialic acids are acidic monosaccharides generally found in the terminal positions on 
a variety of glycoproteins and glycolipids. They actually play crucial roles in vari-
ous biological processes by infl uencing chemical and biological features of the gly-
coconjugates, probably due to their negative charge (Schauer  2009 ). Sialic acids 
show differences in quantity as well as structure during cell differentiation, prolif-
eration, and carcinogenesis and may contribute as virulence factors in bacterial and 
viral infection    (Varki and Varki  2007 ; Miyagi and Yamaguchi  2007 ). 

 Aberrant sialylation in cancer suggests its association with malignant properties 
including invasiveness and metastasis, primarily supported by fi ndings of reduced 
malignancy of cancer cells treated with bacterial sialidase. Structural studies have 
documented that a general increase in sialylation is often found in cell surface gly-
coproteins of malignant cells, and altered sialylation of glycolipids is also observed 
as a ubiquitous phenotype, associated with the appearance of tumor-associated anti-
gens, aberrant adhesion, and blocking of transmembrane signaling (Lau and Dennis 
 2008 ; Hakomori  2010 ). Despite the large number of reports describing the involve-
ment of sialic acids in cancer, the molecular mechanism and signifi cance are not 
fully understood. Especially, drawing defi nite conclusions regarding physiological 
links between sialic acid contents and malignant properties is diffi cult, due to con-
troversial experimental results. 

 Sialylation is mainly regulated by sialidases and sialyltransferases which cleave 
sialic acid residues from and transfer them to glycoconjugates, respectively. As 
metabolic enzymes, alterations of the levels of ganglioside sialidase activity associ-
ated with malignant transformation were reported in 3T3-transformed cells 
(Yogeeswaran and Hakomori  1975 ) and in BHK-transformed cells (Schengrund et al. 
 1973 ). However, it remained uncertain whether the activities originated from the 
same or different types of sialidase. Our biochemical isolation and characterization of 
sialidases from murine tissues then provided evidence for the existence of four types 
of sialidases differing in their subcellular localization and enzymatic properties 
(Miyagi and Tsuiki  1984 ,  1985 ; Miyagi et al.  1990a ). Based on the studies, we previ-
ously reported an increase of ganglioside sialidase activity in plasma membrane frac-
tions and a decrease in lysosomal sialidase activity to be associated with the induction 
of anchorage-independent growth in mouse epidermal JB6 cells exposed to phorbol 
esters (Miyagi et al.  1990b ). To further elucidate the mechanism underlying this aber-
rant sialylation and with the aim of developing an effective cure for cancer, we have 
been focusing on mammalian sialidases from their molecular aspects. 

 Consistent with our biochemical studies, recent progress of the gene cloning 
studies has validated four types of mammalian sialidases (designated as NEU1, 
NEU2, NEU3, and NEU4) differing in subcellular localization and enzymatic prop-
erties as well as in the chromosomal localization. Sialidase expression levels indeed 
change in response to various cellular phenomena and especially during tumor 
development (Miyagi et al.  2012 ). Among the sialidases, plasma  membrane- associated 
sialidase (NEU3), playing particular roles in the regulation of transmembrane 
 signaling by modulation of gangliosides, is upregulated in various human cancers, 
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whereas NEU1 and NEU4, controlling largely the desialylation of glycoproteins, 
show a tendency for downregulation. Our recent studies have shown that aberrant 
alteration of each sialidase exerts unique infl uences on cancer initiation and promo-
tion, as well as progression. Altered expression and the pathological signifi cance of 
sialidases are here introduced mostly focusing on the cases of human colon, renal, 
and prostate cancers.  

10.2     General Properties of Mammalian Sialidases 

 Since sialidase activity in higher organisms was fi rst detected in preparations of 
Cohn Fraction VI (Warren and Spearing  1960 ), numerous papers have demonstrated 
its presence in a wide variety of mammalian cells and tissues. Molecular cloning has 
validated four forms of mammalian sialidase and facilitated elucidation of their 
functional roles (Miyagi and Yamaguchi  2012 ). General properties of the four 
human sialidases are compared in Table  10.1 . NEU1, NEU2, and NEU3 are now 
known to be localized mainly in the lysosomes, cytosol, and plasma membranes, 
respectively, and NEU4 is found in lysosomes or in mitochondria/the endoplasmic 
reticulum. However, recent observations have also revealed that the subcellular 
localization can vary with particular cellular stimuli. In fact, NEU1 and NEU4 as 
well as NEU3 are also observed at cell surface depending on localization of their 
accessible natural substrates.

   Sialidases of mammalian origin have been found to differ from those of micro-
bial origin in their overall primary sequences and enzymatic properties, although 
they contain RIP (−Phe (Tyr)-Arg-Ileu-Pro-) sequence and Asp boxes (−Ser-X-Asp- 
X-Gly-X-Thr-Trp-) in the primary sequences, conserved in viral and bacterial 
 sialidases. Distinctive behavioral differences in response to inhibitors between 
mammalian and microbial sialidases are suggestive of molecular variation. For 
example, anti-infl uenza drugs, Tamifl u (oseltamivir) and Relenza (zanamivir), are 

   Table 10.1    Human    sialidases   

 Major subcellular 
location  Good substrate  Frequent change in cancer 

 NEU1  Lysosome  Oligosaccharides 

       Glycopeptides 

 NEU2  Cytosol  Oligosaccharides  Hardly detectable 
 Glycoproteins 
 Gangliosides 

 NEU3  Plasma membrane  Gangliosides 

      
 NEU4  Lysosomes 

 Mitochondria 
 ER 

 Oligosaccharides 

      
 Glycoproteins (including mucin) 
 Gangliosides 
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known to be effective in vitro at nanomolar concentrations for the viral sialidase, but 
Tamifl u hardly affects any of the human sialidases, even at 1 mM, and Relenza 
inhibits only in the micromolar range (   Hata et al.  2008 ; Chavas et al.  2010 ). Detailed 
three-dimensional structural information has been provided for human NEU2 by 
X-ray crystallography (Chavas et al.  2005 ). The enzyme possesses the 6-blade 
β-propeller structural organization typical of bacterial sialidases and viral neur-
aminidases, with its active site in a shallow crevice. Among human sialidases, the 
overall amino acid identity of NEU1 to the other forms is relatively low (19–24 %), 
whereas NEU2, NEU3, and NEU4 show 34–40 % homology to each other. 
Regarding comparative expression levels, in human, NEU1 generally shows the 
strongest expression, 10–20 times greater than those of NEU3 and NEU4, while 
NEU2 expression is extremely low, at only four- to ten-thousandths of the NEU1 
value at most in a range of tissues (Yamaguchi et al.  2005 ; Hata et al.  2008 ), although 
profi les differ among the human, rat, and mouse.  

10.3     Characteristic Features of the Four 
Mammalian Sialidases 

 The human  NEU1  gene was identifi ed by three research groups (Bonten et al.  1996 ; 
Milner et al.  1997 ; Pshezhetsky et al.  1997 ) as a major histocompatibility complex 
(MHC)-related sialidase gene on chromosome 6. The human sialidase, NEU1, has 
been found to be associated with a protective protein (carboxypeptidase A) and 
β-galactosidase as a complex in lysosomes, dissociation of the complex leading to 
sialidase inactivation (D’Azzo et al.  1982 ; Galjart et al.  1988 ). In sialidase assays 
in vitro, NEU1 effi ciently hydrolyzes oligosaccharides, glycopeptides, and a syn-
thetic substrate, 4-methylumbelliferyl-neuraminic acid (4MU-NeuAc), but hardly 
acts on gangliosides with optimal pH of 4.5–4.7. Oligosaccharide substrates pos-
sessing the α2–3 sialyl linkage can be hydrolyzed faster than those with α2–6 and 
α2–8 linkages. NEU1 is linked to two neurodegenerative lysosomal storage disor-
ders, sialidosis and galactosialidosis (d’Azzo and Bonten  2010 ), the former caused 
by defects in genomic DNA, including frameshift insertions and missense muta-
tions, and the latter featuring a combined defi ciency of sialidase and β-galactosidase 
due to the absence of a functional protective protein. NEU1 has been found to nega-
tively regulate lysosomal exocytosis, a cellular process for the recruitment of lyso-
somes to the plasma membrane, resulting in an increase in extracellular proteolytic 
activity (Yogalingam et al.  2008 ). It is also involved in cellular signaling for immune 
responses and elastic fi ber assembly through transportation to plasma membranes 
and contributes to the regulation of phagocytosis in macrophages and dendritic cells 
through the desialylation of surface receptors (Pshezhetsky and Hinek  2011 ). 

 NEU2 was the fi rst mammalian sialidase for which cDNA cloning was achieved 
(Miyagi et al.  1993 ). The human ortholog was cloned from a genomic library of the 
human skeletal muscle (Monti et al.  1999 ), and its structure has been determined by 
X-ray crystallography (Chavas et al.  2005 ). NEU2 possesses broad substrate 
 specifi city at nearly neutral pH. It participates in muscle cell and neuronal 
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 differentiation in murine cells, and the rat  Neu2  gene contains two E-box pairs in the 
5′-fl anking enhancer/promoter region (Sato and Miyagi  1995 ), known to be consen-
sus binding sites for muscle-specifi c transcription factors, and exhibits transcrip-
tional activity in murine myogenic cells. In PC12 cells the sialidase has been 
suggested to participate in neuronal differentiation on the basis of nerve growth 
factor-induced transcriptional activation of the gene (Fanzani et al.  2004 ). Unlike 
other human sialidases, NEU2 expression as assessed by quantitative real-time PCR 
was found to be extremely low or undetectable in many human tissues and cells, 
even in cancer cells, with notable exceptions like the placenta and testis. 

 NEU3 was fi rst cloned from a bovine brain library (Miyagi et al.  1999 ), based on 
peptide sequence information from purifi ed enzyme protein (Hata et al.  1998 ), and 
later from a human cDNA and genomic library (Wada et al.  1999 ; Monti et al. 
 2000 ). The primary sequences covering the entire coding region of the correspond-
ing human, mouse, and rat genes display 83 %, 79 %, and 78 % overall identity with 
the bovine gene, respectively. The catalyzed hydrolysis is essentially specifi c for 
gangliosides other than GM1 and GM2, in the presence of Triton X-100. The bovine 
and human enzymes specifi cally hydrolyze gangliosides, and the murine enzyme 
acts on oligosaccharides; a synthetic substrate, 4MU-NeuAc; and glycoproteins to 
a certain extent. Desialylation of GM1 and GM2 by murine enzymes is evident in 
the presence of GM2 activator protein (Li et al.  2001 ), supporting the existence of 
an asialo- derivative GA2 pathway for catabolism of GM2 in the mouse. With regard 
to the glycosidic linkage specifi city, NEU3 hydrolyzes gangliosides with α2–3 
(GM3) and α2–8 (GD3) linkages almost equally and faster than those with an α2–6 
linkage (synthetic GM3). GM3 containing N-glycolylneuraminic acid is hydrolyzed 
by NEU3 at a lower rate. Unlike the bovine and murine enzymes, the human enzyme 
shows two peaks at pH 4.5–4.8 and at pH 6.0–6.5 (Wada et al.  1999 ). The major 
subcellular localization of the bovine and murine sialidases proved to be plasma 
membranes on Percoll density gradient centrifugation of cell homogenates and by 
immunofl uorescence staining. The human ortholog NEU3, however, is not always 
detected on the cell surface but may exist in other cellular membrane components 
and can mobilize to membrane ruffl es together with Rac-1 in response to growth 
stimuli such as EGF, enhancing cell movement (Yamaguchi et al.  2006 ). Recent 
analyses of membrane topology have suggested that the sialidase might be localized 
partially on the cell surface as a peripheral membrane protein and also in endosomal 
structures (Zanchetti et al.  2007 ). NEU3 participates in neurite formation in mice 
(Hasegawa et al.  2000 ) and in human neuroblastoma cells (Proshin et al.  2002 ) and 
in the regulation and regeneration of rat hippocampal neurons (Rodriguez et al. 
 2001 ; Da Silva et al.  2005 ). It is located in rafts of neuroblastoma cells (Kalka et al. 
 2001 ) and in caveolae of HeLa cells (Wang et al.  2002 ), closely associated with 
caveolin-1. Interestingly, NEU3 transgenic mice develop impaired insulin signaling 
and insulin-resistant diabetes mellitus by 18–22 weeks (Sasaki et al.  2003 ), 
 associated with hyperinsulinemia, islet hyperplasia, and increase in the β-cell mass. 
All the results so far obtained indicate an essential involvement of NEU3 in the 
regulation of signal transduction through ganglioside modulation and interaction 
with signaling molecules (Miyagi et al.  2008 ). 
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 The fourth human sialidase, NEU4, was identifi ed based on cDNA sequences in 
public databases (Monti et al.  2004 ; Seyrantepe et al.  2004 ; Yamaguchi et al.  2005 ). 
With regard to its subcellular localization, two different descriptions have been 
reported on the basis of gene transfection studies: one featuring targeting to the 
lysosomal lumen (Seyrantepe et al.  2004 ) and the other to mitochondria and endo-
plasmic reticulum (Yamaguchi et al.  2005 ; Bigi et al.  2010 ). NEU4 appears to con-
sist of isoforms which differ in their possession of 12 N-terminal amino acid 
residues for mitochondrial targeting. The isoforms are also differentially expressed 
in a tissue-specifi c manner, the brain, muscle, and kidney containing both and the 
liver and colon possessing predominantly the short form (Yamaguchi et al.  2005 ). It 
is a characteristic feature that NEU4 acts on mucin. Unlike other sialidases, NEU4 
hydrolyzes sialyl Lewis antigens expressed on  O- glycans, such as sialyl Le x  and 
sialyl Le a  (Shiozaki et al.  2011 ), and polysialic acid on NCAM (polySia-NCAM) 
(Takahashi et al.  2012 ). It may be involved in neuronal cell apoptosis, based on the 
observation that the NEU4 long form probably regulates levels of GD3, known to 
be an apoptosis-related ganglioside, in mitochondria of neuroblastoma cells 
(Hasegawa et al.  2007 ). In contrast to NEU3, NEU4 appears to negatively regulate 
neurite formation in Neuro2a cells and hippocampal neurons (Shiozaki et al.  2009a ; 
Takahashi et al.  2012 ).  

10.4     Sialidase in Colon Cancer 

  The upregulation of NEU3 suppresses apoptosis of colon cancer cells and stimu-
lates adhesion to laminins.  In human colon cancers, the  NEU3  mRNA level was 
found to be increased in all tissue specimens ( n  = 50) by 3- to 100-fold as compared 
with that in the adjacent noncancerous mucosa (Kakugawa et al.  2002 ). In situ 
hybridization analysis showed NEU3 expression in the epithelial elements of ade-
nocarcinomas, and signifi cant elevation of sialidase activity against gangliosides 
was also observed in the tumor tissues. To understand the signifi cance of the 
increased expression, cultured human colon cancer cells were treated with sodium 
butyrate, and changes in expression during differentiation and apoptosis were exam-
ined. NEU3 was downregulated by the treatment, but NEU1 was upregulated. 
Transfection of the NEU3 gene into cancer cells inhibited apoptosis, accompanied 
by increased Bcl-2 and decreased caspase-3 levels, whereas NEU3 silencing with 
siRNA resulted in augmented apoptosis. Colon cancer tissue specimens exhibited 
marked accumulation of lactosylceramide, a possible NEU3 product, and the addi-
tion of the glycolipid to culture reduced the number of apoptotic cells during sodium 
butyrate treatment. These results indicate that high expression of NEU3 in cancer 
cells leads to protection against programmed cell death, and in contrast, decreased 
NEU3 induces apoptosis, implying a critical role of NEU3 in the survival of cancer 
cells. NEU3 siRNA inhibits and NEU3 overexpression stimulates Ras activation 
with consequent infl uence on ERK1/2 and Akt. Ras activation by NEU3 is abro-
gated by PP2 (Src inhibitor) or AG1478 (EGFR inhibitor), and NEU3 actually 
enhances EGF-stimulated tyrosine phosphorylation of EGFR, suggesting that the 
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upstream targets might be tyrosine kinases including Src and EGFR, and  subsequent 
stimulation of the Ras cascade leads to inhibition of cell apoptosis. Glycolipid 
changes observed seemed to be one of the causes of the cell effects. It is of great 
interest to note here that NEU3 silencing caused acceleration of apoptosis in various 
cancer cells, but not to have the same effect in noncancerous cells, including human 
normal keratinocytes and fi broblasts (Wada et al.  2007 ). NEU3 may thus be an 
essential gene for cancer cell survival, and siRNAs targeting this protein could have 
utility for gene-based therapy of human cancers. 

 In colon cancer cells, NEU3 differentially regulates cell proliferation through 
integrin-mediated signaling depending on the extracellular matrix (Kato et al.  2006 ) 
and causes increased adhesion to laminins and consequent cell division, but rather 
decrease in cell adhesion to fi bronectin and collagens I and IV. Triggered by lami-
nins, NEU3 enhanced phosphorylation of focal adhesion kinase (FAK) and ERK1/2 
but no activation on fi bronectin. NEU3 markedly stimulated tyrosine phosphoryla-
tion of integrin β4 by its association, along with recruitment of Shc and Grb-2 only 
on laminin-5 (laminin-332). GM3 depletion, as the result of NEU3 overexpression, 
appeared to be one of the causes of the increased adhesion on laminins. Among 
matrix proteins, especially neo-expression of laminin-332 is associated with prolif-
eration of carcinoma cells, and it often accumulates in invading edges of carcino-
mas. These results indicate that NEU3 differentially regulates cell proliferation 
through integrin-mediated signaling depending on the extracellular matrix. NEU3 is 
indeed involved in the activation of signaling molecules, including FAK, Shc, and 
integrin β4, often upregulated in carcinogenesis, which may cause progression of 
the malignant phenotype in cancer cells. 

  NEU3 is involved in colorectal carcinogenesis  in vivo .  A possible role of 
NEU3 in promoting tumorigenesis in vivo has been demonstrated by generation of 
a mouse model of experimental colon carcinogenesis. In human NEU3 transgenic 
mice treated with a carcinogen, azoxymethane, for induction of precancerous 
colonic aberrant crypt foci (ACF) (Shiozaki et al.  2009b ), ACF were induced sig-
nifi cantly more frequently than in their control wild-type counterparts. Enhanced 
phosphorylation of EGFR, Akt, and ERK and the upregulation of Bcl-xL protein 
were observed in the transgenic colon mucosa, as described above in the case of 
NEU3-transfected cells, but no changes were found in cell proliferation, suggesting 
that the increased ACF formation was due to suppression of apoptosis. Thus, NEU3 
upregulation may be essential for the promotion stage of colorectal carcinogenesis 
in vivo. When  Neu3 -defi cient mice were exposed to another carcinogen, dimethyl-
hydrazine, there were no differences in the incidence or growth of tumors from 
wild-type mice. On the other hand,  Neu3 -defi cient mice were less susceptible to 
colitis-associated colon carcinogenesis induced by azoxymethane and dextran 
sodium sulfate, indicating an involvement of NEU3 in infl ammation-dependent 
tumor development (Yamaguchi et al.  2012 ). In addition, we have discovered a 
close link between NEU3 expression and Wnt/β-catenin signaling in colon cancer 
cells by analyzing cancer stemlike characteristics and tumor-initiating capability. 
Activity-loss mutants of NEU3 failed to demonstrate alteration of Wnt and EGFR 
signaling. However, NEU3 silencing in colon cancer cells resulted in signifi cant 
decrease in clonogenicity on soft agar and in vivo tumor growth, along with the 
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downregulation of stemness genes (Miyagi et al.  2015 ). These data  suggest that 
NEU3 may participate in the maintenance of cancer stem cells and initiation of the 
process of colon carcinogenesis because of Wnt/β-catenin signaling known to be 
critical for cell stemness and tumor initiation (Clevers  2006 ). 

  The downregulation of NEU1 enhances cancer metastasis.  We previously dis-
covered a good inverse relationship between NEU1expression level and metastatic 
ability in various cell lines. For example, in rat 3Y1 fi broblasts, NEU1 decreased 
after  Src  transformation, and v- fos  transfer to these transformed cells induced more 
severe decrease in the sialidase activity associated with acquisition of greater lung 
metastatic potential (Miyagi et al.  1994 ). Introduction of the  Neu1  gene into murine 
Bl6 melanoma cells resulted in suppression of experimental pulmonary metastasis 
and tumor progression, with reduction of anchorage-independent growth and 
increased sensitivity (Kato et al.  2001 ). This inverse relation of NEU1 expression 
level with metastatic ability appears also applicable to colon cancers. In mouse 
colon 26 adenocarcinoma    cells, compared to low metastatic NL4 and NL44 cell 
lines, highly metastatic NL17 and NL22 cells exhibit lower NEU1 expression, 
accompanied by higher levels of sialyl Le x  and GM3 (Sawada et al.  2002 ). 
Furthermore, to examine whether and how NEU1 infl uences metastatic potential of 
human colon cancer, the human sialidase gene  NEU1  was overexpressed or silenced 
in colon cancer HT-29 cells (Uemura et al.  2009 ). When NEU1-overexpressing cells 
were injected transsplenically into mice, in vivo liver metastasis was signifi cantly 
reduced. NEU1 suppressed cell migration, invasion, and adhesion in vitro, whereas 
the silencing resulted in the totally opposite effects. One of the major molecular 
changes caused by NEU1 was decreased sialylation of integrin β4, assessed by 
PNA-lectin blotting of immunoprecipitates with anti-integrin β4 antibody. The desi-
alylation was accompanied by decreased phosphorylation of the integrin followed 
by attenuation of signaling through the FAK and ERK1/2 pathways. In the cells, 
NEU1 caused downregulation of matrix metalloproteinase-7, overexpression of 
which is associated with cancer metastasis. Treatment of the cells with GalNAc-α- 
O-benzyl, an inhibitor of  O -glycosylation, showed increased PNA-positive integrin 
β4 with decreased phosphorylation, indicating that sialic acid removal from the inte-
grin  O -glycans results in decreased phosphorylation. Biotinylation and immuno-
fl uorescence staining showed some NEU1 molecules to be present at the cell surface 
accessible to the integrin. These results suggest that NEU1 plays important roles in 
the regulation of integrin β4-mediated signaling, leading to suppression of metasta-
sis. It should be noted here that interestingly, in human colon cancer cells, the 
NEU1-mediated phenomena are opposite to the case of NEU3 which enhances the 
phosphorylation of integrin β4 by GM3 depletion and leads to the acceleration of 
adhesion on laminin-5, as described earlier. 

  The downregulation of NEU4 enhances cell adhesion to and motility and growth 
on E-selectin.  Sialyl Lewis antigens, sialyl Le a  and sialyl Le x , are commonly uti-
lized as tumor markers, and their increase in cancer is associated with tumor 
 progression by enhancement of cancer cell adhesion to endothelial E-selectin. 
However, regulation mechanisms remained not fully understood. In human colon 
cancer, in contrast to NEU3, NEU4 was found to be downregulated in surgical 
 specimens of cancer compared to noncancerous tissues (Yamanami et al.  2007 ). To 
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understand the signifi cance of NEU4 downregulation, we investigated sialyl Lewis 
antigens as endogenous substrates for the sialidase, since these are known to be 
associated with tumor progression by enhancement of cancer cell adhesion. NEU4 
was found to hydrolyze the antigens in vitro and decrease cell surface levels much 
more effectively than other sialidases (Shiozaki et al.  2011 ). On analysis of the desi-
alylation products, NEU4 was found to preferentially catalyze sialyl Lewis antigens 
expressed on  O- glycans .  Cell adhesion to and motility and growth on E-selectin 
were signifi cantly reduced by NEU4 overexpression. E-selectin stimulation of 
colon cancer cells enhanced cell motility through activation of the p38/Hsp27/actin 
reorganization pathway, whereas NEU4 attenuated the signaling. As some NEU4 
molecules were found at cell surfaces as assessed by immunocytochemical analysis, 
the enzyme might be accessible to sialyl Lewis antigens. Under conditions of 
hypoxia, NEU4 expression was markedly decreased. NEU4 thus plays an important 
role in the regulation of sialyl Lewis antigen expression in the colon mucosa and its 
impairment in colon cancer through enzyme downregulation. 

 We have recently presented evidence of a capacity of NEU4 for hydrolyzing 
polysialic acid on NCAM, which has been reported to be expressed in malignant 
tumors, including gliomas, lung and colon cancers, as well as nervous tissue. A cor-
relation of its existence with tumor development, invasion, and poor prognosis has 
been suggested (Tanaka et al.  2001 ; Suzuki et al.  2005 ). Considering the regulation 
of polySia by NEU4 (Takahashi et al.  2012 ), it is feasible that the downregulation 
of the enzyme in colon cancer might be involved in polysialic acid presence in can-
cers, probably enhancing tumor development. Figure  10.1  summarizes all the results 
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  Fig. 10.1    Altered expression of sialidases in human colon cancer. The upregulation of NEU3 and 
downregulation of NEU1 and NEU4 cause disturbance of cell signaling related to cell growth and 
apoptosis and cell adhesion and motility, contributing to tumor development       
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described above that altered expressions of the three major sialidases in human 
colon cancer that cause tumor progression by disturbing cellular signaling.   

10.5     Sialidase in Prostate Cancer 

 The upregulation of NEU3 has also been reported in human prostate cancer, show-
ing a signifi cant correlation with malignancy as assessed by the Gleason score 
(Kawamura et al.  2012 ). Prostate cancers generally become androgen independent 
and resistant to hormone therapy with progression. To understand the underlying 
mechanisms and facilitate the development of novel treatments for androgen- 
independent prostate cancer, we have investigated how upregulation of NEU3 is 
involved in progression. NEU3 silencing with siRNA in prostate cancer PC-3 and 
LNCaP cells resulted in increased expression of differentiation markers and in cell 
apoptosis, but decrease in Bcl-2 as well as a progression-related transcription factor, 
early growth response gene (EGR-1). In androgen-sensitive LNCaP cells, forced 
overexpression of NEU3 signifi cantly induced expression of EGR-1, androgen 
receptor (AR), and PSA both with and without androgen, the cells becoming 
 sensitive to androgen. This NEU3-mediated induction was abrogated by inhibitors 
for PI 3-kinase and MAP kinase and more specifi cally by their silencing in the 
absence of androgen, as confi rmed by increased phosphorylation of AKT and 
ERK1/2 in NEU3-overexpressing cells. To understand further how NEU3 causes 
elevation of EGR-1, AR, and PSA expression by activation of AKT and ERK, we 
observed the upstream signaling including EGFR family expression, which has 
been proposed to escape androgen regulation and switch to androgen-independent 
cell growth (Traish and Morgentaler  2009 ). Consistent with other types of cancer, 
NEU3 was found to activate the PI3K and MAPK pathways, associated with 
increase in mRNA and protein levels of EGFR and ERBB2 under androgen-defi -
cient conditions. For development of hormone-refractory progression, enhanced AR 
mRNA and protein expression is known as a critical factor in conversion to a hor-
mone-refractory state in the majority of patients who do not have AR mutations or 
amplifi cation. The mechanism of increased AR expression includes crosstalk 
between ARs and growth factor receptors such as EGFR and ERBB2. In this  context, 
NEU3 upregulation may trigger off activation of AR pathway probably via EGFR 
family followed by ERK and AKT activation, leading to conversion to a hormone-
refractory state, as illustrated in Fig.  10.2 . In addition, transcriptional  activation of 
NEU3 itself probably occurs by Sp1 transcription factor in positive feedback loop, 
as Sp1 phosphorylated by ERK and NEU3 is an Sp1 target gene (Yamaguchi et al. 
 2010 ). NEU3 may again be a pivotal molecule acting to  upregulate growth factor 
receptors and lead to androgen-independent cell growth. In fact, NEU3 siRNA 
introduction caused reduction of cell growth of androgen-independent PC-3 cells in 
culture and of  transplanted tumors in nude mice (Kawamura et al.  2012 ). These data 
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altogether suggest that NEU3 regulates tumor progression through AR signaling 
and thus be a potential tool for diagnosis and therapy of androgen-independent pros-
tate cancer.   

10.6     Sialidase in Renal Carcinomas 

 NEU3 expression was found to be increased at the levels of mRNA and enzyme 
activity in human renal cell carcinomas (RCCs) compared with adjacent non-
tumor tissues, signifi cantly correlating with elevation of interleukin-6 (IL-6), a 
pleiotropic cytokine that has been implicated in immune responses and pathogen-
esis of several cancers, including RCCs (Ueno et al.  2006 ). In human RCC ACHN 
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  Fig. 10.2    Roles of NEU3 in human prostate cancer. NEU3 enhances expression of AR, EGR-1, and 
PSA by activating the PI3K and MAPK pathways, associated with increased expression of EGFR and 
ERBB2 under androgen-defi cient conditions. NEU3 upregulation may trigger off activation of AR 
pathway probably via EGFR family followed by ERK and AKT activation, switching androgen (dihy-
drotestosterone, DHT) dependent to independent AR activation. Furthermore, transcriptional activation 
of NEU3 itself probably occurs by Sp1 transcription factor in positive feedback loop, as Sp1 is phos-
phorylated by ERK and NEU3 is an Sp1 target gene (Kawamura et al.  2012 )       
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cells, IL-6 treatment enhanced  NEU3  promoter luciferase activity 2.5-fold and 
endogenous sialidase activity signifi cantly.  NEU3  transfection or IL-6 treatment 
resulted in both suppression of apoptosis and promotion of cell motility, and the 
two in combination exerted synergistic effects. NEU3 scarcely affected MAPK- or 
IL-6-induced STAT3 activation but promoted the PI3K/Akt cascade in both IL-6-
dependent and IL-6- independent ways. Consistent with these data, NEU3  markedly 
inhibited staurosporine- induced caspase-3 activity and enhanced IL-6-dependent 
inhibition, which was abolished by LY294002, a PI3K inhibitor. Furthermore, IL-6 
promoted Rho activation, and the effect was potentiated by NEU3, leading to 
increased cell motility that was again affected by LY294002. NEU3 silencing by 
siRNA resulted in the opposite: decreased Akt phosphorylation and inhibition of 
Rho activation. Glycolipid analysis showed a decrease in GM3 and an increase in 
lactosylceramide after  NEU3  transfection, with these lipids apparently affecting 
cell apoptosis and motility. The results indicate that NEU3 activated by IL-6 con-
tributes to IL-6- mediated signaling, largely via the PI3K/Akt cascade, in a positive 
feedback manner and therefore to expression of a malignant phenotype in RCCs 
(Fig.  10.3 ).   
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  Fig. 10.3    Roles of NEU3 in human renal cancer. Increased expression of NEU3 in human renal 
cell carcinomas signifi cantly correlates with elevation of interleukin-6 (IL-6). In human renal cell 
carcinoma ACHN cells,  NEU3  overexpression or IL-6 treatment brings about both suppression of 
apoptosis and promotion of cell motility, and the combination gives synergistic effects. NEU3 
scarcely affects IL-6-induced STAT3 activation but promotes PI3K/Akt pathway in both IL-6- 
dependent and IL-6-independent ways (Ueno et al.  2006 )       
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10.7     Other Cancers 

 In head and neck cancer, NEU3 sialidase expression may also be increased both 
mRNA and ganglioside sialidase activity levels. The levels showed a signifi cant 
correlation with the histological differentiation grade, lymphatic invasion, and 
lymph node metastasis. In ovarian clear cell adenocarcinoma, NEU1 and NEU3 
expression levels were also elevated in most of the cell lines, but NEU4 expression 
was hardly changed. A signifi cant correlation of high level of NEU3 expression 
with T3 factor of pTNM for classifi cation of progression has been observed 
(Nomura et al.  2006 ). 

 The one obvious exception to the general increase of NEU3 in cancer is the down-
regulation described in acute lymphoblastic leukemia (ALL) in relation to disease pro-
gression. Mandal et al. ( 2010 ) reported that in ALL, lymphoblasts show the 
downregulation of NEU3 in the levels of mRNA and ganglioside activity, as compared 
with cells from healthy controls. Overexpression of NEU3 in the leukemia cell line, 
MOLT-4, led to apoptosis with decrease in the Bcl2-Bax ratio and increase in ceramide. 
Therefore, reduced expression could help lymphoblasts to survive. Interestingly, NEU3 
activity varied in relation to disease progression, increasing in clinical remission after 
chemotherapy and decreasing again in patients that relapsed. The downregulation of 
NEU3 may therefore even be a good clinical marker for the process of the disease. 

 Neuroblastoma is a frequently lethal tumor occurring in childhood. In the ner-
vous system, gangliosides, which are good substrates for NEU3 and NEU4, are rela-
tively abundantly present. Despite the lack of actual data on relative sialidase levels 
between neuroblastomas and healthy controls, it is interesting that these two siali-
dases are possibly involved in the cell differentiation and proliferation of human 
neuroblastoma cells in a way opposite to the case of carcinomas. We previously 
observed endogenous NEU3 expression in human neuroblastoma NB-1 cells to be 
increased during neurite differentiation induced by dibutyryl cAMP (Proshin et al. 
 2002 ). Although treatment with dibutyryl cAMP alone enhanced neurite formation, 
transfection of the NEU3 gave rise to a more prominent outgrowth of neurites with 
axon-like characteristics, even in the absence of dibutyryl cAMP. On the other hand, 
Tringali et al. ( 2012 ) reported that NEU4 (NEU4L) affected the differentiation of 
NB SK-N-BE cells. NEU4L overexpression induced activation of Wnt/β-catenin 
signaling, leading to enhanced proliferation and a more undifferentiated cell 
 phenotype together with an increase of the expression of the pluripotency genes, 
MYC, NANOG, OCT-4, CD133, and NES (nestin). The cells failed to differentiate 
after serum withdrawal. The endogenous target of NEU4 causing the malignant phe-
notype was likely linked to desialylated glycoproteins but not ganglioside changes.  

10.8     Perspectives 

 In this review, we have presented evidence that alteration in sialidase expression 
may be a defi ning factor for cancer promotion and progression. In human carcino-
mas, the upregulation of NEU3 and downregulation of NEU1 and NEU4 are likely 
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to augment malignant properties underlying cell survival, enhanced cell motility, 
and invasion. In acute lymphoblastic leukemia and neuroblastomas, in contrast, the 
upregulation of NEU3 and downregulation of NEU4 seem to lead to reduced malig-
nancy, although more investigation of human subjects is needed for fi rm conclu-
sions. Further elucidation of the mechanisms underlying the different infl uences of 
sialidase expression on tumor progression or regression depending on cell type is 
clearly of high priority. The fact that sialidase alterations often correlate with cancer 
progression, however, opens up potential applications in cancer cure and diagnosis. 
In particular, the downregulation of NEU3 expression by treatment with specifi c 
siRNAs, antibodies, or inhibitors may bring about regression in many carcinomas, 
as proposed in Fig.  10.4 . Taking advantage of the limited effects of NEU3 siRNAs 
on normal cells and of activity-loss mutants affecting EGFR and Wnt signaling, 
NEU3 siRNAs or inhibitors causing apoptosis in cancer cells could offer a practical 
tool for cancer therapy.      
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  Fig. 10.4    Proposed effects of NEU3 suppression as a potential target for cancer therapy. The 
downregulation of NEU3 expression with a specifi c siRNA, antibody, or inhibitor may lead to 
prevention of cancer progression. In particular, taking advantage of the limited effects on normal 
cells, NEU3 siRNAs causing apoptosis in various cancer cells including HeLa cells could offer a 
potential tool for therapy (Wada et al.  2007 )       
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    Chapter 11   
 Roles of Glycans in Immune Evasion from NK 
Immunity 

             Shigeru     Tsuboi    

    Abstract     We innately have an ability to reject tumors, thereby limiting cancer 
 progression and metastasis. The major effector lymphocytes in tumor rejection are 
natural killer (NK) cells. NK cells kill target cancer cells by two different rejection 
mechanisms, NK receptor-dependent killing and tumor-necrosis factor-related 
apoptosis-inducing ligand (TRAIL)-mediated killing. In spite of these tumor rejec-
tion systems, cancer cells make survival in host, facilitating the metastatic spread to 
other organs. The metastatic spread is still the major cause of cancer deaths. It has 
been revealed that some cancer cells acquire an ability to evade tumor rejection 
responses by NK cells to survive longer in host, thereby increasing the chance to 
metastasize. Several immune evasion strategies have been well documented. 
Recently, the immune evasion mechanisms from NK immunity using cell-surface 
glycans have been identifi ed. The cancer cells use the certain types of cell-surface 
glycans to evade NK immunity in the following three ways: reducing NK activating 
receptor-mediated signaling, enhancing NK inhibitory receptor-mediated signaling, 
and modulating TRAIL-mediated killing. In this chapter, we will illustrate those 
evasion mechanisms in which cell-surface glycans play a central role.  

  Keywords     Cancer   •   Metastasis: natural killer (NK) cell   •   Tumor rejection   •   NK 
immunity   •   NK activating receptor   •   NK inhibitory receptor   •   NK receptor ligands   • 
  Tumor-necrosis factor-related apoptosis-inducing ligand (TRAIL)   •   Death receptor  

11.1         Introduction: Tumor Rejection by NK Immunity 

 The major cause of cancer deaths is the metastatic spread to other organs. Metastasis 
occurs when cancer cells acquire invasive phenotypes and the ability to evade tumor 
rejection in host. Particularly, the evasion of the cancer cells from the host tumor 
rejection responses greatly increases the chance for metastasis. 
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 Hematogenous metastasis involves the following multiple steps: Cancer cells (1) 
invade the tissues surrounding the primary site, (2) enter the blood vessels, (3) dis-
seminate into blood circulation, (4) arrest in the blood vessels at a target organ, (5) 
extravasate into the tissue of the organ, and (6) proliferate at the new site (Valastyan 
and Weinberg  2011 ). Among these steps, dissemination into circulation is the most 
critical step for cancer cells to establish metastasis, because the circulating cancer 
cells are exposed to innate immune systems that patrol and kill those cells to limit 
dissemination. In the tumor rejection responses by innate immune systems, NK 
cells are the major effector lymphocytes (Vivier et al.  2008 ; Levy et al.  2011 ). 

 NK cells are innate immune cells that have the natural ability to distinguish nor-
mal cells from cancer cells and specifi cally kill cancer cells (Trinchieri  1989 ). In 
human, NK cells constitute 10–15 % of peripheral blood lymphocytes. Upon 
encountering cancer cells in host circulation systems, NK cells eliminate the target 
cancer cells in mainly two different types of rejection mechanisms. One is the NK 
receptor-mediated killing of cancer cells. The other one is the tumor-necrosis factor- 
related apoptosis-inducing ligand (TRAIL)-mediated killing of cancer cells. In 
order to evade these rejection systems using the above two mechanisms, cancer cells 
take various types of strategies. Of those, the immune evasion strategies in which 
cancer cell-surface glycans play a central role are illustrated in this chapter.  

11.2     Evasion Strategies from NK Receptor-Dependent 
Killing 

11.2.1     Controlling NK Cell Responsiveness Through NK 
Receptor-Mediated Signaling 

 Various receptors present on NK cells (NK receptors) are triggered during target 
cancer cell recognition. NK receptors are divided into two (NK activating receptors 
and NK inhibitory receptors). Activating receptors and inhibitory receptors induce 
a positive and negative cell signaling, respectively. NK cell responsiveness is con-
trolled by a balance of these opposite signals generated from NK activating and 
inhibitory receptors (Moretta et al.  2004 ; Joncker and Raulet  2008 ; Purdy and 
Campbell  2009 ) (Fig.  11.1 ). If the activating signaling is dominant over inhibitory 
signaling, NK cells recognize the target cells as “nonself” and are activated to 
secrete several apoptosis-inducing substances such as granzyme B, perforin, and 
cytokines, resulting in target cell killing (Fig.  11.1a ). If the inhibitory signaling is 
dominant, NK cells recognize the target cells as “self,” and the signal blocks the 
activating signaling to inhibit NK cell activation, resulting in the survival of target 
cells (Fig.  11.1b ) (Lanier  2008 ).  

 Recent studies have revealed that some cancer cells develop the strategies to 
evade NK immunity and survive longer in host circulation system, increasing the 
chance to metastasize. To evade NK immunity, those cancer cells impair the NK cell 
responsiveness in two different ways: reducing the NK activating receptor-mediated 
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signaling and enhancing NK inhibitory receptor-mediated signaling. In the follow-
ing two sections, we will explain the immune evasion mechanisms in which cell- 
surface glycans play a central role.  

11.2.2     Immune Evasion Mechanism Targeting NK 
Activating Receptor 

 The major NK cell activating receptors include the natural cytotoxicity receptors 
(NCRs: NKp30, NKp44, and NKp46), natural killer group 2 member D (NKG2D), 
Fc receptor CD16, and activating killer cell immunoglobulin-like receptors (KIR) 
(Moretta et al.  2004 ; Lanier  2008 ). Among these receptors, NKG2D is the best 
studied receptor on its ligands. Known ligands for NKG2D are the major histocom-
patibility complex (MHC) class I-related chain A/B (MICA/B) and six UL16- 
binding proteins (ULBP1-6). Their expression was induced upon the transformation 
of target cells and other cellular stresses (Lanier  2008 ; Raulet et al.  2013 ). The 
analysis of NKG2D knockout mice revealed that the NKG2D-MICA interaction is 
the most critical in tumor rejection responses (Guerra et al.  2008 ; Zafi rova et al. 
 2009 ). In tumor rejection responses, the MICA expression is induced and 

  Fig. 11.1    Controlling NK cell responsiveness through NK receptor-mediated signaling. ( a ) If NK 
activating receptor-mediated signaling is dominant, NK cells are activated to secrete apoptosis- 
inducing substance, thereby killing target cells. ( b ) If NK inhibitory receptor-mediated signaling is 
dominant, the signal blocks NK activating receptor-mediated signaling, thereby inhibiting NK cell 
activation       
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upregulated upon cellular transformation, and the engagement of NKG2D by MICA 
triggers the NKG2D-mediated signaling, thereby secreting the apoptosis-inducing 
substances to kill the target cancer cells (Fig.  11.2a ) (Nausch and Cerwenka  2008 ). 

  Fig. 11.2    Immune evasion 
mechanism targeting NK 
activating receptor (NKG2D) 
using core2  O -glycans. ( a ) 
NK cells are activated by the 
interaction of an activating 
receptor, NKG2D with tumor 
ligand MICA. Activated NK 
cells kill target cancer cells. 
( b ) Core2  O -glycans are a 
scaffold for the subsequent 
extension of lactosamine 
disaccharide unit (Galβ1- 
4GlcNAc)n called poly- N  - 
acetyllactosamine. The 
number of unit repeats varies 
depending on the carrier 
molecules and cell types. A 
β-galactose-binding protein, 
galectin-3, binds to this 
poly- N -acetyllactosamine. In 
core2  O -glycan-expressing 
cancer cells, cell-surface 
glycoproteins are thus 
modifi ed with poly- N  - 
acetyllactosamine and 
galectin-3. ( c ) In core2 
 O -glycan-expressing cancer 
cells, galectin-3 binds to 
poly- N -acetyllactosamine in 
the NKG2D-binding site of 
MICA. Modifi cation with 
poly- N -acetyllactosamine and 
galectin-3 reduces the affi nity 
of MICA for NKG2D, 
impairing NK cell activation       
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 Recently, it has been reported that some cancer cells evade the NKG2D- 
dependent killing by using cell-surface mucin-type  O -glycans 1  (hereafter 
 O -glycans).  O -glycans play several important roles in biologically fundamental 
phenomena including cell differentiation, development, and immunity (Fuster and 
Esko  2005 ).  O -glycans regulate biochemical and functional properties of cell- 
surface glycoproteins. There are four common  O -glycan core structures in mam-
malian tissues, namely, core1, core2, core3, and core4, which depend on the 
combination of sugar added. Among them, it was reported that the expression of 
core2  O -glycan is associated with metastatic phenotypes of several cancers 
(Machida et al.  2001 ; Hagisawa et al.  2005 ; Hatakeyama et al.  2010 ). Core2 
 O -glycan contains an  N -acetylglucosamine branch connected to 
 N -acetylgalactosamine (GlcNAcβ1-6GalNAc), which is designated core2 branch 
(Fig.  11.2b ). It has been demonstrated that core2  O -glycan-expressing cancer cells 
evade NK tumor rejection by impairing the NK activating receptor (NKG2D)-
mediated signaling in the following sequences. NKG2D-binding site in MICA has 
several  O -glycosylation sites, and MICA in core2  O -glycan-expressing cancer cells 
carries core2  O -glycan containing the core2 branch. The core2 branch is a scaffold 
for the subsequent production of lactosamine disaccharide unit, poly- N  - 
acetyllactosamine (Galβ1-4GlcNAc) n  on  O -glycans. This poly- N -acetyllactosamine 
is a ligand for galectins. Galectins are a family of lectins which bind to β-galactoside 
and have been implicated in numbers of biological processes including immunity 
and tumor progression (Rabinovich et al.  2002 ; Yang et al.  2008 ; Saegusa et al. 
 2009 ). In core2  O -glycan-expressing cancer cells,  O -glycans in the NKG2D-binding 
site in MICA are modifi ed with poly- N -acetyllactosamine and that galectin-3 binds 
to the poly- N -acetyllactosamine of MICA  O -glycans (Fig.  11.2b ). The modifi cation 
of MICA with poly- N -acetyllactosamine and galectin-3 masks the NKG2D-binding 
site in MICA, thereby reducing the affi nity of MICA for NKG2D, severely impair-
ing NK cell activation, and fi nally preventing the NKG2D-mediated killing of core2 
 O -glycan-expressing cancer cells (Fig.  11.2c ) (Tsuboi et al.  2011 ,  2012 ; Tsuboi 
 2013 ). This masking of the tumor-ligand for the NK receptor by core2  O -glycans 
functions as a tumor defense system against NK cell immunity, increasing their 
survival in host circulation. Core2  O -glycan-expressing cancer cells thus evade NK 
cell attack, resulting in the promotion of metastasis.  

 It was previously reported that cancer cells evade NK cell tumor immunosurveil-
lance by the following three systems: (1) a large amount of soluble MICA shed by 
cancer cells downregulate NKG2D expression (Groh et al.  2002 ; Doubrovina et al. 
 2003 ; Clayton et al.  2008 ); (2) cancer cells sustain the expression of NKG2D 
ligands. The excess stimulation of NKG2D with the ligands reduces the cell-surface 
expression of NKG2D, resulting in impaired NK cell activation (Oppenheim et al. 

1   Mucin-type  O -glycan is a general term for the oligosaccharides which are initially found in cell- 
surface and secreted mucins. Those oligosaccharides contain the linkage of  N -acetylgalactosamine 
(GalNAc) to serine or threonine residues. Mucin-type  O -glycans are present on other cell-surface 
glycoproteins such as CD43 and CD34. In this chapter, we focus on the mucin-type  O -glycans 
among  O -glycans. 
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 2005 ); (3) cancer cells decrease the cell-surface expression of MICA by retaining 
MICA in the cells (Fuertes et al.  2008 ). Modifying MICA with poly- N  - 
acetyllactosamine plus galectin-3 is the newly identifi ed evasion strategy of NK cell 
attack (Fig.  11.2c ) (Tsuboi et al.  2011 ).  

11.2.3     Immune Evasion Mechanism Targeting NK 
Inhibitory Receptor 

 NK cells express numbers of inhibitory receptors that inhibit NK cell activation 
including killer cell immunoglobulin-like receptors (KIRs), leukocyte 
immunoglobulin- like receptors (LILRs), Ly49, and CD94-NKG2A. Upon the 
engagement of these receptors by their ligands, this NK inhibitory receptor- mediated 
signaling blocks the NK activating receptor-mediated signaling, thereby inhibiting 
NK cell activation (Fig.  11.3a ). It has been reported that some cancer cells evade the 
NK cell-dependent killing by enhancing NK inhibitory receptor-mediated signaling 
using cell-surface glycans. 

  Fig. 11.3    Immune evasion strategy targeting NK inhibitory receptor using sialic acids. ( a ) The 
interaction of NK activating receptor with tumor ligand mediates NK activating signaling to kill 
target cancer cells. ( b ) In sialic acid-overexpressing cancer cells, cell-surface sialic acids interact 
with an NK inhibitory receptor, Siglec-7. Siglec-7-mediated signaling blocks NK activating sig-
naling, thereby inhibiting NK cell activation       
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 The upregulation of cell-surface sialic acids in cancer cells was known to 
 correlate with poor prognosis, and it has been suggested that the hypersialylation of 
the cancer cell surface may facilitate the cancer cells to evade tumor rejection sys-
tems in host (Fukuda  1996 ; Leivonen et al.  2001 ; Fuster and Esko  2005 ). Recent 
studies have revealed that there is a positive correlation between target cancer cell 
sialylation state and resistance to NK tumor rejection (Van Rinsum et al.  1986 ; 
Ogata et al.  1992 ), suggesting that sialic acids on cancer cell-surface are involved in 
immune evasion of sialic acid-overexpressing cancer cells from tumor rejection by 
NK cells. 

 Just recently, a novel immune evasion mechanism using sialic acids has been 
identifi ed. Bertozzi’s group demonstrated that increasing sialylated glycans on can-
cer cells inhibit NK cell activation by enhancing the signaling mediated by an NK 
inhibitory receptor, sialic acid-binding immunoglobulin-like lectin 7 (Siglec-7) 
(Hudak et al.  2014 ). Siglec-7 which NK cells ubiquitously express contains a cyto-
solic immunoreceptor tyrosine-based inhibitory motif (ITIM) to function as an NK 
inhibitory receptor. Hudak et al. coated cancer cells with sialylated glycopolymers 
and incubated the cancer cells with NK cells. Highly sialylated glycans on the can-
cer cell surface binds to Siglec-7 to engage. The engagement of Siglec-7 induces the 
recruitment of the Src homology-2 (SH2) phosphatases (SHPs) to inhibit the kinase 
phosphorylation cascade downstream of NK activating receptors, resulting in the 
inhibition of NK cell activation (Hudak et al.  2014 ) (Fig.  11.3b ). They revealed that 
the cell-surface sialic acids play an important role in the evasion mechanism of 
cancer cells from NK tumor rejection system.  

 As an immune evasion strategy targeting NK inhibitory receptors, it was previ-
ously reported that some cancer cells evade NK tumor rejection system by overex-
pressing ligands for NK inhibitory receptors to enhance the NK inhibitory 
receptor-mediated signaling (Mamessier et al.  2011 ). This is the fi rst example that 
cancer cells evade NK cell attack by using cell-surface glycans as a ligand for the 
NK inhibitory receptor.   

11.3     Evasion Strategies from TRAIL-Mediated Killing 

11.3.1     TRAIL-Mediated Cancer Cell Killing 

 TRAIL is expressed in various types of cells in the immune system including NK 
cells. The TRAIL/TRAIL receptor system was shown to have tumor immunosur-
veillance functions. The TRAIL and its receptors constitute one of the systems 
which have been shown to regulate intercellular apoptotic responses in the immune 
system. In tumor immunosurveillance functions by TRAIL expressed in NK cells, 
the initial step of apoptosis induction by TRAIL is the direct binding of TRAIL to 
TRAIL receptors called death receptor (DR) 4 or DR5 which are expressed in target 
cancer cells. Thereby, the receptors are trimerized and transduced the death- inducing 
signaling to induce apoptosis (Falschlehner et al.  2009 ) (Fig.  11.4a ).   
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11.3.2     Immune Evasion Mechanism Targeting TRAIL- 
Mediated Killing by DR Shielding Effect 

 An immune evasion mechanism targeting TRAIL-mediated cancer cell killing has 
been recently identifi ed (Suzuki et al.  2012 ; Okamoto et al.  2013 ). In core2 
 O -glycan-expressing cancer cells, cell-surface mucin 1 (MUC1) is heavily core2 
 O -glycosylated. MUC1 core2  O -glycans carry poly- N -acetyllactosamine, and 
gaectin-3 binds to MUC1 through this poly- N -acetyllactosamine (Fig.  11.2b ). 
Modifi cation of MUC1 with poly- N -acetyllactosamine and galectin-3 interferes 
with the access of the NK cell TRAIL to cancer cell DR4, since MUC1 is one of the 
molecules that extend farthest from the cell surface. This interfering with the 
TRAIL-DR4 interaction by MUC1 carrying core2  O -glycan impairs TRAIL- 
mediated killing of the core2  O -glycan-expressing cancer cells (Fig.  11.4b ) (Suzuki 
et al.  2012 ; Okamoto et al.  2013 ). Thus, MUC1 carrying core2  O -glycans functions 
as a molecular shield against TRAIL to evade TRAIL-mediated killing, resulting in 
longer survival of the cancer cells in host circulation and the promotion of 
metastasis.  

11.3.3     Immune Evasion from TRAIL-Mediated Killing 
by Diminishing Glycans 

 The immune evasion strategy described above is that cancer cells evade TRAIL- 
mediated killing by increasing the expression of the cell-surface glycan, core2 
 O -glycan. Some cancer cells take an opposite strategy. Those cancer cells evade 

  Fig. 11.4    Immune evasion strategy targeting TRAIL-mediated killing. ( a ) TRAIL expressed on 
the NK cell surface interacts with death receptors (DR4 and DR5) on target cancer cell surface. 
DR4-mediated signaling induces apoptosis of target cancer cells. ( b ) Modifi cation of a cell-surface 
mucin, MUC1 with poly- N -acetyllactosamine, and galectin-3 shields against the access of TRAIL 
to DR4, impairing TRAIL-mediated killing of target cancer cells       
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TRAIL-mediated killing by diminishing the expression of a certain type of glycan. 
Two different mechanisms for this type of strategy have been reported (Fig.  11.5 ).  

  O - glycosylation of DR.  The  O -glycosylation of cell-surface molecules is initi-
ated by the formation of α-glycosidic linkage of  N -acetylgalactosamine (GalNAc) 
to serine or threonine residues. This initial reaction is catalyzed by 24 kinds of 
peptidyl GalNAc transferase (GALNT) isoform. Wagner et al. described a novel 
mechanism that regulates DR-mediated signaling in cancer cells through the 
 O -glycosylation of DR (Wagner et al.  2007 ). They discovered that the expression 
level of  GALNT14 , one of the GALNT isoforms, signifi cantly correlates with 
TRAIL sensitivity in several types of cancers. They also presented a possible mech-
anism by which DR  O -glycosylation increases the susceptibility to TRAIL. 
 O -glycosylation of DR4 and DR5 promoted TRAIL-stimulated clustering of these 
death receptors. The promoted clustering of DRs mediated the recruitment and acti-
vation of caspase-8, the apoptosis-initiating protease, thereby inducing cancer cell 
apoptosis. Interestingly, it has been demonstrated that several types of malignant 
cancer cell lines including pancreatic cancer, non-small-cell lung carcinoma, and 
melanoma suppress the  GALNT14  gene expression to reduce DR  O -glycosylation. 
Reduced  O -glycosylation of DR modulates the DR-mediated signaling. Thereby, 
those cells evade TRAIL attack to survive longer in host by reducing the 
 O -glycosylation of DR. 

  Cellular fucosylation.  Another prominent example is cellular fucosylation. It has 
been reported that fucosylation is one of the most critical modifi cations in cancer 
progression and infl ammation (Miyoshi et al.  2008 ). Fucosylation is catalyzed by 
several fucosyltransferase isoforms which require guanosine diphosphate (GDP)-
fucose as a donor substrate. The initial step of the GDP-fucose synthesis is cata-
lyzed by GDP-mannose-4,6-dehydrogenase (GMDS) (Ohyama et al.  1998 ; Sullivan 
et al.  1998 ). Moriwaki et al. discovered that some colon cancer cell lines and tissues 
which have the mutations of GMDS gene evade NK tumor rejection system 
(Moriwaki et al.  2009 ). The mutations result in a virtually complete defi ciency of 
cellular fucosylation. They demonstrated that the fucosylation-defi cient colon can-
cer cells acquire resistance to NK tumor rejection responses in both in vitro and 
in vivo systems. In addition, they found that DR-mediated signaling was modulated 

  Fig. 11.5    Immune evasion 
from TRAIL-mediated killing 
by diminishing glycans. 
Some cancer cells reduce 
 O -glycosylation of DRs, 
impairing DR-mediated 
signaling. Some cancer cells 
deplete cellular fucosylation, 
also impairing DR-mediated 
signaling. Those cancer cells 
evade TRAIL-mediated 
killing to survive longer 
in host       
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in the fucosylation-defi cient cancer cells and that this modulation caused less 
 susceptibility of those cells to TRAIL-mediated killing (Moriwaki et al.  2009 ). 
They also showed that the GMDS-rescued cancer cells restored the sensitivity to 
TRAIL attack. These results indicate that cellular fucosylation is required for 
DR-mediated signaling. Although little is known about what role fucosylated 
 glycans play in DR-mediated signaling, those certain types of colon cancer also 
evade TRAIL- mediated killing to survive longer in host by depleting cellular 
fucosylation.   

11.4     Concluding Remarks 

 This chapter, with an emphasis on the most recent advances, provides several exam-
ples that support the signifi cance of the regulatory roles of cell-surface glycans on 
NK immunity. Cancer cells develop the immune evasion mechanisms from 
NK-mediated tumor rejection by inducing or diminishing the certain types of cell- 
surface glycans. 

 Our current understanding of the molecular mechanisms described above may 
lead to the development of new therapeutic methods and agents for preventing the 
evasion of NK immunity by glycans. For instance, the reduction of the activity of a 
GlcNAc transferase (C2GnT) which is responsible for the formation of core2 
 O -glycans or the downregulation of C2GnT expression using specifi c inhibitors or 
siRNA-based agents in cancer cells could impair the immune evasion mechanism. 
These agents could restore cancer cell susceptibility to NK immunity. 

 Immune evasion is a novel function of cell-surface glycans. Recent discoveries 
of the evasion of NK immunity by glycans implicate that glycans may also play a 
role in evasion from other aspects in tumor immunity. Further studies on the 
 structures and functions of cell-surface glycans, focusing on the infl uence on other 
tumor rejection systems such as cytotoxic T lymphocyte (CTL) tumor immunity, 
will provide a new insight into the roles of cell-surface glycans in cancer 
metastasis.     
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    Chapter 12   
 Glycomic Analysis of Cancer 

             Yasuhide     Miyamoto    

    Abstract     Remarkable alterations in oligosaccharide structures are associated with 
many human diseases, including cancers. Numerous clinicopathological and bio-
chemical studies have suggested the involvement of aberrant glycosylation in can-
cer malignancy, such as metastasis and invasion. Furthermore, altered carbohydrate 
determinants, including tumor-associated carbohydrate antigens such as SLe a  
(CA19-9), have been utilized as useful tumor markers for the diagnosis of cancer. 
Cancer glycomic analysis (i.e., precise and comprehensive analysis of altered oligo-
saccharides in cancer tissues and sera) is a widely used tool for (1) investigating the 
involvement of glycosylation in cancer malignancy and (2) discovering novel car-
bohydrate tumor marker candidates. Comprehensive clinico-glycomic studies of 
glycosphingolipids of colorectal cancers have revealed specifi c alterations related to 
malignant transformation, as well as characteristic alterations associated with clini-
cal features. Glycomic analyses of colorectal cancers and pancreatic cancers 
revealed the presence of two kinds of novel fucogangliosides, sialylated type1H 
(Lewis-negative specifi c antigen) and sialylated type2H, both of which are isomers 
of sialyl Le x  and sialyl Le a . The accumulation of free oligosaccharides in human 
cancers has been elucidated. Free Neu5Ac-containing complex-type  N -glycans 
accumulated in pancreatic cancers. In addition to these free oligosaccharides, free 
KDN-containing complex-type  N -glycans accumulated in prostate cancers.  N -linked 
and  O -linked glycans have also been targets for cancer glycomics. In particular, 
extensive studies of serum glycomic analyses have been performed to fi nd novel 
glycan cancer biomarker utilizing newly developed high-throughput platform tech-
nologies. It is anticipated that these cancer glycomic studies will lead to the discov-
ery of glycan biomarker or therapy targets for cancers.  

  Keywords     Glycosphingolipid   •    N -Glycan   •    O -Glycan   •   Cancer   •   Glycomic 
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12.1         Introduction 

 Glycosylation of the surface of cancer cells is closely associated with malignant trans-
formation and malignancy of cancers (Hakomori  2002 ). Extensive studies on the oligo-
saccharide structures of glycosphingolipids (GSLs) and glycoproteins in cancers have 
revealed that aberrant glycosylation occurs in essentially all types of human cancers, 
and many altered carbohydrate determinants, including sialyl Le x  (SLe x ) and sialyl Le a  
(SLe a ), are classifi ed as tumor-associated carbohydrate antigens (Hakomori  1989 , 
 2002 ; Lau and Dennis  2008 ; Brockhausen  1999 ; Kim and Varki  1997 ; Fukuda  1996 ). 
Subsequent studies have indicated the functional signifi cance of aberrant glycosylation 
in cancer malignancy, such as metastasis and invasion (Hakomori  1996 ,  2002 ; Ono and 
Hakomori  2004 ). For example, SLe a  and SLe x  function as ligands for selectins and are 
thought to be involved in hematogenous metastasis (Kannagi et al.  2004 ). Furthermore, 
altered carbohydrate determinants, including tumor-associated carbohydrate antigens 
such as SLe a  and SLe x , have been utilized as useful tumor markers for the diagnosis of 
cancer (Saldova et al.  2008 ; Kannagi et al.  2004 ; Peracaula et al.  2008 ). CA19-9, SLe a  
epitope, is one of the most well-known serum tumor markers, which is frequently used 
for clinical diagnosis of a variety of cancers such as pancreatic, colorectal, and stomach 
cancers. Thus, cancer glycomic analyses, which precisely and comprehensively deter-
mine the altered oligosaccharides in cancer tissues and sera, are now widely used as a 
valuable tool to investigate the involvement of glycosylation in cancer malignancy as 
well as identifying novel carbohydrate tumor marker candidates (Alley et al.  2012 ; 
Narimatsu et al.  2010 ). This chapter introduces the achievements of glycomic analyses 
of glycoconjugates including glycosphingolipids, free glycans,  N -linked, and  O -linked 
glycans derived from human cancers and serum of cancer patients.  

12.2     GSLs 

 Extensive studies have been performed to analyze the structure of GSLs from a 
variety of tumor tissues, including colon cancer (Siddiqui et al.  1978 ), melanoma 
(Portoukalian et al.  1979 ), gastrointestinal cancers (Magnani et al.  1982 ), head and 
neck squamous cell carcinoma (Bolot et al.  1999 ), metastatic brain tumors 
(Hamasaki et al.  1999 ), and renal cell carcinoma (Ito et al.  2001 ). Furthermore, a 
series of GSLs that abnormally accumulate in cancerous tissues have been success-
fully isolated and analyzed (Hakomori et al.  1983 ,  1984 ; Fukushi et al.  1984a ,  b ). 
These studies reveal that each type of tumor is characterized by the accumulation of 
specifi c types of GSLs. For example, unusual accumulation of GSLs having type 1 
or 2 chain derivatives (i.e., those with Le a , Le x , Le y , or dimeric Le x , and their sialosyl 
derivatives, such as sialyl Le a  and sialyl Le x ) is observed in most human adenocar-
cinoma (Hakomori et al.  1984 ; Fukushi et al.  1984b ; Nudelman et al.  1986a ,  b ), 
while GD3 is observed in melanoma (Portoukalian et al.  1979 ). 

 Structural analyses of these GSLs were performed by conventional techniques. 
Specifi cally, GSLs extracted from cancerous tissues were separated by    HPLC (high 
performance liquid chromatography) using organic solvents and traditional thin-
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layer chromatography (TLC) methodologies followed by staining with orcinol. 
However, there are a number of limitations with these analytical techniques in terms 
of identifi cation and quantifi cation of GSLs. 

 Ito et al. discovered endoglycoceramidases capable of hydrolyzing the glucosyl-
ceramide linkage of most GSLs, leading to the release of their carbohydrate  moieties 
(Ito and Yamagata  1989 ). Liberated oligosaccharides of GSLs are reductively ami-
nated with fl uorescence reagents, such as 2-aminopyridine and 2-aminobenzoic 
acid, and then subjected to HPLC separation or mass spectrometry. This technique 
is highly sensitive and capable of analyzing GSLs both quantitatively and qualita-
tively. Glycomic analyses of GSLs of cancerous tissues using the advanced methods 
have been performed by several groups. These analyses have verifi ed previous 
results and discovered novel fi ndings as described below. 

12.2.1     Aberrant Glycosylation 

 Comprehensive clinico-glycomic analyses of GSLs of colorectal cancerous cells and 
their corresponding normal colorectal epithelial cells were performed from 16 colorec-
tal cancer patients including 5 having liver metastasis and 1 lacking α1-4 fucosyltrans-
ferase, Lewis enzyme activity, and 2 showing high serum levels of CA19-9 (Misonou 
et al.  2009 ). In order to enhance the accuracy of the analysis, an improved method of 
isolating epithelial cells was employed using collagenase treatment and magnetic 
beads labeled with antibody against epithelial cell marker, CD326. As a result, highly 
purifi ed colorectal cancer cells (CCs) and their corresponding normal colorectal epi-
thelial cells (NCs) were obtained from cancerous and normal tissues, respectively. 

 The structures of glycans from normal colorectal epithelial cells are character-
ized by dominant expression of neutral type 1 chain oligosaccharides; lactose, Le a , 
and Le b  are dominant and acidic GSLs are almost absent. Three specifi c alterations 
were observed in malignant transformation, namely, (1) increased ratios of type 2 
oligosaccharides, (2) increased α2-3 and/or α2-6 sialylation, and (3) increased α1-2 
fucosylation (Fig.  12.1 ). These alterations result in increases in the amount of or 
appearance of Le x , LST-c, Le y , Le b , sialyl Le x , sialyl Le a , IV 6 NeuAcαIV 2 Fucα-nLc 4  
(ST2H), V 3 FucαIII 3 Fucα-nLc 6 , VI 3 NeuAcα-nLc 6 , and VI 6 NeuAcαIII 3 Fucα-nLc 6  
(Fig.  12.1 ). Most of these fi ndings are essentially in agreement with previous results 
obtained by conventional methods.  

 In addition to the general pattern of abnormal accumulation observed in malig-
nant transformation of colorectal cancers, these precise analyses also revealed two 
further characteristic alterations that are associated with clinical features. One such 
change was a shift from type 1 dominant NCs to type 2 dominant CCs found in the 
fi ve cases having hepatic metastasis. Second was a specifi c elevation of α2-3 
sialylation observed in two cases exhibiting high serum levels of CA19-9. Further 
extensive glycomic analyses of colorectal cancer cells revealed that CCs estimated 
to have low metastatic potential express a variety of oligosaccharides including very 
rare sulfated GSLs, such as 6-sulfo Le x , 6′-sialyl 6-sulfo lactosamine, and 3′-sialyl 
6-sulfo Le x , in addition to sialylated or fucosylated derivatives of type 1 and type 2 
hybrid oligosaccharides (Table  12.1 ) (Shida et al.  2009 ).

12 Glycomic Analysis of Cancer



192

G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc
T
yp
e-
1

G
al

β1
-3
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

L
c 4

4F
G
al

β1
-3
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

F
uc

α14
L
ea

3S
N
eu
A
cα

2-
3G

al
β1

-3
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

S
L
ec
(D

U
-P
A
N
-2
)

4F

S
L
ea
(C

A
19
-9
)

N
eu
A
cα

2-
3G

al
β1

-3
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

F
uc

α14
2F

G
al

β1
-3
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

F
uc

α12
T
yp
e1
H

4F
G
al

β1
-3
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

F
uc

α12

F
uc

α14
L
eb

6S
N
eu
A
cα

2-
6G

al
β1

-3
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

F
uc

α12
S
T
1H

T
yp
e-
2

G
al

β1
-4
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

nL
c 4

3F
G
al

β1
-4
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

F
uc

α13
L
ex

3S

N
eu
A
cα

2-
3G

al
β1

-4
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

S
P
G

3F
N
eu
A
cα

2-
3G

al
β1

-4
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

F
uc

α13
S
L
ex

6S
N
eu
A
cα

2-
6G

al
β1

-4
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

L
S
T
-c

2F

G
al

β1
-4
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

F
uc

α12
T
yp
e2
H

3F
L
ey

G
al

β1
-4
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

F
uc

α12
F
uc

α13

6S
N
eu
A
cα

2-
6G

al
β1

-4
G
lc
N
A
cβ
1-
3G

al
β1

-4
G
lc

F
uc

α12
S
T
2H

L
c 3

 

Y. Miyamoto



193

  F
ig

. 1
2.

1  
  Pr

op
os

ed
 s

yn
th

et
ic

 p
at

hw
ay

s 
fo

r 
m

aj
or

 g
ro

up
s 

of
 G

SL
s 

in
 c

ol
or

ec
ta

l 
ca

nc
er

s 
an

d 
no

rm
al

 c
ol

or
ec

ta
l 

ep
ith

el
ia

l 
ce

lls
.  A

rr
ow

s  
in

di
ca

te
 t

he
 p

at
hw

ay
s 

pr
ed

om
in

at
in

g 
in

 n
or

m
al

 c
ol

or
ec

ta
l e

pi
th

el
ia

l c
el

ls
.  B

ro
ke

n 
ar

ro
w

s  
in

di
ca

te
 th

e 
pa

th
w

ay
s 

th
at

 a
re

 in
cr

ea
se

d 
in

 c
ar

ci
no

ge
ne

si
s.

 A
bb

re
vi

at
io

ns
:  4

F
  α

1-
4 

fu
co

sy
l-

at
io

n 
of

 G
lc

N
A

c 
(L

ew
is

 e
nz

ym
e 

ac
tiv

ity
),

  3
F

  α
1-

3 
fu

co
sy

la
tio

n 
of

 G
lc

N
A

c,
  2

F
  α

1-
2 

fu
co

sy
la

tio
n 

of
 g

al
ac

to
se

, 
 3S

  α
2-

3 
si

al
yl

at
io

n 
of

 g
al

ac
to

se
, 

 6S
  α

2-
6 

si
al

yl
at

io
n 

of
 g

al
ac

to
se

. 
T

he
 s

tr
uc

tu
re

s 
of

 G
SL

s 
in

 n
or

m
al

 c
ol

or
ec

ta
l 

ep
ith

el
ia

l 
ce

lls
 f

ro
m

 L
ew

is
-p

os
iti

ve
 i

nd
iv

id
ua

ls
 a

re
 c

om
po

se
d 

m
ai

nl
y 

of
 L

e a   
an

d 
L

e b   
(h

ig
hl

ig
ht

ed
 b

y 
a 

 sq
ua

re
  w

ith
 a

  th
ic

k 
li

ne
 ).

 B
y 

co
nt

ra
st

, t
he

 s
tr

uc
tu

re
s 

of
 G

SL
s 

in
 n

or
m

al
 e

pi
th

el
ia

l c
el

ls
 f

ro
m

 L
ew

is
-n

eg
at

iv
e 

in
di

vi
du

al
s 

ar
e 

co
m

po
se

d 
m

ai
nl

y 
of

 L
c 4

  a
nd

 ty
pe

1H
 (

hi
gh

lig
ht

ed
 b

y 
a 

 sq
ua

re
  w

ith
 a

  th
in

 li
ne

 ).
 I

n 
m

al
ig

na
nt

 tr
an

sf
or

m
at

io
n,

 th
e 

ty
pe

 2
 r

at
io

, α
2-

3 
an

d/
or

 α
2-

6 
si

al
yl

at
io

n,
 a

nd
 α

1-
2 

fu
co

sy
la

tio
n 

ar
e 

in
cr

ea
se

d.
 T

he
se

 a
lte

ra
tio

ns
 r

es
ul

t 
in

 i
nc

re
as

es
 i

n 
th

e 
am

ou
nt

s 
of

, o
r 

th
e 

ap
pe

ar
an

ce
 o

f,
 a

 v
ar

ie
ty

 o
f 

ol
ig

os
ac

ch
ar

id
es

, s
uc

h 
as

 L
e x  , 

L
e y  , 

L
ST

-c
, S

L
e x  , 

an
d 

ST
2H

 a
s 

ty
pe

 2
 o

lig
os

ac
ch

ar
id

es
 a

nd
 ty

pe
1H

, S
L

e a  , 
SL

e c  , 
an

d 
ST

1H
 a

s 
ty

pe
 1

 o
lig

os
ac

ch
ar

id
es

. N
ot

e 
th

e 
di

ff
er

en
ce

 in
 c

om
po

si
tio

n 
of

 ty
pe

 1
 o

lig
os

ac
ch

ar
id

es
 

be
tw

ee
n 

ca
nc

er
 c

el
ls

 f
ro

m
 L

ew
is

-p
os

iti
ve

 a
nd

 L
ew

is
-n

eg
at

iv
e 

in
di

vi
du

al
s,

 i
.e

., 
sy

nt
he

si
s 

of
 S

L
e a   i

s 
in

cr
ea

se
d 

up
on

 c
ar

ci
no

ge
ne

si
s,

 a
nd

 S
L

e a   b
ec

om
es

 o
ne

 o
f 

th
e 

m
aj

or
 c

om
po

ne
nt

s 
of

 c
an

ce
r 

ce
lls

 in
 L

ew
is

-p
os

iti
ve

 in
di

vi
du

al
s.

 H
ow

ev
er

, S
L

e a   i
s 

no
t s

yn
th

es
iz

ed
 in

 c
an

ce
r 

ce
lls

 a
nd

 n
or

m
al

 e
pi

th
el

ia
l c

el
ls

 f
ro

m
 L

ew
is

- 
ne

ga
tiv

e 
in

di
vi

du
al

s,
 b

ut
 th

e 
le

ve
ls

 o
f 

SL
e c   a

nd
/o

r 
ST

1H
 a

re
 in

cr
ea

se
d 

du
ri

ng
 c

ar
ci

no
ge

ne
si

s.
 

 SL
e a   

ep
ito

pe
 (

N
eu

A
cα

2-
3G

al
β1

-3
(F

uc
α1

-4
)G

lc
N

A
cβ

1-
R

) 
an

d 
SL

e c   
ep

ito
pe

 (
N

eu
A

cα
2-

3G
al

β1
-3

G
lc

N
A

cβ
1-

R
) 

ar
e 

re
co

gn
iz

ed
 b

y 
C

A
19

-9
 a

nd
 D

U
-P

A
N

-2
 

an
tib

od
ie

s,
 r

es
pe

ct
iv

el
y       

12 Glycomic Analysis of Cancer



194

   Ta
bl

e 
12

.1
  

  Su
lf

at
ed

 G
SL

s 
ac

cu
m

ul
at

ed
 in

 c
ol

on
 c

an
ce

rs
 th

at
 a

re
 e

st
im

at
ed

 to
 h

av
e 

lo
w

 m
et

as
ta

tic
 p

ot
en

tia
l   

 St
ru

ct
ur

e 
 A

bb
re

vi
at

io
n 

  H
S
O

3-
3G

al
1-
3G

lc
N
A
c
1-
3G

al
1-
4G

lc
-P

A
    

 3′
-s

ul
fo

-L
c 4

  

  
G
lc
N
A
c
1-
3G

al
1-
3G

lc
N
A
c
1-
3G

al
1-
4G

lc
-P
A

H
S
O

3

6
    

 ag
al

ac
to

 V
 6  H

SO
 3  −

  1,2
 L

c 6
  

  G
al

1-
4G

lc
N
A
c
1-
3G

al
1-
4G

lc
-P

A

F
uc

13

H
S
O

3 6

    

 II
I 6  H

SO
 3 ,I

II
 3  F

uc
α-

nL
c 4

  

  Ga
l
1-
4G

lc
N
A
c

1-
3G

al
1-
3G

lc
N
A
c

1-
3G

al
1-
4G

lc
-P

A

H
S
O

3

6
    

 V
 6  H

SO
 3  −

  1,2
 L

c 6
  

  Ne
u5
A
c

2-
6G

al
1-
4G

lc
N
A
c
1-
3G

al
1-
3G

lc
N
A
c
1-
3G

al
1-
4G

lc
-P
A

H
S
O

3

6
1-

-
    

 V
I 6  N

eu
A

cα
,V

 6  H
SO

 3  −
  1,2

 L
c 6

  

  G
al

1-
4G

lc
N
A
c
1-
3G

al
1-
3G

lc
N
A
c
1-
3G

al
1-
4G

lc
-P

A

F
uc

13

H
S
O

3

6

    

 V
 6  H

SO
 3 ,V

 3  F
uc

α-
 1,2

 L
c 6

  

  G
al

1-
4G

lc
N
A
c
1-
3G

al
1-
4G

lc
N
A
c
1-
3G

al
1-
4G

lc
-P

A

F
uc

13

H
S
O

3

6

    

 V
 6  H

SO
 3 ,I

II
 3  F

uc
α-

nL
c 6

  

Y. Miyamoto



195

  N
eu
5A

c
2-
3G

al
1-
4G

lc
N
A
c
1-
3G

al
1-
3G

lc
N
A
c
1-
3G

al
1-
4G

lc
-P

A

F
uc

13

H
S
O

3

6

    

 V
I 3  N

eu
A

cα
,V

 6  H
SO

 3 ,V
 3  F

uc
α-

 1,2
 L

c 6
  

  G
al

1-
4G

lc
N
A
c
1-
3G

al
1-
3G

lc
N
A
c
1-
3G

al
1-
4G

lc
-P

A

F
uc

13

H
S
O

3

6

N
eu
5A

c
2 6

-

    

 V
 6  H

SO
 3 ,V

 3  F
uc

α,
II

I 6  N
eu

A
cα

- 1
,2
 L

c 6
  

  N
eu
5A

c
2-
6G

al
1-
4G

lc
N
A
c
1-
3G

al
1-
4G

lc
N
A
c
1-
3G

al
1-
4G

lc
-P
A

F
uc

13

H
S
O

3

6

    

 V
I 6  N

eu
A

cα
,V

 6  H
SO

 3 ,I
II

 3  F
uc

α-
nL

c 6
  

  G
al

1-
4G

lc
N
A
c
1-
3G

al
1-
4G

lc
N
A
c
1-
3G

al
1-
4G

lc
-P
A

F
uc

13

F
uc

13

H
S
O

3

6

    

 V
 6  H

SO
 3 ,V

 3  F
uc

α,
II

I 3  F
uc

α-
nL

c 6
  

  N
eu
5A

c
2-
3G

al
1-
4G

lc
N
A
c
1-
3G

al
1-
4G

lc
N
A
c
1-
3G

al
1-
4G

lc
-P

A

F
uc

13

F
uc

13

H
S
O

3

6

F
uc

1
    

 V
I 3  N

eu
A

cα
,V

 6  H
SO

 3 ,V
 3  F

uc
α,

II
I 3  F

uc
α-

nL
c 6

  

  Ty
pe

 1
 a

nd
 ty

pe
 2

 h
yb

ri
d 

he
xa

sa
cc

ha
ri

de
s,

 G
al

β1
-4

G
lc

N
A

cβ
1-

3G
al

β1
-3

G
lc

N
A

cβ
1-

3G
al

β1
-4

G
lc

 is
 a

bb
re

vi
at

ed
 a

s 
 1,2

 L
c 6

 , i
n 

or
de

r 
of

 li
nk

ag
e 

ty
pe

 o
f 

th
e 

fo
ur

th
 

an
d 

si
xt

h 
ga

la
ct

os
e  

12 Glycomic Analysis of Cancer



196

   In order to understand the mechanism of aberrant glycosylation, precise analyses 
of the activities of glycosyltransferases responsible for the aberrant glycosylation in 
malignant transformation of colorectal cancers (β-galactosyltransferase, sialyltrans-
ferase, fucosyltransferase, sulfotransferase) were carried out (Misonou et al.  2009 ). 
While some alterations could be accounted for by changes in the activities of related 
glycosyltransferases, others could not. Increases in the ratio of type 2 oligosaccha-
rides, α2-6 sialylation, and α1-2 fucosylation can be broadly accounted for by 
changes in the activities of related glycosyltransferases. Thus, in malignant trans-
formation, β1-3 galactosyltransferase activity is markedly decreased, α2-6 sialyl-
transferase activity toward terminal galactose of nLc4 is increased, and the α1-2 
fucosyltransferase activity toward both nLc 4  and Lc 4  is markedly increased with 
very few exceptions. It is possible that greatly reduced activity of β1-3 galactosyl-
transferase and a virtually invariant alteration in the activities of β1-4 galactosyl-
transferase in carcinogenesis result in the increase of type 2 chain oligosaccharides. 
Similarly, increased type 2 chain oligosaccharides followed by an increase in the 
activity of α2-6 sialyltransferase toward type 2 lactosamine chains results in the 
elevation of α2-6 sialylated type 2 oligosaccharides, such as LST-c and 
VI 6 NeuAcαIII 3 Fucα-nLc 6 . Furthermore, greatly increased activity of α1-2 fucosyl-
transferase toward both nLc 4  and Lc 4  leads to the elevation of α1-2 fucosylated 
products, such as Le y  and Le b . In contrast, elevation of α2-3 sialylation in carcino-
genesis does not depend on changes in the related enzyme activities. 

 Holst et al. also performed comprehensive glycomic analyses of GSLs of colorec-
tal cancer tissues and corresponding control tissues of 13 colorectal cancer patients 
by methods that include enzymatic release of carbohydrate moieties, fl uorescent 
labeling with 2-aminobeozoic acid, and    MALDI-TOF-MS (matrix-assisted laser 
desorption/ionization time-of-fl ight mass spectrometry) (Holst et al.  2013 ). They 
reported that the alteration of carcinogenesis of colorectal cancers is characterized 
by (1) increased fucosylation, (2) decreased acetylation, (3) decreased sulfation, (4) 
reduced expression of globo-type glycans, as well as (5) disialyl gangliosides.  

12.2.2     Novel Tumor-Associated Carbohydrate Antigens 

 Comprehensive glycomic analyses of colorectal cancers (60 patients) and pancre-
atic cancers (5 patients) revealed the presence of 2 kinds of novel fucogangliosides, 
as described below (Korekane et al.  2007b ; Misonou et al.  2009 ; Shida et al.  2010 ) 
(Fig.  12.1 ). Both of these are isomers of well-known tumor-associated carbohydrate 
antigens, sialyl Le x (SLe x ) and sialyl Le a  (SLe a ):

   NeuAcα2-6(Fucα1-2)Galβ1-4GlcNAcβ1-3Galβ1-4Glc (sialyl type2H, ST2H)  
  NeuAcα2-6(Fucα1-2)Galβ1-3GlcNAcβ1-3Galβ1-4Glc (sialyl type1H, ST1H)   

The α2,6-sialylated type2H (ST2H) was found in colorectal cancer cells from about 
half of the cases (36 cases out of 60 colorectal cancer patients; 3 cases out of 5 pan-
creatic cancer patients) regardless of Lewis type. Unlike ST2H, the α2,6-sialylated 
type1H (ST1H) was found specifi cally in cancer cells from half of the 
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Lewis- negative patients (3 out of 6 Lewis-negative patients, i.e., 2 cases of colorec-
tal and 1 case of pancreatic cancer). However, the moiety was not found in cancer 
cells from 59 Lewis-positive patients.    Both ST1H and ST2H antigens were absent 
in normal colorectal and pancreatic cells. 

 ST1H and ST2H are carbohydrate tumor marker candidates, similar to SLe x  and 
SLe a . Specifi cally, ST1H has a type 1 structure, similar to the SLe a  epitope (CA19-9 
epitope), and is a promising candidate tumor marker. 

 Lewis enzyme (also called FUT3) is the only enzyme responsible for the synthe-
sis of Lewis antigens, such as Le a , Le b , and SLe a  in vivo (Kukowska-Latallo et al. 
 1990 ). Lewis-negative individuals, who make up approximately 10 % of the popula-
tion, are homozygotes for the inactive Lewis gene alleles (Mollicone et al.  1994 ; 
Nishihara et al.  1994 ; Elmgren et al.  1997 ). Such individuals do not possess Lewis 
enzyme activity and never express Le a , Le b , and SLe a  in any tissue (Nishihara et al. 
 1999 ; Narimatsu et al.  1996 ; Yazawa et al.  1995 ) (Fig.  12.1 ). Because Lewis- 
negative individuals cannot produce the SLe a  epitope (CA19-9 epitope), serum lev-
els of CA19-9 in these individuals are either undetectable or very low (i.e., under 
1 U/ml). DU-PAN-2 (SLe c  epitope), which is a precursor structure of SLe a , is 
another well-known tumor marker (Fig.  12.1 ). Hence, measurement of CA19-9 and 
DU-PAN-2 is recommended to apply for Lewis-positive and Lewis-negative indi-
viduals, respectively (Narimatsu et al.  1998 ) (Fig.  12.1 ). The synthetic fl ow of 
DU-PAN-2 and ST1H is different, i.e., DU-PAN-2 and ST1H are synthesized by 
α2-3 sialylation of Lc 4  and α2-6 sialylation of type1H, respectively (Fig.  12.1 ). The 
combination of ST1H and DU-PAN-2 determinants could serve as a highly sensitive 
tumor marker, especially for Lewis-negative individuals.   

12.3     Free Oligosaccharides 

 The occurrence of free high-mannose-type  N -glycans is well demonstrated in mam-
malian cells (Moore  1999 ; Suzuki and Funakoshi  2006 ; Winchester  2005 ). However, 
with the exception of mouse liver and two kinds of human stomach cancer-derived 
cell lines (MKN7 and MKN45) (Ohashi et al.  1999 ; Ishizuka et al.  2008 ), free 
complex-type  N -glycans, especially sialylated species, are not normally observed. 

 Some valuable information regarding the presence of free sialylated complex- 
type  N -glycans were obtained from the glycomic analyses of colorectal, pancreatic, 
and prostate cancers (Yabu et al.  2013a ,  b ). GSLs and free oligosaccharides, but not 
glycoproteins, are extracted when organic solvents are used to homogenize tissues 
or cells. When the organic solvent-extractable fractions were treated with    EGCase 
(endoglycoceramidase), both free oligosaccharides and oligosaccharides released 
from GLSs were subjected to analysis. 

 The Neu5Ac-containing complex-type  N -glycans with a single    GlcNAc at each 
reducing terminus (Gn1 type) were observed as a minor component in colorectal 
cancer cells (i.e., much lower than GSLs, such as GM3 and LST-c). Structural anal-
yses of oligosaccharides associated with pancreatic cancers revealed, unlike 
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colorectal cancer cells, the presence of a variety of free Neu5Ac-containing 
complex- type  N -glycans from three out of the fi ve cases (Table  12.2 ) (Yabu et al. 
 2013b ). The relative amounts of these free Neu5Ac-containing complex-type 
 N -glycans were comparable to or much higher than those of GSLs in most, but not 
all, pancreatic cancers. The Neu5Ac-containing complex-type  N -glycans derived 
from human pancreatic cancer cases possess several common characteristic fea-
tures. Specifi cally, (1) almost all (>95 %) of the free  N- glycans are composed of 
α2,6-Neu5Ac-linked glycans, with α2,3-sialylated glycans making up a very 
minor part, and (2) the proportion of each free  N- glycan relative to total free gly-
cans is to some extent dependent on its pentasaccharide backbone. Namely, free 

    Table 12.2    Neu5Ac- and KDN-containing free complex-type  N -glycans accumulated in human 
cancers   

 Group  Structure 

 1   ⊚  

  Neu5Ac 2-6Gal 1-4GlcNAc 1-2Man 1

Man 1-4GlcNAc-PA
3

    
    

  

Neu5Ac 2-6Gal 1-4GlcNAc 1-2Man 1

Man 1-4GlcNAc-PA
6

    

  Neu5Ac 2-6Gal 1-4GlcNAc 1-4Man 1

Man 1-4GlcNAc-PA
3

    

  

Neu5Ac 2-6Gal 1-4GlcNAc 1-6Man 1

Man 1-4GlcNAc-PA
6

    

  

Man 1

Neu5Ac 2-6Gal 1-4GlcNAc 1-2Man 1

Man 1-4GlcNAc-PA
6

3

    

  Neu5Ac 2-3Gal 1-4GlcNAc 1-2Man 1

Man 1-4GlcNAc-PA
3

    
 2   ⊚  

  KDN 2-6Gal 1-4GlcNAc 1-2Man 1

Man 1-4GlcNAc-PA
3

    
    

  

KDN 2-6Gal 1-4GlcNAc 1-2Man 1

Man 1-4GlcNAc-PA
6

    

  KDN 2-6Gal 1-4GlcNAc 1-4Man 1

Man 1-4GlcNAc-PA
3

    

  

KDN 2-6Gal 1-4GlcNAc 1-6Man 1

Man 1-4GlcNAc-PA
6

    

  

KDN 2-3Gal 1-4GlcNAc 1-2Man 1

Man 1-4GlcNAc-PA
6

    

  Group 1: Neu5Ac-containing complex-type  N -glycans accumulated in pancreatic and prostate 
cancers. Group 2: KDN-containing complex-type  N -glycans accumulated in prostate cancers 
  ⊚  indicates the most abundant species.    indicates the second most abundant species. The other 
species are minor components  
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α2,6-Neu5Ac- linked  N -glycans having a Galβ1-4GlcNAcβ1-2Manα1-3Manβ1-4GlcNAc 
backbone are the most abundant species (i.e., 48–72 % of total free  N -glycan 
content). The second most abundant glycans had a Galβ1-4GlcNAcβ1-2Manα1- 
6Manβ1-4GlcNAc backbone (8–24 %), followed by glycans with either a 
Galβ1-4GlcNAcβ1-6Manα1-6Manβ1-4GlcNAc or Galβ1-4GlcNAcβ1-4Manα1- 
3Manβ1-4GlcNAc backbone. These results indicate that the branch on the α6-Man 
arm of biantennary  N -glycans is preferentially removed. Thus, the most abundant 
glycan is Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-3Manβ1-4GlcNAc, followed 
by Neu5Acα2-6Galβ1-4GlcNAcβ1-2Manα1-6Manβ1-4GlcNAc. However, the lev-
els of free  N -glycans in normal colorectal and pancreatic tissues were barely detect-
able (Yabu et al.  2013b ).

   In addition to the free Neu5Ac-containing  N -glycans accumulated in pancreatic 
cancers, a relatively large amount of free KDN (deaminoneuraminic acid)-contain-
ing  N- glycans were also found to accumulate in prostate cancer tissues from four 
out of fi ve patients (Table  12.2 ) (Yabu et al.  2013a ). Indeed, in one of the four cases 
having bone metastasis, the free KDN-glycans are major components, and the 
amounts of the free KDN-glycans were much higher than those of GSLs in both 
primary and bone metastatic prostate cancer tissues. With regard to KDN, refer to 
the review article by Inoue and Kitajima ( 2006 ). KDN is an unusual type of sialic 
acid that was fi rst discovered in the cortical alveolar polysialoglycoprotein (PSGP) 
of rainbow trout eggs (Nadano et al.  1986 ). Subsequent studies revealed that KDN, 
like the typical type sialic acid Neu5Ac, occurs widely among vertebrates and bac-
teria, although KDN is only abundant in lower vertebrates and pathogenic bacteria. 
In mammals, Neu5Ac occurs abundantly in both normal and tumor tissues, whereas 
KDN is almost undetectable (Inoue et al.  1996 ). 

 The characteristic features of free KDN-containing  N -glycans associated with 
human prostate cancers are very similar to those of free Neu5Ac-containing 
 N -glycans, described above. Specifi cally, (1) most of the free  N- glycans are com-
posed of α2,6-KDN-linked glycans, and (2) the branch on the α6-Man arm of 
 biantennary  N -glycans is preferentially removed. Hence, the most abundant free 
KDN-containing  N -glycan is KDNα2-6Galβ1-4GlcNAcβ1-2Manα1-3Manβ1- 
4GlcNAc followed by KDNα2-6Galβ1-4GlcNAcβ1-2Manα1-6Manβ1-4GlcNAc. 

 Biochemical analyses have revealed the mechanism responsible for the accumu-
lation of free Neu5Ac-containing  N -glycans in stomach cancer cell lines. These 
studies showed impaired lysosomal function leading to ineffi cient degradation of 
free  N -glycans in the lysosomes, as well as the leakage of lysosomal components 
(including free  N -glycans) into the cytosol (Ishizuka et al.  2008 ). A similar mecha-
nism might be responsible for the accumulation of free complex-type  N -glycans in 
human pancreatic cancer cells, and the pathological mechanism may be similar to 
the lysosomal disease, sialidosis. This hypothesis is supported by the fi nding that 
the principal Neu5Ac-containing free oligosaccharides which accumulate in 
cancer cells are also found in excessive urinary excretion from patients with 
sialidosis (Strecker et al.  1977 ). A mechanism responsible for the accumulation 
of KDN- containing free  N -glycans is also thought to be related to reduced levels 
of degradation. However, several questions remain to be elucidated. Namely, 
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(1) KDN-containing  N -glycans were found in prostate cancers, but not in colorectal 
and pancreatic cancers. Do free KDN-containing  N -glycans accumulate specifi cally 
in prostate cancers? Do these species accumulate in any other cancer tissue? If not, 
why do KDN-containing  N -glycans specifi cally accumulate in prostate cancers? (2) 
Four kinds of human neuraminidases, Neu1 (lysosomal), Neu2 (cytosolic), and 
Neu3 and Neu4 (both membrane bound), are known to mediate the release of a 
Neu5Ac residue from sialoglycoconjugates. KDN linkages are thought to be resis-
tant to the action of human sialidases. Are sialidases capable of cleaving KDN link-
ages present in human cells?  

12.4      N -Glycans and  O -Glycans 

 Most of the biomarker discovery studies based on glycomics have focused on map-
ping changes in serum and cancer cell lines. However, detailed glycomic analyses 
of  N -glycans or  O -glycans using human cancer tissue specimens are somewhat 
limited. Glycomic analyses of human cancer tissues and serum are introduced 
below. 

12.4.1     Glycomic Studies on Human Cancers 

 The β1-6 branching of  N -linked structures resulting from enhanced or induced 
expression of GlcNAc transferase-V is one of the most common types of aberrant 
glycosylation observed in experimental and human cancers (Yamashita et al.  1984 ). 
Clinicopathological, immunohistological, and biochemical studies show a correla-
tion between the expression of these branching structures and invasion, metastatic 
potential, and shorter survival rates of the patients (Fernandes et al.  1991 ; Dennis 
and Laferte  1989 ). The formation of bisecting GlcNAc, which is synthesized by 
GlcNAc transferase-III, competes with the formation of β1-6 branching sites and 
hence the occurrence of triantennary and tetra-antennary structures. The occurrence 
of bisecting GlcNAc has been implicated in the suppression of metastasis, leading 
to higher rates of survival (Yoshimura et al.  1995 ). 

 The glycomic analyses of human cancer specimens support these previous fi nd-
ings. Korekane et al. compared the  N -glycan profi ling between those of colon  cancer 
and normal colon epithelia using laser microdissected samples (Korekane et al. 
 2007a ).  N -Glycans were liberated from the samples by hydrazinolysis, labeled with 
2-aminopyridine and then subjected to HPLC separation and mass spectrometry. 
Korekane et al. reported a marked reduction of  N -glycans having bisecting GlcNAc 
in malignant transformation of colon cancers (Korekane et al.  2007a ). However, 
these fi ndings were not evident when using bulk colon cancer tissues and normal 
colon epithelial tissues. This observation highlights the importance of isolating 
cancer cells or normal cells with high purity for accurate cancer glycomic studies 

Y. Miyamoto



201

(as well as proteomics studies) by using laser microdissection or purifi cation 
methods with epithelial cell markers. 

 Balog et al. performed the comprehensive glycomic analyses of  N -glycosylation 
of colorectal cancer tissues and corresponding control tissues of 13 colorectal can-
cer patients by methods that included the release of  N -glycans by  N -glycosidase F, 
fl uorescent labeling with 2-aminobenzoic acid, and MALDI-TOF-MS (Balog et al. 
 2012 ). As well as verifying a decrease in the occurrence of  N -glycans containing 
bisecting GlcNAc, these workers also reported an increase in the levels of sulfated 
 N -glycans and paucimannosidic  N -glycans in colorectal cancer tissues by compari-
son with surrounding normal colorectal epithelial tissues. 

 In the above two cancer glycomic analyses, each  N -glycan was released and then 
labeled with a fl uorescent molecule prior to characterization by HPLC separation 
and mass spectrometry. 

 Lectin microarray technology was also applied to cancer glycomic analyses 
(Kuno et al.  2010 ; Matsuda et al.  2008 ,  2010 ). Tissue-based differential glycan pro-
fi ling covering both  N - and  O -glycans was constructed by 43 kinds of lectins using 
very small quantities of glycoproteins derived from a very small region (one-dot 
section comprising about 1,000 cells corresponding to 1.5 mm diameter and 5 μm 
thickness tissue array) of formalin-fi xed paraffi n-embedded specimens. Among the 
43 lectins,  Wisteria fl oribunda  agglutinin (WFA) was found to be the best probe to 
differentiate intrahepatic cholangiocarcinoma lesions from normal bile duct epithe-
lia (Matsuda et al.  2010 ). 

 As in GSLs and  N -glycans, the structures of  O -glycans (mucin-type glycans) are 
also altered in malignant transformation (Yang et al.  1994 ; Vavasseur et al.  1994 ; 
Brockhausen  1999 ,  2006 ). Compared with  O -glycans in normal epithelial cells, 
cancer-associated  O -glycans can be highly sialylated and less sulfated and are often 
truncated. Increased levels of Tn (GalNAcα-Ser/Thr) and sialyl Tn (Neu5Acα2-
6GalNAcα- Ser/Thr) antigens were observed in a variety of human cancers includ-
ing colon cancers and ovarian cancers (Orntoft et al.  1990 ; Inoue et al.  1991 ). Most 
of these results were obtained from immunohistochemical analyses using monoclo-
nal antibodies recognizing the individual  O -glycans. However, very few qualitative 
and quantitative structural analyses of  O -glycans from human cancer tissues have 
been performed. Because serum glycan tumor marker epitopes such as CA19-9 are 
carried on mucins, detailed glycomic analyses of  O -glycans in human cancers 
would provide a new source of tumor markers.  

12.4.2     Glycomic Studies on Serum of Cancer Patients 

 Carbohydrate antigens, such as CA19-9, CA125, DUPAN-II, and AFP-L3, are the 
most frequently used serum biomarkers for cancer. Serum glycomic studies to dis-
cover novel glycan cancer biomarkers have been highlighted (Adamczyk et al. 
 2012 ). Numerous glycan tumor marker candidates for various cancers, including 
liver (Kaji et al.  2013 ; Kamiyama et al.  2013 ; Wu et al.  2012 ; Tang et al.  2010 ; 
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Goldman et al.  2009 ; Comunale et al.  2009 ; Tanabe et al.  2008 ; Ressom et al.  2008 ), 
ovary (Biskup et al.  2013 ; Hua et al.  2013 ; Alley et al.  2012 ; Abbott et al.  2010 ; 
Leiserowitz et al.  2008 ), pancreas (Li et al.  2009 ; Okuyama et al.  2006 ), breast (de 
Leoz et al.  2011 ; Alley et al.  2010 ; Zeng et al.  2010 ; Storr et al.  2008 ; Abd Hamid 
et al.  2008 ; Kyselova et al.  2008 ; Kirmiz et al.  2007 ), prostate (Saldova et al.  2011 ), 
lung (Arnold et al.  2011 ), colorectum (Zhao et al.  2012 ), bile duct (Silsirivanit et al. 
 2011 ), and esophagus (Mechref et al.  2009 ) cancers, have been reported. Most of 
these glycomic analyses have been carried out by newly developed high-throughput 
platform technologies, such as mass spectrometry-based methods and lectin-based 
methods, which have enabled the effi cient analysis of large cohorts of samples. 

 Among the variety of oligosaccharide tumor marker candidates, most are 
 N -linked oligosaccharides. Indeed, there are only a limited number of reported 
 O -linked oligosaccharide tumor marker candidates (Leiserowitz et al.  2008 ; Storr 
et al.  2008 ; Kirmiz et al.  2007 ). In a majority of cancers, the levels of fucosylation 
and sialylation are found to be signifi cantly altered. Most of these glycomic studies 
have been carried out to identify changes in serum glycan profi les or through the 
isolation and identifi cation of glycoproteins that contain these irregular glycan 
structures. One such study looking for abnormal glycan structures of glycoprotein 
found that the concentration of fucosylated haptoglobin increased signifi cantly in 
the serum of pancreatic cancer patients compared to patients with other types of 
cancer or healthy controls (Okuyama et al.  2006 ). 

 However, despite the large number of studies that have been conducted, the suc-
cessful results of glycomic analyses to identify differences between serum from 
cancer patients and healthy donors have been somewhat varied. Nonetheless, it is 
anticipated that improvements in serum glycomics will further enhance the identifi -
cation of glycan biomarkers for cancer. It is hoped that such biomarkers will be 
applicable for clinical diagnostic purposes.      
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    Chapter 13   
 Glyco-Predisposing Factor of Diabetes 

             Kazuaki     Ohtsubo    

    Abstract     Appropriate insulin secretion is an essential process in glucose 
homeostasis and is initiated by glucose sensing with glucose transporter-2 (GLUT2) 
in pancreatic β-cells. The disappearance of GLUT2 from the β-cell surface is one 
of the early markers of the onset of type 2 diabetes, though the molecular mechanism 
has not been well understood. Recent advance in glycophysiology revealed that 
specifi c GLUT2 glycosylation by GnT-IVa is required for the production of 
carbohydrate epitopes bound to galectin-9 on the β-cell surface. The engagement 
of galectin-9 with GLUT2 regulates remodeling of GLUT2 clusters among cell 
surface membrane sub-domains, to control glucose transport activities, and 
prevents endocytosis to increase cell surface residency of GLUT2 that contributes 
to sustaining the glucose sensor function of β-cells. The pathway to diet- and 
obesity- associated diabetes has recently been revealed, in which a high-fat diet 
leading to diabetes recapitulated the free fatty acid-induced oxidative stress in 
human and mouse pancreatic β-cells that induced nuclear exclusion of transcription 
factors regulating GnT-IVa and, subsequently, attenuated GnT-IVa-dependent 
GLUT2 glycosylation. In β-cells, overexpression of GnT-IVa prevents GLUT2 
glycosylation and high-fat diet-induced β-cell dysfunction that ameliorates the 
onset of type 2 diabetes. These fi ndings indicate that GnT-IV-mediated redistribution 
of cell surface GLUT2 is a fundamental process to regulate insulin secretion 
responses to blood glucose levels, a paradigm that can be practically applied to 
better understand the pathogenesis of type 2 diabetes and provide a clue for the 
development of drugs.  
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13.1         Introduction 

 All organisms require glucose for the production of energy in the form of ATP, as 
well as a major component in the elaboration of proteins, lipids, and nucleotides. 
Therefore, maintaining of glucose homeostasis is important for biological activities 
that are sustained by endocrinological and neurological cooperation in response to 
dynamic physiological fl uctuation of blood glucose levels. In vertebrates, cells spe-
cialized in glucose homeostasis commonly express a glucose sensor molecule, glu-
cose transporter (GLUT), on their cell surface, which enables cells to uptake 
extracellular glucose from interstitial fl uid. This uptake is achieved by passive and 
facilitative transport processes along with the downward gradient of glucose con-
centration across the cellular plasma membrane, initiating cellular metabolic 
responses. Therefore, GLUT-dependent cellular glucose uptake was thought to be a 
physiological mandatory process. 

 GLUT consists of 13 members, of which 11 are specifi c for sugar transport with-
out any energy requirements. GLUT family proteins are structurally conserved and 
share a structure of 12 membrane-spanning regions and a single  N- glycan in either 
the fi rst or the fi fth extracellular loop domain (Widdas  1988 ; Baldwin and Lienhard 
 1981 ; Joost et al.  2002 ; Gould and Holman  1993 ). It has been reported that 
 N- glycosylation is indispensable for the stable expression of GLUT on the cell sur-
face (Asano et al.  1991 ,  1993 ; Ohtsubo et al.  2005 ), implying that  N- glycosylation 
of GLUT plays an important role in glucose homeostasis, and further suggests that 
dysglycosylation might be involved in the pathogenesis of glucose homeostasis 
disorders. 

 It has been well characterized that the glucose-stimulated insulin secretion of 
pancreatic β-cells is impaired in the disease process of diabetes. Consistent with this 
fi nding, the glucose sensor function of pancreatic β-cells is attenuated in human 
type 2 diabetes patients and in various diabetic animal models. In addition, a 
decreased total and cell surface expression of GLUT2 protein is found in pancreatic 
β-cells in the early stage of diabetes that refl ects the failure of glucose-stimulated 
insulin secretion (Johnson et al.  1990 ; Orci et al.  1990 ; Thorens et al.  1990 ; Unger 
 1991 ; Del Guerra et al.  2005 ). Its molecular mechanism, however, is not well 
understood.  

13.2     Dysglycosylation of GLUT2 in Pancreatic β-Cells 
in the Disease Process of Type 2 Diabetes 

 Human chromosomal susceptible regions to type 2 diabetes were analyzed by 
genetic linkage analyses among type 2 diabetes patients and their relatives, and a 
chromosomal loci, 2q11.5, was identifi ed (McCarthy  2003 ; Van Tilburg et al.  2003 ). 
The region encompasses a gene of mannosyl (α-1,3-)-glycoprotein β-1,4-N- 
acetylglucosaminyltransferase ( N- acetylglucosaminyltransferase-IV) isozyme A, 
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abbreviated to GnT-IVa or MGAT4A, which catalyzes the transfer of GlcNAc 
( N- acetylglucosamine) from UDP-GlcNAc to the GlcNAcβ1-2Manα1,3 arm of 
the core structure of  N- linked oligosaccharides (Man 3 GlcNAc 2 -Asn) via a β1-4 
linkage (Minowa et al.  1998 ; Yoshida et al.  1999 ). Moreover, coincident with these 
fi ndings, DNA microarray analyses of gene expression profi le of pancreatic β-cells 
of type 2 diabetes patients revealed that the expression level of the  MGAT4A  
gene is signifi cantly reduced in type 2 diabetes patients (Gunton et al.  2005 ). These 
fi ndings suggest that the failure of GnT-IVa function is involved in the pathogenesis 
of type 2 diabetes. 

 GnT-IVa is an essential glycosyltransferase to form multiantennary (tri- or tetra- 
antennary branched) complex-type  N- glycans (Fig.  13.1a ), which is highly 
expressed in the pancreas (β-cells), small intestine, colon, kidney, and brain, as well 
as many types of tumor cells (Ohtsubo et al.  2005 ; Yoshida et al.  1999 ). The expres-
sion of GnT-IVa seems to be regulated by multiple mechanisms. The normal tissue 
distribution of GnT-IVa largely overlaps with that of GLUT2. Sequence motif anal-
yses among promoter regions of human and mouse  MGAT4A  and GLUT2 genes 
revealed that they share binding sites of transcription factors, FOXA2 and HNF-1α, 
which are well characterized to regulate function and development of pancreatic 
β-cells (Ohtsubo et al.  2011 ). FOXA2 and HNF-1α are well characterized to tran-
scriptionally regulate GLUT2 expression in pancreatic β-cells (Cerf  2006 ) that 
strongly suggest that the expressions of GnT-IVa and GLUT2 are synchronously 
regulated, consequently enabling GLUT2 to acquire an  N- glycan formed by GnT-
IVa in a specifi c type of cells. Indeed, the introduction of siRNAs for  FOXA2  and 
 HNF-1α  into β-cells signifi cantly reduced the expression levels of  Mgat4a  and 
 GLUT2  (Ohtsubo et al.  2011 ). Consistent with these fi ndings, in normal human and 
mice pancreatic β-cells, GLUT2 has multiantennary N-glycans synthesized by 
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  Fig. 13.1    GnT-IVa-dependent formation of multiantennary  N -glycan structures. ( a ) In mamma-
lian cells, newly synthesized proteins are sequentially  N -glycosylated by GnT-IV and GnT-V and 
consequently acquire multiantennary  N -glycans. ( b ) GLUT2 in normal pancreatic β-cells has a 
tetra-antennary  N -glycan, whereas that of type 2 diabetes has a bi-antennary  N -glycan       
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GnT-IVa activity. In contrast, GLUT2 in pancreatic β-cells of human type 2 diabetes 
and mice receiving a high-fat diet has less branched  N- glycans (Ohtsubo et al.  2005 , 
 2011 ) (Fig.  13.1b ), which is consistent with reduced expression of  MGAT4A  in 
pancreatic β-cells in type 2 diabetes patients, described above.   

13.3     GnT-IVa-Dependent Glycosylation Regulates 
In Situ Distribution of GLUT2 and Cellular 
Glucose Sensor Function 

 Pathophysiological relevance of GnT-IVa defi ciency in the disease process of type 2 
diabetes has been well elucidated by the studies of GnT-IVa-defi cient mice. GnT-
IVa- defi cient mice were engineered by genetic disruption of  Mgat4a  gene in embry-
onic stem cells using Cre-loxP gene targeting system. GnT-IVa-defi cient mice were 
normal in hematology, immunology, behavior, learning, and fecundity, though they 
showed signs of type 2 diabetes including moderate hyperglycemia, hypoinsu-
linemia, elevation of free fatty acids, triglycerides, ALT and AST in serum chemis-
try, impaired glucose tolerance, hepatic steatosis, and diminished insulin action in 
muscle and adipose tissues (Ohtsubo et al.  2005 ). 

 In in vitro insulin secretion assay, primary isolated normal pancreatic β-cells 
show two peaks of insulin secretion (primary response and secondary response) in 
response to the elevation of extracellular glucose concentration. Primary isolated 
GnT-IVa-defi cient pancreatic β-cells lost the primary response (Ohtsubo et al. 
 2005 ). This insulin secretion pattern resembled that of GLUT2 defi ciency that sug-
gested that GnT-IVa defi ciency impaired the function of GLUT2 in pancreatic 
β-cells. 

 In addition, the analyses of glucose uptake kinetics of primary pancreatic β-cells 
revealed that the affi nity to glucose was not altered and glucose uptake speed was 
signifi cantly reduced (~10 % of wild type) in GnT-IVa-defi cient β-cells (Ohtsubo 
et al.  2005 ), implying that the attenuation of glucose uptake in GnT-IVa-defi cient 
β-cells was attributed to the reduced cell surface expression of GLUT2, but not to 
the impairment of GLUT2 function. This was supported by the analyses of in situ 
distribution of GLUT2. The reduced β-cell surface residency of GLUT2 in GnT-IVa 
defi ciency was detected by fl ow cytometry and confi rmed by immunohistochemis-
try of pancreatic β-cells, indicating that the deposition of GLUT2 in plasma mem-
brane was signifi cantly reduced and the greater part intracellularly sequestered in 
early endosome and lysosome (Ohtsubo et al.  2005 ). 

 Pancreatic β-cells have two glucose sensor molecules, GLUT2 and glucokinase 
(GK), which are rate-limiting molecules in glucose metabolism in β-cells. Under 
normal conditions, the latter predominantly works as a glucose sensor in the insulin 
secretion process in β-cells, whereas the former restrains glucose uptake and 
becomes the limiting step if the cell surface expression level of GLUT2 is lowered 
by 20 % of normal. Indeed, GLUT2-defi cient mice and GLUT2 knockdown mice 
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exhibit impaired glucose-stimulated insulin secretion (Guillam et al.  1997 ,  2000 ; 
Valera et al.  1994 ). 

 GnT-IVa-defi cient β-cells showed reduced branch formation of  N- glycans, the 
majority of which was altered to a bi-antennary structure (Ohtsubo et al.  2005 ). 
These results indicate that GnT-IVa-dependent GLUT2 glycosylation regulates its 
in situ distribution, and the dysglycosylation of GLUT2 impairs glucose sensor 
function in β-cells.  

13.4     Galectin-Glycan Lattices Regulate Cell Surface 
Residency of GLUT2 

 The mechanism of the dysglycosylation-induced intracellular accumulation of 
GLUT2 has not been well elucidated. For explaining the mechanism, two molecular 
functions of the GLUT2  N- glycan were conjectured: (1) GLUT2  N- glycan deter-
mines the destination of the intracellular sorting of newly synthesized GLUT2 pro-
tein, and (2) GLUT2  N- glycan regulates the endocytosis and the cell surface 
residency of GLUT2 protein. These were tested by pulse-chase labeling experi-
ments of primary isolated pancreatic β-cells that revealed that intracellular transport 
of newly synthesized GLUT2 protein is normal and they are transported to the cell 
surface, but cell surface half-life of GLUT2 was signifi cantly shortened in GnT-IVa 
defi ciency (Ohtsubo et al.  2005 ). These results indicate that the GnT-IVa-dependent 
 N- glycan of GLUT2 regulates the stability and residency of GLUT2 protein on the 
cell surface, but not the intracellular sorting system. 

 Moreover, the molecular mechanism of  N- glycan-dependent stabilization of 
GLUT2 protein on the cell surface was discovered. Lectins are a major protein fam-
ily, which recognize and bind to specifi c glycan structures, and play important roles 
in various biological systems. On the cell surface, glycoproteins bind to lectins via 
their glycans and form a lattice structure, and thereby, cell surface glycoproteins are 
organized to exert proper molecular functions (Garner and Baum  2008 ). Galectin-9 
was identifi ed as a lectin associating with GLUT2 in pancreatic β-cells by exploring 
lectins that selectively bind to the Galβ1-4GlcNAc structure, which is a terminal 
moiety of GLUT2  N- glycan branches. Galectin-9 is a member of the galectin family 
that selectively binds to β-galactosides with a relatively weak affi nity and has two 
carbohydrate recognition domains that enable it to work as a cross-linker of multi-
ple glycoproteins bearing β-galactosides. Galectin-9 preferentially binds to tri- and 
tetra-antennary  N- glycan structures bearing β-galactosides, rather than bi-antennary 
structures (Sato et al.  2002 ) that suggest that the glycan-binding specifi city of galec-
tin- 9 determines the molecular interaction between GLUT2 and galectin-9 and con-
sequently controls the cell surface residency of GLUT2. Indeed, the disruption of 
the GLUT2-galectin-9 binding on the β-cell surface, by addition of synthetic glycan 
mimetics (Galβ1-4GlcNAc) to β-cell culture, induced GLUT2 endocytosis and 
diminished cell surface expression levels of GLUT2 (Ohtsubo et al.  2005 ). 
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Collectively, these fi ndings indicate that GnT-IVa produces  N -glycan epitopes on 
GLUT2 that bind to endogenous lectins, including galectin-9, leading to a reduction 
in the rate of GLUT2 endocytosis and thereby maintaining glucose sensor function 
of glucose-stimulated insulin secretion (Fig.  13.2 ).   

13.5      N -Glycosylation Controls Membrane Sub-domain 
Distribution and Glucose Transport Activity of GLUT2 

 It has been well established that the redistribution of GLUT1 among membrane sub- 
domains is associated with cellular glucose transport activity (Barnes et al.  2004 ), 
since GLUT1 associates with stomatin in lipid rafts. Stomatin erythrocyte mem-
brane protein 7.2b is a 31 kDa integral membrane protein residing in lipid rafts and 
controls the function of ion channels and transporters (Lapatsina et al.  2012 ; 
Rungaldier et al.  2013 ). GLUT1 and GLUT2 exhibit a high degree of sequence 
similarity, and their hydropathy plots are virtually superimposable, suggesting these 
proteins are likely to adopt similar global structures within the membrane (Gould 
and Holman  1993 ). These fi ndings imply that the glucose transport activity of 
GLUT2 is also regulated in the same manner. 

Glucose transport activity

Reduced branch formation

GLUT2

N-glycan Galectin-9

Lipid-raft microdomain

Stomatin

(+)

(-)

Galectin-glycan lattice

  Fig. 13.2    GLUT2  N- glycosylation regulates its stability, membrane sub-domain distribution, and 
glucose sensor function. ( Upper ) GLUT2 binds to galectin-9 by using its  N- glycan (lattice forma-
tion) and stably stays in a non-raft domain of pancreatic β-cell surface that enables cells to uptake 
glucose effi ciently. ( Lower ) Reduced  N- glycan branch formation attenuates the binding between 
GLUT2 and galectin-9 that causes the transition of GLUT2 to the lipid raft domain where stomatin 
resides. The glucose transport activity of GLUT2 is inhibited by binding with stomatin in the 
lipid raft domain       
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 Analyses of membrane sub-domain distribution of GLUT2 in primary isolated 
pancreatic β-cells revealed that GLUT2 almost exclusively resides in the non-lipid 
raft microdomain in β-cell membrane (Ohtsubo et al.  2013 ). Furthermore, the 
 disruption of the GLUT2-galectin lattice by genetic inactivation of GnT-IVa, or by 
treatment of pancreatic beta cells with competitive glycan mimetics, induced the 
redistribution of GLUT2 into the lipid raft microdomain that was coincident with 
attenuation of cellular glucose transport activity. Moreover, the disruption of the 
lipid raft microdomain by methyl-β-cyclodextrin treatment released GLUT2 from 
lipid rafts and reactivated cellular glucose transport in GnT-IVa-defi cient β-cells 
(Ohtsubo et al.  2013 ). These results indicate that GLUT2  N- glycosylation is 
involved in membrane sub-domain distribution and glucose transport activity. 

 Experiments of intracellular protein cross-linking of pancreatic β-cells demon-
strated that the disruption of GLUT2-galectin interaction triggered membrane sub- 
domain redistribution and then allowed GLUT2 to associate with stomatin that was 
coincident with the attenuation of the glucose transport activity of GLUT2 (Ohtsubo 
et al.  2013 ). 

 These fi ndings indicate that the lipid raft microdomain residency of GLUT2 
causes the stomatin interaction and thereby suppresses the transport activity of 
GLUT2, further suggesting that the glycosylation-mediated membrane sub-domain 
distribution of GLUT2 is important for the regulation of the glucose sensor function 
for glucose-stimulated insulin secretion of pancreatic β-cells (Fig.  13.2 ).  

13.6     High-Fat Diet-Induced Oxidative Stress Impairs 
Transcriptional Regulation of GnT-IVa and GLUT2 
in β-Cells 

 As described above, the expression of GnT-IVa and GLUT2 is transcriptionally co- 
regulated by HNF-1α and FOXA2, suggesting that the glucose sensor function of 
pancreatic β-cells should be exclusively controlled by these transcription factors. 
However, the physiological mechanism of how metabolic fl uctuation compromises 
transcriptional regulation and, subsequently, the glucose sensor function of β-cells 
are not well understood. 

 Mouse receiving a high-fat diet is a useful animal model recapitulating the onset 
of diet- and obesity-associated type 2 diabetes, exhibiting attenuation of glucose- 
stimulated insulin secretion and the development of insulin resistance (Reimer and 
Ahrén  2002 ; Winzell and Ahrén  2004 ). Pancreatic β-cells of high-fat diet- 
administrated mice showed diminished GLUT2 glycosylation and intracellular 
accumulation of GLUT2 associated with reduced expression of GnT-IVa and 
GLUT2 (Ohtsubo et al.  2005 ,  2011 ; Reimer and Ahrén  2002 ). This was coincident 
with reduced histone acetylation levels of  MGAT4A  and  GLUT2  gene promoters, 
refl ecting inactivation of these genes (Ohtsubo et al.  2011 ). These results were 
consistent with decreased promoter binding of HNF-1α and FOXA2, which are 
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capable of recruiting histone acetyltransferase, in high-fat diet-administrated mice 
β-cells. These results indicate that impairment of the glucose sensor function 
of β-cells is deeply associated with defective HNF-1α- and FOXA2-mediated 
transcription. In agreement with this, the analyses of in situ distribution of these 
transcription factors revealed that they localize in the nucleus under normal condi-
tions, whereas they localize in cytoplasm in high-fat diet-administrated mouse 
β-cells (Ohtsubo et al.  2011 ). 

 Furthermore, studies of in vitro β-cell cultures demonstrated that the nuclear 
exclusion of these transcription factors is induced by treatment with free fatty acid 
that is ameliorated by treatment with antioxidants (Ohtsubo et al.  2011 ). These fi nd-
ings indicate that the elevation of the free fatty acid level, associated with high-fat 
diet administration, induces oxidative stress in β-cell that evokes the nuclear exclu-
sion of HNF-1α and FOXA2 and thereby diminishes  MGAT4A  and  GLUT2  expres-
sion and impairs glucose sensor function.  

13.7     Replenishment of GnT-IVa in β-Cells Ameliorates 
High-Fat Diet-Induced Type 2 Diabetes 

 Based on the above fi ndings, it has been speculated that the supplementation of 
GnT-IVa activity in pancreatic β-cells improves their glucose sensor function and 
maintains partial glucose homeostasis under high-fat diet conditions. Engineering 
and characterizing of transgenic mice overexpressing GnT-IVa in pancreatic 
β-cells demonstrated that their pancreatic β-cells maintained multiantennary 
N-glycan synthesis and cell surface residency of GLUT2 that allowed β-cell glu-
cose-stimulated insulin secretion (GSIS) under high-fat diet conditions. This con-
tributed to improving long-term blood glucose levels, glucose tolerance, and 
peripheral insulin sensitivities (Ohtsubo et al.  2011 ). These fi ndings indicate that 
the maintenance of the GnT-IVa-dependent protein glycosylation prevents high-fat 
diet-induced β-cell dysfunction and ameliorates the onset of type 2 diabetes, fur-
ther suggesting that glycans and glycosyltransferases can be targeted by antidia-
betic drugs in the future.     
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    Chapter 14   
 Macrophages Govern Ganglioside GM3 
Expression in Adipocytes to Regulate 
Adipogenesis and Insulin Signaling 
in Homeostatic and Pathogenic Conditions 

             Jin-ichi     Inokuchi     

    Abstract     GM3 ganglioside has been known to participate in insulin signaling by 
regulating the association of insulin receptor in caveolae microdomains (lipid rafts), 
which is essential to execute complete insulin metabolic signaling in adipocytes. We 
propose a working hypothesis: “metabolic disorders, such as type 2 diabetes, are 
membrane microdomain disorders caused by the aberrant expression of ganglio-
sides.” Here, we demonstrate the molecular pathogenesis of type 2 diabetes and 
insulin resistance focusing on the interaction between insulin receptor and GM3 
ganglioside in adipocytes. In addition, GM3 levels of primary adipocytes are tightly 
maintained by soluble factors secreted from resident macrophages to execute physi-
ological adipogenesis. Thus, GM3 participates not only in the development of the 
state of insulin resistance through the upregulation of GM3 synthesis by proinfl am-
matory cytokines but also functions as a physiological regulatory factor for adipo-
cytes by keeping proper insulin signaling in lipid rafts. The development of novel 
therapeutic strategy termed “membrane microdomain ortho-signaling therapy” is 
expected.  

  Keywords     Adipogenesis   •   Diabetes   •   Ganglioside GM3   •   Glycosphingolipids 
(GSLs)   •   Insulin resistance   •   Metabolic syndrome   •   Lipid rafts   •   Proinfl ammatory 
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14.1         Introduction 

 Glycosphingolipids (GSLs) and their sialic acid-containing derivatives, gangliosides, 
are components of membrane lipids in which the lipid portion is embedded in the 
outer leafl et of the plasma membrane with the sugar chain extending to the extracel-
lular space; the structural features of GSLs affect membrane fl uidity and allow for 
microdomain formation, contributing to cell–cell interaction and receptor- mediated 
signal transduction. We have previously shown that in cultured adipocytes in a state 
of TNFα-induced insulin resistance, removal of GSLs by the inhibition of glucosyl-
ceramide synthase, the fi rst step of the biosynthesis of all of GSLs, results in a nearly 
complete recovery of the insulin receptor signaling (Tagami et al.  2002 ). Studies in 
animal models demonstrate that pharmacological inhibition of GSLs ameliorates 
insulin resistance and prevents some manifestations of metabolic syndrome (Zhao 
et al.  2007 ; Aerts et al  2007 ). Further, we have shown that expression of ganglioside 
GM3, which is the simplest ganglioside species synthesized by GM3 synthase, is 
increased in metabolic diseases (Tagami et al.  2002 ; Sato et al.  2008 ). SAT-I, 
ST3GalV, and ST3GAL5 are abbreviations that are frequently used for this enzyme, 
but ST3GAL5 is recommended for common use (Inokuchi and Uemura  2014 ). GM3 
synthase gene of human and mouse abbreviates    ST3GAL5  and  St3gal5 , respectively. 
 St3gal5  gene expression and GM3 content are upregulated in the visceral adipose 
tissue of obese model animals (Tagami et al.  2002 ) and serum GM3 levels are two-
fold higher in obese patients with type 2 diabetes and/or dyslipidemia (   Sato et al. 
 2008 ), suggesting that GM3 is responsible for insulin metabolic signaling. 

 We have postulated a working hypothesis “insulin resistance as a membrane 
microdomain disorder” (Inokuchi  2010 ,  2011 ,  2014 ) because of the facts that the 
abnormal increase of membrane GM3 in adipocytes, induced by proinfl ammatory 
cytokine TNFα, resulted in the elimination of insulin receptor (IR) from caveolae 
(Kabayama et al.  2005 ,  2007 ). The association of IR in caveolae is essential to 
execute the complete insulin metabolic signaling (Couet et al.  1997 ;    Nystrom 
et al.  1999 ). 

 Visceral adipose tissues are composed of not only adipocytes but also immune 
cells including resident macrophages and T lymphocytes and other types of cells 
(Suganamani and Ogawa  2011 ; Samaan  2011 ; Chalwa et al.  2011 ; Sun et al. 
 2012 ). However, the interplay between adipocytes and the resident macrophages 
upon regulation of GSL expression is not clear. We demonstrated the expression 
of GSLs in adipocytes, and their corresponding synthase genes are maintained by 
soluble factors secreted from resident macrophages under not only infl ammatory 
states but also steady-state physiological conditions. Furthermore, obese  St3gal5 -
defi cient mice fed with high-fat diets are resistant to developing proinfl ammatory 
states in adipose tissues. This review focuses on the connection between the meta-
bolic syndrome and the physiological and pathological implications of GM3 in 
adipose tissues.  
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14.2     GM3 Is an Inducer of Insulin Resistance 

 Insulin elicits a wide variety of biological activities, which can be categorized into 
metabolic and mitogenic actions. The binding of insulin to IR activates IR internal- 
tyrosine kinase activity. The activated tyrosine-phosphorylated IR is able to recruit 
and phosphorylate adaptor proteins such as insulin receptor substrate (IRS). The 
phosphorylated IRS activates PI3-kinase (PI3K). The activated PI3K translocates to 
lipid rafts and converts PIP 2  to PIP 3 , and then PIP 3  recruits PDK1 to phosphorylate 
Akt. The full activation of Akt might require phosphorylation of the secondary site 
by mTORC2 (mTOR complex 2) (Zoncu et al.  2011 ). This IR–IRS–PI3K–Akt sig-
naling cascade is the representative metabolic pathway triggered by insulin, result-
ing in the translocation of glucose transporter 4 (GLUT-4) to the plasma membrane 
to facilitate glucose uptake. 

 When mouse adipocytes were cultured in low concentrations of TNFα which do 
not cause generalized suppression of adipocyte gene expression including IRS-1 
and GLUT-4, interference of insulin action by TNFα occurred (Guo and Donner 
 1996 ). This requires prolonged treatment (at least 72 h), unlike many acute effects 
of this cytokine. The slowness of the effect suggests that insulin resistance in adipo-
cytes treated with 0.1 nM TNFα was accompanied by progressive increases in cel-
lular GM3 content, ST3Gal5 activity, and its mRNA content, indicating that TNFα 
upregulates GM3 synthesis at the transcriptional level in cultured adipocytes 
(Tagami et al.  2002 ; Kabayama et al.  2005 ). On the other hand, ceramide levels 
were transiently increased up to 6 h upon TNFα treatment and returned to normal 
by 24 h. This observation suggests the distinct and independent roles of GM3 and 
ceramides in the development of insulin resistance in adipocytes (Inokuchi  2014 ). 
To elucidate whether the increased GM3 in 3T3-L1 adipocytes treated with TNFα 
is involved in insulin resistance, we used an inhibitor of glucosylceramide syn-
thase, D- threo -1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP) 
(Inokuchi and Radin  1987 ), to deplete cellular glycosphingolipids derived from glu-
cosylceramide. D-PDMP proved able to counteract the TNFα-induced increase of 
GM3 content in adipocytes and completely normalize the TNFα-induced defect in 
tyrosine phosphorylation of IRS-1 in response to insulin stimulation (Fig.  14.1 ) 
(Tagami et al.  2002 ). These fi ndings are supported by the observation that knockout 
mice lacking  St3gal5  exhibit enhanced insulin signaling (Yamashita et al.  2003 ). It 
has been reported that treatment of adipocytes with TNFα induces an increase in the 
serine phosphorylation of IRS-1 (Hotamisligil et al.  1993 ). This phosphorylation is 
an important event since immunoprecipitated IRS-1, which has been serine phos-
phorylated in response to TNFα, is a direct inhibitor of insulin receptor tyrosine 
kinase activity. We have shown that TNFα- induced serine phosphorylation of 
IRS-1 in adipocytes is completely suppressed by inhibition of GM3 biosynthesis 
with D-PDMP treatment, suggesting that the elevated GM3 synthesis induced by 
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TNFα caused the upregulation of serine phosphorylation of IRS-1 (Tagami et al. 
 2002 ). An improved D   -PDMP analog (Zhao et al.  2007 ) and an iminosugar deriva-
tive glucosylceramide synthase inhibitor (Aerts et al.  2007 ) were proven to have 
therapeutic value by oral administration in diabetic rodent models.  

 Diabetic rodent models, Zucker  fa/fa  rat and  ob/ob  mice, produce signifi cant 
levels of TNFα in adipose tissues, and much less expression was seen in the lean 
control animals (Hotamisligil et al.  1993 ). Thus, we were interested in measuring 
the expression of  St3gal5  mRNA in the epididymal fat of these obese diabetic mod-
els. Northern blot analysis of  ST3Gal5  mRNA contents in the adipose tissues from 
these two typical models of insulin resistance exhibited signifi cantly high levels 
compared to their lean counterparts (Fig.  14.2a  upper panel) (Tagami et al.  2002 ). 
Comparison of the mobility of GM3 bands on thin layer chromatography (TLC)    
between the lean animals and  ob/ob  mice and Zucker fatty rats indicates the appear-
ance of GM3 species showing low mobility (more hydrophilic) in both obese and 
diabetic animals (Fig.  14.2a  lower panel).  

 In addition to the analyses of GSLs in  ob/ob  mice and Zucker fatty rats, we fur-
ther asked whether the expression of GM3 is also affected in diet-induced obese 
mice (ref new paper). After feeding for 10 weeks, mean BW of standard diet (SD) 
and high- fat diet (HFD) groups were 31.0 ± 0.6 g and 46.0 ± 0.8 g, respectively. 
Fasted blood glucose levels of SD and HFD groups were 137 mg/dl and 203 mg/dl, 

  Fig. 14.1    TNFα increases the expression of GM3, and prevention of GM3 synthesis reverses TNFα-
induced suppression of insulin signaling in adipocytes (Tagami et al.  2002 ). ( a ) 3T3-L1 adipocytes 
were cultured in maintenance medium without (lanes 1, 2, and 4) or with (lanes 3 and 5) 0.1 nM 
TNFα for 96 h, and in order to deplete GM3, 20 μM D-PDMP was also included (lanes 4 and 5). 
Before insulin stimulation (100 nM for 3 min), cells were starved in serum-free media containing 
0.5 % bovine serum albumin in the absence or presence of TNFα and D-PDMP as above for 8 h. 
Proteins in cell lysates were immunoprecipitated with antiserum to IR and IRS-1, fractionated by 
SDS-PAGE, and transferred to Immobilon-P. Western blot was then proved with anti-phosphotyrosine 
monoclonal antibody, stripped, and reproved with antiserum to IR and IRS- 1. ( b ) 3T3-L1 adipocytes 
were incubated in the absence or presence of TNFα and D-PDMP as in A, and the ganglioside 
fraction was visualized by resorcinol staining on high performance thin layer chromatography (HPTLC)          
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respectively (Nagafuku et al.  2015 ) (Fig.  14.2b ). As shown in Fig.  14.2b , the GM3 
levels in the epididymal fat of the HFD group were threefold higher than that of the 
SD group. In addition, the mRNA levels of  St3gal5  in the HFD group were also 
increased threefold (Nagafuku et al.  2015 ). These results strongly suggest the pos-
sibility that the increased expression of GM3 in abdominal adipose tissues might 
contribute to the induction of malfunction of adipose tissue such as chronic low- 
grade infl ammatory states in obesity.  

14.3     Insulin Resistance as a Membrane Microdomain 
Disorder 

 In a state of insulin resistance induced in adipocytes by TNFα, we presented evidence 
that the transformation to a resistant state may depend on increased ganglio-
side GM3 biosynthesis following upregulated GM3 synthase gene expression. 
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  Fig. 14.2    Elevation of GM3 synthesis in visceral adipose tissues of diabetic model animals. 
( a ) Signifi cant increase of GM3 biosynthesis in the epididymal fats in  ob/ob  mice and Zucker fatty 
rats (Tagami et al  2002 ). Northern blot analysis of  ST3Gal5  mRNA contents in the adipose tissues 
from  ob/ob  mice and Zucker fatty rats of insulin resistance ( upper panel ). Comparison of the 
mobility of GM3 bands on TLC between the lean animals and these two typical models ( lower 
panel ). ( b ) 6-week-old C57BL6 mice were fed HFD for 10 weeks, and their fasted blood glucose 
( left panel ) and GM3 on TLC ( right panel ) were measured (Nagafuku et al.  2015 )       
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Thus, increased GM3 during chronic exposure to TNFα functions as a suppressor of 
insulin signaling (Tagami et al.  2002 ). Since GSLs, including GM3, are important 
components of lipid rafts, we pursued the possibility that increased GM3 levels in 
lipid rafts confer insulin resistance upon TNFα-treated adipocytes. We examined 
GM3–protein interactions occurring within the plasma membrane of living cells by 
performing a cross-linking assay using a photoactivatable radioactive derivative of 
GM3. Adipocytes were preincubated with [ 3 H]GM3(N3) and then irradiated to 
induce cross-linking of GM3. Target proteins were then separated by sodium docyl-
sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and visualized by autora-
diography. A specifi c radioactive band corresponding to the 90-kDa IRβ-subunit was 
immunoprecipitated with anti-IRβ antibodies, confi rming the direct association of 
GM3 and IR. Therefore, we found that IR forms complexes with caveolin-1 and GM3 
independently in 3T3-L1 adipocytes (Kabayama et al.  2007 ). Lipids are asymmetrically 
distributed in the outer and inner leafl ets of plasma membranes. In typical mamma-
lian cells, most acidic phospholipids are located in the inner leafl et, and only acidic 
glycosphingolipids such as sulfatides and gangliosides are in the outer. The binding 
of proteins to lipid membranes is often mediated by electrostatic interactions 
between the proteins’ basic domains and acidic lipids. Gangliosides, which bear 
sialic acid residues, exist ubiquitously in the outer leafl et of the vertebrate plasma 
membrane. GM3 is the most abundant ganglioside and the primary ganglioside 
found in adipocytes (Ohashi  1979 ). GSLs, including gangliosides, are oriented at a 
defi ned angle to the axis of the ceramide (Hakomori  2002 ). In addition, GM3 spon-
taneously forms clusters with its own saturated fatty acyl chains, regardless of any 
repulsion between the negatively charged units in the sugar chains (Sonnino et al. 
 2006 ). Thus, GM3 clusters with other cell surface gangliosides such as glycosphin-
golipid-enriched microdomains (GEM) generate a negatively charged environment 
just above the plasma membrane. Conversely, IR has a sequence in its transmembrane 
domain, homologous among mammals, that allows presentation of the basic amino 
acid lysine (IR944) just above the transmembrane domain. Therefore, during lateral 
diffusion, an electrostatic interaction between the lysine residue at IR944 and the 
GM3 cluster could occur due to their proximity on the plasma membrane. Our live cell 
studies using fl uoresence activated photobleaching (FRAP)    techniques proved a 
mechanism in which the dissociation of the IR-caveolin-1 complex is caused by the 
interaction of a lysine residue, located just above the transmembrane domain in 
IRβ-subunit and the increased GM3 clustered at the cell surface (Kabayama et al. 
 2007 ). Based on this evidence, we propose a mechanism behind the shift of IR from 
the caveolae to the GEM in adipocytes during a state of insulin resistance (Fig.  14.3 ).  

 Reportedly, insulin signaling in the skeletal muscle of  ST3Gal5  KO mice was 
enhanced compared to wild-type B6 mice (Yamashita et al.  2003 ). However, it has 
been recently reported that the inhibition of insulin signaling of C2C12 myotubes 
exposed to saturated fatty acid was not reversed by treatment with a glucosylceramide 
synthase inhibitor (D-PDMP analog) (Chavez et al.  2014 ). Thus, the involvement of 
GM3 in the pathophysiology of insulin resistance in the skeletal muscle requires 
further study. 

 The role of ceramide acyl chain length in insulin signaling was explored by using 
a ceramide synthase 2 (CerS2) null mouse, which is unable to synthesize very long 

J.-i. Inokuchi



225

acyl chain (C22–C24) ceramides (Park et al.  2013 ). In CerS2 null mice, IR and Akt 
phosphorylation in response to insulin was abrogated in the liver. The lack of insulin 
receptor phosphorylation in the liver correlated with its inability to translocate into 
detergent-resistant membranes (DRMs). Moreover, DRMs in CerS2 null mice dis-
played properties signifi cantly different from those in wild-type mice, suggesting 
that the altered sphingolipid acyl chain length directly affects IR translocation to 
lipid rafts and subsequent signaling.  

14.4     GM3 Functions as a Physiological Regulator 
for Insulin Signaling and Adipogenesis 

 Visceral adipose tissue, particularly mesenteric adipose tissue, is important in the 
pathogenesis of metabolic syndrome (Chawla et al.  2011 ; Bays et al.  2008 ; de 
Ferranti and Mozaffarian  2008 ; Xu et al.  2013 ; Matsuzawa  1997 ; Saltiel  2012 ; 

  Fig. 14.3    Proposed mechanism behind the shift of insulin receptors from the caveolae to the 
glycosphingolipid- enriched microdomains (GEM) in adipocytes during a state of insulin resis-
tance. A schematic representation of raft/microdomains comprising caveolae and non-caveolae 
rafts such as GEM. Caveolae and GEM reportedly can be separated by an anti-CAV1 antibody. IR 
may be constitutively resident in caveolae via its binding to the scaffolding domain of CAV1 
through the caveolin-binding domain in its cytoplasmic region. Binding of IR and CAV1 is neces-
sary for successful insulin metabolic signaling. In adipocytes, the localization of IR in the caveolae 
is interrupted by elevated levels of the endogenous ganglioside GM3 during a state of insulin 
resistance induced by TNFα (Kabayama et al.  2005 ,  2007 ). This study has proven a mechanism, at 
least in part, in which the dissociation of the IR/CAV1 complex is caused by the interaction of a 
lysine residue at IR944, located just above the transmembrane domain, and the increased GM3 
clustered at the cell surface       
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Samaan  2011 ; Sorisky et al.  2013 ; Suganamani and Ogawa  2011 ). To investigate the 
fundamental characteristics of mesenteric adipocytes, we established a physiologi-
cally relevant differentiation system of rat mesenteric-stromal vascular cells 
(mSVCs) to mesenteric-visceral adipocytes (mVACs) (Shimizu et al.  2006 ; Sato 
et al.  2008 ). We optimized the insulin concentration at levels comparable to those 
in vivo (0.85 ng/ml) by including physiological concentrations of insulin-like 
growth factor (IGF-1, 200 ng/ml). We found that IGF-1 and insulin worked syner-
gistically, because IGF-1 alone could enhance CCAAT/enhancer binding protein 
alpha (C/EBPα) and adipocyte lipid binding protein (aP2) mRNA expression; how-
ever, IGF-1 could not induce lipid droplet accumulation associated with adipocyte 
maturation without the physiological concentration of insulin. 

 Using this culture system, we have explored the commitment of the resident 
macrophages in mSVCs on physiological adipogenesis. Adipogenesis of SVCs in 
mesenteric adipose tissues was increased following the removal of resident macro-
phages, which was accompanied with enhanced insulin signaling and concomitant 
decrease of GSLs including glucosylceramide, lactosylceramide, and GM3. 
Phosphorylation levels of both IR and IRS-1 after insulin stimulation were increased 
by depleting macrophages and protein level of IR per se was increased in the mSVCs 
(Nagafuku et al.  2015 ) (Fig.  14.4a ).  

 Thus, GSL levels especially GM3 of adipocytes are tightly maintained by solu-
ble factors secreted from resident macrophages to execute physiological adipogen-
esis. In addition, adipogenesis of mouse embryonic fi broblasts (MEFs) prepared 
from  St3gal5  null mice was accelerated with enhanced insulin signaling (Nagafuku 
et al.  2015 ). Thus, there is evidence for the direct involvement of GM3 in adipogenesis 
and insulin signaling in adipose tissues (Fig.  14.4b ). These results demonstrate that 
GM3 levels of preadipocytes and mature adipocytes are tightly maintained by soluble 
factors secreted from resident macrophages to execute physiological adipogenesis 
with proper insulin signaling.  

Fig. 14.4 (continued) without macrophages. Adequate adipogenesis with proper insulin signaling 
in the presence of resident macrophages is shown in the middle, while acceleration of adipogenesis 
with enhanced insulin signaling in the absence of resident macrophages is depicted on the right. 
Phosphorylation levels of both insulin receptor (IR) and insulin receptor substrate-1 (IRS-1) after 
insulin stimulation were dramatically increased, and protein levels of IR per se were increased by 
depleting macrophages (Nagafuku et al.  2015 ). On the other hand, the activation of macrophages 
by proinfl ammatory cytokines suppresses adipogenesis and enhances  St3gal5  gene expression 
which results in the development of the state of insulin resistance (Figs.  14.1 ,  14.2 , and  14.3 ; 
Tagami et al.  2002 ; Inokuchi  2014 ; Nagafuku et al.  2015 ). ( b ) Evidence for the direct involvement 
of GM3 in adipogenesis. MEFs were prepared from E14 embryos of wild-type C57/BL6 mice and 
 St3gal5- defi cient  mice and subjected to adipogenesis. Enhanced adipogenesis of  St3gal5 -defi cient 
MEF which is accompanied with the increased insulin signaling was observed. Phosphorylation 
levels of both IR and IRS-1 after insulin stimulation were increased (Nagafuku et al.  2015 )       
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  Fig. 14.4    Control of homeostatic and pathogenic balance in adipose tissue by ganglioside GM3. 
( a ) Adipogenesis of mesenteric preadipocytes is increased following depletion of resident macro-
phages. The expression of GSLs including GM3 in mesenteric preadipocytes and adipocytes could 
be maintained by soluble factors secreted from resident macrophages to execute physiological 
adipogenesis. Thus, surprisingly primary adipocytes themselves are not capable of making GSLs 
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14.5     Serum GM3 as a New Biomarker 
of Metabolic Syndrome 

 GM3 is the major ganglioside present in serum and is known to be associated with 
serum lipoproteins (Senn et al.  1989 ). We examined a relationship between serum GM3 
levels and adiposity indices, as well as between serum GM3 levels and metabolic risk 
variables (Sato et al.  2008 ). Serum GM3 levels were signifi cantly increased in type 2 
diabetic patients with severe obesity (visceral fat area >200 cm 2 , BMI >30). The GM3 
level was positively correlated with LDL-c (0.403,  P  = 0.012) in type 2 diabetes mellitus, 
but not affected by blood pressure. In addition, high levels of small dense LDL (>10 mg/
dL) were associated with the elevation of GM3. Serum GM3 levels were affected by 
glucose and lipid metabolism abnormalities and by visceral obesity. Small dense LDL is 
reportedly associated with the development of atherosclerosis (Austin et al.  1998 ; 
Tribble et al.  1995 ), and GM3 has been detected in atherosclerotic lesions (Bobryshev 
et al.  1997 ,  2001 ,  2006 ). Thus, our fi ndings provide evidence that GM3 may be a useful 
marker for the management of metabolic syndrome including insulin resistance, as well 
as for the early diagnosis of atherosclerosis. The structural diversity of ceramide species 
is generated by various factors in the N-acyl chains, 1) the length (C16–C24), 2) alpha 
hydroxylation and (3) desaturation, and in the sphingoid bases, (1) d18:1, d18:0 and (2) 
hydroxylation at C4, resulting in a substantial number of potential combinations. We are 
currently performing liquid chromatograhy-mass spectrometry (LC-MS/MS)    analyses 
to identify the GM3 species which are specifi cally involved in metabolic syndrome.  

14.6     Pathogenic Control of Adipocytes 
by the Increased Expression of GM3 

 Adipose tissue macrophages are present in two main subtypes, M1 and M2. A con-
cept of M1/M2 polarization has been developed for macrophages according to pat-
terns of expression of cytokines, surface markers, and metabolic enzymes (Konner 
and Brunning  2011 ). M1 macrophages are potent effector cells that produce infl am-
matory cytokines such as TNFα, IL1-β, and IL-6. In contrast, M2 macrophages are 
present in almost all organs in the body as resident cells under physiological condi-
tions, where they serve to maintain tissue homeostasis (Martinez et al.  2009 ; Zeyda 
and Stulnig  2007 ). These cells exert anti-infl ammatory functions by producing 
IL-10 and arginase I enzyme (Arg1). IL-10 potentiates insulin signaling in adipo-
cytes (Odegaard and Chawla  2011 ; Lumeng et al.  2007 ), and Arg1 reduces nitric 
oxide synthesis and infl ammation via metabolizing arginine to ornithine (Martinez 
et al.  2009 ). Consumption of HFD shifts cytokine expression of murine adipose tis-
sue macrophages from M2- to M1-like patterns by decreasing the expression of 
IL-10 and Arg1 and increasing TNFα and iNOS (Lumeng et al.  2007 ). 

 We found several interesting gene expression profi les in the genes in the epididy-
mal adipose tissue of  ST3Gal5  −/−  mice under the HFD condition but not in the stan-
dard diet condition as follows (Nagafuku et al.  2015 ); proinfl ammatory cytokine 
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TNFα was signifi cantly decreased, and on the other hand, anti-infl ammatory cytokine 
IL-10 was signifi cantly increased compared to the  St3gal5  +/−  mice. The expression 
level of adiponectin was signifi cantly increased but that of atherogenic genes such 
as  PAI-1  and  iNOS  was suppressed. M2 signature genes such as  MGL1  and  Arg1  
tend to increase in  St3gal5 -defi cient mice. In addition, both glucose tolerance test 
(GTT) and insulin tolerance test (ITT) showed signifi cant improvements of insulin 
resistance in the HFD condition. These results indicate the critical involvement of 
GM3 in the development of obesity-induced chronic low-grade infl ammatory states 
and insulin resistance (Fig.  14.5 ) (Nagafuku et al.  2015 ).   
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  Fig. 14.5    A model of how GM3 regulates adipose tissue remodeling during chronic positive 
energy imbalance. Chronic positive energy imbalance (high-fat diet: HFD) leads to obesity, and 
macrophage phenotype may infl uence the mechanism by which adipose tissue expands. During the 
obesity, the mass of adipose tissue increases by hyperplasia and hypertrophy, and the latter is asso-
ciated with the activation of stress signaling. When proinfl ammatory M1 macrophages dominate, 
an inadequate preadipocyte reservoir may exist due to reduced preadipocyte survival, proliferation, 
and/or adipogenic capacity. Energy storage will occur via exaggerated adipose hypertrophy, result-
ing in dysfunctional adipose tissue and contributing to an infl amed, insulin-resistant state. Chronic 
increase of GM3 through the upregulation of  St3gal5  gene by proinfl ammatory cytokines such as 
TNFα and IL-β could participate in the development of insulin resistance (Tagami et al.  2002 ; 
Kabayama et al.  2007 ). In contrast,  St3gal5 -defi cient mice improve insulin action without showing 
a signifi cant impact on diet-induced obesity (Nagafuku et al.  2015 ). Obese  St3gal5 -defi cient mice 
showed anti-infl ammatory M2-like phenotypes in visceral adipose tissue (epididymal fat) 
(Nagafuku et al.  2015 ). Signifi cant increases of  adiponectin  and  interleukin-10  ( IL-10)  compared 
to obese wild-type mice were observed. IL-10 and adiponectin have a crucial role in maintaining 
the insulin sensitivity of adipocytes (Odegaard and Chawla  2011 ; Lumeng et al.  2007 )       
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14.7     Perspective 

 Adipocytes are more than inert energy depots, and adipose tissue is a biologically 
active organ that carries out important physiological processes including energy 
homeostasis and whole-body insulin sensitivity. Dynamic remodeling of the adi-
pose tissue architecture occurs with its expansion. During positive caloric balance, 
the development of metabolic disease is more closely related to how the fat is stored 
through adipocyte hypertrophy versus hyperplasia than simply the amount of fat 
that is stored (Fig.  14.5 ). In the past it was widely hypothesized that inhibitors of 
adipogenesis were potential anti-obesity therapeutics. However, evidence from a 
variety of experiments in mice and humans suggests that inhibitors of adipogenesis 
are a poor choice for amelioration of metabolic disease states because limiting fat 
cell expansion is associated with insulin resistance. As proposed more than a decade 
ago, a failure in adipocyte differentiation can cause type 2 diabetes (Danforth  2000 ), 
and this hypothesis is generally recognized and supported by independent lines of 
investigation in adipocyte biology. 

 Interactions between macrophages and adipose progenitor cells are important to 
consider because they may infl uence the number of preadipocytes and/or their dif-
ferentiation capacity and induce adipose tissue dysfunction by inhibiting overall 
adipogenic capacity (Fig.  14.5 ). The presence of resident and infi ltrating macro-
phages is well documented, and studies in the last decade suggest that these macro-
phages are modulated in conditions of obesity and type 2 diabetes. It is well 
established that the proinfl ammatory TNFα (Torti et al.  1985 ) and IL1-β (Suzawa 
et al.  2003 ) are potent inhibitors of adipocyte differentiation. Of note, it is also 
known that both of these cytokines induce insulin resistance in adipocytes (Stephens 
et al.  1992 ; Jager et al.  2007 ). Moreover, TNFα expression is induced in the adipose 
tissue of obese diabetic rodents (Hotamisligil et al.  1993 ) and humans (Hotamisligil 
et al.  1995 ). It is now largely accepted that TNFα expression in adipose tissue comes 
from macrophages (Weisberg et al.  2003 ). Together, these studies suggest that mac-
rophages in adipose tissue produce TNFα and IL1-β, which can inhibit differentia-
tion of preadipocytes and induce insulin resistance in mature adipocytes. However, 
the ability of these cytokines to induce insulin resistance by inhibiting adipogenesis 
has not been considered. Nonetheless, there are new model systems that clearly sug-
gest that limitations in adipose tissue expansion are associated with insulin resis-
tance. Mice that are very obese but have unlimited adipose tissue expansion are 
metabolically healthy and insulin sensitive (Kim et al.  2007 ). Overall, these studies 
largely support the idea that adequate numbers of preadipocytes that are differentia-
tion competent allow for hyperplastic growth with the effect being to preserve meta-
bolic function in the face of obesity. 

 As described in this review, our research employing GM3 synthase ( St3gal5 ) 
gene and its knockout mice has proved the critical involvement of GM3 in both 
homeostatic adipogenesis by controlling insulin signaling and the development 
of obesity-induced chronic low-grade infl ammatory states and insulin resistance 
in adipose tissue (Figs.  14.3 ,  14.4 ), and  14.5 ). We demonstrated that the expression 
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of GM3 in adipocytes is governed by soluble factors secreted from resident 
macrophages to execute physiological adipogenesis. GM3 expression in adipose 
tissue is further increased under obesity-induced proinfl ammatory conditions, 
and GM3 synthase-defi cient mice fed with a high-fat diet are resistant to devel-
oping insulin resistance and chronic low-grade infl ammatory states. Thus, GM3 
functions as a novel homeostatic and pathogenic mediator in adipose tissue. 

 Our data substantiate a rationale for designing novel therapies against metabolic 
syndrome including type 2 diabetes on inhibition of GM3 biosynthesis for main-
taining homeostatic insulin signaling (Fig.  14.6 ). The extensive reduction of all gan-
gliosides by inhibiting GM3 biosynthesis would carry physical and chemical 
modifi cations of the all-cellular plasma membrane and in particular of lipid 

GM3
synthesis

Low

High 

Soluble factors:
TNFα, IL1-β, etc

Macrophages

Insulin resistance
Hypertrophy

Homeostatic 
adipogenesis
with adequet
insulin signaling

Enhanced
adipogenesis
with upregulated
insulin signaling
Hyperplasia

Adipocyte phenotypes

  Fig. 14.6    GM3 could be a homeostatic and pathogenic mediator for adipogenesis and insulin 
signaling. Interactions between macrophages and adipose progenitor cells are important to con-
sider because they may infl uence the number of preadipocytes and/or their differentiation capacity 
and induce adipose tissue dysfunction by inhibiting overall adipogenic capacity, depicted on 
Figs.  14.4  and  14.5 . Controlling GM3 levels could be considered as a potential therapeutic inter-
vention for restoring healthy adipose tissue function in obese individuals, distinct from weight- 
reduction strategies       
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 microdomains too dramatic to be of therapeutic value. However, we expect that 
such extensive depletion of gangliosides will not be necessarily for the treatment of 
metabolic disorders. When we demonstrated the effectiveness of D-PDMP on the 
impaired insulin signaling in TNFα-treated 3T3-L1 adipocytes, the normalization 
of elevated levels of GM3 was enough to ameliorate the state of insulin resistance 
(Tagami et al.  2002 ).  

 GM3 is dominantly expressed in insulin-responsive organs such as the skeletal 
muscle, liver, and adipose tissue as well as lymphocytes in humans. Thus, the presence 
of GM3-dependent membrane microdomains (lipid rafts) is refl ecting characteris-
tics of individual cells. In order to accumulate gangliosides in lipid rafts, hydrogen 
donor and acceptor and saturated and relatively long acyl chains, compared to those 
of phospholipids, should exist in their ceramide backbone to accelerate their self-
aggregation. The structural diversity of the sphingoid base and the N-acyl chain 
of ceramide moiety is key to defi ning the behavior of gangliosides in living cell 
membranes and the localization of lipid rafts. It is essential to employ “sphingolipido-
mics” to precisely characterize ceramide structures present. A comprehensive study 
to elucidate the functional supra-biomolecular complex consisting of gangliosides 
and functional proteins in microdomains should generate a novel concept and 
strategy of “membrane microdomain ortho-signaling therapy.”     
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    Chapter 15   
  O -Mannosyl Glycan and Muscular Dystrophy 

             Hiroshi     Manya      and     Tamao     Endo    

    Abstract     Glycosylation is an important posttranslational modifi cation in mam-
mals. The major glycans of glycoproteins can be classifi ed into two groups, 
 N -glycans and  O -glycans, according to their glycan-peptide linkage regions. The 
development of sensitive methods for analyses of glycan structures has identifi ed 
 O -mannosyl glycans in mammals; these structures used to be considered specifi c to 
yeast. Originally,  O -mannosyl glycan was considered to be present on a limited 
number of glycoproteins of the brain, nerves, and skeletal muscles, especially on 
α-dystroglycan (α-DG). However, since a clear relationship between  O -mannosyl 
glycan and the pathomechanisms of some congenital muscular dystrophies in 
humans was established, this glyco fi eld has been expanding both biochemically 
and pathologically. Because the glycosylation of α-DG is defective in congenital 
muscular dystrophies that show muscular dystrophy with abnormal neuronal migra-
tion, these disorders are collectively called α-dystroglycanopathy. Although it is 
known that  O -mannosyl glycans have various structures, the biosynthetic pathway 
responsible remains only partially understood. In addition, many new causative 
genes of α-dystroglycanopathies are continuously being found. In this article, we 
discuss the structure, biosynthesis, and pathology of  O -mannosyl glycans.  

  Keywords      O -Glycosylation   •    O -Mannosyl glycan   •   Glycosyltransferase   •   Glycan 
biosynthesis   •   Muscular dystrophy   •   α-Dystroglycanopathy   •   Dystrophin- 
glycoprotein complex  

15.1         Introduction 

  O -Mannosyl glycan is a type of  O -glycan for which the reducing terminal mannose 
is attached to the hydroxyl group of serine (Ser) and threonine (Thr) residues of 
proteins. In 1997, we reported that the major glycans of peripheral nerve 
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α-dystroglycan (α-DG) include  O -mannosyl glycan, which mainly consists of the 
four sugars Siaα2-3Galβ1-4GlcNAcβ1-2Man-Ser/Thr (Chiba et al.  1997 ). We also 
identifi ed the same  O -mannosyl glycans in skeletal muscle α-DG (Sasaki et al. 
 1998 ). These data suggested that the presence of  O -mannosyl glycans on α-DG may 
be important for the functions of α-DG. We attempted to elucidate the mammalian 
biosynthetic pathway of  O -mannosyl glycans and found that three glycosyltrans-
ferases are responsible for the biosynthesis of  O -mannosyl glycan: protein 
 O -mannosyltransferase 1 (POMT 1), POMT2, and protein  O -linked mannose β1,2-
 N -acetylglucosaminyltransferase 1 (POMGNT1) (Takahashi et al.  2001 ; Yoshida 
et al.  2001 ; Manya et al.  2004 ). POMT1 and POMT2 transfer Man to Ser/Thr resi-
dues, whereas POMGNT1 sequentially catalyzes the synthesis of GlcNAcβ1-2Man 
linkage. During our studies, we found that mutations in the  POMGNT1  gene are 
causative in muscle-eye- brain disease (MEB) (Yoshida et al.  2001 ). Furthermore, it 
has been reported that the  POMT1  and  POMT2  genes are responsible for Walker-
Warburg syndrome (WWS) (Beltran-Valero De Bernabe et al.  2002 ; van Reeuwijk 
et al.  2005 ; Manya et al.  2008 ). MEB and WWS are autosomal recessive disorders 
characterized by congenital muscular dystrophies with neuronal migration disor-
ders. A defect in  O -mannosyl glycan of α-DG was also observed in the brain and 
skeletal muscle of MEB and WWS patients (Yoshida et al.  2001 ; Muntoni et al. 
 2002 ; Endo  2005 ). Based on these pioneer fi ndings, many researchers entered 
this fi eld, and it is now known that the aberrant glycosylation of α-DG is the 
 primary cause of some forms of congenital muscular dystrophy, so-called 
α-dystroglycanopathy (Table  15.1  and Fig.  15.1 ) (Endo  2005 ).

    After we reported the presence of  O -mannosyl glycan Siaα2-3Galβ1-4GlcNAcβ1- 
2Man-Ser/Thr on α-DG (Chiba et al.  1997 ), ensuing studies revealed various struc-
tures in  O -mannosyl glycans, such as mannose branching and peripheral structures 
(Fig.  15.2 ). GlcNAcβ1-2Man, GlcNAcβ1-6Man, GlcNAcβ1-4Man, and Man-6- 
phosphodiester have been found as branching linkage on mannose residues (Chiba 
et al.  1997 ; Inamori et al.  2003 ,  2004 ; Kaneko et al.  2003 ; Yoshida-Moriguchi et al. 
 2010 ), and HNK-1 (Dwyer et al.  2012 ; Morise et al.  2014 ), Le x  (Smalheiser et al. 
 1998 ), and the repeat of -3GlcAβ1-3Xylα1- have been reported as peripheral struc-
tures (Inamori et al.  2012 ). In particular, the repetitive GlcA-Xyl structure and Man-
6- phosphodiester linkage are unique in  O -mannosyl glycans. Furthermore, it has 
been suggested that both the GlcA-Xyl repeat and phosphodiester linkage are 
required for the laminin-binding activity of α-DG (Yoshida-Moriguchi et al.  2010 ; 
Inamori et al.  2012 ). Recent reports have also demonstrated that several new pro-
teins, which were previously identifi ed as causative gene products for 
α-dystroglycanopathies, are involved in  O -mannosyl glycan biosynthesis. Therefore, 
it is possible that the biosynthetic mechanisms of diverse  O -mannosyl glycan 
 structures are strictly regulated by an elaborate system.  

 In this review, we describe the biosynthetic mechanism of  O -mannosyl glycans 
in mammals and also discuss the relationship between α-dystroglycanopathies and 
the glycobiology of protein  O -mannosylation.  
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15.2     The Dystrophin-Glycoprotein Complex 
and α-Dystroglycanopathy 

15.2.1     α-Dystroglycanopathy 

 Muscular dystrophies are genetic diseases that cause progressive muscle weakness 
and wasting, and α-dystroglycanopathies are autosomal recessive disorders charac-
terized by congenital muscular dystrophies with neuronal migration disorders (Endo 
 2005 ). In particular, an  O -mannosyl glycan defect of α-DG was observed in the 
brain and skeletal muscle of α-dystroglycanopathy patients (Muntoni et al.  2002 ; 
Endo  2005 ). To date, approximately 18 genes have been reported as causative for 

          Table 15.1    Summary of genes responsible for α-dystroglycanopathies   

 Gene  Protein function  Clinical phenotype (former) a   Database  Section 

  POMT1    O -Man transferase  MDDGA1, B1, C1 (WWS)  MIM607423   15.3.2  
  POMT2    O -Man transferase  MDDGA2, B2, C2 (WWS)  MIM607439   15.3.2  
  POMGNT1   β1,2-GlcNAc transferase  MDDGA3, B3, C3 (MEB)  MIM606822   15.3.3  
  LARGE   β1,3-GlcA, α1,3-Xyl 

transferase 
 MDDGA6, B6 (MDC1D)  MIM603590   15.3.4  

  B3GNT1   β1,3-GlcNAc transferase  MDDGA13 (WWS)  MIM605517   15.3.4  
  DAG1   α, β-dystroglycan  MDDGC9 (LGMD2P)  MIM128239   15.3.4  
  GTDC2   β1,4-GlcNAc transferase  MDDGA8 (WWS)  MIM614828   15.3.5  
  B3GALNT2   β1,3-GalNAc transferase  MDDGA11 (WWS)  MIM610194   15.3.5  
  SGK196    O -Man kinase (POMK)  MDDGA12 (WWS)  MIM615247   15.3.5  
  FKTN   Unknown  MDDGA4, B4, C4 (FCMD)  MIM607440   15.3.7  
  FKRP   Unknown  MDDGA5, B5, C5 

(LGMD2I, MDC1C) 
 MIM606596   15.3.7  

  TMEM5   Unknown  MDDGA10  MIM605862   15.3.7  
  DPM1   Dol-P-Man synthase  CDG-Ie  MIM603503   15.3.8  
  DPM2   Dol-P-Man synthase  CDG-Iu  MIM603564   15.3.8  
  DPM3   Dol-P-Man synthase  CDG-Io  MIM605951   15.3.8  
  DOLK   Dol-kinase  CDG-Im  MIM610746   15.3.8  
  GMPPB   GDP-Man 

pyrophosphorylase 
 MDDGA14, B14, C14 
(LGMD) 

 MIM615320   15.3.8  

  ISPD   Unknown  MDDGA7 (WWS)  MIM614631   15.3.8  

   a These syndromes with cerebral ocular and muscular dystrophy are attributed to the abnormal 
glycosylation of α-dystroglycan and are now designated as muscular dystrophy- dystroglycanopathy 
(MDDG) types A (congenital with brain and eye anomalies), B (congenital with mental retarda-
tion), and C (autosomal recessive limb-girdle muscular dystrophies). The former names were 
 WWS  Walker-Warburg syndrome,  MEB  muscle-eye-brain disease,  MDC  congenital muscular dys-
trophy type, and  LGMD  limb-girdle muscular dystrophy type.  CDG  is a congenital disorder of 
glycosylation  

15 O-Mannosyl Glycan and Muscular Dystrophy



  Fig. 15.1    Molecular organization of the dystrophin-glycoprotein complex in sarcolemma.  α-DG  
α-dystroglycan,  β-DG  β-dystroglycan,  DYS  dystrophin,  SGs  sarcoglycans,  LG  laminin globular 
domain. α-DG is an extracellular peripheral membrane glycoprotein that is anchored to the cell 
membrane by binding to a transmembrane glycoprotein, β-DG. The α-DG-β-DG complex is 
thought to stabilize the plasma membrane by acting as an axis through which the extracellular 
matrix is tightly linked to the cytoskeleton because α-DG strongly binds to extracellular matrix 
proteins containing laminin globular domains, such as laminin, and because the cytoplasmic 
domain of β-DG interacts with DYS, which in turn binds to the actin cytoskeleton. α-DG is heavily 
glycosylated, and its sugars play a role in binding to laminin. The α-DG-β-DG complex also asso-
ciates with the SGs that are the gene products of different muscular dystrophies. Defects in laminin 
or DYS also cause other muscular dystrophies       

  Fig. 15.2    Proposed  O -mannosyl glycans in mammals.  Fuc  fucose,  Gal  galactose,  GalNAc 
N -acetylgalactosamine,  GlcA  glucuronic acid,  GlcNAc N -acetylglucosamine,  Man  mannose,  Sia  
sialic acid, and  Xyl  xylose.  Dotted boxes  indicate the branched linkages of  O -mannosylglycans       
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the abnormal  O -mannosylation of α-DG (Table  15.1 ). The severity of the clinical 
manifestations of α-dystroglycanopathy is partly correlated with the genotype of the 
responsible gene. However, even when the causative gene is the same, it is known 
that the clinical manifestations have a broad spectrum, from the severe type that 
results in fatality with brain malformation in early childhood to the milder form that 
presents as adult-onset limb-girdle muscular dystrophy without brain malformation 
(Godfrey et al.  2007 ; Stalnaker et al.  2011 ). It should be emphasized that there are 
many α-dystroglycanopathies for which the causative genes have not yet been iden-
tifi ed. It is clear that other causative genes are present in uncharacterized patients 
and that a molecular diagnosis of each patient is necessary to gain an improved 
understanding of the pathology of α-dystroglycanopathy.  

15.2.2      O -Mannosyl Glycan on α-DG 

 In skeletal muscle, α-DG is a component of the dystrophin-glycoprotein complex, 
which acts as a transmembrane linker between the extracellular matrix and intracel-
lular cytoskeleton (Fig.  15.1 ) (Michele and Campbell  2003 ). This linker is thought 
to stabilize the sarcolemma, which is subjected to the strenuous activity of skeletal 
muscle.  O -Mannosyl glycans of α-DG play a role in binding to extracellular matrix 
components and synaptic molecules such as laminin, agrin, perlecan, neurexin, 
pikachurin, and slit (Ervasti and Campbell  1993 ; Bowe et al.  1994 ; Gee et al.  1994 ; 
Chiba et al.  1997 ; Peng et al.  1998 ; Talts et al.  1999 ; Sugita et al.  2001 ; Sato et al. 
 2008 ; Wright et al.  2012 ). The failure of α-DG to bind to these ligands because of a 
defect in α-DG glycosylation is thought to interrupt the normal muscular function 
and migration of neurons in the developing brain (Michele and Campbell  2003 ; 
Endo  2005 ). These ligand proteins have common laminin globular (LG) domains, 
which are important for binding to α-DG (Talts et al.  1999 ). LG domains are known 
to function in cell adherence, cell migration, intracellular signaling, and cell differ-
entiation by binding to various glycoproteins, glycolipids, and proteoglycans (Tisi 
et al.  2000 ).  

15.2.3     Ligand Proteins for α-DG 

 Laminin is a trimeric protein consisting of α, β, and γ subunits. Because several 
isoforms exist as trimers of the α, β, and γ subunits, various combinations of these 
subunits could be formed; indeed, more than 15 trimeric isoforms have been identi-
fi ed thus far (Golbert et al.  2011 ). The laminin α2 chain contains a LG domain and 
is a major subunit of muscle laminin; it is a causative gene product for congenital 
muscular dystrophy 1A (MDC1A) (Yamada et al.  1996 ; Gawlik and Durbeej  2011 ). 
It has been reported that the presence of the GlcA-Xyl repeating structure on α-DG 
is required for interaction with laminin, as shown in Figs.  15.1  and  15.2  (Inamori 
et al.  2012 ). 

15 O-Mannosyl Glycan and Muscular Dystrophy
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 Agrin is a heparan sulfate proteoglycan that induces the formation of postsynap-
tic specializations at the neuromuscular junction (NMJ) (Gautam et al.  1996 ). α-DG 
is known to serve as an agrin receptor, thereby potentially regulating agrin-induced 
acetylcholine receptor clustering at the NMJ (Gee et al.  1994 ). Perlecan is a heparan 
sulfate proteoglycan in the basement membrane surrounding skeletal muscle fi bers 
that is known to be a multifunctional extracellular matrix molecule; it interacts with 
other molecules, such as laminin and α-DG, to form the basement membrane and 
the NMJ (Peng et al.  1998 ; Henry et al.  2001 ). Furthermore, perlecan interacts with 
various growth factors, such as fi broblast growth factor (FGF), and receptors related 
to the regulation of intracellular signaling (Arikawa-Hirasawa et al.  1999 ). 

 Neurexins are cell-surface proteins specifi c to neurons and are mostly located on 
the presynaptic membrane (Sudhof  2008 ). Three genes encode neurexins 
(neurexin-1, neurexin-2, and neurexin-3) and are transcribed into two isoforms: 
α-neurexin (1α, 2α, and 3α) with a long chain and β-neurexin (1β, 2β, and 3β) with 
a short chain. Furthermore, there are more than 1,000 splicing variants (Tabuchi and 
Sudhof  2002 ). Although neurexins are involved in synapse construction and the 
release of neurotransmitters (Sudhof  2008 ), the signifi cance of the relationship 
between neurexin and DG is still unclear. 

 Pikachurin co-localizes with α-DG at ribbon synapses and plays a crucial role in 
the formation of the photoreceptor ribbon synapse (Sudhof  2008 ; Kanagawa et al. 
 2010 ). Slit and its receptor ROBO were identifi ed as axon-guidance molecules and 
function as a repulsive cue in preventing axons from migrating to inappropriate 
locations during the assembly of the nervous system. It has been reported that the 
binding of α-DG and slit is required for the proper localization of slit, suggesting an 
important role for α-DG as a determination factor for axon-guidance cues in the 
mammalian nervous system (Wright et al.  2012 ). 

 Further studies are necessary to elucidate the role of α-DG glycans in the binding 
and recognition between α-DG and these ligands. It is noteworthy that the apparent 
molecular weight of α-DG (e.g., 156 kDa in skeletal muscle, 120 kDa in brain, and 
140 kDa in cardiac muscle) varies among different tissues, presumably according to 
glycosylation status. Many common structural features and tissue-specifi c differ-
ences in glycosylation have been elucidated through the characterization of α-DG 
purifi ed from different tissues, as described below (Ervasti et al.  1997 ; Kuga 
et al.  2012 ). Different glycoforms of α-DG may have unique or variable functions 
in different tissues.   

15.3     Biosynthesis of  O -Mannosyl Glycan 

15.3.1     Structure and Biosynthetic Pathway 

 The biosynthesis of  O -mannosyl glycan is initiated by the transfer of Man to Ser/
Thr residues by POMT1/2 (Fig.  15.3 ) (Manya et al.  2004 ). As shown in Figs.  15.2  
and  15.3 , three mannose-linkage structures (GlcNAcβ1-2Man, GlcNAcβ1-4Man, 
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and GlcNAcβ1-6Man) exist in  O -mannosyl glycans (Chiba et al.  1997 ; Inamori 
et al.  2003 ,  2004 ; Kaneko et al.  2003 ; Yoshida-Moriguchi et al.  2013 ). The 
GlcNAcβ1-2Man linkage was fi rst identifi ed in skeletal muscle, peripheral nerve, 
and brain α-DG as part of the main structure Siaα2-3Galβ1-4GlcNAcβ1-2Man-
Ser/Thr and is formed by the action of POMGNT1 (Takahashi et al.  2001 ; 
Yoshida et al.  2001 ). The GlcNAcβ1-6Man linkage was identifi ed in brain tissue 
only as a GlcNAcβ1-2(GlcNAcβ1-6)Man branching structure formed by β1,6- N  - 
acetylglucosaminyltransferase-IX (GnT-IX), which is specifi cally expressed in the 
brain (Inamori et al.  2003 ; Kaneko et al.  2003 ). In addition, the formation of 
GlcNAcβ1-6Man by GnT-IX requires the presence of the GlcNAcβ1-2Man 

  Fig. 15.3    Possible biosynthetic pathway of  O -mannosylglycan in mammals.  Fuc  fucose,  Gal  
galactose,  GalNAc N -acetylgalactosamine,  GlcA  glucuronic acid,  GlcNAc N -acetylglucosamine, 
 Man  mannose,  Sia  sialic acid,  Xyl  xylose,  POMT  protein  O -mannosyltransferase,  POMGNT1  protein 
 O -linked mannose β-1,2- N -acetylglucosaminyltransferase 1,  LARGE  acetylglucosaminyltransferase- 
like,  BGNT1  β1,3- N -acetylglucosaminyltransferase 1,  GTDC2  glycosyltransferase-like domain-
containing protein 2,  B3GALNT2  β1,3- N  - acetylgalactosaminyltransferase 2,  SGK196  protein 
kinase-like protein SGK196,  GnT-IX (VB)  α-1,6-mannosyl-glycoprotein β-1,6- N -acetylgluco-
saminyltransferase IX (VB),  FKTN  fukutin,  FKRP  fukutin-related protein,  TMEM5  transmem-
brane protein 5,  DPM  dolichol-phosphate- mannose synthase,  DOLK  dolichol kinase,  GMPPB  
GDP-mannose pyrophosphorylase B,  MPDU1  mannose-phosphate-dolichol utilization defect 1, 
 ISPD  isoprenoid synthase domain-containing protein,  Β4GALT  β-1,4-galactosyltransferase,  SIAT  
β-2,3-sialyltransferase,  GLCAT  β-1,3- glucuronyltransferase,  HNK1ST  HNK-1 sulfotransferase, and 
 FUT9  α-1,3-fucosyltransferase. The causative gene products for α-dystroglycanopathies are 
underlined. Non-causative gene products for α-dystroglycanopathies are shown in  italics        
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structure (Inamori et al.  2004 ). It has been reported that GnT-IX is associated with 
the HNK-1 structure on the 2,6-branched  O -mannosyl glycan of receptor protein 
tyrosine phosphatase β/tyrosine phosphatase receptor type Ζ1 (RPTPβ/PTPRΖ1), 
which is an important regulator of remyelination in the brain (Kanekiyo et al.  2013 ; 
Morise et al.  2014 ). Peripheral structures are synthesized by galactosyltransferases 
(GALTs), sialyltransferases (SIATs), glucuronyltransferases (GLCATs), sulfotrans-
ferase (HNK1ST), and α1,3-fucosyltransferase-9 (FUT9), which comprise a series 
of Golgi-resident glycosyltransferases (Kaneko et al.  1999 ; Sasaki et al.  2004 ; 
Nakagawa et al.  2012 ; Morise et al.  2014 ; Terayama et al.  1997 ; Seiki et al.  1999 ; 
Bakker et al.  1997 ; Kudo et al.  2007 ).  

 The GlcNAcβ1-4Man and Man-6-phosphodiester linkages were identifi ed 
from recombinant α-DG expressed in HEK293T cells (Yoshida-Moriguchi et al. 
 2010 ), and the GlcNAcβ1-4Man linkage was found to be formed by 
glycosyltransferase- like domain-containing 2 (GTDC2) (Manzini et al.  2012 ; Jae 
et al.  2013 ; Ogawa et al.  2013 ; Yoshida-Moriguchi et al.  2013 ). GalNAc is trans-
ferred to GlcNAcβ1- 4Man by β1,3- N -acetylgalactosaminyltransferase 2 
(B3GALNT2), forming the GalNAcβ1-3GlcNAc linkage (Jae et al.  2013 ; Stevens 
et al.  2013 ; Yoshida- Moriguchi et al.  2013 ). Furthermore, glycosylation-specifi c 
kinase 196 (SGK196, protein  O -mannose kinase; POMK) transfers a phosphate 
group to the C6 position of the mannose of GalNAcβ1-3GlcNAcβ1-4Man to 
form the GalNAcβ1-3GlcNAcβ1- 4(phosphate-6)Man structure (Jae et al.  2013 ; 
Yoshida-Moriguchi et al.  2013 ). Although the GlcA-Xyl repeating structure 
attached to the phosphodiester linkage on the Man-6 position is considered to be 
required for laminin binding, unidentifi ed molecules may also be present between 
the GlcA-Xyl repeat and Man-6- phosphate, and little is known about the actual 
structure of the post-phosphoryl modifi cation (Yoshida-Moriguchi et al.  2010 ). 
The GlcA-Xyl repeat is elongated by like- acetylglucosaminyltransferase 
(LARGE) (Inamori et al.  2012 ). LARGE2, a paralog of LARGE, catalyzes the 
same glycosylation reactions as LARGE and exhibits xylosyltransferase and 
glucuronyltransferase activities to form the  GlcA-Xyl repeat (Ashikov et al. 
 2013 ; Inamori et al.  2013 ). 

 It is currently unknown whether the 2,4-substituted  O -mannose structure 
GlcNAcβ1-2(GlcNAcβ1-4)Man can be formed (Yoshida-Moriguchi et al.  2013 ), 
although it is clear that a defect of POMGNT1 causes an insuffi ciency of laminin 
binding (Yoshida et al.  2001 ; Kanagawa et al.  2009 ; Miyagoe-Suzuki et al.  2009 ), 
likely because of defective post-phosphoryl modifi cation, which suggests that the 
2-substituted  O -mannose structure is required for post-phosphoryl modifi cation. 
However, the role of the GlcNAcβ1-2Man linkage in the post-phosphoryl modifi ca-
tion remains unclear. Future studies are necessary to clarify the regulatory mecha-
nism for the formation of the  O -mannosyl branching structure. 

 Details regarding the functions of the causative gene products for the 
α-dystroglycanopathies listed in Table  15.1  and their roles in the biosynthetic path-
way of  O -mannosyl glycans are described below.  
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15.3.2        Protein  O -Mannosyl Transferase (POMT) 

 POMT1 and POMT2 catalyze the initial step of  O -mannosyl glycan biosynthesis, 
that is, the transfer of a mannosyl residue from dolichol-phosphate-mannose (Dol-
P- Man) to Ser/Thr residues of certain proteins (Manya et al.  2004 ).  O -Mannosylation 
is an essential protein modifi cation that is evolutionarily conserved from eukaryotes 
to mycobacteria (VanderVen et al.  2005 ; Lommel and Strahl  2009 ), and it is 
essential for maintaining cell shape and integrity (Gentzsch and Tanner  1996 ) and 
contributes to the quality control of proteins in the yeast endoplasmic reticulum 
(ER) (Harty et al.  2001 ; Nakatsukasa et al.  2004 ; Xu et al.  2013 ). Reduced levels of 
protein  O -mannosyltransferases in  Drosophila melanogaster  were reported to result 
in defects in embryonic muscle development (Ichimiya et al.  2004 ; Lyalin et al. 
 2006 ; Haines et al.  2007 ; Ueyama et al.  2010 ), and  pomt1  deletion in mice resulted 
in embryonic lethality (Willer et al.  2004 ). Recently, we also demonstrated that 
 O -mannosyltransferase is required for muscle development in zebrafi sh (Avsar-Ban 
et al.  2010 ). 

 The genes encoding protein  O -mannosyltransferases have been characterized in 
the yeast  Saccharomyces cerevisiae  and constitute the  pmt  family;  S. cerevisiae  pos-
sesses six  pmt  homologues ( Scpmt1–6 ) (Strahl-Bolsinger et al.  1999 ). In  D. melano-
gaster , zebrafi sh, and mammals (human, mouse, and rat), two homologues ( POMT1  
and  POMT2 ) have been identifi ed (Willer et al.  2002 ,  2004 ; Ichimiya et al.  2004 ; 
Manya et al.  2004 ,  2006 ; Avsar-Ban et al.  2010 ).  POMT1  and  POMT2  are classifi ed 
as  pmt4  and  pmt2 , respectively, in  D. melanogaster , zebrafi sh, and mammals 
(Girrbach and Strahl  2003 ). 

 POMT1 and POMT2 are located in the ER membrane (Akasaka-Manya et al. 
 2006 ; Manya et al.  2010 ). In humans, the transferase activity requires the formation 
of a POMT1 and POMT2 heterocomplex; cotransfection of POMT1 and POMT2 
upregulates POMT activity in cultured cells, whereas the expression of only one of 
these proteins does not (Manya et al.  2004 ; Akasaka-Manya et al.  2006 ). Because 
the POMT1-POMT2 complex does not form in a mixture of membrane fractions 
from POMT1-transfected cells and POMT2-transfected cells, the complex may 
form during the synthesis of POMT1 and POMT2 in the ER (Manya et al.  2004 ; 
Akasaka-Manya et al.  2006 ). 

 Scpmt1 has been proposed to consist of seven transmembrane helices (Strahl- 
Bolsinger and Scheinost  1999 ). The Scpmt1  N -terminus and loops 2, 4, and 6 are 
located in the cytoplasm, and the  C -terminus and loops 1, 3, and 5 are located in the 
ER lumen. Two hydrophilic regions (loops 5 and 1) are important for enzymatic 
activity (Strahl-Bolsinger and Scheinost  1999 ; Girrbach et al.  2000 ; Girrbach and 
Strahl  2003 ). We recently constructed models in which human hPOMT1 and 
hPOMT2 have seven- and nine-transmembrane helices, respectively, and in which 
the  C -termini and loops 1, 3, and 5 are located in the ER lumen (Manya et al.  2010 ). 
The loop 5 regions of both hPOMT1 and hPOMT2 have amino acid sequences simi-
lar to those of the catalytic domains of Scpmt1 (Manya et al.  2010 ), suggesting that 
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loop 5 may be the catalytic domain of hPOMT1 and hPOMT2. Because the 
 N -glycosylation sites are found in loop 5, it is possible that these  N -glycans contrib-
ute to the hydrophilicity and affect the folding of the catalytic domain. The fi nding 
that the removal of  N -glycans from either hPOMT1 or hPOMT2 inhibits POMT 
activity suggests that loop 5 is required for the correct folding of the catalytic center 
in the POMT1-POMT2 complex (Manya et al.  2010 ). Further studies are necessary 
to elucidate the exact catalytic domains and the signifi cance of complex formation 
for enzymatic activity. 

 It has been reported that individual Scpmts have different specifi cities for protein 
substrates (Lehle et al.  2006 ), suggesting the presence of certain sequences required 
for recognition by Scpmts. However, such sequence specifi city has not yet been 
identifi ed (Hutzler et al.  2007 ). Nonetheless, because  O -mannosyl glycans were 
detected in a limited number of proteins and because the mucin-like domain of 
α-DG is highly glycosylated (Brancaccio et al.  1995 ; Yamada et al.  1996 ; Brancaccio 
et al.  1997 ; Chiba et al.  1997 ; Kanagawa et al.  2004 ),  O -mannosylation in mammals 
may require a specifi c sequence. To elucidate the regulation of  O -mannosylation, it 
is important to determine whether there is a preferential amino acid sequence for 
this modifi cation. To address this question, we synthesized a series of peptides that 
fully covered the mucin-like domain of α-DG and then examined whether these 
peptides acted as acceptors for protein  O -mannosylation. Two similar peptide 
sequences, corresponding to residues 401–420 and 336–355, were strongly man-
nosylated by POMT (Manya et al.  2007 ). Because the positions of the Pro and Thr 
residues in the two peptides were very similar, we proposed that IxPT(P/x)
TxPxxxxPTx(T/x)xx is the preferential amino acid sequence for mammalian 
 O -mannosylation. A BLAST search for proteins with this sequence revealed only 
α-DG, suggesting that the primary  O -mannosylated protein is α-DG. In the man-
nosylated peptide corresponding to residues 401–420, Thr414 was found to be most 
prominently modifi ed by  O -mannosylation, with  O -mannosylation occurring 
sequentially rather than at random. Furthermore, pre-mannosylated (T414Man)-
peptide 401–420 was found to be a more effective acceptor than peptide 401–420 
(Manya et al.  2007 ), indicating that the mannosylation of Thr414 leads to effective 
subsequent  O -mannosylation. Therefore, α-DG appears to be a prominent acceptor 
of  O -mannosylation in vitro. In addition, another group suggested that the upstream 
region of the α-DG mucin domain is required for the regulation of  O -mannosylation 
in vivo (Breloy et al.  2008 ).  

15.3.3      Protein  O -Mannose β1,2-N - 
Acetylglucosaminyltransferase 1 (POMGNT1) 

 POMGNT1 catalyzes the formation of GlcNAcβ1-2Man by transferring GlcNAc 
from a uridine diphosphate GlcNAc (UDP-GlcNAc) to an  O -mannose of glycopro-
teins (Takahashi et al.  2001 ). The human  POMGNT1  gene was cloned from a cDNA 
sequence homologous to human β1,2- N -acetylglucosaminyltransferase I (GnT-I). 
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Although the overall amino acid sequence identity of POMGNT1 and GnT-I was 
only 23.2 %, the predicted catalytic domains of the two proteins are highly homolo-
gous. POMGNT1 and GnT-I are typical type II membrane proteins that are local-
ized in the Golgi apparatus, and both of them form GlcNAcβ1-2Man linkages. A 
difference is that POMGNT1 catalyzes GlcNAcβ1-2Man linkage in  O -mannosyl 
glycans but not in  N -glycans, whereas GnT-I catalyzes the same linkage in  N -glycans 
but not in  O -mannosyl glycans (Takahashi et al.  2001 ). 

 Human POMGNT1 is composed of 660 amino acids and four domains: an 
N-terminal cytoplasmic tail, a transmembrane domain, a stem domain, and a cata-
lytic domain (Akasaka-Manya et al.  2004 ). Because the stem domain of POMGNT1 
has low homology with that of GnT-I and because the deletion of 298 amino acids 
from the  N -terminus, including the stem domain of POMGNT1, did not affect the 
activity of POMGNT1, the function of the stem domain is still unknown. 

 We previously established assay methods for POMGNT1 activity using a syn-
thetic mannosyl peptide (Man-peptide) derived from the α-DG sequence as an accep-
tor substrate. POMGNT1 recognizes Man-peptide and benzyl-α- D -mannose as an 
acceptor (Takahashi et al.  2001 ; Manya et al.  2008 ; Akasaka-Manya et al.  2011 ) but 
not free mannose,  p -nitrophenyl-α- D -mannose, or mannose-2- aminobenzamide 
(Takahashi et al.  2001 ). For POMGNT1 to recognize a mannosyl peptide, three or 
more amino acid residues are required (Akasaka-Manya et al.  2011 ). Because the 
amino acid sequence of mannosyl peptides affects the activity of POMGNT1, the 
amino acid sequence may be a determinant of effi cient GlcNAc elongation.  

15.3.4        Acetylglucosaminyltransferase-Like (LARGE) 
and β1,3- N -Acetylglucosaminyltransferase 1 (B3GNT1) 

 The novel glycosaminoglycan-like disaccharide repetitive structure [-3GlcAβ1- 
3Xylα1-] n  attached to α-DG is synthesized by LARGE and is required for laminin 
binding to α-DG (Figs.  15.1  and  15.3 ) (Inamori et al.  2012 ). Human LARGE is 
composed of 756 amino acids and four domains: an N-terminal transmembrane 
domain, a coiled-coil domain, an α1,3-Xyl transferase domain, and an β1,3-GlcA 
transferase domain (Inamori et al.  2012 ). LARGE transfers Xyl and GlcA from 
UDP-Xyl and UDP-GlcA via two catalytic domains and elongates the Xyl-GlcA 
repeating structure. It has been reported that overexpression of LARGE leads to the 
hyperglycosylation of α-DG in cultured cells (Barresi et al.  2004 ). Although it is 
reasonable that overexpression of LARGE can recover the glycosylation and 
laminin- binding activity of α-DG in LARGE-defi cient cells, it has been demon-
strated that LARGE overexpression is also effective in FKTN- and POMGNT1- 
defi cient cells derived from FCMD and MEB patients, respectively (Barresi et al. 
 2004 ). Furthermore, the adeno-associated virus-mediated overexpression of 
LARGE was shown to rescue α-DG function in FKRP-mutant mice (Vannoy et al. 
 2014 ). By contrast, the transgenic expression of LARGE in another dystrophic 
mouse model with an FKRP mutation resulted in a worsening of muscle pathology 
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(Whitmore et al.  2014 ). The reason for the discrepancy between these studies is 
unclear at present. Because the GlcA-Xyl repeat of α-DG is a tunable scaffold for 
extracellular matrix proteins (Goddeeris et al.  2013 ), optimal levels of LARGE 
expression may be required to achieve the expected functions of LARGE. 

 LARGE is known to be involved in the processing of the N-terminal domain of 
α-DG by furin, and this processing is necessary for α-DG maturation (Kanagawa 
et al.  2004 ). Physical interaction between LARGE and α-DG is required for α-DG 
glycosylation by LARGE, and the processing of α-DG occurs after glycosylation 
(Kanagawa et al.  2004 ). It is notable that the α-DG protein itself is important for 
interacting with LARGE. A  DAG1  mutation, the 575C-T transition resulting in a 
Thr192-to-Met substitution (T192M), was identifi ed in a Turkish woman with limb- 
girdle muscular dystrophy-dystroglycanopathy (MDDGC9, Table  15.1 ) (Hara et al. 
 2011 ). This mutation (T192M) in  DAG1  reduces the interaction of α-DG with 
LARGE and leads to the defective glycosylation (GlcA-Xyl repeat formation) of 
α-DG. Therefore, although DAG1 is not a glycosylation-related molecule, it is 
included in the list of causative genes for α-dystroglycanopathies (Table  15.1 ). 

 B3GNT1 is known to synthesize poly- N -acetyllactosamine (LacNAc) [-4GlcNAcβ1-
3Galβ1-] n  repeats in conjunction with B4GALT1 (Yu et al.  2001 ). In α-DG glycosyl-
ation, B3GNT1 was shown to form a complex with LARGE and synthesize 
laminin-binding glycans (Bao et al.  2009 ). However, the glycan structures synthesized 
by the B3GNT1/LARGE complex were not identifi ed accurately. This study also 
demonstrated that the defect in B3GNT1 reduced levels of laminin- binding glycans 
and increased cell migration and tumor formation by cancer cell lines. Recently, 
mutations in  B3GNT1  were identifi ed in WWS patients (Shaheen et al.  2013 ).  

15.3.5        Glycosyltransferase-Like Domain-Containing 
Protein 2/Protein  O -Mannose β1,4-N - 
Acetylglucosaminyltransferase 2 (GTDC2/POMGNT2), 
β1,3- N -Acetylgalactosaminyltransferase 2 
(B3GALNT2), and Protein Kinase-Like Protein 
SGK196/Protein  O -Mannose Kinase (SGK196/POMK) 

 As described above, α-DG (recombinant protein expressed in HEK293T cells and 
Cos7 cells) has a 4-substituted  O -mannose and 6- O -phosphorylated  O -mannose 
structure, GalNAcβ1-3GlcNAcβ1-4(P-6)Man (Fig.  15.2 ) (Yoshida-Moriguchi et al. 
 2010 ; Yagi et al.  2013 ), and it was assumed that an unknown modifi cation, includ-
ing a phosphodiester bond formation on 6- O -phosphoryl mannose, is required for 
laminin binding (Yoshida-Moriguchi et al.  2010 ). This phosphodiester linkage for-
mation on α-DG is decreased in skeletal muscle from α-dystroglycanopathy patients 
(Yoshida-Moriguchi et al.  2010 ); however, little is known about the phosphodiester- 
linked glycan structure and the mechanism of post-phosphorylation modifi cation. 

 As shown in Fig.  15.3 , GTDC2 catalyzes the formation of GlcNAcβ1-
4Man by transferring GlcNAc from a UDP-GlcNAc to an  O -mannose residue 
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(Yoshida- Moriguchi et al.  2013 ). Next, B3GALNT2 catalyzes the formation of 
GalNAcβ1-3GlcNAcβ1- 4Man by transferring GalNAc from UDP-GalNAc to 
GlcNAcβ1-4Man (Yoshida-Moriguchi et al.  2013 ). Notably,  GTDC2 -knock-out 
mice die within the fi rst day of birth and exhibit abnormal neuronal migration 
(Yagi et al.  2013 ). SGK196 then transfers a phosphate group from adenosine 
5′-triphosphate (ATP) to the C6 position of the mannose of GalNAcβ1-3GlcNAcβ1-
4Man and forms the GalNAcβ1-3GlcNAcβ1-4(P-6)Man structure (Yoshida-Moriguchi 
et al.  2013 ). These three enzymes were reported to be localized in the ER, and the 
GalNAcβ1-3GlcNAcβ1- 4Man structure was demonstrated to be required for phos-
phorylation by SGK196 (Yoshida-Moriguchi et al.  2013 ). Thus, a series of reactions 
from  O -mannosylation by POMT1/2 to phosphorylation by SGK196 may occur in 
the ER. Therefore, the 2,4-branched structure, GlcNAcβ1-2(GlcNAcβ1-4)Man, 
may not be formed because POMGNT1 is localized in the Golgi apparatus (Xiong 
et al.  2006 ). However, as  POMGNT1- knock-out mice show defects of the phospho-
diester linkage (Kuga et al.  2012 ) and laminin-binding activity (Miyagoe-Suzuki 
et al.  2009 ), further examination is required to elucidate the regulatory mechanism 
for the branching of  O -mannose residues.  

15.3.6      β1,6- N -Acetylglucosaminyltransferase-IX/VB 
( GnT-IX/GnT-VB) 

 The 2,6-substituted  O -mannose structure GlcNAcβ1-2(GlcNAcβ1-6)Man has been 
identifi ed from brain α-DG in mammals (Fig.  15.2 ). The GlcNAcβ1-6Man linkage 
is formed by GnT-IX (GnT-VB), which is specifi cally expressed in the brain 
(Inamori et al.  2003 ; Kaneko et al.  2003 ). Because the transfer of GlcNAc to the 
 O -mannose C6 position by GnT-IX requires the GlcNAcβ1-2Man structure (Inamori 
et al.  2004 ), POMGNT1 must function before GnT-IX in  O -mannosyl glycan bio-
synthesis (Fig.  15.3 ). GnT-IX is involved in forming the HNK-1 structure of the 
2,6-branched  O -mannosyl glycan on RPTPβ and is also involved in oligodendrocyte 
survival and in the recovery from demyelinating disease (Kanekiyo et al.  2013 ). 
Recently, we demonstrated that  O -mannose-linked HNK-1 in the brain is mainly 
carried by phosphacan, a secreted splicing variant of RPTPβ (Morise et al.  2014 ). 
However, there is no report regarding the relationship between  GnT-IX  mutation and 
α-dystroglycanopathy in the brain.  

15.3.7        Fukutin (FKTN), Fukutin-Related Protein (FKRP), 
and Transmembrane Protein 5 (TMEM5) 

 FKTN, FKRP, and TMEM5 are type II membrane proteins that have some similari-
ties to glycosyltransferases and may be involved in post-phosphoryl modifi cations. 
However, their exact functions have yet to be determined (Table  15.1 ). 
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  FKTN  is responsible for Fukuyama congenital muscular dystrophy (FCMD) 
(Kobayashi et al.  1998 ).  FKRP  was identifi ed by its homology to  FKTN  and is 
responsible for MDC1C or limb-girdle muscular dystrophy 2I (LGMD2I) 
(Brockington et al.  2001a ,  b ). FKTN and FKRP are localized in the Golgi apparatus, 
and FKTN and FKRP are assumed to belong to the nucleotidyltransferase fold pro-
tein superfamily based on their sequence information. FKTN and FKRP also have 
similarities to enzymes involved in phosphorylcholine modifi cation or the manno-
sylphosphorylation of polysaccharides in bacteria and yeast. FKTN interacts with 
POMGNT1 and co-localizes with POMGNT1 in the Golgi apparatus (Xiong et al. 
 2006 ). The transmembrane region of FKTN mediates its localization to the Golgi 
apparatus and participates in the interaction with POMGNT1. This interaction is 
supported by the observation that a missense Y371C mutation found in FCMD 
patients causes FKTN to remain in the ER and also causes the mislocalization of 
POMGNT1 to the ER (Xiong et al.  2006 ). Most FCMD patients have a 3-kb ret-
rotransposal insertion in the 3′ noncoding region of  FKTN  (Kobayashi et al.  1998 ). 
In transgenic  FKTN  knock-in mouse brains containing this retrotransposal inser-
tion, POMGNT1 activity was reduced, and hypoglycosylated α-DG was detected 
(Xiong et al.  2006 ). These results suggest that FKTN regulates the cellular localiza-
tion and enzymatic activity of POMGNT1. In addition to FKTN, FKRP is also 
involved in the post-phosphoryl modifi cation of  O -mannose residues on α-DG 
(Kuga et al.  2012 ). However, it remains unclear how defects in FKTN or FKRP 
result in the loss of post-phosphoryl modifi cation. 

 Mutations in  TMEM5  cause severe cobblestone lissencephaly, consistent with 
α-dystroglycanopathy (Vuillaumier-Barrot et al.  2012 ; Jae et al.  2013 ). TMEM5 is 
similar to exostosin (EXT1), which is a glycosyltransferase for heparan sulfate pro-
teoglycan synthesis (Vuillaumier-Barrot et al.  2012 ), but the function of TMEM5 is 
not clear.  

15.3.8           Synthases of Sugar Donors 

 Dol-P-Man is used as a sugar donor substrate in the Man transfer catalyzed by 
POMT1/2 (Fig.  15.3 ). Dol-P-Man is synthesized by Dol-P-Man synthase (DPM), 
which consists of three subunits, DPM1, DPM2, and DPM3, in the ER (Maeda et al. 
 2000 ). DPM1 is a catalytic subunit located at the cytoplasmic face and binds to the 
C-terminal region of DPM3. DPM2 and DPM3 have two transmembrane domains, 
and both the N- and C-terminal tails are oriented toward the cytoplasmic face. Thus, 
DPM2 and DPM3 tether DPM1 to the ER membrane. Because DPM is involved in 
 N -glycosylation,  O -mannosylation,  C -mannosylation, and the glycosylphosphati-
dylinositol (GPI)-anchor, it is presumed that defects in DPM would affect a wide 
range of glycosylations and cause severe disorders. In fact, the genes encoding the 
three DPM subunits are known to be causative genes for the congenital disorders of 
glycosylation type I (CDG-I) (Lefeber et al.  2009 ; Barone et al.  2012 ; Yang et al. 
 2013 ), and CDGs caused by  DPM  mutations are associated with a high incidence of 
α-dystroglycanopathy.  O -Mannosylation is selectively inhibited by a mutation in 
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 DPM3  (Lefeber et al.  2009 ), suggesting that the amount of Dol-P-Man may not be 
the only regulatory factor for  O -mannosylation in the ER. 

 In addition to DPM, several enzymes involved in the synthesis of Dol-P-Man 
have been found to be causative for α-dystroglycanopathy (Table  15.1  and Fig.  15.3 ). 
Dolichol kinase (DOLK) catalyzes the CTP-mediated phosphorylation of dolichol 
at the cytosolic leafl et of the ER membrane. Mutations in  DOLK  cause CDG-Im 
(DOLK-CDG) in association with α-dystroglycanopathy (Lefeber et al.  2011 ). 
Patients show a combined  N -glycosylation and  O -mannosylation defi ciency with 
dilated cardiomyopathy. GDP-Man pyrophosphorylase B (GMPPB) catalyzes the 
conversion of mannose-1-phosphate and GTP to GDP-Man, which is required for 
the synthesis Dol-P-Man, as described above. Mutations in  GMPPB  cause LGMD- 
type α-dystroglycanopathy (Carss et al.  2013 ), and a defect in  O -mannosylation and 
not  N -glycosylation was observed in cases of mutant  GMPPB . Finally, the compli-
cated relationships between the amount of available Dol-P-Man and  N -glycosylation 
and  O -mannosylation are briefl y discussed. Man-P-dolichol utilization defect 1 
(MPDU1) was identifi ed to be related to Dol-P-Man synthesis, and mutations in 
 MPDU1  cause CDG-If because of abnormal  N -glycosylation (Kranz et al.  2001 ; 
Schenk et al.  2001 ). The clinical phenotype of CDG-If does not include muscular 
dystrophy or dilated cardiomyopathy, suggesting that  O -mannosylation defi ciency 
may not occur in this disease despite the reduced availability of Dol-P-Man in the 
ER. These data suggest that the amount of available Dol-P-Man affects the 
 O -mannosylation of α-DG, but an unknown mechanism may regulate the usage of 
Dol-P-Man for protein glycosylation in the ER. 

 Isoprenoid synthase domain-containing protein (ISPD) belongs to the family of 
4-diphosphocytidyl-2-C-methyl- D -erythritol (CDP-ME) synthases (Table  15.1 ) in 
the 2- C -methyl- D -erythritol 4-phosphate pathway (the MEP pathway, the biosyn-
thetic pathway producing isoprenoid precursors from pyruvic acid and glyceralde-
hyde 3 phosphoric acid). It was reported that mutations in  ISPD  cause WWS 
(Roscioli et al.  2012 ; Willer et al.  2012 ) and decrease in POMT activity (Willer 
et al.  2012 ). However, the mechanism of POMT activity reduction by  ISPD  muta-
tions and the function of ISPD are still not known. Although isoprenoid serves as a 
precursor to cholesterol and dolichol, the MEP pathway is not essential in mam-
mals. Conversely, the mevalonate pathway, which incorporates isoprenoid from 
acetyl CoA, is essential in mammals. Based on homology information, ISPD may 
be involved in the synthesis of sugar donor substrates, such as CDP-sugar or 
dolichol- sugar. Nonetheless, further studies are necessary to elucidate the function 
of ISPD.  

15.3.9      O -Mannosylated Proteins 

 Although  O -mannosylation is a major protein modifi cation in yeast, as described in 
Section  15.3.2 , it remains unclear how many proteins, in addition to α-DG, are actu-
ally  O -mannosylated in mammals. Recent studies have demonstrated that various 
proteins are modifi ed by  O -mannosyl glycans, including CD24, RPTPβ (see Section 
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 15.3.6 ), neurofascin 186, lecticans, cadherins, and plexins (Bleckmann et al.  2009 ; 
Dwyer et al.  2012 ; Pacharra et al.  2012 ,  2013 ; Vester-Christensen et al.  2013 ; 
Lommel et al.  2013 ). The  O -mannosyl modifi cations of these proteins were mainly 
detected by glycoproteomic analyses using mass spectrometry. However, the 
detailed structures and roles of  O -mannosyl glycans in each core protein are not 
well understood. 

 CD24 is a GPI-anchored protein that is mainly expressed in B cells and is known 
as a cell adhesion molecule (Bleckmann et al.  2009 ). Neurofascin is a type I mem-
brane protein and has two isoforms, neurofascin 155 and 186; it belongs to the L1 
family of the immunoglobulin superfamily and is involved in axon subcellular tar-
geting and synapse formation during neural development by interaction with 
neuron- glia cell adhesion molecule (NgCAM). Neurofascin 155 is known to pro-
mote neurite outgrowth, whereas neurofascin 186 inhibits neuronal adhesion 
(Pacharra et al.  2012 ). Lecticans constitute a family of chondroitin sulfate proteo-
glycans, including aggrecan, brevican, neurocan, and versican and are a major 
component of the neuronal extracellular matrix in the mammalian brain (Pacharra 
et al.  2013 ). The cadherin superfamily is a large group including 80 or more pro-
teins with an extracellular cadherin (EC) domain. Vester-Christensen et al. sug-
gested that  cadherins are the major carrier proteins of  O -mannosyl glycans 
(Vester-Christensen et al.  2013 ). Cadherins are type I transmembrane proteins and 
play important roles in calcium-dependent cell adhesion. Classic cadherins are 
involved in the formation and maintenance of cellular binding within tissues 
through the formation of adherens junctions. Lommel et al. reported that the 
 O -mannosylation of epithelial (E)-cadherin is crucial for the formation of adherens 
junctions (Lommel et al.  2013 ). Plexins are type I membrane proteins that are 
receptor proteins for semaphorins, serving as axon-guidance cues for neural devel-
opment (Vester-Christensen et al.  2013 ). 

 These  O -mannosylated proteins appear to be highly important for the develop-
ment of the nervous system through cell adherence at the cell surface or the extra-
cellular matrix. The roles of  O -mannosyl glycans for these adhesion and recognition 
molecules will be elucidated in the future.   

15.4     Conclusion 

 The glycan analysis of α-DG revealed the presence of  O -mannosyl glycans in mam-
mals, and several glycosyltransferases catalyzing the processing of these glycans 
were found to cause some forms of congenital muscular dystrophy. These muscular 
dystrophies are termed α-dystroglycanopathies. The common hypoglycosylation of 
α-DG has been shown to greatly reduce its affi nity for extracellular matrix compo-
nents, such as laminin, thereby disrupting the α-DG-extracellular matrix linkage 
and leading to membrane fragility. Recently, this glyco fi eld has greatly expanded 
because of the combined effects of improvements in glycan analysis technology and 
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gene sequencing technology. Glycan analysis has revealed various new  O -mannosyl 
glycan structures, whereas gene sequencing has identifi ed many new causative 
genes for uncharacterized α-dystroglycanopathies. Both technologies are coopera-
tively enabling great advances in this research fi eld. Because the hypoglycosylation 
of α-DG is a common feature in α-dystroglycanopathies, α-DG must be a potential 
target for new glycotherapeutic strategies for these diseases in the future.     
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    Chapter 16   
 Glycans and Chronic Obstructive Pulmonary 
Disease (COPD) 

             Congxiao     Gao      and     Naoyuki     Taniguchi    

    Abstract     Chronic obstructive pulmonary disease (COPD) is a progressive lung 
disease that is not fully reversible. It is a highly complex disease in which both 
environmental exposures and host susceptibility factors should be taken into account 
in its management. Although cigarette smoke is the major risk factor, quitting 
smoking does not fully repress the airway infl ammation and restore the lost lung 
function. 

 Our group has been interested in changes of glycosylation that are related to the 
onset, biomarker discovery, and therapeutics of various diseases including cancer, 
neurological disease, and lifestyle-related diseases such as diabetes and COPD. 
Changes in glycan structures are currently being used as cancer biomarkers, 
prognosis, and treatment of the disease. Cell membrane receptors are mostly 
glycosylated proteins, and changes in the glycosylation of them have been shown to 
lead to dysfunctions in downstream signal pathways. 

 In COPD, alterations in the structures of glycans lead to dysfunction of receptor 
molecules, such as the TGF-beta receptor related to the upregulation of protease, or 
result in alterations in mucus viscosity and impaired mucociliary transport. Although 
the mechanism responsible for this is still uncertain, it appears that environmental 
factors such as exposure to cigarette smoke, pollutants, and bacteria/virus infections 
can alter the activities of some glycosyltransferases, and eventually this may affect 
the synthesis of glycans. Here, we show some glycan structures and relationships 
with the pathogenesis of COPD. Our recent fi ndings regarding the role of glycan 
changes in COPD may open a new avenue toward the development of glycothera-
peutics for COPD.  
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16.1         Introduction 

    Chronic obstructive pulmonary disease (COPD) is characterized by two main 
changes, namely, emphysema with damaged alveolar walls and irregularly shaped 
air sacs and chronic bronchitis, in which a thick mucus secretion occurs in the 
airways. Long-term cigarette smoking is the leading cause of COPD, but air 
pollutants, chemicals, or dust can also contribute to this disease. Aging, poor 
nutrition, or, rarely, a genetic condition called alpha-1 antitrypsin (AAT) defi ciency 
may play roles in the development and progression of COPD. The prevalence of 
COPD is increasing drastically, and 210 million people have now been diagnosed 
with COPD worldwide, and many people may have the disease but are not even 
aware of it. According to a WHO report, COPD will be the world’s third leading 
cause of mortality by the year 2030. Subjects with COPD often show a progressive 
limitation in airfl ow that is progressive and not fully reversible, and viral and 
bacterial infections including endemic infl uenza can easily evoke “exacerbation,” in 
which lung function deteriorates and is life-threatening. Currently, through smoking 
cessation, the application of bronchodilators and steroids can, to some extent, make 
patients feel better and remain more active; there are no suitable drugs available that 
are capable of reducing the progression of the disease or the mortality associated 
with it or the incidence of exacerbations. 

 Many attempts are being made to explore the nature of COPD from different 
perspectives, such as early lung development, the balance between protease and 
antiprotease, and oxidative stress. In this review, we discuss the pathology associ-
ated with COPD from the viewpoint of glycan changes.  

16.2     Core Fucose Structure 

 Core fucose is a glycan structure in which a fucose unit is bound to the innermost 
GlcNAc residue of  N -linked oligosaccharides on a glycoprotein via an    α1,6 linkage 
(Fig.  16.1 ). The biosynthesis of core fucose is catalyzed by GDP- L -Fuc: N -acetyl-β- 
d   -glucosaminide α1,6 fucosyltransferase (FUT8), which is distinct from other 
members of the fucosyltransferase family of enzymes. The  Fut8  gene can be found 
in most mammalian tissues, and a relatively high expression was confi rmed in 
the rat intestine, brain, and lung. Furthermore, the prevalence of core fucose struc-
tures can change, depending on the physiological and pathological conditions. 
Accumulating evidence indicates that the core fucose structure can affect protein 
function. For example, the deletion of this glycan structure has been reported to 
improve the binding of IgG1 to FcγRIIIA, resulting in an enhanced antibody- 
dependent cellular cytotoxicity activity (Shinkawa et al.  2003 ).  

 A study using alpha 1,6-fucosyltransferase knockout mice ( Fut8  −/− ) (Wang et al. 
 2005 ) has suggested that core fucose structures play important roles in maintaining 
physiological homeostasis. Up to 70 % of these mice died within the fi rst 3 postnatal 
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days, and the growth of the survivors was severely retarded. Moreover, core fucose 
deletion results in changes in both pulmonary structures and respiratory function. 
From postnatal day 7, the diameters of the pulmonary alveoli of  Fut8  −/−  mice were 
increased signifi cantly, compared with those in wild-type ones. Lung compliance, 
respiratory volume, and rate in the resting condition increased, while ventilator 
responses to systemic hypoxia (12 % O 2 ) or hypercapnia (5 % CO 2 /21 % O 2 ) were 
signifi cantly attenuated in  Fut8  −/−  mice. These data suggest that the core fucose 
structure is one of the essential components for regulating lung proliferation and 
differentiation after birth.    In addition, a real-time PCR analysis, focusing on genes 
related to the integrity of the lung extracellular matrix, showed that the expression 
levels of matrix metalloproteinase (MMP)-9, MMP-12, and MMP-13 and McolB (a 
mouse orthologue of human MMP-1) were increased. As MMPs are proteinases 
that have important role in the normal turnover of ECM components, their overex-
pression is consistent with the fragmentation and signifi cantly reduced the number 
of elastic fi bers observed from  Fut8  −/−  mice. These changes, interestingly, can be 
partly attributed to impaired TGF-β1 signaling. When the TGF-β1 receptor lacks 
α1,6 fucosylation, its activation and signaling are perturbed. Along with the TGF-β1 
receptor, several receptor-mediated signaling pathways, including epidermal growth 
factor (EGF) receptors (Wang et al.  2006 ) and integrins (Zhao et al.  2006 ), have 
been reported to be downregulated as a result of a loss of core fucosylation. On the 
other hand, although the precise mechanism for this is unclear, the expression level 
of the vascular endothelial cell growth factor receptor (VEGFR)-2, which is involved 
in the production of ceramide and alveolar cell apoptosis, was signifi cantly sup-
pressed. Thus the reduction of VEGFR-2 can be considered to be another cause of 
the alveolar destruction in  Fut8  −/−  mice (Wang et al.  2009 ). 

 Although cigarette smoking (CS) is considered to be the primary risk factor for 
COPD, there is abundant evidence to suggest that the disease state results from 

  Fig. 16.1    The biosynthesis 
of core fucose is catalyzed by 
α1,6 fucosyltransferase 
(FUT8)       
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interactions between environment exposure and host factors, such as genetic 
 predisposition, age, nutrients, lung growth, etc. A unique study using  Fut8  hetero-
zygous knockout mice ( Fut8  +/− ) indicates that an abnormal level of core fucose is 
involved in the pathogenesis of CS-induced COPD (Gao et al.  2012 ). From the early 
days of CS exposure, a marked decrease in FUT8 activity was found in both  Fut8  +/−  
and wild-type mice, and the lowered enzyme activity level persisted throughout the 
whole CS exposure period. Consistent with the large number of infl ammatory cells 
that accumulated in the lung, both the transcription level and activity level of 
MMP-9 were increased. As a result, rapid ECM destruction of the  Fut8   +/−   mice 
lungs occurred and emphysematous lesions developed in the alveolar wall after only 
a 3-month exposure to CS. On the other hand, 6 months are generally required in the 
case of wild-type mice. Coincident with the  Fut8  −/−  mice, the increase in proteinase 
levels can be partly attributed to a lack of control of the TGF-β1 receptor-Smad2- 
MMP signal pathway. In addition, the gene expression profi le of the Smad family 
by RT-PCR analyses revealed that the expression of the Smad7 gene was increased 
to a greater extent in CS-exposed  Fut8   +/−   mice. Smad7 is considered to be an inhibi-
tor of the phosphorylation of Smad2 and therefore would have the ability to indi-
rectly enhance the CS-evoked production of MMP. Meanwhile, core fucosylation 
has been reported to be decreased in smokers, as evidenced by an analysis of plasma 
 N -glycans obtained from 1914 individuals (Knezevic et al.  2010 ), which is consis-
tent with the results obtained from  Fut8   +/−   mice. 

 It was found that the lung function designated as a faster annual decline of forced 
expiratory volume % in one second (FEV1) was signifi cantly related to a lower Fut8 
activity. Moreover, patients with a lower Fut8 activity experienced exacerbations 
more frequently (Kamio et al.  2012 ). A polymorphism within  Fut8  gene is recently 
reported to be associated with emphysema (Yamada et al.  2011 ). These data strongly 
indicate the existence of an association between reduced Fut8 activity and the pro-
gression of COPD.  

16.3     Sialyl-Lewis X  Structure 

 In addition to the destruction of the lung parenchyma, the hypersecretion of mucus, 
which results in the obstruction of the small airways, is another typical pathological 
change associated with COPD. The amount and structure of oligosaccharides in 
secretory mucins appear to be different, depending on the type and stage of the lung 
disease, whereas such changes can lead to alterations in the viscosity of the mucus, 
resulting in mucociliary transport being perturbed. Previous studies have shown that 
glycan structures containing fucose and sialic acid, such as sialyl-Lewis X  
[NeuAcα2,3Galβ1,4(Fucα2,3)GlcNAc] on a mucin, exhibited a characteristic rise 
in bronchoalveolar lavage in patients with bronchitis, and the viscosity of MUC5Ac, 
a major type of secretory mucin in the airway, was increased signifi cantly. As most 
of these oligosaccharides are important components of receptors that recognize 
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viruses and bacteria, an increase in the levels of mucins that contain such glycans 
would result in the capture pathogens being facilitated. High levels of expressions 
of glycosyltransferases related to the synthesis of sialyl-Lewis X  are one of the poten-
tial mechanisms. To address this issue, an approach using NCI-H292 cells, a tra-
cheal epithelial cell line, was undertaken. TNF-α stimulation appeared to upregulate 
the level of expression of fucosyltransferase 3 (FUT3), ST3 β-galactoside α-2,3- 
sialyltransferase 4 (hST3GALIX), and C2/4GnT(β1,6 GlcNAc-transferase), which 
partly contributes to the phosphatidylinositol-specifi c phospholipase C signaling 
pathways (Ishibashi et al.  2005 ). In addition, several elegant studies have demon-
strated that mucins that contain a large number of O-glycans and in which the degree 
in sulfation, sialylation, and fucosylation changed were related to airway infl amma-
tion. Furthermore, it was also reported that a high density of the sialyl-Lewis X  epit-
ope on the mucin was favorable for the pathogenesis of  Pseudomonas aeruginosa  
(Xia et al.  2005 ). It is well known that the selectins are a family of cell-adhesion 
proteins that mediate the rolling of leukocytes on activated endothelial cells through 
the recognition of the sialyl-Lewis x . A novel glycobiology-based therapy designated 
as GMI-1070 is E-selectin antagonist and targets vaso-occlusive crisis of the patients 
(Chang et al.  2010 ). This type of drug is a very promising one as a glycan- based 
therapeutics in the future.  

16.4     Glycosaminoglycans 

 Glycosaminoglycans (GAG) are linear unbranched polysaccharides, consisting of 
repeating disaccharide units in which the sugar composition, linkage, and modifi ca-
tion are varied. GAG can be classifi ed into four groups: hyaluronan (HA), chondroi-
tin sulfate (CS)/dermatan sulfate, keratan sulfate (KS), and heparan sulfate/heparin. 
In the lung, GAGs are important components of the extracellular matrix, distributed 
in the interstice, subepithelial tissues, bronchial walls, and airway secretions. They 
are considered to be essential for normal lung function and in responding to an 
injury by regulating signal transduction events. KS is reported to be the most abun-
dant GAG in bronchoalveolar lavage and is produced by bronchial epithelial cells. 
It is composed of  N -acetylglucosamine and galactose units, and the sulfation of KS 
may affect its function. The KS polymer has been suggested to inhibit the expres-
sion and activation of MMP-2 in corneal and skin explant cultures, and its 
disaccharide repeating unit [SO 3  − -6]Galβ1–4[SO 3  − -6]GlcNAc suppresses IL-12 
production in macrophages stimulated with LPS. On the other hand, bacterial/virus 
infections in the lung evoke infl ammatory responses, which can be actively pro-
moted by various infl ammatory mediators that are released by immune cells and 
activated epithelial cells. While, in some cases, the reason is not clear, exacerbations 
are often the result of bacterial/virus infections in the lung. COPD exacerbation 
refers to a worsening or a “fl are-up” of COPD. People with advanced COPD seem 
to be prone to such life-threatening disorders. Highly signifi cant levels of bacteria 
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are observed in the airways of subjects with exacerbated COPD as compared to 
those in healthy adults. The most commonly isolated bacteria are  Haemophilus 
infl uenzae ,  Streptococcus pneumoniae , and  Moraxella catarrhalis , while there is 
growing evidence to show that  Pseudomonas aeruginosa  is particularly important 
and is involved in advanced COPD. Flagellin from  P. aeruginosa  is a potent activa-
tor of the Toll-like receptor (TLR)-5 for producing interleukin 8 (IL-8), and this 
interaction can be attenuated by the presence of KS disaccharides. Interestingly, the 
mechanism by which this disaccharide unit blocks the interaction of fl agellin with 
the TLR-5, in part, involves the downregulation of EGFR phosphorylation (Shirato 
et al.  2013 ). Since such suppression is observed in the case of other analogues, for 
example,  N -acetyllactosamine or disaccharides derived from chondroitin-6-sulfate, 
this suggests that oligosaccharide structure information including sugar composi-
tion and the extent of modifi cation by sulfate will likely be important in designing 
chemical inhibitors. 

 In addition to KS, HA, the most abundant non-sulfated GAG in the lung, has its 
own way to protect the respiratory system, such as regulating water balance and 
osmotic pressure and enhancing the cellular host defense mechanism by stimulating 
the activity of blood neutrophils. Furthermore, the intratracheal administration of 
HA has been reported to prevent experimental emphysema induced by porcine pan-
creatic elastase. Several studies have demonstrated that the biological effects of HA 
appear to vary depending on its average molecular mass. Very recently a synthetic 
monosaccharide, 2,4- O -di-sulfated iduronic acid (Di-S-IdoA), was found to attenu-
ate leukocyte recruitment into infl ammatory sites and BALF in the model mice and 
would be a potential drug for asthma treatment (Nonaka et al.  2014 ). 

 With their diverse oligosaccharide structures, GAGs play important and multiple 
roles in the lung, functioning not only to maintain structure homeostasis but also to 
modulate infl ammatory responses. Elucidation of the composition and substitution 
pattern of GAGs in the airway may help to understand the pathology and could 
contribute to the development of a therapeutic strategy for the treatment of COPD.  

16.5     Perspectives 

 The most important posttranslational modifi cation in mammals is glycosylation. 
A large body of evidence exists to show that glycan structures can be changed 
drastically, as a function of the status of a disease. The molecular nature of glyco-
sylation, such as the glycan structures introduced above, may provide further 
clues as to how glycans may contribute to the recognition of pathogens and dis-
ease pathogenesis (Fig.  16.2 ).    Further studies designed to create a history of 
changes in oligosaccharide structures, glycoprotein-binding properties, and the 
concentrations of serum glycoproteins in different stages of COPD might address 
the issue of which specifi c agents interfere with the glycosylation and can be use-
ful in providing effective glycobiology- based therapy and possibly altering the 
status of COPD.      
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    Chapter 17   
 α1,6-Fucosyltransferase Knockout Mice 
and Schizophrenia-Like Phenotype 

             Wei     Gu     ,     Tomohiko     Fukuda    , and     Jianguo     Gu    

    Abstract     The glycan core fucose is catalyzed by α1,6-fucosyltransferase (Fut8), 
which transfers a fucose residue to the innermost GlcNAc residue via α1,6-linkage 
on N-linked glycans (N-glycans) in mammals. N-glycan is always attached to the 
nitrogen atom of an asparagine (Asn) side chain that is present in the Asn-X-Ser/Thr 
motif on a protein, where X is any amino acid except proline. The α1,6-fucosylated 
(core-fucosylated) N-glycan is ubiquitously distributed in all tissues. Interestingly, 
the unique structure of the core-fucosylated hybrid, one of three major types of 
N-glycans, is highly expressed in brain tissues, and the expression pattern of 
N-glycans is altered during brain development. The Fut8-defi cient (Fut8 −/− ) mice 
exhibit emphysema-like changes in the lungs and severe growth retardation due to 
dysregulation of the TGF-β1 receptor and the EGF receptor, respectively. To under-
stand the role of core fucosylation in brain tissue, a combination of neurological and 
behavioral tests for Fut8 −/−  mice was examined. Fut8 −/−  mice displayed multiple 
behavioral abnormalities, such as increased locomotion, decrease in working mem-
ory, strenuous hopping behavior, and prepulse inhibition defi ciency, which were 
consistent with a schizophrenia-like phenotype. Here, we summarized the knowl-
edge of the biological functions of core fucosylation, especially its role in brain and 
neural cells, and discussed possible underlying molecular mechanisms.  
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17.1         Introduction 

 Schizophrenia is a common, chronic, and severe brain disorder that is characterized 
by episodic positive symptoms such as delusions, hallucinations, and thought disor-
ders and/or persistent negative symptoms such as fl attened affect, impaired atten-
tion, social withdrawal, and selective cognitive defi cits in attention, learning, and 
memory (Ross et al.  2006 ). It ranks as one of the leading causes of disability world-
wide, as it affects 1 % of the world’s population (Freedman  2003 ; Stanta et al. 
 2010 ). Schizophrenia seems to have strong genetic component. Indeed, more than 
130 genes reportedly predispose to schizophrenia, but few of these results have been 
replicated, and fewer still have biological support (Ross et al.  2006 ). Although 
evidence has accumulated for plausible candidate genes for schizophrenia, e.g., 
neuregulin1, disrupted in schizophrenia 1, and dystrobrevin binding protein 1, 
substantial controversy remains regarding both the meaning of the positive genetic 
fi ndings and the implications for the therapeutic strategies (Lewis and Sweet  2009 ). 
Some studies suggest that interactions between genetics and environmental factors 
increase the risk that an individual will develop schizophrenia. For example, a func-
tional polymorphism in the gene encoding catechol-O-methyltransferase (COMT), 
which is thought to affect the availability of dopamine (DA) in the cortex, increases 
the risk for the development of psychosis associated with cannabis use during 
adolescence (Caspi et al.  2005 ). Similarly, serious obstetric complications might 
interact with variants of genes that are regulated by hypoxia and/or genes that are 
involved in vascular function to infl uence the risk of developing schizophrenia 
(Nicodemus et al.  2008 ). 

 Until now, research has long focused on identifying gene or protein expression- 
level changes in schizophrenia and ascertaining the functional effects of those alter-
ations. Recently, the posttranslational modifi cation, N-glycosylation, becomes a 
new target of investigation for schizophrenia (Khoury et al.  2011 ). For example, 
abnormal N-glycans on AMPA, NMDA, and GABA A  receptors were found in 
patients with schizophrenia (Tucholski et al.  2013a ,  b ; Mueller et al.  2014 ). 

 Complex N-glycans are required for the development of the embryo, and the 
complete lack of complex N-glycans in N-acetylglucosaminyltransferase I (GnT-
I)-defi cient mice is lethal with defects in neural tube formation (Ioffe and Stanley 
 1994 ). These observations suggest that high-mannose N-glycans are insuffi cient 
for normal ontogeny. On the other hand, restriction of N-glycan branching to the 
formation of only hybrid structures by N-acetylglucosaminyltransferase II (GnT-II) 
inactivation in mice results in a very low rate of survival to adulthood and a 
postnatal phenotype that is similar to human “congenital disorder of glycosylation 
IIa” (CDG- IIa), which manifests as severe multisystem defects, psychomotor 
abnormalities, and mental retardation (Jaeken et al.  1994 ; Wang et al.  2001 ). 
Furthermore, the specifi c elimination of GnT-I and GnT-II genes in neuronal cell 
types reveals that hybrid N-glycans are essential for neuronal and postnatal viability 
in mice, whereas complex N-glycans appear dispensable in this cell lineage 
(Ye and Marth  2004 ). On the other hand, the importance of fucosylation has recently 
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been underlined by  identifi cation of the monogenetic inherited human disease 
CDG-llc, also termed “leukocyte adhesion defi ciency II,” which is caused by defec-
tive Golgi GDP-fucose transporter (SLC35C1) activity (Lubke et al.  1999 ,  2001 ). 
CDG-llc patients show hypofucosylation of glycoproteins and present clinically 
with mental and growth retardation, persistent leukocytosis, and severe infections 
(Marquardt et al.  1999a ). These symptoms can be partially corrected by oral 
 L -fucose (Marquardt et al.  1999b ). 

 Core α1,6-fucosylation of N-glycans is ubiquitously observed in eukaryotes 
except plant and fungi. This type of fucosylation is catalyzed by eukaryotic α1,6- 
fucosyltransferase (Fut8). Fut8 transfers fucose moiety from GDP-β- L -fucose to 
the innermost GlcNAc residue to form α1,6-fucose, the so-called core fucose, in 
hybrid and complex N-linked oligosaccharides of glycoproteins as shown in 
Fig.  17.1 . Many glycoproteins were regulated by core fucosylation. For example, 
α-fetoprotein (AFP) is well known as a core-fucosylated glycoprotein. This    glyco-
protein is core fucosylated specifi cally in hepatocellular carcinoma present as  Lens 
culinaris  agglutinin-A-reactive AFP (AFP-L3), but in chronic liver disease (Sato 
et al.  1993 ). In addition, it is known that the depletion of the core fucose in human 
IgG1 enhances the antibody-dependent cellular cytotoxicity (ADCC) activity by 
~100-fold (Shields et al.  2002 ; Shinkawa et al.  2003 ), which is an approach that 
has been applied in clinical trials (Suzuki et al.  2007 ; Niwa et al.  2004 ). Recently, 
two research groups unraveled the molecular mechanism for the enhanced interac-
tion between sFcγRIIIa and a fucosylated Fc, since fucosylation of the Fc N-glycans 
inhibited this interaction, because of steric hindrance (Ferrara et al.  2011 ; 
Mizushima et al.  2011 ), which is directly demonstrating that core fucosylation 
affects the conformation of a target glycoprotein.  

 The core-fucosylated glycoproteins are widely distributed in mammalian tis-
sues, especially in the brain (Uozumi et al.  1996 ). In fact, the majority of N-glycans 
present in mouse brain tissue are core fucosylated (Shimizu et al.  1993 ); the 
expression pattern of N-glycans is altered during brain development (Nakakita 
et al.  2005 ). In this review, we described some biological functions of Fut8, espe-
cially in the central nervous system, and discussed possible underlying molecular 
mechanisms.  
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17.2     Fut8-Defi cient (Fut8 −/− ) Mice and Phenotypes 

 To understand the physiological role of core fucosylation, the Fut8 gene was deleted 
by knockout. It has been reported that disruption of the Fut8 gene in mice results in 
phenotypes of growth retardation, death during postnatal development, and lung 
emphysema. The molecular mechanisms for the Fut8 −/−  mice suffering from 
emphysema- like changes in their lungs could be ascribed to a lack of core fucosyl-
ation of the transforming growth factor-β1 (TGF-β1) receptor, which consequently 
resulted in dysregulation of TGF-β1 receptor activation and signaling (Wang et al. 
 2005 ) and downregulation of the expression of the vascular endothelial cell growth 
factor receptor-2 (VEGFR-2) (Wang et al.  2009 ). Moreover, the loss of core fucosyl-
ation downregulates both EGF receptor-mediated cell-signaling pathways (Wang 
et al.  2006 ) and integrin α3β1-mediated cell adhesion (Zhao et al.  2006 ). The loss 
of core fucose in both α4β1 integrin and vascular cell adhesion molecule 1 (VCAM- 
1) (Li et al.  2008 ), or mu heavy chains (Li et al.  2012 ), led to a decreased binding 
between pre-B cells and stromal cells, which impaired early B cell development and 
functions and intracellular signaling of precursor B cell receptors, respectively. 
Taken together, these results suggest that core fucose plays a key role in regulating 
important physiological functions via modifi cation of functional proteins (Fig.  17.2 ).   

17.3     The Fut8 −/−  Mice Exhibited Multiple Behavioral 
Abnormalities with a Schizophrenia-Like Phenotype 

 To examine the effects of core fucosylation on the central nervous system, we char-
acterized Fut8 −/−  mice using neurological and behavioral assays that included open- 
fi eld and hopping tests, a social interaction assessment, the Y-maze test, and the 
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  Fig. 17.2    Importance of Fut8 expression for physiological functions. The disruption of the Fut8 
gene in mice results in phenotypes of growth retardation, lung emphysema, schizophrenia-like 
changes, and delayed B cell maturation       
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prepulse inhibition (PPI) of startle test. The Fut8 −/−  mice exhibited multiple behavioral 
abnormalities with a schizophrenia-like phenotype (Fukuda et al.  2011 ). 

17.3.1     Impaired Prepulse Inhibition (PPI) in the Fut8 −/−  Mice 

 The PPI of startle is a cross-species measure that measures the ability of a non- 
startling “pre-stimulus” to inhibit the response to a startling stimulus. There have 
been numerous reports of PPI defi cits in schizophrenia patients (Braff et al.  2001 ; 
Kumari et al.  2008 ; Ludewig et al.  2003 ). Thus, the PPI defi cits associated with 
schizophrenia are the most thoroughly characterized and the most widely repli-
cated. Although startle amplitudes were not signifi cantly different, between Fut8 −/−  
mice and wild-type (Fut8 +/+ ) littermates, Fut8 −/−  mice showed complete defi cits in 
PPI compared with the Fut8 +/+  and the hetero (Fut8 +/− ) mice. Of particular interest, 
Fut8 +/−  mice showed a signifi cant PPI defi ciency compared with Fut8 +/+  littermates 
tested under the restraint stress in a cylindrical mouse restrainer for 3 h (Fig.  17.3 ). 
These results strongly suggest that Fut8 might play a causal role in the disorder, and 
the environment is also one of the very important factors for such disorders. In fact, 
exposure to various mild stressors has been shown to activate dopamine-containing 
neuronal systems (Carlson et al.  1991 ).   
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  Fig. 17.3    Restraint stress-induced PPI defi ciency in Fut8 +/−  mice. ( a ) Illustration of how PPI is 
tested. ( b ) The effects of restraint stress (3 h) on PPI of the startle refl ex were assayed under differ-
ent prepulse intensities. Of particular interest, Fut8 +/−  mice showed a signifi cant PPI defi ciency 
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17 α1,6-Fucosyltransferase Knockout Mice and Schizophrenia-Like Phenotype



272

17.3.2     Alterations in Social Interaction and Short-Term 
Memory in the Fut8 −/−  Mice 

 Defi cits in social interaction are hallmarks of schizophrenia (Kopelowicz et al. 
 2006 ; Piskulic et al.  2007 ). As compared with Fut8 +/+ , Fut8 −/−  mice spent signifi -
cantly less time engaging in active contact, such as sniffi ng or following each 
other, when the pairs of mice with the same genotype and same sex were allowed 
to explore a novel environment for 10 min (Fig.  17.4a ). The Y-maze task experi-
ment showed that spontaneous alterations were reduced in Fut8 −/−  mice compared 
with Fut8 +/+  mice (Fig.  17.4b ), suggesting that short-term memory was decreased 
in Fut8 −/−  mice.   

17.3.3     Novelty-Induced Hyperactivity in the Fut8 −/−  Mice 

 Novelty-induced hyperactivity has been viewed as a preclinical model of the 
positive symptoms of schizophrenia and of psychomotor agitation in particular 
(Hashimoto et al.  2001 ; Pletnikov et al.  2008 ; van den Buuse et al.  2009 ). When 
Fut8 −/−  mice were placed into a novel environment, the locomotor activities and 
hopping movements were greatly increased, as compared with those in Fut8 +/+  
mice (Fig.  17.5 ).    
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17.4     Unbalance Between the Dopamine and Serotonin 
Systems in the Fut8 −/−  Mice 

 Because locomotor hyperactivity is commonly associated with increased dopami-
nergic tone (Gainetdinov et al.  1999 ), the effect of Fut8 defi ciency on monoamine 
turnover was determined. In Fut8 −/−  mice, DA turnover was unchanged, while sero-
tonin (5-HT) turnover was decreased. In fact, the importance of 5-HT in controlling 
locomotor activity has been demonstrated in a study with 5-HT 1B -receptor knockout 
mice, which show hyperlocomotor activity and aggressive behavior (Saudou et al. 
 1994 ). A similar phenomenon has also been observed in PACAP-knockout mice, 
which show slightly decreased 5-HIAA levels in the cortex and striatum with abnor-
mal jumping behavior and other psychomotor behavioral abnormalities (Hashimoto 
et al.  2001 ). Furthermore, the enhanced locomotor activity of Fut8 −/−  mice was 
signifi cantly reduced to the normal levels of Fut8 +/+  mice by treatment with the typical 
antipsychotic drug haloperidol (Fig.  17.5 ), which is a dopamine D2 receptor antag-
onist (Kapur et al.  2000 ). The treatment with haloperidol might normalize the bal-
ance between the dopamine and serotonin systems in the Fut8 −/−  mice. On the other 
hand, treatment with atomoxetine, which is a non-stimulant approved for the treat-
ment of attention-defi cit hyperactivity disorder (Garnock-Jones and Keating  2009 ), 
did not signifi cantly inhibit the hyperactivity of Fut8 −/−  mice, also suggesting that 
Fut8 might play a role in schizophrenia-like disorders.  
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17.5     The Core Fucosylation Is Important for Early-Form 
Long-Term Potentiation (E-LTP) 

 The etiology of schizophrenia is only partially understood, but multi-episode 
patients show signifi cantly disturbed neuronal plasticity, suggesting that synaptic 
activity and connectivity are altered during the progression of the disease. 
Recently, cognitive impairments such as defi cits in learning and memory have 
also been shown to be a fundamental feature of the disorder (Savanthrapadian 
et al.  2013 ).    Long-term potentiation (LTP), a well-established model based on the 
neurophysiological study of learning and memory, was found to be an important 
mechanism that underlies synaptic changes and plasticity in schizophrenia 
(Frantseva et al.  2008 ; Sanderson et al.  2012 ). Preliminary data showed that the 
HFS-induced LTP was dramatically decreased in Fut8 −/−  mice (unpublished data). 
It is well known that the induction of LTP began with the activation of AMPA 
receptors, which induced the opening of NMDA receptor and led to calcium entry 
that initiated a biochemical cascade through the activation of CaMKII, and the 
end product of this biological reaction was the long-lasting potentiation of AMPA 
receptor-mediated excitatory postsynaptic current (Lisman et al.  2012 ; Kullmann 
and Lamsa  2007 ). Thus, it is important to analyze the core fucosylation on these 
receptors for their biological functions.  

17.6     The Core Fucosylation-Regulated TGF-β/Activin- 
Mediated Signaling 

 To explore the underlying mechanisms in the nervous system, PC12 cell that is 
often used for cell differentiation study was used since it highly expresses core- 
fucosylated N-glycans. Knockdown of the Fut8 gene resulted in an upregulation of 
neurite formation and phospho-Smad2 levels. In agreement with these results, the 
restoration of the Fut8 gene in the knockdown cells downregulated neurite forma-
tion and phospho-Smad2 levels (Gu et al.  2013 ). Surprisingly, core fucosylation 
specifi cally downregulated the complex formation of activin receptors and their 
downstream, which contradicted previous observation, in which core fucosylation is 
required for TGF-β-mediated signaling in lung tissues and fi broblast cells (Wang 
et al.  2005 ). Taken together, core fucosylation may play reciprocal double effects in 
the TGF-β/activin-mediated signaling, i.e., a positive effect for TGF-β and a nega-
tive effect for activin (Fig.  17.6 ).  

 It is worth noting that the relationship between TGF-β signaling and homeo-
static regulation of excitatory and inhibitory synapses in the central nervous system 
has also been studied in animal models or cell cultures (Krieglstein et al.  2011 ). 
As described above, Fut8 −/−  mice showed strenuous hopping behavior and 
increased locomotor activity in a novel environment, decreased social interaction, 
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and impaired alertness, which might be related to schizophrenia-like behaviors. It is 
reasonable to speculate that downregulation of TGF-β signaling in the Fut8 −/−  
mice may also have contributed to these phenomena. However, this is not a sim-
ple case, since core fucosylation negatively regulates activin signaling as 
described above. The TGF-β and activin isoforms commonly recruit adaptors 
Smad2 and Smad3. The phosphorylated Smads interact with a “common Smad,” 
Smad4, which together translocates as a heteromeric complex into the nucleus 
(ten Dijke and Hill  2004 ; Shi and Massague  2003 ). Therefore, this raises the 
question of why core fucosylation differentially regulates similar signaling path-
ways via two different receptors. At the present time, this remains unclear, but 
we could speculate as to the following: (1) The expression patterns of TGF-βs 
and activins or their receptors are different. TGF-β2 and TGF-β3 are reportedly 
found in neural progenitor cells, differentiating neurons and radial glial cells as 
well as astrocytes and numerous neuron populations (Unsicker et al.  1991 ; 
Flanders et al.  1991 ), whereas activin βA is expressed in neocortical and neo-
striatal regions of rat embryos (Andreasson and Worley  1995 ). (2) The roles of 
TGF-β and activin signaling are complicated. Activin is known to have func-
tional roles at excitatory and inhibitory synapses (Dow et al.  2005 ). However, 
blocking activin signaling enhanced GABA release and strengthened functions 
of GABA receptors (Zheng et al.  2009 ), which caused the low-anxiety phenotype 
or depression-like behavior of the mice. The functional roles of TGF-β members 
are also known to modulate synaptic transmission. The loss of TGF-β2 impaired 
the presynaptic GABAergic inhibitory and excitatory synaptic transmission 
(Heupel et al.  2008 ). In addition, activin-A has reportedly induced tyrosine 
hydroxylase expression, which is required in the tyrosine metabolic pathway for 
the synthesis of dopamine (Bao et al.  2005 ). Coincidentally, the enhanced loco-
motor activity and strenuous hopping behavior of Fut8 −/−  mice were restored by 
treatment with a dopamine D2 receptor antagonist as shown in Fig.  17.5 . (3) TGF-β 
and activin have overlapping intracellular signaling cascades. Therefore, the dual 
effects of core fucosylation might be important for spatiotemporal regulation in 
the central nervous system.  

Core fucosylation 

Binding of TGF-b
to TGF-b receptors 

Complex formation 
of  activin receptors 

phospho-Smad2

cell differentiation

  Fig. 17.6    A working model 
for the effects of core 
fucosylation on TGF-β/
activin-mediated cellular 
signaling and cell 
differentiation       
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17.7     Perspective 

 Core fucose affects biological functions via modifi cation of functional proteins, 
such as α3β1, α4β1 integrin, EGF receptor, activin, and TGF-β receptors. For 
example, the core fucosylation is required for α3β1 integrin-mediated cell adhe-
sion and cell signaling. In brain tissue, reelin may arrest neuronal migration and 
promote normal cortical lamination by binding α3β1 integrin and modulating 
integrin- mediated cellular adhesion (Dulabon et al.  2000 ). As described above, 
most complex- type N-glycans contain core fucose in mouse brain tissues. It is 
well accepted that multiple genes of each with a small effect, rather than a single 
causative gene, act in concert with nongenetic factors to increase the risk of men-
tal disorders (Hyman  2000 ). Therefore, we believe that there may be many func-
tional molecules, such as dopamine and serotonin transporters or receptors, 
AMPA and NMDA receptors, activin and TGF-β receptors, etc., which depend on 
the core fucosylation for their biological functions. Thus, the lack of core fucosyl-
ation of each target molecule has a small effect, but collectively, the absence of 
core fucosylation has a signifi cant effect on behavior. A detailed characterization 
of the functions of core fucosylation on those receptors is required in further stud-
ies, which may provide clues for the discovery of novel therapies for schizophre-
nia and related disorders.     
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