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Abstract Mathematical modelling plays an important role in understanding the
dynamics of transmissible infections, as information about the drivers of infectious
disease outbreaks can help inform health care planning and interventions. This paper
provides some background about the mathematics of infectious disease modelling.
Using a common childhood infection as a case study, age structures in compartmen-
tal differential equation models are explored. The qualitative characteristics of the
numerical results for different models are discussed, and the benefits of incorporat-
ing age structures in these models are examined. This research demonstrates that, for
the SIR-type model considered, the inclusion of age structures does not change the
overall qualitative dynamics predicted by that model. Focussing on only a single age
class then simplifies model analysis. However, age differentiation remains useful for
simulating age-dependent intervention strategies such as vaccination.
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1 The Purpose and Applications of Infectious Disease
models

In epidemiology, mathematical modelling is used to understand the dynamics of
transmissible infections. This knowledge has important implications for health care
planning and disease interventions. Mathematical models are tools that can help
predict the impact of various control strategies on patterns of infection; can assist
with understanding the groups of a population that are driving the transmission;
and can allow control strategies to be tested and subsequently implemented effec-
tively. For example, mathematical modelling techniques have been widely used in
influenza pandemic planning [15, 16], in helping identify the drivers of seasonality
in pre-vaccination measles epidemics [17, 18] and in understanding the dynamics of
pertussis (whooping cough) outbreaks in young children [31].

This paper provides an overview of the mathematics of infectious disease mod-
elling in the context of a common childhood respiratory infection. In particular, this
work examines the extent to which age structures should be incorporated into the
modelling, and shows how seasonality and waning immunity can be implemented in
relatively simple compartmental models.

2 Introduction to the Mathematics of Infectious
Disease Models

Mathematical models applied to infectious disease dynamics typically use determin-
istic, stochastic, or time series approaches. This paper will focus on a specific type
of deterministic, ordinary differential equation model, employing the Susceptible-
Infectious-Recovered (SIR) model approach. This model was first introduced by
Kermack and McKendrick in 1927 [26] and has since been widely applied to model
infectious disease dynamics.

The approach of the SIR framework is to divide a specified population into differ-
ent compartments that correspond to the states of an infection. These compartments
describe whether individuals are susceptible to an infection, infectious, or recovered.
The basic SIRmodel is presented at Eqs. 1–4. Assuming a homogeneous, well-mixed
population, S represents the number of individuals in a defined population who are
susceptible, while I represents the number of individuals who are infectious and able
to infect susceptible individuals. The class R represents the number of individuals
who are ‘removed’ (recovered and immune to reinfection).

Demography is represented by the inclusion of a birth rate μ, which corresponds
to an average life expectancy of 1/μ years. In this example, the birth rate is assumed
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Fig. 1 Schematic diagram
for the SIR deterministic
ordinary differential equation
model
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to equal the death rate, such that the total population, represented by N , remains
constant over time t . Such an assumption is suitable for infectious diseases where
the infection life cycle is relatively short compared to the average individual lifespan
and the death rate due to the disease is negligible. The recovery rate is represented by
γ , where 1/γ is the average duration of infection in years. A schematic representation
of this structure is shown in Fig. 1. The differential equation model corresponding to
such dynamics is given by

dS

dt
= μN − βS

I

N
− μS (1)

d I

dt
= βS

I

N
− γ I − μI (2)

dR

dt
= γ I − μR (3)

N = S + I + R. (4)

Though the SIR model is one of the simplest forms of a suite of compartmen-
tal models, it encapsulates the essence of many infectious disease situations with
sufficient accuracy to be able to make useful predictions. Additional states may be
included (such as a temporarily immune class) and complexities added (such as age
structures). The SIR model and its variations are described extensively elsewhere
[4, 11, 23, 25].

3 Respiratory Syncytial Virus

Respiratory syncytial virus (RSV) causes respiratory tract infections in young chil-
dren. It is the most common pathogen found in children aged less than two years
hospitalised with respiratory symptoms and studies indicate that almost all children
will have been infected by the time they reach two years [19, 28, 32]. Because of
the significant health care and economic burden of RSV (discussed for example in
[12, 20, 38]), an improved understanding of its transmission dynamics is required
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to assist with health care planning. However, because the dynamics of RSV infec-
tion are poorly understood, there remains a need for representative models that are
validated by the available data.

RSV dynamics have a clear age structure. RSV incidence is higher for chil-
dren under 12months than those between 12 and 24 months [29]. Peak incidence is
observed in children between two and four months [32]. Newborn infants are typ-
ically protected from RSV infection by maternal antibodies until about six weeks
of age (although infection can still occur in this early phase of life) [9, 13]. RSV
infection data is usually collected from hospitalised cases, hence the cases observed
are for severe infection only. However, the dynamics observed at the severe end of the
disease spectrum may be representative of the dynamics in the broader community.

Few studies have been undertaken to examine the transmission of RSV among
adults, but it is thought that repeated infection can occur throughout life [9, 22], and
that in older children and adults, RSV symptoms present as those of a common cold
[19]. Several studies have reported on outbreaks of RSV in aged care facilities and
estimated the mortality caused by RSV in these older age groups [21, 35].

An important feature of RSV, in terms of understanding its transmission patterns
and burden, is its seasonal behaviour. In temperate climates, RSV typically displays
annual seasonal patterns, with high numbers of infections in winter and relatively
low numbers in the summer months. In some temperate regions, biennial patterns of
RSV infection have been detected. Such dynamics have been observed in Switzerland
[14], Finland [36], Chile [7] and Australia [29].

Finally, immunity to RSV following recovery from infection is thought to be
short-lived, averaging around 200 days [37]. Consequently, children can be infected
in consecutive years.

Mathematical models of RSV must therefore take account of different patterns
of severe illness with age, of seasonality in disease transmission, and must allow for
the waning of disease immunity following recovery from infection.

4 An Age Structured Modelling Approach to RSV

Several models for RSV that implement the SIR approach have been published
[10, 30, 37, 39, 40]. A time series approach has been examined by Spaeder et al.
[33], and a network approach by Acedo et al. [2, 3]. Stochastic methods have been
investigated by Arenas et al. [5].

In the work of Leecaster et al., an age-structured compartmental approach is used
to distinguish between children less than two years old, and adults, with an additional
‘Detected’ class [27]. Acedo et al. divide the population into children under one year
of age, and the remaining population, in order tomodel a vaccination strategy forRSV
[1]. In recent work byMoore et al. [29], age structuring is used to fit a compartmental
model to RSV detection data for children up to two years of age in Perth, Western
Australia. The present paper builds upon the work presented published by Moore et
al. [29], using parameters relevant to RSV dynamics in Western Australia.
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In the following sections, compartmental models for RSV are presented. These
models take into account the known clinical characteristics and epidemiological fea-
tures of RSV, such as waning immunity, a latent period, and seasonal changes in the
degree of transmission. The age-structured modelling approach is implemented for
one, two and three age groups, in order to capture the transmission and suscepti-
bility characteristics of different age groups. Numerical solutions are found and the
resulting qualitative characteristics of the dynamics are discussed.

4.1 A Single Age Class Model for RSV

The simplest model for RSV transmission is that of a single age class. In this situation
the age group was chosen to be the combined child and adult population, with no
differentiation between age groups, and with the birth rate equal to the death rate.
A latent disease class, represented by E , is included to reflect the state where an
individual is infectedwithRSV, but not yet infectious. Thedisease states are presented
as proportions of a population, such that S + E + I + R = N = 1. This model was
first presented in [24] and the relevant equations are reproduced here as Eqs. 5–9.

dS

dt
= μ − βSI + νR − μS (5)

dE

dt
= βSI − δE − μE (6)

d I

dt
= δE − γ I − μI (7)

dR

dt
= γ I − νR − μR (8)

β = b[1+ a sin(2π t)] (9)

To incorporate the effect of seasonal fluctuations in the number of infected cases,
the transmission parameter β is replaced with a sinusoidal forcing function, shown at
Eq.9. The birth rate μ was chosen based on birth and population data from Western
Australia [6] and corresponds to a life expectancy of 74 years. The infectious rate δ

is based on previous studies and corresponds to a latent period of four days [37].
Similarly, the recovery rate γ is based on previous studies in the literature and
corresponds to an infectious period of nine days [2, 27, 37].

The waning immunity parameter ν is less well understood and is therefore cho-
sen by fitting models to data from Western Australia, as demonstrated in [29], and
corresponds to an immunity period of 230 days. The amplitude of seasonal forcing
a was selected based on the same fitting routine, and the parameter b was allowed to
vary. Parameter definitions and values are summarised at Table1.
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Table 1 Parameter values for the compartmental models are estimated from the literature, from
population data, and from fitting the two age class model to weekly detection data for metropolitan
Western Australia as demonstrated in [29]

Parameter Description Value References

μ Birth rate for Perth, Western Australia 0.0135 [6]

b Overall transmission

a Amplitude of seasonal forcing 0.522 Fitted value, as in [29]

δ Infectious rate 91.479 [37]

γ Recovery rate 40.110 [2, 27, 37]

ν Waning immunity rate 1.585 Fitted value, as in [29]

ηi Ageing rate η1 = η2 = 1,

η3 = 0.0139

σi Transmission scaling factor σ2 = 1,

σ3 = 0.6

αi Susceptibility scaling factor α2 = 0.228, Fitted value, as in [29]

α3 = 0.6

The rates are given in years

4.2 Multiple Age Class Models for RSV

There are two main approaches employed in the literature to simulate the ageing
process in models for disease transmission. One is the continuous approach, where
each compartment in the model is assumed to be a function of both age and time (see
[25] for a concise explanation of this method), and the model can be represented as a
system of partial differential equations. While realistic, this approach is complicated
and the equations are more difficult to solve numerically.

A simpler approach is to treat agegroups as compartments in themodel, replicating
the susceptible, infectious and removed states for each age class. While increasing
the number of ordinary differential equations, the system remains straightforward to
solve numerically. In this paper, we concentrate only on this second approach to age
structures. Detailed examples of where the continuous approach has been used can
be found elsewhere [8, 34, 41], although not for RSV.

The multiple age class compartmental model for three age classes is shown in
Eqs. 10–17. The age classes are children up to 12 months of age; children aged
between 12 and 24 months; and the remaining population. The model may also be
adjusted for two age classes only. The seasonal forcing term for each age class is
shown in Eqs. 18–19. In the following model, the youngest age class (denoted ‘1’)
includes the birth term, with additional classes (denoted ‘i’) representing older age
groups.
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dS1
dt

= μ − β1S1(I1 +
3∑

i=2

σi Ii ) + νR1 − η1S1 (10)

dE1

dt
= β1S1(I1 +

3∑

i=2

σi Ii ) − δE1 − η1E1 (11)

d I1
dt

= δE1 − γ I1 − η1 I1 (12)

dR1

dt
= γ I1 − νR1 − η1R1 (13)

dSi
dt

= ηi−1Si−1 − βi Si (I1 +
3∑

i=2

σ Ii ) + νRi − ηi Si (14)

dEi

dt
= ηi−1Ei−1 + βi Si (I1 +

3∑

i=2

σ Ii ) − δEi − ηi Ei (15)

d Ii
dt

= ηi−1 Ii−1 + δEi − γ Ii − ηi Ii (16)

dRi

dt
= ηi−1Ri−1 + γ Ii − νRi − ηi Ri (17)

β1 = b[1+ a sin(2π t)] (18)

βi = αiβi−1 (19)

i = 2, 3

In comparison to the single age class model of Eqs. 5–9, the additional parameters
in the model with multiple age classes are σi , which represents the reduced trans-
missability for age class i , and αi which represents the reduced susceptibility in age
group i . The extent to which transmission is reduced for older age classes is not
well understood. Hence, transmission was not scaled for the 12–24month old age
class, but was selected as 0.6 for the older age group as in [29]. Similarly for the
susceptibility scaling parameter α, the value for reduced susceptibility was selected
for the second age group based on Western Australian data, and chosen to be 0.6 for
the older age group. The parameter ηi represents the rate of ageing out of age group
i , where 1/ηi is the time spent in age group i . Infection-specific parameters are the
same as those for the single age class model. The parameter values for the chosen
age structure are presented at Table1.

4.3 Numerical Solutions

The compartmental ordinary differential equation systems for one, two and three
age classes, shown in Eqs. 5–19, were solved numerically using MATLAB’s inbuilt
ode45 integrator. The values of the fixed parameters are given in Table1.
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Fig. 2 This figure shows two numerical solutions for compartmental RSV models, for each of a
one, b two and c three age classes. For each model, the numerical output demonstrates that either an
annual or biennial pattern may be produced, depending on the value of the transmission parameter
b. The values of b are as follows: a 45, 49; b 3400, 3200; c 460, 530. Other parameter values are
provided in Table1

The transmission parameter bwas chosen to vary, in order to demonstrate different
numerical solutions. The range of possible b values that produced plausible numerical
solutions varied depending on the model age structure. This is a consequence of how
the models were formulated. The model compartments (S, E , I , R), were assumed
to be proportions of the chosen population, rather than numbers of individuals. For
each age class, the compartments in that age classes summed to 1 at t = 0, and the
total population did not remain constant as the birth rate and the ‘ageing out’ or death
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rate were not equal for all model structures; this changed the degree of transmission
required to sustain annual epidemics. In practice, exact values of the transmission
parameter b will vary according to the data the model is fitted to.

Depending on the value of b chosen, and holding other parameters constant, the
model solutions produced either annual or biennial patterns. Examples of solutions
for different values of the transmission parameter b are shown in Fig. 2. In this figure,
the values of b were selected to be within a range that produced plausible solutions
and so as to demonstrate markedly different dynamics.

In order to more clearly show the range of b values that produce either annual or
biennial patterns of infection, a numerical bifurcation analysis was undertaken using
XPP-AUT software. The analysis was conducted for each of the compartmental
models, for one, two and three age classes, with bifurcation parameter b. The output
is shown in Fig. 3. For each plot, the y-axis is the proportion of infectious individuals
I at the seasonal peak, for the youngest age class. We can observe how the infectious
peak changes as the value of transmission parameter increases, and whether the
model dynamics are annual or biennial.

Figure3 shows that for each model, there exists a region of solutions with biennial
dynamics contained by twoperiod doubling bifurcations. Either side of this region the
solutions revert to annual seasonal dynamics. This analysis demonstrates the similar
qualitative dynamics for the one, two and three age class models for RSV. A more
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Fig. 3 This figure shows a bifurcation diagram for each of the compartmental RSV models, for
a one, b two and c three age classes. The bifurcation parameter is the overall transmission b. For
each model, the qualitative behaviour is similar, where there is a region of values of b that produces
period two (biennial) solutions, and a region either side that produces period one (annual) solutions
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detailed bifurcation analysis (for example, exploring other bifurcation parameters)
is outside the scope of the present paper, but will be explored in a forthcoming
publication.

5 Discussion

Mathematical modelling is an important tool for understanding the patterns of infec-
tious disease transmission, and one use of these models is for simulation of disease-
specific intervention strategies. Infectious disease interventions are often targeted
for different age groups, particularly for children. The ability to implement age-
structured modelling approaches is useful for studying the theoretical outcome of a
vaccination strategy that is concentrated on specific age groups.

The purpose of this paper is to provide an overview of infectious disease mod-
elling,with a focus on a common childhood respiratory infection.A series of ordinary
differential equation models for RSV are presented, incorporating the known clinical
characteristics of the infection. Age structures for one, two and three age classes are
implemented using the compartmental approach, in order to examine the dynamics
of the numerical solutions.

It is found that for themodels considered, the qualitative dynamics of the numerical
solutions are either annual or biennial, depending on the degree of transmission.
Further, the dynamics of the solutions are qualitatively similar for the one, two and
three age class systems. Despite adding the complexities of additional age classes,
the overall patterns of disease transmissionwere the same, with a higher transmission
rate in younger age groups producing a higher proportion of infectious cases.

This finding has useful implications for studying the dynamics of infectious dis-
ease models. It suggests that where the overall behaviour of a model is being inves-
tigated, and different possible patterns of disease transmission being considered,
the age structuring may be ignored and the simplest single age class model consid-
ered. As the number of differential equations is reduced, numerical analyses (such
as phase plane and bifurcation) are much simpler and often more readily interpreted.
Age structures may of course be included at a later stage of model development,
but considering only the single age class (here the younger population only) greatly
simplifies analytical and numerical testing in situations where interventions are not
being studied.
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