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Abstract The recent progress in the analytical solution of models invented to
describe theoretically the interaction of matter with light on an atomic scale is
reviewed. The methods employ the classical theory of linear differential equations
in the complex domain (Fuchsian equations). The linking concept is provided by
the Bargmann Hilbert space of analytic functions, which is isomorphic to L2(R),
the standard Hilbert space for a single continuous degree of freedom in quantum
mechanics. I give the solution of the quantum Rabi model in some detail and sketch
the solution of its generalization, the asymmetric Dicke model. Characteristic prop-
erties of the respective spectra are derived directly from the singularity structure of
the corresponding system of differential equations.

Keywords Quantum optics ·Bargmann space ·Differential equations · Singularity
theory · Integrable systems

1 Introduction

The interaction of matter with light forms a major subject of theoretical and applied
physics [1]. It is essentially characterized by the quantum nature of both constituents,
studied within QuantumOptics [2]. The quantum features of the processes occurring
in recently realized nano-sized devices can be used to control the generation of
entangled states [3], thereby allowing to construct the basic elements of quantum
information technology [4].

The technological advances in nanofabrication made it possible to reach very
large coupling strengths between the light (usually confined to a single or few modes
in a cavity) and an (artificial) atom described by a discrete set of energy levels in
the deep quantum limit [5–7]. The prototypical system consists of a “matter” part
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with two possible states coupled to the dipole component of a single radiation mode.
The Hamiltonian of the atom can thus be expressed via Pauli spin matrices σ j and
the radiation through a harmonic oscillator with frequency ω. The Hilbert space of
the total system reads then H = C

2 ⊗ L2(R) and the Hamiltonian

HR = ωa†a + gσx (a + a†) + ω0

2
σz . (1)

Here a† and a are the creation and annihilation operators of the bosonic mode and
energy is measured in units of frequency (� = 1). ω0 denotes the energy splitting
of the two-level system (the “qubit”) which is coupled linearly to the electric field
(∼ (a + a†)) with interaction strength g. This model was studied semiclassically
already in 1936 by Rabi [8] and the fully quantized version (1) has been introduced
in 1963 by Jaynes and Cummings [9]. It is therefore called the quantum Rabi model
(QRM). Despite its apparent simplicity, the QRM is difficult to solve analytically
because it does not exhibit invariant subspaces of finite dimension like the following
model,

HJC = ωa†a + g(σ+a + σ−a†) + ω0

2
σz, (2)

with σ± = (σx ± iσy)/2, which corresponds to the “rotating-wave” approxima-
tion of (1) [9]. The Jaynes-Cummings model (JCM) (2) can be justified close to
resonance, ω ∼ ω0 and small coupling g/ω � 1 [10] and has been the standard
model for typical quantum optical applications with g/ω ≤ 10−8 for many years.
The major simplification arising in (2) as compared to (1) consists in the fact that the
operator Ĉ = a†a + σ+σ− commutes with HJC , which means thatH decays into
infinitely many HJC -invariant subspaces in which Ĉ takes constant values ∈ IN0, the
set of non-negative integers. Each of these spaces is two-dimensional entailing trivial
diagonalization of HJC . The fact that the polynomial algebra of Ĉ has infinite dimen-
sion means that Ĉ generates a continuous U (1)-symmetry of HJC [10, 11]: defining
U (φ) = exp(iφĈ), we have U †(φ)aU (φ) = eiφa, U †(φ)a†U (φ) = e−iφa† and
U †(φ)σ±U (φ) = e∓iφσ±. This abelian symmetry associated with the integral of
motion Ĉ renders the JCM integrable, because it has only two degrees of freedom,
the continuous one of the radiation mode with Hilbert space L2(R) and the discrete
one of the qubit with Hilbert space C

2.
The concept of integrability underlying this argument amounts to a direct transfer

of Liouville’s definition from classical mechanics to quantum mechanics: A system
with N degrees of freedom is integrable if it exhibits N independent phase space
functions which are in involution with respect to the Poisson bracket [12]. In the JCM
these are the Hamiltonian HJC and Ĉ . But because independence of operators cannot
be defined in analogy to functions on phase space, this definition is not feasible as
any Hamiltonian system would be integrable according to it [13].

The continuous U (1)-symmetry of the JCM is broken down to a discrete symme-
try by the counter-rotating term a†σ+ + aσ− in the QRM. U †(π)HRU (π) = HR

and HR commutes with P̂ = (−1)a†aσz = −U (π). Because P̂2 = 1, its polynomial
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algebra is two-dimensional and P̂ generates a Z2-symmetry of HR , usually called
parity. The eigenvalues ±1 of P̂ characterize two HR-invariant subspaces (parity-
chains), each of them infinite-dimensional [14]. Therefore, the problem appears to
be only marginally simplified by using the parity symmetry and it was widely held
that the QRM is not integrable [11]. However, it could be demonstrated that the weak
parity symmetry is indeed sufficient for integrability of theQRMbecause it possesses
only one continuous degree of freedom, whereas the Hilbert space dimension of the
discrete degree of freedom matches the dimension of the polynomial algebra gener-
ated by P̂ , rendering the QRM integrable according to the level-labeling criterion for
quantum integrability [15]. The detailed understanding of the spectrum (and dynam-
ics) of the QRM beyond the rotating-wave approximation has been necessitated by
the recent experimental access to the ultra-strong and deep-strong coupling regime
in circuit QED [6, 7] and through quantum simulations.

This survey is organized as follows: In Sect. 2, the analytical solution of the QRM
is presented based on a formulation of the problem in Bargmann’s space of analytical
functions, Sect. 3 deals with multi-qubit models and the last section contains some
remarks on possible future research directions.

2 The Quantum Rabi Model

TheZ2-symmetry of theQRMcan be used to eliminate the discrete degree of freedom
from the problem, just as the U (1)-symmetry of the JCM allows elimination of the
continuous degree of freedom. Each parity-chain H± is isomorphic to L2(R) and
HR reads inH±

H± = ωa†a + g(a + a†) ± Δ(−1)a†a, (3)

with Δ = ω0/2. The complication of this reduced Hamiltonian comes from the last
term (−1)a†a . On the other hand, this term is instrumental for the analytical solution
of themodel. To elucidate its meaning, it is convenient to represent (3) in Bargmann’s
space of analytical functions which is isometrically isomorphic to L2(R) [16]. The
space B is spanned by functions f (z) of a complex variable z which have finite
norm 〈φ|φ〉 with respect to the scalar product

〈ψ |φ〉 = 1

π

∫
dzdz̄e−zz̄ψ(z)φ(z) (4)

and are analytic in all C (dzdz̄ = d
(z)d�(z)). The criterion for being an element of
B is therefore two-fold: φ(z) ∈ B if both of the following conditions are satisfied:

(B-I): 〈φ|φ〉 < ∞
(B-II): φ(z) is holomorphic everywhere in the open domain C.
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The isometry I maps f (q) ∈ L2(R) to an analytic function φ(z) ∈ B,

φ(z) = I [ f ](z) = 1

π1/4

∫ ∞

−∞
dq e− 1

2 (q2+z2)+√
2qz f (q). (5)

The operators a†, a are mapped to z and d/dz, respectively,

I aI −1 = d

dz
, I a†I −1 = z. (6)

The normalized vacuum |0〉with a|0〉 = 0 ismapped to the constant functionφ0(z) =
1. On infers from (4) that all polynomials in z are elements of B. Especially the
nth eigenstate of the harmonic oscillator |n〉 ∼ e−q2/2Hn(q) is mapped onto the
monomial zn/

√
n!. Moreover, all functions which have the asymptotic expansion

φ(z) = eα1z z−α0(c0 + c1z−1 + c2z−2 + · · · ) for z → ∞, (7)

with arbitrary α1 ∈ C satisfy (B-I) [17]. Equation (7) is the asymptotic form of the
normal solutions of a differential equation having an unramified irregular singular
point of s-rank two at infinity [18, 19]. The coherent state |α〉 = eαa† |0〉 in L2(R) is
mapped obviously to the exponential function eαz . Functions behaving as

φ(z) = exp
(α2

2
z2 + α1z

)
z−α0(c0 + c1z−1 + c2z−2 + · · · ) (8)

asymptotically, satisfy (B-I) only if |α2| < 1 and correspond to an irregular singu-
larity of s-rank three. The limiting value |α2| = 1 belongs to the (not normalizable)
plane wave states f p(q) = exp(i pq)/

√
2π ,

I [ f p](z) = e−p2/2

π1/4 exp

(
1

2
z2 + i

√
2pz

)
. (9)

The Hamiltonian H+ reads inB (with ω = 1),

H+ = z
d

dz
+ g

(
z + d

dz

)
+ ΔT̂ , (10)

where T̂ denotes the reflection operator T̂ [ψ](z) = ψ(−z). The Schrödinger equa-
tion (H+ − E)ψ(z) = 0 corresponds to a linear but non-local differential equation
in the complex domain,

z
d

dz
ψ(z) + g

(
d

dz
+ z

)
ψ(z) = Eψ(z) − Δψ(−z). (11)
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The theory of these equations initiated byRiemann andFuchs [18] can nowbe applied
to (11). First, one obtains with the definition ψ(z) = φ1(z) and ψ(−z) = φ2(z) the
coupled local system,

(z + g)
d

dz
φ1(z) + (gz − E)φ1(z) + Δφ2(z) = 0, (12a)

(z − g)
d

dz
φ2(z) − (gz + E)φ2(z) + Δφ1(z) = 0. (12b)

This system has two regular singular points at z = ±g and an (unramified) irregular
singular point of s-rank two at z = ∞ [19]. The normal solutions of (12) behave
asymptotically as (7) with α1 = g or α1 = −g. The two Stokes rays are the positive
and negative real axis. We infer that all solutions of (12) satisfy (B-I). It follows
that the discrete spectrum {En}, n ∈ IN0 will be determined by (B-II), because not
all solutions of (12) are analytic in C. Define x = E + g2. Then the exponents of
φ1(z) at the regular singular point g (−g) are {0, 1+ x} ({0, x}), while for φ2(z) the
exponents at g (−g) are {0, x} ({0, 1 + x}).

If E belongs to the spectrum of H+, φ1 and φ2 must be analytic in C, especially
at both points ±g. This leads naturally to a division of the spectrum into two parts:
(1) The regular spectrum σreg consisting of those values En for which xn = En + g2

is not a non-negative integer.
(2) The exceptional spectrum σexc for which xn ∈ IN0.

2.1 The Regular Spectrum

If x /∈ IN0, the only allowed exponent at both points ±g is 0. We consider the case
−g and define y = z + g, φ1,2 = e−gy+g2 φ̄1,2. Then,

y
d

dy
φ̄1 = x φ̄1 − Δφ̄2, (13)

(y − 2g)
d

dy
φ̄2 = (x − 4g2 + 2gy)φ̄2 − Δφ̄1. (14)

A local Frobenius solution for φ̄2(y), analytic at y = 0, reads φ̄2(y) = ∑∞
n=0

Kn(x)yn with coefficients Kn(x) to be determined. Integration of (13) yields

φ̄1(y) = cyx − Δ

∞∑
n=0

Kn(x)
yn

n − x
. (15)

Because x /∈ IN0, c must be zero. This determines φ̄1(z) uniquely in terms of φ̄2(z).
Setting K0 = 1, the following three-term recurrence relation for the Kn(x) is obtained
from (14),
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nKn = fn−1(x)Kn−1 − Kn−2, (16)

with

fn(x) = 2g + 1

2g

(
n − x + Δ2

x − n

)
, (17)

and initial condition K0 = 1, K1(x) = f0(x). φ̄2(y) will usually develop a branch-
cut singularity at y = 2g. The radius of convergence of the Frobenius solution
around y = 0 is R = 2g, which can be deduced from the asymptotic value 1/(2g)

of fn−1(x)/n for n → ∞. Due to the relation φ2(z) = ψ(−z), the formal solution
of (13) and (14) yields two expansions for ψ(z), one analytic at z = g and the other
analytic at z = −g,

ψ(z) = φ2(−z) = egz
∞∑

n=0

Kn(x)(−z + g)n, (18)

ψ(z) = φ1(z) = e−gz
∞∑

n=0

Kn(x)Δ
(z + g)n

x − n
. (19)

The two circles centered at z = ±g are shown in Fig. 1. Because the vectors
(φ1(z), φ2(z))T and (φ2(−z), φ1(−z))T satisfy both the homogeneous first-order
system (12), they coincide in a neighborhood of z0 if

φ1(z0) = φ2(−z0), φ1(−z0) = φ2(z0) (20)

for any z0 in the intersection of their domain of convergence. That means that φ2(−z)
is the analytic continuation of φ1(z) and itself analytic at z = g, therefore ψ(z) is
analytic at both singular points. Both conditions in (20) are equivalent if z0 = 0
[20]. This leads to the definition of the G-function for the regular spectrum of H+
[15, 21],

G+(x) = φ2(0) − φ1(0) =
∞∑

n=0

Kn(x)

[
1 − Δ

x − n

]
gn . (21)

Fig. 1 The singularity
structure of (11) and (12).
Two local Frobenius
solutions analytic at z = g
and z = −g respectively are
defined by (16) and (17). If
they coincide in the
intersection of their domains
of convergence, they
describe the same (analytic)
function in C

ordinary point

regular singular point

Re(z)

Im(z)

g−g
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Fig. 2 The G-functions for odd (blue) and even (red) parity for g = ω = 1 and Δ = 0.4

If G+(En + g2) = 0, the corresponding formal solution ψ(z) is analytic every-
where and an element of B because it satisfies (B-I) and (B-II), entailing that
En ∈ σreg(H+). G−(x) for H− is obtained from G+(x) by replacing Δ with −Δ

in (21). It follows from (16), (17) and (21) that G±(x) has simple poles at x ∈ IN0.
The zeros of G±(x) are distributed between these poles. Figure2 shows G±(x) and
Fig. 3 the corresponding spectrum of HR for both parities. It is easy to see that the
regular spectrum is never degenerate, neither within each parity chain nor among
states with different parity [15]. The G-function can be expressed in terms of known
special functions as follows

Fig. 3 Rabi spectrum for the same Δ,ω as in Fig. 2 and 0 ≤ g ≤ 0.8. The intersections between
the spectra of different parity indicate the degenerate part of the exceptional spectrum. The two-fold
labeling of states on the left corresponds to the uncoupled system (the ± denotes the spin quantum
number) and on the right to the coupled case (± denotes the parity quantum number)
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G±(x) =
(
1 ∓ Δ

x

)
Hc(α, γ, δ, p, σ ; 1/2) − 1

2x
H ′

c(α, γ, δ, p, σ ; 1/2). (22)

Hc(α, γ, δ, p, σ ; z) denotes a confluent Heun-function [22] and H ′
c(α, γ, δ, p, σ ; z)

its derivative with respect to z. The parameters are given as

α = −x, γ = 1 − x, δ = −x,

p = −g2, σ = x(4g2 − x) + Δ2.

The functional form (21) of G±(x) leads to the following conjecture about the dis-
tribution of its zeros along the positive real axis.

Conjecture: The number of zeros in each interval [n, n + 1], n ∈ IN0 is restricted to
be 0, 1, or 2. Moreover, an interval [n, n + 1] with two roots of G±(x) = 0 can only
be adjacent to an interval with one or zero roots; in the same way, an empty interval
can never be adjacent to another empty interval.

2.2 The Exceptional Spectrum

We shall demonstrate in the following that the presence of the exceptional spectrum
σexc poses certain constraints on the model parameters g and Δ such that for given
g, Δ, at most two eigenvalues are exceptional. Furthermore, σexc = σ d

exc ∪ σ nd
exc,

where σ d
exc comprises the values E = m − g2 with m ∈ IN. Each eigenvalue in σ d

exc
is doubly degenerate among states with different parity. σ nd

exc is not degenerate and
may take values E = m − g2 with m ∈ IN0.

We begin with σ nd
exc. The poles of G+(x) at x ∈ IN0 indicate that an integer x can

only signify an eigenvalue of H+ if the corresponding pole in G+(x) is lifted for
special values of the parameters g and Δ. If x ∈ IN0, not only the exponent 0 but
also the exponents x , respectively x + 1 guarantee analyticity of φ1(z) and φ2(z) at
z = −g. However, as the difference of the two exponents at both singular points is a
positive integer if x > 0 (for x = 0 this difference is positive at one singular point),
the local analytic Frobenius solutions around z = −g will develop a logarithmic
branch-cut at z = g in general. For x = m ∈ IN0, there exist always a solution for
φ̄2(y) analytic at y = 0 of the form

φ̄2(y) =
∞∑

n=m+1

Kn yn, (23)

because the largest exponent of φ̄2(y) at y = 0 is x + 1 [18]. Integration of (13)
yields for φ̄1(y),

φ̄1(y) = cym − Δ

∞∑
n=m+1

Kn
yn

n − m
. (24)
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In this case, the constant c may be different from zero because φ̄1(y) is then analytic
at y = 0. Solving now (14) with the ansatz (23), we obtain for n ≥ m + 2 the
recurrence (16), (17) and the initial conditions

Km+1 = cΔ

2(m + 1)g
, Km = 0. (25)

c is fixed in termsof Km+1. Setting Km+1 = 1weobtain forψ(z) the twoexpressions

ψ(z) = φ2(−z) = egz
∞∑

n=m+1

Kn(m; g, Δ)(−z + g)n, (26)

ψ(z) = φ1(z) = e−gz

⎛
⎝2(m + 1)g

Δ
(z + g)m − Δ

∞∑
n=m+1

Kn(m; g, Δ)
(z + g)n

n − m

⎞
⎠ (27)

and the G-function follows as

G(m)
+ (g,Δ) = −2(m + 1)

Δ
+

∞∑
n=m+1

Kn(m; g,Δ)

(
1 + Δ

n − m

)
gn−m−1. (28)

The zeros of the function G(m)
+ (g,Δ) determine those values of the parameters g and

Δ for which H+ has the exceptional eigenvalue m −g2 with m ∈ IN0. For odd parity,
we have G(m)

− (g,Δ) = G(m)
+ (g,−Δ). It follows that G(m)

+ (g,Δ) and G(m)
− (g,Δ)

have no common zeros, so this part of the exceptional spectrum is not degenerate,
just as the regular spectrum. It was computed by a related method in [23].

To obtain σ d
exc, we consider now the smaller exponent, zero, of φ̄2(y) at y = 0,

leading to the expansion

φ̄2(y) =
∞∑

n=0

Kn yn . (29)

After integration of (13), φ̄1(y) reads

φ̄1(y) = cym − Δ

∞∑
n �=m

Kn
yn

n − m
− Δym Km ln(y). (30)

The Kn are determined again with (16) and initial conditions K0 = 1, K1 = f0(m).
Therefore Km(m; g,Δ) is uniquely fixed. The logarithmic term in (30) vanishes if
Km(m; g,Δ) = 0 [15]. In this case there exist two local solutions analytic at y = 0,
(23) and (29). If m �= 0, they are linearly independent and span the whole solution
space for φ̄2(y). Because of the reflection symmetry mapping y to 2g − y, these
solutions describe the solution space in a neighborhood of y = 2g as well and all
solutions of (12) are analytic at both g and −g, thus in all of C, if Km(m; g,Δ) = 0
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and no further condition is necessary.Moreover, the Km’s are the same for odd parity,
so the eigenvalue E = m−g2 obtained via this condition is always doubly degenerate
between states of different parity. The presence of the spectrum σ d

exc and its “quasi-
exact” nature [24] may be explained more generally in terms of the representation
theory of sl2(R) [25]. A special situation arises for x = 0. The condition K0(0) = 0
renders the ansatz (29) equivalent to (23) and both solutions are linearly dependent.
Thus only one local solution may be analytic at y = 0 and φ̄1(y) is given by (24)
for m = 0. If E = −g2 is an eigenvalue of H+, G(0)

+ (g,Δ) must vanish. It follows

that for these parameter values G(0)
− (g,Δ) �= 0, the eigenvalue E = −g2 is never

degenerate and an element of σ nd
exc.

2.3 Methods Based on Continued Fractions

The Bargmann space formalism has been applied to the QRM as early as 1967 by
Schweber [26]. He did not make use of the Z2-symmetry but derived the coupled
system (12) directly from (1) with the ansatz ψ = (ϕ1(z), ϕ2(z))T ∈ B ⊗ C

2

for the wave function with energy E . (12) is then satisfied by φ1 = ϕ1 + ϕ2 and
φ2 = ϕ1 − ϕ2. He obtained the local Frobenius solution for φ̄2(y) given by (16) and
(17). The convergence radius of the series (29) is 2g for arbitrary x and the discrete
set of eigenvalues is selected by determining those x for which (29) has infinite
convergence radius. The problem is equivalent to compute the minimal solution
of the recurrence (16) [27]. The spectral condition obtains then by equating the
minimal K1(x)/K0 with f0(x) from the initial conditions. The equation has the form
F(x) = 0, where F(x) is represented by a continued fraction [26]. This method,
while formally correct, has several conceptual shortcomings:

• The function F(x) has an unknown singularity structure and it is impossible to
infer qualitative aspects on the distribution of its zeros from it.

• The actual computation of the continued fraction makes a truncation at some order
necessary which is equivalent to define the model on a finite-dimensional Hilbert
space, which is the starting point for other work employing continued fractions to
compute the Rabi spectrum [28, 29].

• The zeros of F(x) correspond to σreg ∪ σ d
exc, but there is no possibility to discern

both types of spectra, especially the double degeneracy of σ d
exc cannot be detected

with this method.
• The spectrum σ nd

exc is not accessible because the expansion (29) with K0 �= 0 is
assumed in the derivation of F(x).

Besides these conceptual problems, themethod is numerically feasible only for the
first low-lying eigenvalues. The continued fraction has a pole in close vicinity of each
zero and their distance approaches zero exponentially for growing x , so that at most
ten energy levels may be resolved within a double precision calculation. On the other
hand, the equivalence of the continued fraction approach to exact diagonalization in
finite-dimensional Hilbert spaces proves the validity of the latter for the QRM [17].
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Schweber’s technique is confined to problems reducible to three-term recurrence
relations for the local Frobenius solutions and implements then (B-II) as the spectral
condition. It fails for models with more than a single qubit because the ensuing
recurrence relations have more than three terms. The next section is devoted to the
application of the theory presented above to models with N > 1 qubits.

3 The Dicke Models

The natural generalization of the Hamiltonian (1) couples several two-level systems
to the same mode of the radiation field,

HDN = ωa†a +
N∑

i=1

ω0i

2
σi z + (a + a†)

1√
N

N∑
i=1

g′
iσi x . (31)

This model assumes different qubit frequencies ω0i and couplings gi to the field and
is therefore called the asymmetric Dicke model (ADMN ) with N qubits. Dicke
introduced the permutation-invariant version of (31) in 1954 and predicted the
(later observed) phenomenon of “superradiance” for large N [30]. Its rotating-wave
approximation is integrable for all N [31], while the full model is non-integrable
for any N > 1 according to the level-labeling criterion [15]. Applications in quan-
tum information technology mandate the study of (31) without approximations for
small N , because it describes the implementation of quantum gates within circuit
QED [32].

The following section treats the asymmetric model for N = 2 and Sect. 3.2 the
symmetric model for N = 3.

3.1 ADM2 and Exceptional States

The Hamiltonian of the ADM2 reads in slightly different notation,

HD2 = ωa†a + g1σ1x (a + a†) + g2σ2x (a + a†) + Δ1σ1z + Δ2σ2z . (32)

This model has a Z2-symmetry similar to (1), generated by P̂ = exp(iπa†a)σ1zσ2z .
However, because it has only two irreducible one-dimensional representations, the
discrete degrees of freedom cannot be labeled with a Z2-quantum number (their
Hilbert space isC

4). The symmetry of themodel is not sufficient tomake it integrable
as the N = 1 case (1).

Nevertheless, the same methods as above can be used to solve (32) exactly [33],
at the expense of a more complicated G-function, which is no longer a linear combi-
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nation of formal solutions as (21). After application of the symmetry, the remaining
Hilbert space is not B, but B ⊗ C

2. The Hamiltonian reads (ω = 1),

H± = z
d

dz
+ (g1 + g2σz)

(
z + d

dz

)
+ (Δ2 ± Δ1T̂ )σx , (33)

with T̂ = (−1)z d
dz . An eigenfunction of (33) with eigenvalue E is the vector ψ =

(ϕ1(z), ϕ2(z))T . Definingϕ3(z) = ϕ1(−z) andϕ4(z) = ϕ2(−z), we obtain a coupled
system of four ordinary first order differential equations with four regular singular
points located at g = g1 + g2, g′ = g1 − g2, −g and −g′. Moreover, z = ∞ is an
unramified irregular singular point of s-rank two; we conclude that again all formal
solutions fulfill (B-I) and E is determined by postulating analyticity of the solution
at all regular singular points. The corresponding coupled recurrence relations for
the Frobenius expansions around each of the points 0, g and g′ cannot be reduced
to a three-term recurrence, except in the case g′ = 0, which allows a treatment
similar to the QRM. It turns out that eight initial conditions determine functions
φk(z), k = 1, . . . , 32, describing theϕ j (z) around different expansion points.Overall
analyticity is then equivalent to the vanishing of the determinant of a 8 × 8-matrix
M±(E), whose entries are composed of the φk , evaluated at the ordinary points z0
and z′

0, whose location depends on the geometry of the analytic regions [33]. The
G-function can then be defined as G±(E) = det(M±(E)). This function has poles
at integer values of E + g′2 and E + g2, defining the exceptional spectrum, besides
the regular, given by the condition G(En) = 0.

The spectra of HD2 obtained in this way are depicted in Fig. 4, as function of g and
various levels of asymmetry. For the completely asymmetric cases in Fig. 4a, b, we
observe level crossings between states of different parity, whereas states with equal
parity show avoided crossings, some of them quite narrow as the insets demonstrate.
There is no relation between degeneracies and the exceptional spectrum as in the case
of the QRM, because the G-functions G+(E) and G−(E) are not simply related.
The set of lines with E + g2 = n, n ∈ IN0, give the asymptotic (parity degenerate)
spectrum in thedeep strong coupling limit. Figure4c shows the completely symmetric
case, Δ1 = Δ2, g1 = g2. The invariance under permutation symmetry of (32) leads
to separation of the Hilbert space of the spin-1/2 qubits into singlet and triplet sector
according to 1

2 ⊗ 1
2 = 0 ⊕ 1. The total Hilbert space becomes thus B ⊗ C

4 →
B⊕B⊗C

3. The singlet subspace is isomorphic toB and the Hamiltonian describes
the decoupled radiation mode. Thus the eigenenergies are just integer multiples of
ω, independent of the coupling. They are seen as horizontal lines in Fig. 4c. The
triplet subspace is coupled to the radiation field and the spectrum shows a nontrivial
dependence on g.

An interesting situation obtains for equal couplings g1 = g2 but different qubit
energies, Δ1 �= Δ2. The full permutation symmetry is broken, but there is a certain
remnant of it. For g1 = g2, z = 0 is a regular singular point and there exist “quasi-
exact” eigenstates, belonging to the exceptional spectrum with En ∈ IN for certain
parameter values of g,Δ j . These states contain afinite number N of photons (contrary
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(a) (b)

(c) (d)

Fig. 4 The spectra of HD2 with a Δ1 = 0.6, Δ2 = 0.2, ω = 1, 0 ≤ g = g1 + g2 ≤ 2.5, g1 = 4g2.
b Δ1 = 0.6, Δ2 = 0.2, ω = 1, 0 ≤ g = g1 + g2 ≤ 2.5, g1 = 2g2. c Δ1 = Δ2 = 0.5, ω = 1, 0 <

g = g1 + g2 < 2.5, g1 = g2. d Δ1 = 0.6, Δ2 = 0.4, ω = 1, 0 ≤ g ≤ 2.5, g1 = g2. Blue lines are
eigenvalues with odd parity, while red lines are eigenvalues with even parity

to the likewise quasi-exact elements of σ d
exc in the QRM) and are determined by a

polynomial equation for g,Δ1,Δ2 depending on the energy value E = N . It reads
for N = 2,

[(
2 − (Δ2 ± Δ1)

2

2

) (
1 − (Δ2 ∓ Δ1)

2) − g2
]

(∓Δ1 − Δ2) = 0, (34)

where the + (−) corresponds to even (odd) parity. The condition comprises the
symmetric case Δ1 = Δ2 for odd parity, but otherwise determines Δ1, Δ2 in terms
of g. This is true for all N ≥ 2. However, for N = 1 we find,

(±Δ1 − Δ2)
[
1 − (Δ2 ± Δ1)

2] = 0. (35)

There exists an eigenstate with energy E = 1 and even (odd) parity, ifΔ1 +Δ2 = 1,
(|Δ1 − Δ2| = 1). This state contains at most one photon and the condition for
its existence does not depend on g. It was first discovered by Chilingaryan and
Rodríguez-Lara [34]. With the notation |ψ〉 = |n, s1, s2〉 for a basis element in H ,
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where we have used the occupation number basis for the boson mode and s j ∈ {g, e}
denotes the state of the j th qubit, the exceptional statewith even parity (Δ1+Δ2 = 1)
reads,

|ψe〉 = 1

N

(
2(Δ1 − Δ2)

g
|0, e, e〉 − |1, e, g〉 + |1, g, e〉

)
, (36)

with a normalization factor N . This state becomes the singlet state

1√
2
|1〉 ⊗ (|g, e〉 − |e, g〉) (37)

in the symmetric case Δ1 = Δ2. The spectrum for Δ1 + Δ2 = 1 is shown in
Fig. 4d, exhibiting the quasi-exact state with E = 1 as a g-independent line. In
contrast to the fully decoupled singlet state (37), the state (36) is strongly coupled
to the radiation field, as its components depend on g. It is quite remarkable that
states with finite maximal photon number exist for arbitrary strong coupling without
making the rotatingwave approximation. This feature cannot be realized in theQRM,
where each eigenstate contains always an infinite number of photons. Due to its very
simple structure, the state (36) could be useful for quantum computing applications,
especially as the condition for its existence depends only on the (easily controllable)
qubit energiesΔ1 andΔ2 and not on the coupling strength. Similar states are expected
to exist in all models ADMN with gi ≡ g and even N .

3.2 ADM3

The Hilbert space of the symmetric model ADM3 with g′
i ≡ g′ = √

3g, ω0i ≡ ω0 =
2Δ may be splitted according to 1

2 ⊗ 1
2 ⊗ 1

2 = 1
2 ⊕ 1

2 ⊕ 3
2 . Each of the two spin-1/2

components are equivalent to the QRM, while the last component describes a single
spin-3/2 coupled to the radiation mode with Hamiltonian,

HD3 = a†a + 2Δ Ĵz + 2g(a + a†) Ĵx , (38)

where Ĵz and Ĵx are generators of SU (2) in the (four-dimensional) spin-3/2 repre-
sentation. TheZ2-generator has here the form P̂ = exp(iπa†a)R̂. R̂ is an involution
acting in spin-space as R̂ Ĵz R̂ = Ĵz , R̂ Ĵx R̂ = − Ĵx . Application of P̂ gives the
following differential operator in each parity subspace,

H± = z
d

dz
+ Δ

(
0

√
3√

3 ±2T̂

)
− g

(
3 0
0 1

) (
d

dz
+ z

)
. (39)

Employing now the same machinery as in the previous section, we obtain again
four coupled first order equations having regular singular points at ±g, ±3g and
an irregular singular point (s-rank two) at infinity [35]. Because of the stronger
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Fig. 5 The spectrum of the Dicke model for even (red) and odd (blue) parity at Δ = 0.7 and for
varying g. The y-axis shows x = E + g2. The ground state has odd parity as in the QRM. The
two ladders of eigenvalues with different parity intersect within the regular spectrum. There are
no degeneracies (but narrow avoided crossings) for fixed parity in this parameter window. Dashed
lines denote the set E +9g2 ∈ IN0 and emerge as limiting values in the deep strong coupling regime
g � 1

symmetry of (38) compared to (32), the matrix M(E)±, whose determinant gives
the G-function is only 6×6. It contains 24 functions evaluated at the points z0 = 2g
and z′

0 = 0. The poles of G±(E) (giving σ nd
exc) are located at E + g2 ∈ IN and

E + 9g2 ∈ IN0. The curves determined by the latter set are also the limiting values
for the spectrum for very large coupling. Figure5 shows the spectral graph of the
model as function of the coupling g. As in the N = 2 case, the degeneracies occur
within the regular spectrum between states of different parity. However, the fact
that we have now a determinant as G-function means that in principle degeneracies
within the same parity chain are not excluded as the corresponding matrix M±(E)

could have a higher-dimensional kernel at a specific energy. Up to now there is no
numerical evidence for this scenario and the existence of these novel degeneracies
is an open question.

4 Conclusions

We have seen in the previous sections that the classical theory of linear differen-
tial equations in the complex domain may be used to solve exactly elementary but
important problems in the field of theoretical and applied physics, contributing in this
way to a better understanding of the basic models of circuit QED, which has been
envisioned as a promising environment to implement devices capable of performing
quantum computations.

The mathematical technique relies on the Bargmann Hilbert space B, which
allows to represent the Hamiltonians from Quantum Optics as differential operators
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acting on functions of a complex variable z. Of central importance is hereBargmann’s
two-fold spectral condition, which demands not only normalizability with respect to
the scalar product but also analyticity in C for any function φ(z) being an element of
B. In this way it becomes possible to use the easily accessible singularity structure of
the corresponding differential equations to implement the spectral condition without
recourse to a polynomial ansatz for the wave functions, which works for elementary
integrable systems like the harmonic oscillator, the hydrogen atom and the Jaynes-
Cummingsmodel, but fails already for the quantumRabimodel,which is nevertheless
integrable in a well-defined sense [15] (for a recent comparison with Yang-Baxter
integrability see [36]).

The method can be extended to models of central relevance for quantum technol-
ogy, the Dicke models with a small number of qubits. These models are no longer
integrable in view of the level labeling criterion [15] but exactly solvable with the
presented technique, although many characteristic simplifications of the quantum
Rabi model are absent. Further applications concern models with a single irregular
singular point as the two-photon Rabi model [37], or the anharmonic oscillator. One
may also try to extend the formalism to multi-mode models [38]. Notwithstanding
these generalizations, we note that the already solved systems give rise to a set of
open mathematical problems like the conjecture on the level distribution presented
in Sect. 2.1, or the question whether a novel class of degeneracies exists in the Dicke
models (Sect. 3.2). Thus, a future research direction will be the exploration of the
recently observed connection [39] between the quantum Rabi model and the non-
commutative harmonic oscillator [40]. It should be possible to transfer mathematical
methods used for the study of the latter to the problems mentioned above. The tech-
niques used in [41–44] could be applied f.e. to investigate the level crossing appearing
in the ground state of the anisotropic quantum Rabi model [45].
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