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Abstract We study a mathematical model of small double crystals, that is, two con-
nected regions in Rn+1 with prescribed volumes and with surface tension depending
on the direction of the each point of the surface. Each double crystal is a critical
point of the anisotropic surface energy which is the integral of the surface tension
over the surface. We derive the first and the second variation formulas of the energy
functional. For n = 1 and a certain special energy density function, we classify the
double crystals in terms of symmetry and the given areas. Also, we prove that some
of the double crystals are unstable, that is they are not local minimizers of the energy.
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1 Introduction

Therewas a long-standing conjecture whichwas called the double bubble conjecture.
It says that the standard double bubble provides the least-perimeter way to enclose
and separate twogiven volumes, here the standard double bubble is consisting of three
spherical caps meeting along a common circle at 120 degree angles. This conjecture
had been believed since about 1870, and was proved in 2002. The existence of the
minimizer was proved by Almgren [3] in 1976. (This paper proved, more general
case, minimizing surface enclosing k prescribed volumes in Rn+1, using geometric
measure theory.) In 1993, the double bubble conjecture was proved in the plane by
Foisy et al. [2] advised by Frank Morgan. For higher dimensional case, Hutchings
[5] proved that any minimizer is axially symmetric and he also obtained a bound of
the number of connected components of the two regions of a minimizer. Using these
results, finally in 2002, the double bubble conjecture was proved by Hutchings et al.
[6] in R3, and a student of Morgan extended it to higher dimensions [1].
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Double bubbles are a mathematical model of soap bubbles. The energy functional
is the total area of the surface. On the other hand, whenwe think about amathematical
model of anisotropic substance like crystals, we need to consider the energy density
function γ : Sn → R+ depending on the normal direction N of the surface, where
Sn := {X ∈ Rn+1 | ‖X‖ = 1} is the n-dimensional unit sphere in Rn+1. γ is

called an anisotropic energy density function, and its integral F =
∫

Σ

γ (N )dΣ

over the surfaceΣ is called an anisotropic (surface) energy. The surface is a constant
anisotropic mean curvature (CAMC) surface if it is a critical point of the anisotropic
energy for all volume preserving variations. CAMC surfaces are a generalization of
CMC (constant mean curvature) surfaces.

In this paper, we extend the double bubble problem to a double crystal (DC)
problem, that is, we minimize the anisotropic energy instead of the surface area. The
solutions are a mathematical model of multiple crystals.

There were some previous researches relating to the DC problem. Gary [4] deter-
mined the energy-minimizer for the case where each anisotropic energy density
function γi (i = 0, 1, 2) is constant (we consider three surfaces, so we need three
kinds of anisotropic energy density functions). Hence, his γi ’s are isotropic. His work
also means that he gave a new proof of the double bubble conjecture. Besides, for
γ := γ1 = γ2 = γ0 that γ is a norm on R2, Morgan et al. [11] determined the
shapes of the all minimizers for the case of γi (ν1, ν2) = |ν1| + |ν2| (i = 0, 1, 2)
((ν1, ν2) ∈ S1).

Recall that there is a unique hypersurface that minimizes F among all closed
hypersurfaces enclosing the same volume (cf. [13]). This surface is known as the
Wulff shape. In this paper, we assume that the Wulff shape is smooth. We will derive
the first variation formula for the anisotropic energy F (Theorem 1), and obtain
the conditions for a surface Σ to be a double crystal (Theorem 2). Also, we will
obtain the second variation formula forF (Theorem 3) and obtain the condition for
a double crystal to be stable.

For n = 1, we will consider a special energy density function γ := γ1 = γ2 = γ0
satisfying

γ (ν1, ν2) =
(
ν
2p
1 + ν

2p
2

)1− 1
2p

/

√
ν
4p−2
1 + ν

4p−2
2 .

We classify the double crystals in terms of symmetry and the given areas. Also,
we prove that some of the double crystals are unstable, that is they are not local
minimizers of the energy.

We will explain our problem more precisely in Sect. 2. In Sect. 3, we derive the
first and the second variation formulas of the anisotropic surface energy. In Sect. 4,
we study the DC problem in the plane.

This paper is essentially a part of the author’s doctoral dissertation [12].
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2 Preliminaries

In this section, first we introduce some fundamental facts about CAMC surfaces (for
details, see [8]). Then, we formulate the DC problem.

Let γ : Sn → R+ be a positive smooth function on the unit sphere Sn inRn+1.We
call this function γ an anisotropic energy density function. LetΣ be an n-dimensional
oriented compact C∞ manifold with or without boundary. And let X : Σ → Rn+1

be an immersion with Gauss map (unit normal) N : Σ → Sn be its Gauss map. The
anisotropic energy of X is defined as

F (X) =
∫

Σ

γ (N )dΣ,

where dΣ is the volume form on Σ induced by X . Any smooth variation X̃ :
Σ × [−ε0, ε0] → Rn+1 (ε0 > 0) of X can be represented as X̃(∗, ε) = Xε =
X + ε(Z + ϕN ) +O(ε2), where Z is tangent to X . The first variation ofF for this
variation is (cf. Proof of Proposition 3.1 in [8])

δF := d

ds

∣∣∣
ε=0

F (Xε)

=
∫

Σ

ϕ(divΣ Dγ − nHγ )dΣ +
∮

∂Σ

−ϕ〈Dγ, ν〉 + γ 〈Z , ν〉 ds, (1)

where D is the gradient on Sn , H is themean curvature of X , ν is the outward pointing
unit conormal of X along ∂Σ , and ds is the (n−2)-dimensional volume form of ∂Σ .
Λ := −divΣ Dγ + nHγ is called the anisotropic mean curvature of X . X is called a
Constant Anisotropic Mean Curvature (CAMC) hypersurface when Λ ≡ constant.
We remark that X is CAMC if and only if δF = 0 for all compactly-supported
(n + 1)-dimensional-volume-preserving variations. For γ ≡ 1, we get Λ = nH . It
means that CAMC surface is a generalization of CMC surface.

It is known that there is a unique (up to translation in Rn+1) minimizer of F
among all closed hypersurfaces enclosing the same volume (cf. [13]), and it is a
rescaling of the so-called Wulff shape. The Wulff shape (we denote it by W ) is a
closed convex hypersurface defined by

W := ∂
⋂

N∈Sn

{w ∈ Rn+1|〈w, N 〉 ≤ γ (N )}

When theW is smooth and strictly convex (that is, all principal curvatures are positive
with respect to the inward normal. This condition is equivalent to the condition that
A := D2γ + γ · 1 is positive definite at earh N ∈ Sn , where D2γ is the Hessian of
γ on Sn , and 1 is the identity map on TN Sn . This condition is called the convexity
condition), W can be parametrized as an embedding Φ : Sn → W ⊂ Rn+1:
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Φ(N ) = Dγ + γ (N )N .

The anisotropic mean curvature of W is n with respect to the inward normal.
From now on, we assume that the convexity condition is satisfied.
For later use, we give a new representation of the 1st variation formula:

Lemma 1 The first variation of F for the variation Xε = X + εY + O(ε2) is

δF = −
∫

Σ

ϕΛ dΣ +
∮

∂Σ

〈Φ,−ϕν + f N 〉 ds,

where ϕ := 〈Y, N 〉 and f := 〈Y, ν〉.
Proof We compute the integrand of the second term of (1).

−ϕ〈Dγ, ν〉 + γ 〈Z , ν〉 = 〈−ϕ(Dγ + γ N ), ν〉 + γ f

= 〈Φ,−ϕν〉 + 〈Dγ + γ N , N 〉 f

= 〈Φ,−ϕν + f N 〉,

which proves the desired result. �

If n = 1, curves with constant anisotropic mean curvature are completely deter-
mined as follows:

Lemma 2 Let n = 1 and X : R ⊃ I → R2 be a curve parametrized by arc-length.
Then,

Λ = κ/κW ,

where Λ is the anisotropic mean curvature of X, κ is the curvature of X, and κW is
the curvature of the Wulff shape W .

Proof We denote by θ a point eiθ in S1. Then, the Wulff shape W is represented by
an embedding Φ : S1 → R2 defined as

Φ(θ) = γθ (θ)(− sin θ, cos θ) + γ (θ)(cos θ, sin θ).

Set X (s) = (x(s), y(s)). Then, the Gauss map N of X is

N (s) = (−y′(s), x ′(s)) =: (cos θ(s), sin θ(s)).

Hence, the anisotropic mean curvature Λ of X is

Λ(s) = −γθs − κγ = −γθθ θs − κγ = −κ(γθθ + γ ). (2)

On the other hand,
dΦ

dθ
= (γθθ + γ )(− sin θ, cos θ),
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d2Φ

dθ2
= (γθθθ + γθ )(− sin θ, cos θ) − (γθθ + γ )(cos θ, sin θ).

Hence, by elementary calculations, the curvature κW ofW with respect to the outward
pointing unit normal is

κW = −1

γθθ + γ
. (3)

(2) with (3) gives the desired formula. �

Proposition 1 If the anisotropic mean curvature Λ of a curve X is constant, then
either

1. X is (a part of) a straight line (when Λ = 0), or

2. X is a part of the Wulff shape up to translation and homothety (when Λ �= 0).

Proof By Lemma 2, the curvature of X is κ = ΛκW . Hence, by the fundamental
theorem for plane curves, we obtain the desired result. �

Remark 1 For n ≥ 2, we have great many varieties of CAMC hypersurfaces. For
example, [10, Sect. 5] gives two parameter family of axisymmetric CAMC surfaces.

Let us explain our problem more precisely. Let Σ1,Σ2,Σ0 be three piecewise
smooth oriented connected compact hypersurfaces in Rn+1 with common boundary
C such thatΣ1 ∪Σ0 (resp.Σ2 ∪Σ0) encloses a region R1 (resp. R2) with prescribed
volume V1 (resp. V2), and let γi be energy density functions on Σi . We study the
following anisotropic energy of the surface Σ := Σ1 ∪ Σ2 ∪ Σ0:

F (Σ) :=
2∑

i=0

∫
Σi

γi (Ni )dΣi , (4)

where Ni : Σi → Sn is the unit normal vector field along Σi (we refer to Fig. 1
about the directions of Ni ) and dΣi is the n-dimensional volume form on Σi . The
volumes Vi of the region Ri is given by

Fig. 1 An admissible
surface Σ in R3. The red
curve C is the common
boundary of Σ1, Σ2 and Σ0.
We always assume that
Σ0 is in the middle
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V1 = 1

n + 1

{∫
Σ1

〈x1, N1〉dΣ1 +
∫

Σ0

〈x0, N0〉dΣ0

}
,

V2 = 1

n + 1

{∫
Σ2

〈x2, N2〉dΣ2 −
∫

Σ0

〈x0, N0〉dΣ0

}
.

Our problem is to study the minimizers of F among Σ’s such that R1, R2 have
prescribed volumes V1, V2, respectively.

3 Variation Formulas

Throughout this section,Σ = Σ1∪Σ2∪Σ0 is such the unionof smooth hypersurfaces
Σ0,Σ1, andΣ2 with common boundary C as in the last part of Sect. 2. We derive the
first variation formula for the functionalF defined by (4), and obtain the conditions
for critical points.

Let X̃ : Σ × [−ε0, ε0] → Rn+1 (ε0 > 0) be a variation of X : Σ → Rn+1. X̃ is
called an admissible variation if the two volumes V1, V2 are preserved. Such X̃ can
be represented as X̃(x, ε) = Xε = X + εY + O(ε2), and Y is called an admissible
variation vector field of X . If Y is admissible, then

δV1 := d

dε

∣∣∣∣
ε=0

V1(Xε) =
∫

Σ1

〈Y, N1〉dΣ1 +
∫

Σ0

〈Y, N0〉dΣ0 = 0, (5)

δV2 := d

dε

∣∣∣∣
ε=0

V2(Xε) =
∫

Σ2

〈Y, N2〉dΣ2 −
∫

Σ0

〈Y, N0〉dΣ0 = 0. (6)

hold. By a suitable reparametrization of X̃ , we may assume that, at each point on C ,
Y is orthogonal to the ((n −1)-dimensional) tangent space of C . Then, the boundary
condition implies the following:

Y = 〈Y, N1〉N1+〈Y, ν1〉ν1 = 〈Y, N2〉N2+〈Y, ν2〉ν2 = 〈Y, N0〉N0+〈Y, ν0〉ν0 (7)

hold on C , where νi is the outward pointing conormal vector for Σi along C .

Lemma 3 Let ϕi , fi : Σi → R be smooth functions on Σi satisfying

(i)
∫

Σ1

ϕ1 dΣ1 +
∫

Σ0

ϕ0 dΣ0 = 0,
∫

Σ2

ϕ2 dΣ2 −
∫

Σ0

ϕ0 dΣ0 = 0,

(ii) ϕ1N1 + f1ν1 = ϕ2N2 + f2ν2 = ϕ0N0 + f0ν0 on C.

Then there exists an admissible variation such that the normal (resp. conormal to C)
component of the variation vector field Y are ϕi Ni (resp. fiνi ).

Proof We give functions hi : Σi → R (i = 1, 2) such that
∫
Σi

hi dΣi �= 0 holds
and each hi has compact support on the interior of Σi . And we extend each function
hi to 0 on Σ\Σi . On the other hand, set
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Y := ϕi Ni + fiνi on Σi , i = 0, 1, 2.

Then, Y gives a variation vector field of Σ . Set

X (s, t1, t2) := X + sY + t1h1N1 + t2h2N2,

Vi (s, t1, t2) := Vi (X (s, t1, t2)), i = 1, 2.

Set V 0
1 := V1(0, 0, 0), V 0

2 := V2(0, 0, 0). Consider the following simultaneous
equations.

V1(s, t1, t2) = V 0
1 , V2(s, t1, t2) = V 0

2 .

Differentiate V1, V2 at (s, t1, t2) = (0, 0, 0) to obtain

∂V1

∂s
(0, 0, 0) =

∫
Σ1

ϕ1dΣ1 +
∫

Σ0

ϕ0dΣ0 = 0,
∂V2

∂s
(0, 0, 0) =

∫
Σ2

ϕ2dΣ2 −
∫

Σ0

ϕ0dΣ0 = 0,

∂Vi

∂t j
(0, 0, 0) = δi

j

∫
Σi

h j dΣi

{ �= 0, i = j,
= 0, i �= j.

Therefore, by the implicit function theorem, in there exist a neighborhood I of
s = 0 and smooth functions t1 = t1(s), t2 = t2(s) such that t1(0) = 0, t2(0) = 0,
Ṽ1(s) := V1(s, t1(s), t2(s)) = V 0

1 , Ṽ2(s) := V1(s, t1(s), t2(s)) = V 0
2 (s ∈ I ). Then,

0 = Ṽi
′
(s) = (Vi )s + (Vi )t1 t ′1(s) + (Vi )t2 t ′2(s), (i = 1, 2)

hold. Hence,

t ′1(0) = − (V1)s(0, 0, 0) + (V1)t2(0, 0, 0)t
′
2(0)

(V1)t1(0, 0, 0)
= 0,

t ′2(0) = − (V2)s(0, 0, 0) + (V2)t1(0, 0, 0)t
′
1(0)

(V2)t2(0, 0, 0)
= 0.

Consequently,

X (s, t1(s), t2(s)) = X + sY + t1(s)h1N1 + t2(s)h2N2 = X + sY + O(s2)

is an admissible variation of Σ , and so we obtain the desired result. �

Using Lemma 1, we immediately obtain the following:

Theorem 1 (First variation formula) For a variation Xε = X + εY + O(ε2) of Σ ,
the first variation of the anisotropic energy F is

δF := d

dε

∣∣∣∣
ε=0

F (Xε) =
2∑

i=0

[
−

∫
Σi

ϕiΛi dΣi +(−1)i
∮

C
〈Φi , −ϕiνi + fi Ni 〉 dC

]
, (8)
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where Φi = Dγi + γi Ni , ϕi = 〈Y, Ni 〉, fi = 〈Y, νi 〉 on C, and the orientation of C
is chosen so that it is the positive orientation for Σ1.

Definition 1 Each critical point ofF for all admissible variations is called a double
crystal.

Theorem 2 A hypersurface Σ is a double crystal if and only if there hold:

1. For i = 0, 1, 2, the anisotropic mean curvature Λi is constant, and −Λ1 +Λ2 +
Λ0 = 0 holds, and

2. at each point ζ on C, Φ0−Φ1+Φ2 is in the (n −1)-dimensional linear subspace
determined by the tangent space Tζ C of C at ζ .

Corollary 1 Assume γi ≡ 1, i = 0, 1, 2. Then, Σ is a double bubble if and only if

1. For i = 0, 1, 2, the mean curvature Hi is constant, and −H1 + H2 + H0 = 0
holds, and

2. at each point on C, N0 − N1 + N2 = 0.

Proof of Theorem 2 Assume that Σ = Σ0 ∪Σ1 ∪Σ2 is a double crystal. Then, Σ1 is
a critical point ofF for all admissible variations that fix Σ = Σ0 ∪ Σ2. Hence, Λ1
is constant. Similarly, Λ2 is constant. Now consider any variation Σ0(ε) of Σ0 that
fixes ∂Σ0. Then, the variation vector field ofΣ0(ε) can be extended to an admissible
variation vector field of Σ . In fact, Σ0(ε) can be represented as

Xε = X + εϕ0N0 + O(ε2),

where ϕ0 = 0 on C . It is obvious that we can find functions ϕ1, ϕ2, f1 = 0, and
f2 = 0 satisfying (i) and (ii) in Lemma 3. So, by Lemma 3, there exists an admissible
variation ofΣ whose variation vector field is an extension of Y0 := ϕ0N0.We obtain,
using Theorem 1, (5), and (6),

0 = δF = δF + Λ1δV1 + Λ2δV2 =
∫

Σ0

(Λ1 − Λ2 − Λ0)〈Y0, N0〉 dΣ0.

Hence, Λ1 − Λ2 − Λ0 = 0 holds, which proves the condition 1. Now, assume that
the condition 2 does not hold. Then, there exists a non-empty open set U of C such
that (Φ0 − Φ1 + Φ2)(ζ ) /∈ Tζ C for any ζ ∈ U . Then, we can define a non-zero
vector field Ỹ on C with support in U such that Ỹ is orthogonal to C at any ζ ∈ U
and ∮

C
〈Σ2

i=0(−1)iΦi , Ỹ 〉 dC �= 0

holds. Clearly, Ỹ can be represented as

Ỹ = −ϕiνi + fi Ni , i = 0, 1, 2,
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and Y := ϕi Ni + fiνi can be extended to an admissible variation vector field along
Σ . Here we used Lemma 3 again as above. We obtain

0 = δF = δF + Λ1δV1 + Λ2δV2 =
∮

C
〈Σ2

i=0(−1)iΦi , Ỹ 〉 dC �= 0,

which is a contradiction.
Conversly, assume that the conditions 1 and 2 hold. Then, again by using Theorem

1, (5), and (6), for any admissible variation, we have

δF = δF + Λ1δV1 + Λ2δV2 = 0.

Hence, the hypersurface is a double crystal. �
Definition 2 A double crystal Σ is said to be stable if the second variation δ2F is
nonnegative for all admissible variations, and otherwise it is said to be unstable.

Theorem 3 (Second variation formula) Let Σ = Σ1 ∪ Σ2 ∪ Σ0 be a double crys-
tal. Then for any admissible variational vector field Y , the second variation of the
anisotropic energy F is given by

δ2F =
2∑

i=0

[
−

∫
Σi

ϕi L[ϕi ]dΣi + (−1)i
∮

C
ϕi 〈Ai∇ϕi − fi Ai d Ni (νi ), νi 〉 dC

]
, (9)

where L is the self-adjoint Jacobi operator

L[ϕi ] := div(Ai∇ϕi ) + 〈Ai d Ni , d Ni 〉ϕi ,

Ai := D2γi + γi · 1, ϕi = 〈Y, Ni 〉, and fi = 〈Y, νi 〉 on C.

Proof The first variation formula (Theorem 1) gives

δF := d

dε

∣∣∣∣
ε=0

F (Xε) =
2∑

i=0

[
−

∫
Σi

ϕiΛi dΣi + (−1)i
∮

C
〈Φi , Ỹ 〉 dC

]
,

where Ỹ = −ϕiνi + fi Ni . Hence, any volume-preserving variation, at a double
crystal Σ , we obtain

δ2F = δ(δF + Λ1δV1 + Λ2δV2) =
2∑

i=0

[
−

∫
Σi

ϕiδΛi dΣi + (−1)i
∮

C
〈δΦi , Ỹ 〉 dC

]
.

Note that δΛi = L[ϕi ] holds (cf. [8]). Also, we compute, on C ,

〈δΦi ,−ϕiνi + fi Ni 〉 = −ϕi 〈δΦi , νi 〉 = −ϕi 〈Ai (−∇ϕi + d Ni ( fiνi )), νi 〉
= −ϕi 〈−Ai∇ϕi + fi Ai d Ni (νi ), νi 〉. �
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4 Double Crystals in the Plane

In this section, we assume n = 1 and apply the above discussion to a certain special
energy density function on S1. TheWulff shape corresponding to this energy density
function is a smooth square (see Fig. 2).Wewill discuss the critical points (i.e. double
crystals) and their stability.

From Proposition 1 and Theorem 2, we immediately obtain the following:

Theorem 4 For n = 1, Σ = Σ0 ∪ Σ1 ∪ Σ2 is a double crystal if and only if there
hold:

(i) Each Σi is, up to translation, a part of a rescaling of the Wulff shape corre-
sponding to γi .

(ii) Φ0 − Φ1 + Φ2 = 0 on the common boundary C (C is a set of two points).

From now on, if we do not say anything special, we assume that the energy density
functions γi : S1(⊂ R) → R are the following special ones.

γ (ν1, ν2) := γ(p)(ν1, ν2) := γi (ν1, ν2)

=
(
ν
2p
1 + ν

2p
2

)1− 1
2p

/

√
ν
4p−2
1 + ν

4p−2
2 , i = 0, 1, 2, (10)

where p is any fixed positive integer. Then the Wulff shape is given by

Φ(θ) := (cos2p θ + sin2p θ)
− 1

2p (cos θ, sin θ).

4.1 Classifications of DC for a Special Energy Density
Function

From now on, without loss of generality, we assume V1 ≤ V2. If Λi �= 0, from (i) in
Theorem 4, Σi is represented by

Fig. 2 TheWulff shapesW(p) for the energydensityγ(p) in (10).W(1) is a circle.When p approaches
infinity, W(p) converges to a cube
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X1(θ) = − 1

Λ1
(cos2p θ + sin2p θ)

− 1
2p (cos θ, sin θ) + (a1, b1), α1 ≤ θ ≤ β1,

(11)

X2(θ) = − 1

Λ2
(cos2p θ + sin2p θ)

− 1
2p (cos θ, sin θ) + (a2, b2), β2 ≤ θ ≤ α2,

(12)

X0(θ) = − 1

Λ0
(cos2p θ + sin2p θ)

− 1
2p (cos θ, sin θ) + (a0, b0), β0 ≤ θ ≤ α0,

(13)

where α0, α1, α2 correspond to one of the two points in the common boundaryC , and
β0, β1, β2 correspond to the other point in C . By the second condition in Theorem
4, we have

{
f (θ0) cos θ0 − f (θ1) cos θ1 + f (θ2) cos θ2 = 0,
f (θ0) sin θ0 − f (θ1) sin θ1 + f (θ2) sin θ2 = 0,

(θi = αi , βi ), (14)

where f (θ) = (cos2p θ + sin2p θ)
− 1

2p .
We can prove the following results about geometry of the double crystals.

Lemma 4 [7] There are uniquely determined functions ϕ, ψ : S1 → R such that
θ2 = ϕ(θ1) and θ0 = ψ(θ1) satisfy (14).

Lemma 5 [7] For double crystals, we have the following results about
the relationship between αi and βi .

(I) If α1 + β1 = 2n1π (n1 ∈ Z), then αi + βi = 2niπ , (ni ∈ Z, i = 0, 2).
(II) If α1 + β1 = (2n1 + 1/2)π (n1 ∈ Z), then αi + βi = (2ni + 1/2)π , (ni ∈ Z,

i = 0, 2).
(III) If α1 + β1 = (2n1 + 1)π (n1 ∈ Z), then αi + βi = (2ni + 1)π , (ni ∈ Z,

i = 0, 2).
(IV) If α1 + β1 = (2n1 + 3/2)π (n1 ∈ Z), then αi + βi = (2ni + 3/2)π , (ni ∈ Z,

i = 0, 2).
(V) If β1 = α1 + π , then β0 = α0 − π and β2 = α2 − π .

Lemma 5 gives the following result about symmetry of double crystals:

Theorem 5 [7] About the five types of the double crystals in Lemma 5, we have the
following three types of symmetry (up to translation and homothety) (see Fig.3).

Type 1 Symmetry with respect to either a horizontal line or a vertical line.
Type 2 Symmetry with respect to the ±π/4 rotation of the horizontal line.
Type 3 Rotational symmetry with respect to the center point of the smallest cube. In

this case, the two bigger Wulff shapes are double size of the smallest one.

Actually, double crystals of Type (I) and (III) have Type 1 symmetry, double
crystals of Type (II) and (IV) have Type 2 symmetry, and double crystals of Type
(V) have Type 3 symmetry.
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Fig. 3 These figures show the three types in Theorem5 according to ρ = V2/V1

Remark 2 In Type 1 and 2, ρ can be any number bigger than or equal to 1. On the
other hand, in Type 3, ρ can take numbers in the interval [3, 8]. In fact, in Type 3, two
bigger Wulff shapes (black and red shape in Fig. 3) are double size of the smallest
one (blue shape in Fig. 3).

4.2 Stability for Special Energy Density Function

In this section we discuss the stability of the three types of double crystals appeared
in Theorem 5.

Firstwegive a result about instability of somedouble crystalswhichwas essentialy
proved in [11].

Lemma 6 Set γ∞(ν1, ν2) = |ν1| + |ν2| (ν1, ν2) ∈ S1, and consider an anisotropic

surface energyF (X) =
∫

Σ

γ∞(N ) dΣ . Consider the three types of shapes in Fig.4.

Then we can decrease the anisotropic energy of these shapes without changing the
enclosed areas (Fig.5).

Proof Note that the anisotropic energy of a horizontal or vertical edge is equal to its
length, and the anisotropic energy of a diagonal edge is equal to

√
2 times its length.

Figures6, 7 and 8 show how the anisotropic energy is decreased without changing
the enclosed area. �
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Fig. 4 The three types of shapes of which we can decrease the anisotropic energy without changing
the enclosed areas

Fig. 5 Unstable examples corresponding to Fig. 4

Fig. 6 The anisotropic energy of (a)-1 is decreased without changing the enclosed area when it is
changed like (a)-2

Fig. 7 The anisotropic energy of (b)-1 is decreased without changing the enclosed area when it is
changed like (b)-2

Fig. 8 The anisotropic energy of (c)-1 is decreased without changing the enclosed area when it is
changed like (c)-2
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Let us think about the stability of the double crystals for our energy γ = γ(p)

defined in (10). Define two angles ζ and η so that

f (ζ ) cos(ζ ) = 1

2
, f (η) sin

(
η + π

4

)
= 2

−1−p
2p

holds.
Recall that the Wulff shape W(p) for the energy density γ(p) in (10) converges to

the Wulff shape for γ∞ when p approaches infinity (Fig. 2). By Lemma 6 and an
approximation procedure (Fig. 5), we can show the following:

Proposition 2 For sufficiently large p, we have the following result about the insta-
bility of double crystals. Double crystals of type 1 in Theorem 5 are unstable if
π
4 < α0 < ζ . Double crystals of type 2 are unstable if π

4 ≤ α0 < π
2 − η.

We apply Theorem 3 (second variation formula) to the 2-dimensional case. For
admissible variation vector field Y , We obtain

δ2F = −
2∑

i=0

∫
Σi

qi L[qi ] dΣi + [Λi pi qi − Ai (qi )t qi ]
b
a , (15)

where
pi = 〈Y, vi 〉 and qi = 〈Y, Ni 〉. We expect that we will be able to prove the

following conjecture by using (15).

Conjecture 1 Except the cases in Proposition 2, double crystals of types 1–3 are
stable.

Let the Wulff shape be a square. Then the energy minimizing shape is one of
the three types in Fig. 9 according to ρ = V2/V1. We expect that, by using the
variational method, we will be able to obtain not only the absolute minimum but also
local minimums. It is important to get local minimums because the physical state
sometimes takes a local minimum.

Fig. 9 The right side figure is ρ ≤ 2 and both R1 and R2 are rectangular. The ratio of middle figure

is 2 ≤ ρ ≤ ρ0 := 43+30
√
2

16 and R1 is square and R2 is rectangular (this ratio of edge length is 1 :
2). The ratio of left side figure ρ ≤ ρ0, and both R1 and R2 are squares
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