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Abstract Acentral challenge of gene expression analysis during the last fewdecades
has been the characterization of the expression patterns experimentally and theoret-
ically. Modern techniques on single-cell and -molecule resolution reveal that tran-
scriptions and translations are stochastic in time and that clonal population of cells
displays heterogeneity in the abundance of a given RNA and protein per cell. Hence,
to take into account a cell-to-cell variability, we consider a stochastic model of
transcription and the chemical master equation. Our stochastic analysis and Monte-
Carlo simulation show that the limiting distribution of mRNA copy number can be
expressed by a Poisson-beta distribution. The distribution represents the four differ-
ent types of expression patters, which are typically found in various experimental
profiles.
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1 Introduction

Gene expression analysis is being used to investigate the functions of gene products
(RNA and protein), to improve our understanding of various aspects of cellular
function and disease, and to facilitate drug development [1]. Expression analysis has
ever revealed the key regulators for various cell differentiations, which may help
scientists establish novel cells [2]. However, little is known about the regulatory
mechanisms of dynamic gene expressions. Although many biological processes,
such as transcription factors binding, chromatin remodeling and cell cycle, have
been reported as the important factors, a systematic understanding of unidirectional
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cell differentiations remains to be acquired. Today systems biology gives us a novel
methodology to systematically understand the complex intracellular dynamics [3].

Modern techniques on single-cell and -molecule resolution reveal that transcrip-
tions and translations are stochastic in time and that clonal population of cells dis-
plays heterogeneity in the abundance of a given RNA and protein per cell [4–7].
Thus, expression analysis based on probability statistics becomes an indispensable
tool today [8], which may shed light on the classical biological knowledge [9]. In
the present article, we mathematically investigate a variety of expression patterns by
analyzing a simple model of transcription. Then, we discuss a reduction of the model
equation, which is the key step to make gene regulatory networks [10].

2 Mathematical Model

Based on previous papers [11], we consider the following mathematical model for a
single gene expression induced by a transcription factor:

G
a−→ G∗, G∗ b−→ G,

G∗ c−→ G∗ + mRNA, mRNA
d−→ φ, (1)

where G and G∗ denote the genes being ‘off’ and ‘on’ states, respectively, and φ

the degraded mRNA. Here, we assume that the transcription event can only occur
under the ‘on’ state [12]. The parameters a and b are the probabilities per unit time
of the promoter switching from inactive to active and active to inactive, respectively,
c and d are the probabilities per unit time of transcription and mRNA degradation,
respectively.

We assume that the time evolution of the mRNA copy number is modeled by a
simple Markov process in continuous time, of which the state space is defined as

S = {(i, n) | i ∈ {0, 1}, n ∈ Z≥0},

where i = 0 and 1 are for ‘off’ and ‘on’ states, respectively, and n denotes the mRNA
copy number in the system. Let P(i)

n (t) be the probability of having (i, n) state at
time t , which obeys the following master equation:
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where A =
[−a b

a −b

]
, C =

[
0 0
0 c

]
and D =

[
d 0
0 d

]
. The initial condition is

(P(0)
n (0), P(1)

n (0)) = (δ0,n, 0), (3)

where δ is the Kronecker delta.

3 Analysis

The limiting distribution Pn of the system (2) and (3) becomes as follows:

Pn = γ n

n! e
−γ (α)n

(α + β)n
1F1(β, α + β + n; γ ), (4)

where we define α = a/d, β = b/d and γ = c/d. Here, ()n is the Pochhammer
symbol and 1F1 is the Kummer function. As indicated in an earlier paper [13], (4)
can be further simplified as follows:

Pn =
∫ 1

0

(γ x)n

n! e−γ x xα−1(1 − x)β−1

B(α, β)
dx, (5)

where B is the beta function. The distribution (5), which is called a Poisson-beta
distribution, shows that the transcription rate can be regarded as γ x in which x
follows the beta distribution with parameters α and β. Hence, in the long-time limit,
the model (1) can be approximated by the following scheme:

G∗ cX−−→ G∗ + mRNA, mRNA
d−→ φ, (6)

where the stochastic variable X follows the beta distribution B(x;α, β).
Figure1a–d shows the limiting distribution (4) with various parameter sets. As

one can see in Fig. 1, the expression patterns widely change depending on the para-

Fig. 1 The limiting distribution with respect to the mRNA copy number obtained from (2) and (3).
The exact solutions (bold line) are obtained from (4) and numerical solutions (filled bar graph) from
Monte-Carlo simulation with �t = 0.1. The parameters (α, β, γ ) are a (50, 50, 1), b (1, 10, 10),
c (0.1, 0.1, 10), d (1, 1, 50)
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meters α, β and γ . From the analytical result (5), we found that the beta distribution
produces the variation and the Poisson distribution guarantees the discreteness of
mRNA molecules.

4 Conclusion

Mathematical models of gene regulation have been studied since 1960s [14–16].
However, the classical deterministic approaches based on the population-wide aver-
age methods, such as the statistical procedure and the modeling with ordinary differ-
ential equations, are not enough to understand cell-to-cell variability. To understand
the mechanisms of cell-to-cell variation in gene expressions, we should consider
intrinsic and extrinsic noises (‘biological noise’) when constructing a mathematical
model [4]. In the present article, we considered a simple model of transcription with
only two gene states (‘on’ and ‘off’) and investigated the probability distribution
of mRNA copy number. We found that the limiting distribution can be described
by the Poisson-beta distribution, which represents four different types of expression
patterns Fig. 1. Thus, the classical model (1) can be approximated by the scheme (6)
in the long-time limit.
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