
Chapter 4
Topic Modeling for Speech and Language
Processing

Jen-Tzung Chien

Abstract In this chapter, we present state-of-art machine learning approaches for
speech and language processingwith highlight on topicmodels for structural learning
and temporal modeling from unlabeled sequential patterns. In general, speech and
language processing involves extensive knowledge of statistical models. We require
designing a flexible, scalable, and robust system to meet heterogeneous and nonsta-
tionary environments in the era of big data. This chapter starts from an introduction
of unsupervised speech and language processing based on factor analysis and inde-
pendent component analysis. Unsupervised learning is then generalized to a latent
variable model which is known as the topic model. The evolution of topic models
from latent semantic analysis to hierarchical Dirichlet process, from non-Bayesian
parametric models to Bayesian nonparametric models, and from single-layer model
to hierarchical tree model is investigated in an organized fashion. The inference
approaches based on variational Bayesian and Gibbs sampling are introduced. We
present several case studies on topic modeling for speech and language applications
including language model, document model, segmentation model, and summariza-
tion model.

4.1 Unsupervised Learning in General

Machine learning is generally categorized into supervised learning and unsupervised
learning. Supervised learning aims to find a function mapping from observations to
their classes, while the unsupervised learning has a broad goal of extracting salient
features and discovering structural information from the given data. In the era of big
data, an enormous amount of multimedia data is available in Internet which contains
speech, text, image, music, video, social network, and many other specialized tech-
nical data. It is challenging to extract reliable features and explore latent structure
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from these abundant heterogeneous data which are prone to be noisy, mismatched,
mislabeled, misaligned, and ill-posed. In addition, the probabilistic learning models
may be improperly assumed, overestimated, or underestimated. The issue of model
regularization plays an important role in machine learning.

In general, we need some statistical models or tools for modeling, analyzing,
searching, recognizing, and understanding real-world data. Such modeling should
faithfully represent the uncertainty in model structure and parameters. The noise
condition in observation data should be sufficiently reflected. The learning method
should be automatic and adaptive to unknown environments and scalable for large
amount of data. The uncertainty in heterogeneous data may be expressed by a prior
distribution or even a prior process. We aim to construct a learning machine which
provides the ways to organize, understand, search, and summarize a large amount of
electronic archives automatically. It is attractive to learn such a model in an unsu-
pervised manner which discovers the hidden themes or topics that pervade data
collection. This model can be used to annotate any kinds of documents according
to their latent themes. With these annotations, we can organize, summarize, search,
and predict for future data.

In this chapter, we first survey a series of unsupervised models in Sect. 4.1.1
and address the history and the evolution of different topic models in Sect. 4.1.2.
We then focus on topic model based on the latent Dirichlet allocation (LDA) [7] in
Sect. 4.1.3.We introduce the inference procedures of LDA including the approximate
inference based on variational inference and Gibbs sampling. Section4.2 addresses
the issue of model selection and its solution based on Bayesian nonparametrics
(BNP). We briefly survey BNP approaches to topic models including hierarchical
Dirichlet process, the nestedDirichlet process andhierarchical Pitman–Yor process in
Sect. 4.2. Section4.3 presents some advances in topicmodels especially for the appli-
cations of speech and language processing including language model in Sect. 4.3.1,
document model in Sect. 4.3.2, segmentation model in Sect. 4.3.3, and summariza-
tion model in Sect. 4.3.4. Finally, the summary and future direction are provided in
Sect. 4.4.

4.1.1 Unsupervised Models

There aremanyunsupervised learning approaches in the literaturewhich are available
to explore latent features of observation data. Principal component analysis (PCA)
[30] is known as a statistical procedure that uses an orthogonal transformation to
project a set of possibly correlated observation variables x ∈ RD into a set of linearly
uncorrelated variables z ∈ RK where K � D. The projected variables are treated
as a kind of latent variables which are also called the principal components. The
projection is obtained by finding the eigenvalues and the corresponding eigenvectors
of the covariance matrix of observation data. The maximal amount of variance is
achieved by this linear projection.
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Factor analysis (FA) [1] is closely related to PCA but with more domain-specific
constraints on the underlying structure. FA uses the regression model for the error
terms, while PCA is a descriptive statistical method for the variance. FA incorpo-
rates the common factors z ∈ RK with a factor loading matrix W ∈ RD×K and a
specific factor vector ε in order to represent the observed data via x = Wz + ε. FA
is seen as a latent variable model owing to the common factors z which are unseen
in unsupervised learning procedure. FA model is constructed by imposing the fol-
lowing conditions. The common factors and specific factors are distributed by the
zero-mean Gaussians with z ∼ N (0, IK ) and ε ∼ N (0,�), respectively, where IK

is an K × K identity matrix and � is an D × D diagonal matrix. And, two sets
of factors are uncorrelated by E[zεT ] = 0. The latent factors account for common
variance in the data. Basically, PCA and FA are solved by eigen-analyzing differ-
ent covariance matrices and accordingly correspond to the second-order approaches
where the principal components in PCA and common factors in FA are Gaussian
distributed.

Independent component analysis (ICA) [21] and blind source separation find a set
of latent components that are non-Gaussian and mutually independent, i.e., a much
stronger assumption. ICA assumes that the observation vector x is mixed from a set
of independent components z by x = Wz where W is an D × K mixing matrix. ICA
discovers the independent components or latent sources bymaximizing the statistical
independence or non-Gaussianity of the estimated components which can be mea-
sured based on the information-theoretic criterion using mutual information [2] and
the higher order statistics using kurtosis [28]. The demixing matrix is estimated by
optimizing such a contrast function. The iterative learning solution to ICA is obtained
accordingly. In general, ICA is known as a higher order approach to explore inde-
pendent components for unsupervised learning which produces a tighter or stronger
clustering than the uncorrelated components in PCA and the uncorrelated factors
in FA.

PCA, FA, and ICA have been successfully developed as the unsupervised
approaches to explore latent variables for a number of applications in speech and
language processing. For example, PCAwas employed in the technique called eigen-
voice [33] which assumed that the supervector of acoustic parameters lay in a sub-
space spanned by a few eigenvectors or latent components. Speaker adapted acoustic
model was obtained by estimating the coefficients of a linear expansion over the
eigenvectors. FA was adopted to explore the common factors from acoustic features
and apply them to build the streamed hidden Markov model [17] where the stream-
ing regularity was governed by the correlation between speech features which was
inherent in common factors. FAwas also applied for subspace-based speech enhance-
ment [16] where the principal subspace and minor subspace were constructed from
common factors and partitioned according to the values of eigenvalues so that the
representation of noisy speech was improved for estimation of clean speech. In addi-
tion, ICA was exploited for speech recognition where an unsupervised learning was
performed to compensate the pronunciation variations in acoustic model via an ICA
algorithm [12]. More recently, a convex divergence [15] was designed as a contrast
function for ICA algorithm which improved the convergence speed for blind source
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separation of speech and music signals. In general, the unsupervised learning algo-
rithms using PCA, FA, and ICA are useful to identify salient features or mixture
sources z from continuous observations x based on a whole collection of observation
vectors D = {x1, . . . , xT }.

4.1.2 Evolution of Topic Models

Latent variable model based on a whole set of continuous observation vectors could
be extended to the one based on the groups of discrete observation data. This
extension was originally developed to conduct a latent semantic analysis [22] and
build a latent topic model using a set of grouped words from different documents
D = {w1, . . . , wM} where each document wm = {wmn} is composed of Nm words
and each word is from a dictionary of V words. Topic model is developed as an
unsupervised learning approach to discover latent features or semantic topics which
are used to index or annotate the observed text documents. The annotations could be
applied for information retrieval and many other applications. Beyond text annota-
tions, the acoustic topic model was proposed for audio tag classification where the
acoustic characteristics were represented by discrete symbols for estimation of latent
acoustic topics [31]. In [35], topic model was developed to conduct audio mixture
analysis where the acoustic data in time–frequency domain were treated as a bag of
frequencies to find acoustic topics. A bag of spectrograms was created to build the
convolutive topic model with shift-invariance property in both time and frequency.
In the fields of computer vision [24], topic model was established as a Bayesian
hierarchical model for scene classification where the image of a scene was seen as a
collection of local regions or a bag of image features. Each image was automatically
annotated with the themes determined by using topic model.

Topic models have been widely developed as a powerful tool for data analysis,
annotation, regression, and classification. Figure4.1 briefly illustrates the evolution
and history of topic models. The earliest topic model called latent semantic analysis
(LSA) was proposed by Deerwester et al. [22] in 1990. LSA was invented for auto-
matic indexing and retrieval through a singular value decomposition (SVD) over a
word-by-documentmatrix. The latent structure ofwords anddocumentswas explored
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Fig. 4.1 Evolution and history of topic models
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from the decomposed matrices. The next milestone of topic model was achieved by
the method called probabilistic latent semantic analysis (PLSA) proposed by Hof-
mann [27] in 1999. PLSA is a probabilistic framework of LSA where the parameters
given latent semantic topics were estimated by maximum likelihood theory using
the expectation maximization (EM) algorithm [23]. In 2003, Blei et al. proposed
the latent Dirichlet allocation (LDA) [7] for text modeling, document classification,
and collaborative filtering. LDA is known as the most popular topic model with the
largest citations in the literature. LDA is an extended paradigm from PLSA by intro-
ducing a Dirichlet prior to represent the topic probabilities or topic proportions so
that the unseen documents could be generalized from Bayesian perspective without
greatly increasing the number of parameters. LDA parameters are inferred by maxi-
mizing the marginal likelihood over latent topics and topic proportions according to
the variational Bayesian (VB) inference [7] and the Gibbs sampling inference [26].

In 2006, Teh et al. proposed the hierarchical Dirichlet process (HDP) [39] which
relaxes the constraint of LDA that the number of topics should be known and fixed
in topic model. A Bayesian nonparametric (BNP) approach was developed as an
expressive probabilistic representation with less assumption-laden approach to infer-
ence. The prior process is introduced to conduct a flexible Bayesian learning with
infinite topic representation. HDP was implemented by the stick-breaking process
and inferred by using the Gibbs sampling procedure. However, topic models based
on LDA and HDP assume that topics are independent. To incorporate the topic cor-
relation or even the topic hierarchy into topic model, Blei et al. proposed the nested
Chinese restaurant process (nCRP) and built the hierarchical LDA (hLDA) for doc-
ument representation [3, 4] in 2010. Gibbs sampling was applied to sample a tree
path and then sample a tree layer to represent a word wmn in a target document wm .
The tree layers in a tree path reflect different degrees of sharing in the estimated
topic parameters. In this chapter, we focus on the topic model based on LDA and
its inference procedures using VB-EM algorithm and Gibbs sampling in Sect. 4.1.3.
The extensions to HDP and nCRP will be addressed in Sect. 4.2. Some advances
in topic model for speech and language processing are described in Sect. 4.3. First
of all, we address the early works on topic model based on LSA and PLSA.

Latent Semantic Analysis

Latent semantic analysis (LSA) [22] goes beyond the lexical level from a collec-
tion of text documents D and aims to reveal the latent semantic structure in low-
dimensional data space. This algorithm first constructs a word-by-document matrix
W with the element ωvm representing the number of times of a word v occurring
in document m. This V × M matrix is then decomposed and approximated using
the SVD method to produce W ≈ U�V� where � is an K × K diagonal matrix
with a reduced dimension K < min(V, M), U is an V × K matrix whose columns
are the first K eigenvectors derived from word-by-word correlation matrix WW�,
and V is an M × K matrix whose columns are the first K eigenvectors derived
from the document-by-document correlation matrix W�W. Each column of �V�
characterizes the location of a particular document in the reduced K -dimensional
semantic topic space. Based on this property, we measure the similarity between two
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documents m and m ′ by projecting the corresponding document vectors vm and vm ′

into the semantic topic space as �vm and �vm ′ and then calculating the cosine sim-
ilarity between two K -dimensional vectors cos(�vm,�vm ′). Using this similarity,
we accordingly conduct the information retrieval by finding the similarity between
a query q and a reference document dm based on cos(�vq ,�vm) where the query
vector in semantic topic space is calculated by vq = �−1U�ωq using the vector ωq

consisting of the number of occurrences of different words in query q.

Probabilistic Latent Semantic Analysis

LSA model was established by applying the SVD method which minimizes the
approximation error by using the decomposedmatrices. LSA is seen as a nonparamet-
ric method where there is no probabilistic distribution assumed in this topic model.
The system performance and model generalization are constrained. Hofmann [27]
introduced a probabilistic solution to LSA based on maximum likelihood (ML) the-
ory. Figure4.2 shows the graphical representation of the probabilistic LSA (PLSA).
PLSA is seen as an aspect model which represents the co-occurrence data of words
(denoted by wn) and documents (denoted by dm) associated with a topic or latent
variable zn = k. The generative model for co-occurrence wn and dm is expressed by
the joint probability p(wn, dm). Under this latent variable model, the joint likelihood
function of training data D = {wn, dm} is formed by

p(D|�) =
M∏

m=1

Nm∏

n=1

K∑

k=1

p(wn|zn = k)p(zn = k|dm)p(dm) (4.1)

where PLSA parameters� = {p(wn = v|zn = k), p(zn = k|dm)} consist of two sets
of topic-basedmultinomialswith the number of parameters given byVK + K M .ML
estimation of PLSA parameters is performed by maximizing Eq. (4.1) with respect
to �. However, such ML estimation suffers from the incomplete data problem due
to the missing variable zn = k or simply zk . EM algorithm is applied to resolve
this problem by alternatively and iteratively performing the E step which calculates
the auxiliary function Q(�′|�) = E(Z)[log p(D, Z |�′)|D,�] and then the M step
which maximizes Q(�′|�)with respect to�′. Here, the auxiliary function Q(�′|�)

is calculated as an expectation of log likelihood function using new parameter esti-
mate �′ given the current estimate �. The expectation is performed over latent
variables Z = {zk}. After EM iterations, ML PLSA parameters are converged at the
mode �̂.

By expanding the joint probability p(wv, dm) where wv implies wn = v, we
may bridge the connection between PLSA and LSA by defining U = {p(wv|zk)}v,k ,
V = {p(dm |zk)}m,k and � = diag{p(zk)}k . And, a matrix with likelihood entries is
formed by P = {p(wv, dm)}v,m = U�V�. Basically, PLSA assumes that the esti-
mated parameters for different topics are nonnegative, while the elements of the
decomposed matrices in LSA, estimated from the eigen-analysis, are not guaranteed
to be nonnegative. LSA may violate the nonnegative nature of word count. In addi-
tion, the Dirichlet priors for multinomial parameters {p(wv|zk)} and {p(zk |dm)}were
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introduced to conduct the maximum a posteriori (MAP) estimation with constraints∑
v p(wv|zk) = 1 and

∑
k p(zk |dm) = 1. MAP PLSA model was developed for an

adaptive topic model which adapted the PLSA parameters to fit the topic-changing
domains [18].

4.1.3 Latent Dirichlet Allocation

There are three issues in PLSA topic model. First, the PLSA parameters estimated by
ML theory are prone to be overtrained. Model generalization is not assured. Second,
PLSA could not model the unseen documents. Third, the number of parameters is
proportionally increased by the number of topics K and the number of documents
M . To overcome these issues, latent Dirichlet allocation (LDA) [7] was proposed by
introducing a Dirichlet prior with hyperparameters α for document-dependent topic
proportions θm = {p(zk |dm)} over K topics as seen in the graphical representation in
Fig. 4.2b. Each document is treated as a “random mixture” over latent topics. Topic
model is generalized to unseen data through the shared prior distribution p(θm |α)

with a common hyperparameter α = {αk} where αk > 0. Model construction using
LDA is described as follows:

1. For each document wm = {wmn|n = 1, . . . , Nm}
a. Draw topic proportions θm ∼ Dir(α)

b. For each word wmn

i. Choose a topic by zmn = k ∼ Mult(θm)

ii. Choose a word by wmn = v|zmn = k, β ∼ Mult(βvk)

Here, β = {βvk} = {p(wv|zk)} denotes the V × K multinomial matrix consisting of
conditional multinomials βvk for different words under different topics. There are
two latent variables in LDA including topic proportions θ = {θmk} and topic assign-
ments z = {zmn}. LDA parameters {α, β} are estimated by maximizing the marginal
likelihood over two latent variables

p(D|α,β) =
M∏

m=1

∫
p(θm |α)

Nm∏

n=1

K∑

k=1

p(zmn = k|θm)p(wmn|zmn = k,β)dθm .

(4.2)

(a) (b) (c)

Fig. 4.2 Graphical representation for a PLSA, b LDA and c HDP
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We can see that the number of parameters in LDA is VK + K which is much smaller
than VK + K M for PLSA. A shared α for all documents in LDA can be used to
generalized to unseen data and keep a compact model complexity.

However, the exact solution to model inference based on Eq. (4.2) does not exist
due to the coupling of multiple latent variables θ and z in posterior distribution
p(θ, z|D,α, β). In what follows, we introduce the approximate inference procedures
based on variational Bayesian and Gibbs sampling.

Inference by Variational Bayesian

Variational Bayesian (VB) inference is known as the deterministic approach to infer
model parameters through a convexity-based variational procedure which is imple-
mented by using the Jensen’s inequality. VB aims to resolve the intractable posterior
distribution p(θ, z|D,α, β) by using a factorizable variational distribution

q(θ, z|γ,φ) =
M∏

m=1

q(θm |γm)

Nm∏

n=1

q(zmn|φmn) (4.3)

through maximizing a lower bound of the logarithm of marginal likelihood
L(γ,φ;α, β) where γ and φ denote the variational Dirichlet and multinomial para-
meters, respectively. We have the relation

log p(D|α, β) = L(γ,φ;α, β) + KL(q(θ, z|γ,φ)‖p(θ, z|D,α, β)). (4.4)

Therefore, maximizing the lower bound L(γ,φ;α, β) with respect to variational
parameters {γ,φ} is equivalent to estimating the new variational distribution
q(θ, z|γ̂, φ̂) which is closest to the true posterior p(θ, z|D,α, β) with the smallest
Kullback–Leibler divergence KL(·‖·). Basically, finding the approximate posterior
distribution q(θ, z|γ̂, φ̂) is seen as an expectation step (also called VB-E step) in
VB-EM algorithm. Then, in VB-M step, we upgrade the lower bound using the new
variational parameters L(γ̂, φ̂;α, β) and maximize the updated lower bound with
respect to the model parameters {α, β} so as to estimate the new LDA parameters
{α̂, β̂}. VB-EM algorithm is run to upgrade the variational distribution and increase
the lower bound, and accordingly improve the marginal likelihood using the con-
tinuously updated model parameters. LDA parameters are finally estimated with
convergence after VB-EM iterations as detailed in [7]. Notably, since the Dirichlet
distribution in LDA is seen as the conjugate prior for the multinomial likelihood of
the observed words, the solutions to variational Dirichlet parameter vector γ̂ = {γ̂k},
variational multinomial parameters φ̂ = {φ̂nk}, and conditional multinomial distrib-
utions β̂ = { p̂(wv|zk)} are derived in the closed form. Only the solution to Dirichlet
model parameters α̂ is calculated by the Newton–Raphson algorithm. Importantly,
the variational Dirichlet parameters γ̂ are seen as the surrogate of the Dirichlet model
parameters α̂which sufficiently reflect the topic proportions θ. The variational lower
boundL(γ̂, φ̂;α, β) is treated as a tractable surrogate for the intractable log marginal
likelihood log p(D|α, β).
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Inference by Gibbs Sampling

Griffiths and Steyvers [26] presented a Markov chain Monte Carlo (MCMC)
inference solution to LDA topic model. MCMC provides another realization of
approximate inferencewhich fulfills the full Bayesian perspective. Different from the
deterministic approximation based on VB, MCMC is known as a stochastic approx-
imation. MCMC uses the numerical sampling computation rather than solving the
integral and expectation analytically.MCMCprovides highlyflexiblemodelswithout
limitation of any specific distribution and can be used to infer the infinite-dimensional
topic models based on HDP and nCRP which will be addressed in Sect. 4.2. MCMC
is computationally expensive without convergence guaranteed. The asymptotically
exact solution can be found.However,VBnever generates the exact solution but guar-
antees convergence and fast implementation. The strengths and weaknesses using
VB and MCMC are complementary.

Gibbs sampling is a simple andwidely applicable realization ofMCMCalgorithm.
Every single state of a Markov chain is seen as an outcome of a latent variable in
a variable sequence z = {z1, . . . , zK }. Each step of the Gibbs sampling procedure
replaces the value for one of the variables zk by a value drawn from the distribution of
that variable conditioned on the values of the remaining states z−k (i.e., z = {zk, z−k})
including the preceding states z(τ+1)

1:(k−1) in new iteration τ + 1 and the succeeding states

z(τ )
k+1:K in current iteration τ

z(τ+1)
k ∼ p

(
zk

∣∣∣∣z
(τ+1)
1:(k−1), z(τ )

(k+1):K

)
. (4.5)

The sampling procedure is repeatedwith T iterations by cycling through the variables
in a particular order or in a random order with some distribution.

Using Gibbs sampling procedure for LDA, we sample the topic assignment zk

according to the predictive posterior distribution p(zmn = k|z−(mn),D) given by

p(wmn = v|zmn = k, z−(mn), w−(mn))p(zmn = k|z−(mn))

= E[βvk |z−(mn), w−(mn)] E[θmk |z−(mn)]
= η+∑M

m=1

∑Nm
i=1,i 	=n zk

mi w
v
mi

Vη+∑M
m=1 Nm−1

α+∑Nm
i=1,i 	=n zk

mi

Kα+Nm−1

(4.6)

where η is the Dirichlet parameter of βvk , wmn = v is expressed by wv
mn = 1 and

zmn = k is written by zk
mn = 1. Here, we use the property of predictive multinomial

p(zk |z−k) = ∫
p(zk |θ)p(θ |z−k)dθ = E[θ |z−k]. (4.7)

With a set of samples of topic assignments for different words and documents z =
{zmn}, we can estimate themultinomial parameters for topics θ̂ = {θ̂mk} and forwords
under different topics β̂ = {β̂vk} by using the expected value of multinomials as given
in Eq. (4.7).
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4.2 Bayesian Nonparametric Learning

Topic models based on LSA, PLSA, and LDA are constructed as a finite-dimensional
mixture representation which assumes that (1) the number of topics is fixed and (2)
different topics are independent. These assumptions constrain the flexibility and per-
formance of topic model in presence of scalable data under heterogeneous condition.
The topic models based on HDP [39] and nCRP [3, 4] were accordingly developed
to resolve these two assumptions through Bayesian nonparametric (BNP) learning.
In general, BNPs are used to characterize a big parameter space and construct the
probability measure over this space. We setup a stochastic prior process on proba-
bility distributions which is a measure on function space. A Bayesian model on an
infinite-dimensional parameter space is established. BNPs allow data representation
to grow structurally when more data are collected. Number of clusters or topics (or
model structure) is unknown a priori. In what follows, we describe BNP learning
based on the Dirichlet process and the Pitman–Yor (PY) process. We then introduce
the topic models produced by HDP and nCRP and the language model drawn from
the hierarchical PY (HPY) process [38].

Dirichlet Process

Dirichlet process (DP) is realized to find the flexible data partitions and provide the
nonparametric prior over the number of topics K via a distribution over probability
measures G ∼ DP(α0, G0) where α0 > 0 is a strength parameter and G0 is a base
measure over a probability space � with any partitions A1, . . . , Ak ∈ � as

(G(A1), . . . , G(Ak)) ∼ Dir(α0G0(A1), . . . , α0G0(Ak)) (4.8)

which is an infinite-dimensional generalization of Dirichlet distribution. The topic-
based representation of a single document w is formed by drawing the probability
measure θn for each word wn using an DP G. The predictive multinomial for new
parameter θn+1 in partition A given the previous ones θ1:n is obtained by Eq. (4.7) as

p(θn+1 ∈ A|θ1:n, α0, G0) = E[G(A)|θ1:n] =
n∑

i=1

1

α0 + n
δθi (A) + α0

α0 + n
G0(A)

=
K∑

k=1

nk

α0 + n
δφk (A) + α0

α0 + n
G0(A)

(4.9)

where φ1, . . . , φK denote the distinct values from θ1:n . DP can be realized by using
the stick-breaking process (SBP) and the Chinese restaurant process (CRP). Equa-
tion (4.9) can be explained as a metaphor of CRP with the existing K tables (or
clusters). New customer θn+1 enters a restaurant and chooses an occupied table k
with probability nk

α0+n or a new table with probability α0
α0+n where nk denotes the

number of customers who have seated in table φk . On the other hand, using the
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SBP, we randomly break a unit-length stick into two segments and find the propor-
tions π = {πk} ∼ GEM(α0) with constraint

∑
k πk = 1 using the GEM distribution

through a process of drawing beta variables {π ′
k}. An DP, G ∼ DP(α0, G0), is imple-

mented by

φk ∼ G0, π ′
k |α0 ∼ Beta(1, α0), πk = π ′

k

k−1∏

j=1

(1 − π ′
j ), G =

∞∑

k=1

πkδφk . (4.10)

Pitman–Yor Process

Pitman–Yor (PY) process [34], PY(d0, α0, G0), is expressed as a three-parameter
distribution over distributions where 0 ≤ d0 < 1 is a discount parameter which char-
acterizes the power-law distribution in natural language, namely many unique words
are observed and most of them rarely. Basically, d0 controls the asymptotic growth of
the number of unique words, while α0 controls the overall number of unique words.
When d0 = 0, this PY process reverts to DP(α0, G0). When d0 > 0, PY process
draws a longer tail probability measure than the DP. Let G∅ = [G∅(w)]w∈�v repre-
sent the vector of unigrams with empty context ∅ and G0(w) = 1

V . The predictive
unigram probability of a new word w is calculated by

p(w|D, d0, α0) =
m·∑

k=1

nk − d0
α0 + n·

δφk (w) + α0 + d0m ·
α0 + n·

G0(w)

= nw − d0mw

α0 + n·
+ α0 + d0m ·

α0 + n·
1

|V|

(4.11)

where n· = ∑
k nk is the total number of customers in different tables, mw is the

number of occupied tables labeled by word w, and m · = ∑
w mw is calculated over

different words. Physical meaning of discounting scheme using d0 is obvious in both
terms of right-hand side of Eq. (4.11). The number of occurrences of the seen words
is discounted and distributed for those of the unseen words in case of nw = mw = 0.

Hierarchical Dirichlet Process

HDP deals with the mixed membership representation for multiple documents or
grouped data where each document wm is associated with a mixture model which is
drawn from an DP by Gm ∼ DP(α0, G0). Data in different documents share a global
mixture model drawn from a global DP by G0 ∼ DP(γ, H) as seen in Fig. 4.2c.
HDP can be expressed by the mixture models with the shared atoms {φk}∞k=1 but
different weights or proportions β = {βk}∞k=1 and πm = {πmk}∞k=1 so that we have
G0 = ∑

k βkδφk and Gm = ∑
k πmkδφk with constraints

∑
k βk = ∑

k πmk = 1. The
HDP topic model is accordingly established through a stick-breaking process based
on an GEM distribution

β|γ ∼ GEM(γ ), πm |α0, β ∼ DP(α0, β), zmn|πm ∼ Mult(πm)

φk |H ∼ H, wmn|zmn, {φk}∞k=1 ∼ Mult(φzmn )
(4.12)
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where the infinite-dimensional topic multinomials {φk}∞k=1 are incorporated. Impor-
tantly, a two-stage SBP was implemented to connect the relation between the topic
proportions for words in corpus level β and in document level πm [39].

The Nested Chinese Restaurant Process

The topicmodel based onLDAassumes that different topics are independent. To relax
this restriction, the correlated topic model (CTM) [6] was proposed by introducing
a multivariate logistic Gaussian distribution as a prior distribution to replace the
Dirichlet prior distribution for topic proportions θ in Sect. 4.1.3. Logistic Gaussian
adopts a softmax transformation to impose the condition of summing the proportions
to be one. The non-diagonal elements of the corresponding covariance matrix induce
the dependencies between the transformed topic multinomials. However, CTM fixed
the number of topics and did not consider the topic hierarchy.

Blei et al. proposed the nested Chinese restaurant process (nCRP) [4] and built
the hierarchical LDA [3] to explore different levels of aspects for topic modeling
without fixing the model structure. Figure4.3a depicts an infinitely branching tree
structure for nCRP representation of words (denoted by blue circles) and document
(denote by yellow rectangle). Thick arrows denote a tree path cm drawn from nine
words of a document wm or dm . Each word wmn is assigned by a topic parameter φk

at a tree node along cm using topic proportions πm .

1. For each node k in the infinite tree

a. Draw a topic parameter φk |H ∼ H

2. For each document wm = {wmn|n = 1, . . . , Nm}
a. Draw a tree path by cm ∼ nCRP(α0)

b. Draw topic proportions over layers of cm by a stick-breaking process
πm ∼ GEM(γ )

c. For each word wmn

i. Choose a layer or a topic by zmn = k ∼ πm

(a) (b)

Fig. 4.3 Graphical representation for a nCRP and b sentence-based nCRP



4 Topic Modeling for Speech and Language Processing 99

ii. Choose a word based on topic zmn = k by
wmn|zmn, cm, {φk}∞k=1 ∼ Mult

(
φcm (zmn)

)

In implementation of nCRP, Gibbs sampling is applied to sample the posterior tree
path and word topic {cm, zmn} for M documents inD = {wm}with Nm words in each
document according to the individual posterior probabilities of cm and zmn given D
and the current values of all the other latent variables, i.e., p(cm |c−m,D, z, α0, H)

and p(zmn|D, z−(mn), cm, γ, H). Again, “−” denotes the self-exception. The tree
path cm is selected for each customer or document wm . The tree nodes along cm

imply a series of visits of this customer to different restaurants in different days. A
hierarchical topic model is constructed with different degrees of sharing from root
node (broad topic) to leaf nodes (specific topics).

Hierarchical Pitman–Yor Process

Teh [38] presented anBNP learning for languagemodel (LM) to dealwith the issue of
data sparseness in higher order n-gram model. To cope with this issue, conventional
method using the Kneser-Ney (KN) LM smoothing [32] was empirically developed
by discounting the number of occurrences for seen n-gram events and distributing
these occurrences to unseen n-gram events. Such discounting mechanism reflects the
power-law property of natural language and does improve n-gram modeling. Inter-
estingly, KN-LM can be interpreted as a hierarchical Bayesian framework according
to the hierarchical Pitman–Yor (HPY) process. Similar to the style of hierarchical
generative process based on HDP, HPY process conducts a hierarchical generation
of PY processes to draw the discounted n-gram probabilities p(wi |wi−1

i−n+1) where
the predictive probability of next word w = wi is based on a history or a context vec-
tor consisting of previous n − 1 words u = {wi−n+1, . . . , wi−1} � wi−1

i−n+1. The HPY
process is expressed by a recursive formula where the PY process Gu is formed with
a nested base measure Gπ(u) of backoff context π(u), which is also an PY process
given by a base measure of doubly backoff context π(π(u)) in a much lower order
model. We have

Gu ∼ PY(d|u|, α|u|, Gπ(u)), Gπ(u) ∼ PY(d|π(u)|, α|π(u)|, Gπ(π(u))) (4.13)

where the parameters d|u| and α|u| depend on the length of context |u|. This is
repeated until we reach to PY process for unigram model with empty context ∅,
G∅ ∼ PY(d0, α0, G0), as implemented in Eq. (4.11). A kind of linearly interpolated
LM (called HPY-LM) is accordingly produced by using the HPY process which
combines the mixture probability measures from the higher order statistics in the
nth-order model from u and the lower order LM in the (n − 1)th-order base measure
frombackoff contextGπ(u). The combinationweights are formed from an PYprocess
mixture model. In Sect. 4.3.1, we will present a new BNP inference procedure for
topic-based LM.
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4.3 Advanced Topic Models and Their Applications

We have surveyed the fundamental topic models based on the non-Bayesian para-
metric methods using LSA and PLSA, the Bayesian parametric method using LDA,
and the Bayesian nonparametric methods using HDP and nCRP. Model structure has
been extended from single-layer model (LSA, PLSA, LDA, HDP) to multiple-layer
model (nCRP). Approximate inference algorithms using VB for LDA and Gibbs
sampling for LDA, HDP, and nCRP have been addressed. In this section, we will
present a series of advanced topic models for different applications including speech
recognition, information retrieval, document classification, text segmentation, and
document summarization. Here, we categorize these advanced topic models into
different information models ranging from language model, document model, seg-
mentation model to summarization model. Going beyond LDA topic model, some
other issues are concerned and tackled to achieve flexible, scalable, and robust infor-
mation systems for real-world applications.

4.3.1 Language Model

Speech recognition system is constructed with two essential models: acoustic model
and language model (LM) which considerably affect the system performance. LM
provides a prior word probability which characterizes the regularities in natural lan-
guage. LM is not only useful for speech recognition but also for many other infor-
mation systems including optical character recognition, spell correction, question
answering, automatic summarization, information retrieval, etc. Basically, LM based
on n-gram probability p(wi |wi−1

i−n+1) is constrained with two weaknesses: (1) lack of
training data for higher order LMwith large n and (2) lack of long-distance informa-
tion due to the limitation of n-gram window. To deal with the sparseness of training
data, HPY process [38] in Sect. 4.2 was presented to draw the smoothed LM with
discounting scheme which was seen as Bayesian interpretation for the heuristic solu-
tion based on KN-LM [32]. Considering the issue of long-distance information, the
topic-based LMs were proposed by merging the latent semantic information which
relaxes the constraint of using short-term lexical information. In [25], PLSA topic
model was incorporated into the construction of n-grammodel. In addition, the LDA-
LM was constructed by employing LDA-based topic information into LM training
where the topic prediction was based on the hypothesis of either history words [36]
or the words in a whole sentence [37]. In what follows, we introduce the extension
of PLSA-LM and LDA-LM to the Dirichlet class LM [13] and the generalization of
HPY-LM to the hierarchical Pitman–Yor-Dirichlet LM [9] where the topic models
are taken into account.

Dirichlet Class Language Model

The key issue in LDA-LM [36, 37] is that topic information for word prediction is
estimated from a set of training documents D which is treated as a bag of words.
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(a) (b)

Fig. 4.4 Graphical representation for a DC-LM and b cache DC-LM

Such estimation did not consider the latent variables based on the sequential order
of n − 1 history words {wi−n+1, . . . , wi−1}. Such ordering information is crucial
for word prediction in natural language. Dirichlet class LM (DC-LM) [13] was
proposed to deal with this issue through the representation of history words wi−1

i−n+1
by concatenating a sequence of n − 1 history word vectors which are encoded by 1-
of-V coding scheme. An (n − 1)V × 1 supervector hi−1

i−n+1 is formed as the surrogate
of wi−1

i−n+1 and then projected into an C-dimensional class space or topic space so that
the class proportions are drawn from aDirichlet prior θ ∼ Dir(A�hi−1

i−n+1). Graphical
representation is shown in Fig. 4.4a. Here, the parameter A = {a1, . . . , aC} in DC-
LM plays a similar role to α in LDA. The other parameters β = {βvc} are seen as the
class conditional multinomials for V words. In a corpusD, there are H histories with
Nh words predicted by each history. As a result, DC-LM is calculated by integrating
over different classes ci and proportions θ

p(wi |hi−1
i−n+1, A, β) =

C∑

ci =1

p(wi |ci , β)

∫
p(θ|hi−1

i−n+1, A)p(ci |θ)dθ

=
C∑

c=1

βic
a�

c hi−1
i−n+1∑C

j=1 a�
j hi−1

i−n+1

.

(4.14)

DC-LM parameters {A, β} are estimated according to an VB-EM procedure [13].
DC-LM acts as a new Bayesian class LM which is a smoothed LM over the classes
of histories. However, the long-distance information outside n-gramwindowwas not
characterized. For this concern, a cache DC-LM was proposed by incorporating the
cache memory from all history words wi−1

1 into DC-LM as illustrated in Fig. 4.4. We
can see that cacheDC-LM is calculated through choosing the best class sequence ĉi−1

associated with each history word sequence ŵi−1. However, DC-LM is constructed
with the fixed number of classes or topicsC without considering power-law property.

Hierarchical Pitman–Yor-Dirichlet Language Model

Using HPY-LM, the predictive n-gram from Gu is inferred by marginalizing out
the prior measure of backoff context Gπ(u). HPY-LM copes with the issue of data
sparseness and holds the power-law property of natural language. But, topic infor-
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mation was not captured and accordingly the long-distance information was missed
in HPY-LM. In [9], a hierarchical Pitman–Yor-Dirichlet LM (HPYD-LM) was pro-
posed to achieve an BNP learning for the discounted topic-based LM which is seen
as a flexible LM with power-law distributions and latent topics where the number
of topics is unbounded. An HPYD process is constructed to draw the HPYD-LM.
Different from the parametric topic mixture model

p(wi |wi−1
i−n+1) =

K∑

k=1

p(zi = k|wi−1
i−n+1)p(wi |wi−1

i−n+1, zi = k) (4.15)

HPYD process combines a prior process for drawing the topic-dependent smoothed
n-gram p(wi |wi−1

i−n+1, zi = k) from an PY process, and a prior process for topic
mixture probability p(zi = k|wi−1

i−n+1) from an DP. Starting from the uniform seed
measure H0(w) = 1/V for all words w ∈ �v, we draw a word measure from a
global topic by G0 ∼ DP(γ0, H0). The distribution of topic-dependent unigram
G∅zi with empty context ∅ and topic assignment zi is sampled by an PY process
G∅zi ∼ PY(d1, α1, G0) where G0 is acted as a prior base measure. Next, G∅zi serves
as a base measure for an DP to draw a distribution of unigrams Gwi ∼ DP(γ1, G∅zi ).
Using Gwi as a prior measure, we draw the distribution of topic-dependent bigrams
by using PY process Gwi−1zi ∼ PY(d2, α2, Gwi ). This measure is again acted as a
prior basis for an DP to draw the distribution of bigrams Gwi−1wi ∼ DP(γ2, Gwi−1zi ).
Therefore, HPYD process is recursively realized by sampling the distribution of
topic-dependent n-grams p(wi |wi−1

i−n+1, zi ) from Gwi−1
i−n+1zi

and then that of n-grams

p(wi |wi−1
i−n+1) from Gwi

i−n+1
by

Gwi−1
i−n+1zi

∼ PY
(

dn, αn, Gwi−1
i−n+1

)
, Gwi

i−n+1
∼ DP

(
γn, Gwi−1

i−n+1zi

)
. (4.16)

A hierarchical Chinese restaurant process (HCRP) [9] was designed to implement
the HPYD process and infer the HPYD-LM. Imagine that there are Chinese restau-
rants serving customers with infinite tables, infinite menus, and infinite dishes. For
each restaurant with context u, the first customer or word with parameter θ1 enters
the restaurant and chooses the first table in restaurant u. He or she draws a shared
menu for all customers seating with the same table and then orders a dish which is
labeled by a distinct word wu1. Each customer θi only chooses one table and one dish
from the single menu corresponding to that table. Each table has its own menu. Fol-
lowing this way, each customer chooses a table with a distinct menu and then draws
a dish from that menu. Note that the menus in this HCRP are associated with the
topics in HPYD-LM. The menus in restaurant u are obtained from two information
sources: (1) the corresponding menus from the lower order or back off restaurant
π(u) and (2) the clustering information from the customers in higher order restau-
rant u. The HPYD n-gram is determined by calculating the predictive or marginal
probability of a test word w appearing after a context u given by a set of training data
D. The marginalization is performed over the arrangements of tables t = {ti , t−i },
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menus z = {zi , z−i }, dishes l = {li , l−i } of all training words w = {wi , w−i }, and the
hyperparameters λ = {dm, αm, γm |1 ≤ m ≤ n}. A Gibbs sampling procedure was
developed to draw the tables, the menus, and the dishes according to the corre-
sponding posterior probabilities p(ti = t |t−i , z,λ, w, u), p(zi = k|z−i , t,λ, w, u),
and p(li = w|l−i , zi = k, z−i ,λ, w−i , u), respectively [9]. At last, we realize the
HPYD process and obtain the HPYD n-gram p(wi = w|w−i , z,λ, u).

4.3.2 Document Model

Some other advanced topic models are developed for robust document modeling by
compensating the nonstationary condition or conducting the sparse representation.

Dynamic Topic Model

Blei and Lafferty [5] proposed a dynamic topic model (DTM) to analyze the time
evolution of topics in a large document collection. The state space models using
natural parameters of LDA topic model were implemented to provide a qualitative
window over the content of a large data collection. In particular, the topics associated
with time slice t evolve from the topics associated with slice t − 1. Accordingly, the
conditional multinomials β = {βk} and the Dirichlet parameters α are represented
by the state space model with the evolution using Gaussians given by the isotropic
covariance parameters σ 2 and δ2

βt,k |βt−1,k ∼ N (βt−1,k, σ
2 I ), αt |αt−1 ∼ N (αt−1, δ

2 I ). (4.17)

Such time-dependent continuous variables are converted into the proportion variables
to draw topics {zmnt } using αt and choose the corresponding words {wmnt } using βt,z

for each time slice t . DTM is an extension of LDA to meet nonstationary condition
and has been successfully applied to analyze the evolution of topic words in the
journal Science over 120 years [5].

Sparse Topic Model

The real-world text documents are usually contaminated with noises and redundan-
cies. Sparse representation is helpful to establish a compact model which is robust to
adverse conditions. Recently, a sparse Bayesian learning was introduced to perform
sparse document representation using the sparse LDA (sLDA) [11]. Previous topic
model based on LDA assumes that all of K topics are fully connected to each word
wmn in a document. The sLDA topic model aims to select salient features in LDA
network by incorporating the spike-and-slab priors [29] into a Bayesian framework.
The spike distribution is used to select salient features, while the slab distribution is
applied to establish topicmodel based on the selected relevant topics. As addressed in
Sect. 4.1.3, the connections between topics andwords inLDAnetwork are sufficiently
reflected by the variational multinomial parameters {φ̂nk} which are introduced as
the hyperparameters of the variational distributions of latent variables {zmn = k}.
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(a) (b)

Fig. 4.5 a Illustration for feature selection using spike-and-slab priors. b Graphical representation
for sparse LDA

Such connection is used to select salient features or topics for document represen-
tation. Figure4.5a illustrates the feature selection using spike-and-slab priors. The
variational parameter φ̂nk is treated as a slab probability which connects the repre-
sentation of a target word wmn using the relevant topics (here k = 2 and k = 3). This
judgment is made from an indicator bnmk ∼ Bern(λmk) using a Bernoulli parame-
ter drawn from a beta distribution λmk ∼ Beta(π). A word wmn is chosen using the
conditional multinomial where only the relevant topic k with bnmk = 1 is merged,
namely

wmn = v|bnmk = 1, zmn = k ∼ Mult(βvk). (4.18)

Graphical representation of sLDA is shown in Fig. 4.5b. An VB-EM procedure was
developed to infer the sLDA parameters {α, β,π} bymaximizing the marginal likeli-
hood p(D|α, β,π)over four latent variables {z, θ, b,λ}.Notably,marginal likelihood
is only accumulated for all training samples {wmn} connected with their associated
topics znm = k with condition bnmk = 1. The variational distributions with parame-
ters {φ, γ,ψ,η} corresponding to latent variables {z, θ, b,λ} are estimated by maxi-
mizing the variational lower bound. Importantly, the variational binomial parameters
ψ̂ = {ψ̂nkb} for binomial indicators b = {bnmk} are estimated as the spike probabili-
ties for feature selection, while the variational multinomial parameters φ̂ = {φ̂nk} for
multinomial topics z = {znm} are calculated as the slab probabilities to model those
selected features. In this illustration, the spike probability for topic k = 1 under
bnmk = 1 is too small to contribute the generation of a target word wmn .

4.3.3 Segmentation Model

Sequential patterns in natural language usually appear without explicit boundaries
but with the variations of temporal topics. Text segmentation aims to partition the
text data into homogeneous processing units or semantically coherent chunks. This
research horizon is crucial for many applications including language modeling,
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speech recognition, text categorization, retrieval and summarization, and also topic
detection and tracking.However, in realworld, the observed text stream is constructed
by a set of heterogeneous documents, making it difficult to extract homogeneous top-
ics. In what follows, we introduce how LDA topic model is extended to cope with
the stream-level segmentation and the document-level segmentation [14]. In stream-
level segmentation, the text stream is partitioned into topic-coherent documents. In
document-level segmentation, the pseudodocument is further segmented into word-
coherent paragraphs. Such a hierarchical segmentation makes it feasible to build a
precise topic model to compensate the varying distributions of topics and words in
nonstationary conditions. This idea can be applied to conduct automatic transcription
for lecture speech where the discussion topics are changed by time. This is similar
to the situation that the topics are moving between two concatenated documents.

Topic-Based Stream-Level Segmentation

Segmentation of a text stream can be treated as a task of detecting the boundary
of documents according to the similarity between sentences wt−1 and wt at each
sentence time t which is measured by calculating the cosine distance between the
corresponding topic proportions s(θt−1, θt ). The sentence-dependent topic propor-
tions θt = {θtk} are determined by using the MAP estimate of variational posteriors
E[θtk |γ̂tk]. We draw a segmentation probability based on the beta distribution using
this one-sided contextual similarity, i.e.,ω ∼ Beta(1 − εt , εt )where εt = s(θt−1, θt ).
The segmentation label c for each pair of sentences is then chosen by a binomial
distribution c ∼ Bin(ω). The segmentation boundary is detected when c = 1, other-
wise this sentence is grouped into the previous segment. The number of segments is
determined automatically. In this study, contextual topic information plays an impor-
tant role for stream-level segmentation. In [14], the one-sided contextual similarity
s(θt−1, θt ) was improved by using the two-sided contextual similarity for beta para-
meter via εt = max{s(θt−1, θt ), s(θt−1, θt+1)}. A smoothed boundary detection was
performed. The segmentation error due to the non-topic sentences was alleviated.
This stream-level segmentation is performed to compensate the variations of topic
distributions θ in a text stream.

Topic-Based Document-Level Segmentation

Furthermore, the variations of word distributions within a pseudodocument are
treated in the document-level segmentation. It is because that the usage of the same
words in a natural language system is gradually varied over different paragraphs
or segments due to the composition style and document structure. Accordingly, we
merge a Markov chain to characterize the dynamics of word distributions in LDA
topic model. Figure4.6a shows graphical representation of the resulting nonstation-
ary LDA. Here, each word wmn or simply wn is generated due to both topic zn and
segment or state sn . A left-to-right hidden Markov model topology without state
skipping is implemented for document-level segmentation. The model parameters
consist of {α, β, A} where A = {asn−1sn } denotes the state transition probabilities.
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(a) (b) (c)

Fig. 4.6 Graphical representation for a nonstationary LDA, b adaptive and nonstationary LDA,
and c sentenced-based LDA

Again, the VB-EM algorithm is applied to estimate model parameters {α, β, A} by
maximizing the marginal likelihood

p(D|α,β, A) =
M∏

m=1

∫
p(θm |α)

∑

s

Nm∏

n=1

K∑

k=1

p(zmn = k|θm)

× p(wmn|zmn = k, smn,β)p(smn = s|sm,n−1, A)dθm .

(4.19)

This nonstationary LDA was constructed from spoken documents and merged into
n-gram language model. The speech recognition results were rescored for spoken
documents [19]. In [20], an adaptive segmentation model was proposed by introduc-
ing a style variable c which indicated the number of stylistic changes in a document
as depicted in Fig. 4.6b. Style variable is modeled by a multinomial distribution
c ∼ Mult(τ) with the style proportions drawn from a Dirichlet prior τ ∼ Dir(η).
The hybrid stream-level and document-level segmentation was successfully applied
for topic detection and tracking in [14].

4.3.4 Summarization Model

Automatic summarization aims to extract the thematic contents or sentences from
a large set of documents. A good summary is helpful for browsers to capture the
themes and concepts from multiple documents in a very short time. Beyond doc-
ument representation in word level and document level using LDA, the key issue
in a summarization system is to conduct a hierarchical modeling over words, sen-
tences, and documents in a corpus. Given the trained parameters, we can measure
the similarity between a document and individual sentence and select the top-ranked
sentences according to the Kullback–Leibler (KL) divergence. In a practical sys-
tem, we usually observe heterogeneous documents where the topics are ambiguous,
inconsistent, and diverse. A good summary should reflect the diversity of topics in
documents and keep the redundancy to be minimum. In what follows, we survey two
advanced topic models for document summarization. One is the parametric model
based on the sentence-based LDA [8] and the other one is the nonparametric model
based on the sentenced-based nested Chinese restaurant process [10].
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Sentence-Based Latent Dirichlet Allocation

A simple extension to allow sentence modeling in LDA topic model is to introduce
the sentence-level latent variable y j = l for each sentence s j and connect it with
the word-level latent variable zn = k for document representation. Different from
the latent topics in word-level representation, we use another related concept called
“themes” as the latent variables for sentence-level representation. A sentence-based
LDA is constructed as depicted in Fig. 4.6c. Each word wn = v in sentence s j (1 ≤
j ≤ S) and document dm is drawn by using a word-level multinomial parameter
βvk where the latent topic zn = k is determined by using a theme-dependent topic
proportion πlk with latent theme y j = l (1 ≤ l ≤ L). This theme is drawn from a
document-dependent theme proportion θml which is governed by a Dirichlet prior
with hyperparameters α = {αl}. Notably, each sentence is associated with a latent
theme y j = l. Each theme is used to draw the corresponding latent topic zn = k
for representation of a target word wn = v. As a result, document summarization
is performed by calculating the KL divergence using the sentence-based unigram
p(wn|s j ) and document-based unigram p(wn|dm). The estimated model parameters
{α̂, β̂, π̂} and their variational parameters via VB-EM algorithm are used to calculate
these two unigram probabilities p(wn|s j ) and p(wn|dm).

Sentence-Based Nested Chinese Restaurant Process

Similar to what we have discussed in Sect. 4.2 for standard LDA, there are two
limitations in the sentence-based LDAwhich constrain the performance of document
representation and summarization. First, the number of themes L and the number
of topics K are fixed in advance. Second, different themes l are assumed to be
independentwhile different topics k are independent aswell. A sentence-based nCRP
was proposed to relax these two assumptions and apply for Bayesian nonparametric
document summarization [10]. A metaphor for sentence-based nCRP (snCRP) is
displayed in Fig. 4.3b. An infinitely branching tree structure is built for representation
of words, sentences, and documents based on an nCRP compound HDP by a two-
stage procedure. In the first stage, each sentence s j of a document dm is drawn from
a document-dependent theme mixture model Gs,m via an nCRP. In the second stage,
each word wn of a sentence s j under a tree node is drawn from a theme-dependent
topic mixture model Gw,l via an HDP. The probability measures of two models and
the relation between the measures of theme ψl and topic φk are expressed by

Gs,m =
∞∑

l=1

θmlδψl , Gw,l =
∞∑

k=1

πlkδφk , ψl ∼
∑

k

πlkφk . (4.20)

Here, the theme proportions θm = {θml} and the topic proportions πl = {πlk} in
sentence-based nCRP are similar to those in sentenced-based LDA.

Using this approach, the document-dependent thememixturemodelGs,m is estab-
lished under a sentence-based tree model with atoms {ψl}∞l=1. Different from the
word-based nCRP in Fig. 4.3a using a single tree path cm for representation of words
{wn} in a document dm , the sentence-based nCRP in Fig. 4.3b represents the sentences
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{s j } of a document dm based on the theme parameters {ψl} along the subtree path
tm ∼ snCRP(α0). A wide coverage of thematic information in tm is beneficial to
compensate the thematic uncertainties or variations in the sentences from heteroge-
neous documentsD. Furthermore, the theme-dependent topic mixture model Gw,l is
constructed by treating the words of the sentences in a tree node l as the grouped data
and modeling those grouped data in different tree nodes according to an HDP. The
shared atoms {φk}∞k=1 are involved. Each word wn in sentence s j and document dm is
chosen by a multinomial distribution with parameter φtm (y j ,zn) which is selected from
the parameter of topic zn = k under a tree node of theme y j = l from a subtree path
tm . The topic k and theme l are drawn from the topic proportionsπ and theme propor-
tions θ, respectively. Importantly, the theme-dependent topic proportions are drawn
by anGEMdistributionπl |γw ∼ GEM(γw) using a word-level strength parameter γw

through a stick-breaking processing (SBP). The document-dependent theme propor-
tions are chosen by a treeGEM distribution θm |γs ∼ treeGEM(γs) using a sentence-
level parameter γs through a tree SBP. In [10], a Gibbs sampling was developed to
sample a document-dependent subtree branches tm = {tmj }, document-dependent
theme labels y = {y j } and theme-dependent topic labels z = {zn} according to
the posterior probabilities p(tmj = t |tm(− j),D, y, α0), p(y j = l|dm, y− j , tm, γs) and
p(zn = k|D, z−n, y j = l, γw), respectively. A document summarization system was
established through a sentence selection procedure over the inferred tree model for
sentences.

4.4 Summary and Future Direction

We have presented the theoretical background and surveyed some advances in topic
models for speech and language processing. In theoretical background, we started
from the general unsupervised learning methods using latent variable models based
on FA and ICA and then moved to general topic models for natural language applica-
tions.We systematically addressed the evolution of topic models from the parametric
models using LSA, PLSA, and LDA to the Bayesian nonparametric models using
HDP and nCRP. The inference solutions to LDA based on VB and Gibbs sampling
procedures were investigated. The Bayesian nonparametric learning methods via
DP, PY process, HDP, and HPY process were introduced. From these theoretical
surveys, we would like to move beyond baseline topic model using LDA toward
building a flexible, hierarchical, adaptive, and scalable topic model to meet a variety
of heterogeneous conditions in real-world information systems.

In the advanced studies,wepresented a series of extended topicmodelswhichwere
developed and applied for speech recognition, document retrieval, text segmentation,
and document summarization. We discussed different issues in LDA topic model
including topic correlation, model complexity, topic structure, model smoothing,
power-law property, temporal modeling, overtrained problem, sparse representation,
nonstationary condition, and ill-posed condition. A variety of solutions were pro-
posed to achieve finite-dimensional and infinite-dimensional topic-based language
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models, dynamic and sparse topic-based document models, topic-based stream-level
and document-level segmentation, and sentence-based LDA and nCRP summariza-
tion models. The HPY compound HDP was developed for topic-based language
model, while the nCRP compound HDP was exploited for sentence clustering and
hierarchical modeling of words, sentences, and documents.

Some suggestions are provided for future direction. In the era of big data, we build
an infinite model from heterogeneous data. We should think more seriously about
the problems at hand, systematically extract the latent information, and carefully
represent the model variations. We need to take care of some challenging issues
including parallel processing in algorithm level as well as in system level, rapid
inference algorithm and sequential MCMC algorithm and work on big learning for
topic model. It is interesting to discover ubiquitous extensions and connections to
the nonnegative matrix factorization, tensor decomposition and deep neural network
and apply them to speech recognition, speaker recognition, speech synthesis, music
classification, source separation, etc.
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