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How to Utilize Sensor Network Data
to Efficiently Perform Model Calibration
and Spatial Field Reconstruction
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Abstract This chapter provides a tutorial overview of some modern applications
of the statistical modeling that can be developed based upon spatial wireless sen-
sor network data. We then develop a range of new results relating to two important
problems that arise in spatial field reconstructions from wireless sensor networks.
The first new result allows one to accurately and efficiently obtain a spatial field
reconstruction which is optimal in the sense that it is the Spatial Best Linear Unbi-
ased Estimator for the field reconstruction. This estimator is obtained under three
different system model configurations that represent different types of heteroge-
neous and homogeneous wireless sensor networks. The second novelty presented in
this chapter relates to development of a framework that allows one to incorporate
multiple sensed modalities from related spatial processes into the spatial field recon-
struction. This is of practical significance for instance, if there are d spatial physical
processes that are all being monitored by a wireless sensor network and it is believed
that there is a relationship between the variability in the target spatial process to be
reconstructed and the other spatial processes being monitored. In such settings it
should be beneficial to incorporate these other spatial modalities into the estimation
and spatial reconstruction of the target process. In this chapter we develop a spatial
covariance regression framework to provide such estimation functionality. In addi-
tion, we develop a highly efficient estimation procedure for the model parameters
via an Expectation Maximization algorithm. Results of the estimation and spatial
field reconstructions are provided for two different real-world applications related
to modeling the spatial relationships between coastal wind speeds and ocean height
bathymetry measurements based on sensor network observations.
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2.1 Introduction to Wireless Sensor Networks

Wireless sensor networks (WSN) are composed of a large numbers of low-cost, low-
power, densely distributed, and possibly heterogeneous sensors. WSN increasingly
attract considerable research attention due to the large number of applications, such
as environmental monitoring [36], weather forecasts [14, 15, 20, 35, 36], surveil-
lance [39], health care [22], structural safety and building monitoring [9], and home
automation [3, 15]. We consider WSN which consist of a set of spatially distributed
low-cost sensors that have limited resources, such as energy and communication
bandwidth. These sensors monitor a spatial physical phenomenon containing some
desired attributes (e.g., pressure, temperature, concentrations of substance, sound
intensity, radiation levels, pollution concentrations, etc.) and regularly communicate
their observations to a Fusion Center (FC) in a wireless manner (for example, as in
[4, 5, 12, 24, 38, 42]). The FC collects these observations and fuses them in order
to reconstruct the signal of interest, based on which effective actions are made [3].

The majority of recent research on WSN consider problems related to addressing
estimation of a single point source, such as source localization [23, 31, 32, 46,
47], or source detection (i.e., hypothesis testing) [11, 19, 26] class of problems.
In [23, 31, 32, 46], location estimation algorithms of a scalar point source were
developed, and in [47] the Posterior Cramér-Rao lower bound (PCRLB) for single
target tracking in WSN with quantization was approximated via particle filters. In
[11, 19], decision fusion algorithms for a single source detection were developed,
and in [26] a vector-valued quantity of a single source was estimated in WSN with
censoring and quantization.

In this chapter we explain how one can utilize the entire set of sensor data to not just
obtain estimation of a given point source localization but instead to reconstruct the
entire spatial field under a statistical model. Hence, we move beyond the estimation
of a single location parameter by developing models to reconstruct the entire spatial
random field which exhibits spatial dependency structure that we capture via either
a homogeneous or nonhomogeneous spatial covariance function, depending on the
statistical properties of the observed spatial field.

In general the following two fundamental problems naturally arise within this
context, and they are the general focus of this chapter:

1. Spatial field model calibration and selection: the task is to determine the best-
fitting statistical model for the characterization of the spatial process and to per-
form the model parameter estimation and then model selection.

2. Spatial field reconstruction: the task is to accurately estimate and predict the
intensity of a spatial random field, not only at the locations of the sensors, but at
a variety of other out-of-sample locations.

We consider in this chapter to model the physical phenomenon being monitored
by the WSN according to a Gaussian random field (GRF) with a spatial correlation
structure [4, 16, 28, 42]. More generally, examples of GRFs include wireless chan-
nels [2], speech processing [33], natural phenomena (temperature, rainfall intensity,
etc.) [14, 20], and recently in models developed in [27, 29, 30, 34].
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The simplest form of Gaussian process model would typically assume that the
spatial field observed is only corrupted by additive Gaussian noise. For example, in
[16] a linear regression algorithm for GRF reconstruction in mobile wireless sen-
sor networks was presented, but relied on the assumption of only Additive White
Gaussian Noise (AWGN); in [45] an algorithm was developed to learn the parame-
ters of nonstationary spatiotemporal GRFs again assuming AWGN; and in [21] an
algorithm for choosing sensor locations in GRF assuming AWGN was developed.

In practical WSN deployments, two deviations from these simplified modeling
assumptions arise and can be important in practice to consider: these include the
presence of heterogeneous sensor types, i.e., sensors may have different degrees of
accuracy throughout the field of spatial monitoring; and secondly quite often the
sensors may employ some form of energy conservation such as quantization of ana-
log measurements to digital for efficient and low-power wireless transmission to the
FC. To further elaborate these points, one may for instance consider the scenario in
which high-quality sensors may be deployed by government agencies (e.g., weather
stations). These are sparsely deployed due to their high costs, limited space con-
straints, high power consumption, etc. Then in order to improve the coverage of the
WSN, low-quality cheap sensors perhaps employing quantization may be deployed
to augment the higher quality analog sensor network [36]. For instance, battery
operated low-cost sensors can be deployed and use simple wireless transmission
techniques for data aggregation to the FC [43]. The low-quality sensors considered
in this chapter transmit a single bit for every analog observation they obtain, making
them very energy efficient. The FC then receives a vector of observations which are
mixed continuous (high quality) and discrete (low-quality 1-bit values). This makes
the data fusion a very complex inference problem.

Hence, the consequence of this type of practical framework is that the observations
are heterogeneous and generally non-Gaussian distributed as the quantization proce-
dure introduces a nonlinear transformation of the observations. The sensors transmit
their quantized measurements to a FC over wireless channels, which introduce fur-
ther distortion, due to bandwidth and power constraints. Such practical WSN were
considered in [26, 31, 32, 44]. However, these works only considered the estimation
of a point source and not of the entire spatial random field, the recent works of [27,
29, 30, 34] extend these frameworks to the entire field reconstruction problem, it is
these frameworks that are summarized in this chapter. The intention of the chapter
is to highlight and survey recent results that may be obtained for such modeling
frameworks.

Notation: random variables are denoted by upper case letters and their realiza-
tions by lower case letters. In addition, bold will be used to denote a vector or matrix
quantity, and lower subscripts refer to the element of a vector or matrix. We denote
N

(
x;μ, σ 2

) = φ
(
x;μ, σ 2

)
as the probability density function (PDF) of a random

normal (Gaussian) variable with mean μ and variance σ 2. Its cumulative distrib-
ution function (CDF) is denoted by Φ

(
λ,μ, σ 2

) = ∫ λ

−∞ φ
(
x;μ, σ 2

)
dx . We also

define δ (a, b, c, d) := φ (a; c, d) − φ (b; c, d) and Δ(a, b, c, d) := Φ (a; c, d) −
Φ (b; c, d). We will utilize throughout the chapter the following notations:
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• xN is the physical location (in terms of [x, y] coordinates) of the N sensors
deployed in the field, comprised of NA analog and ND digital or quantised sensors
such that N = NA + ND .

• YN = {Y1, . . . , YN } ∈ R
N×1 is the collection of observations from all sensors

(both analog and binary) at the fusion center.
• YA ⊆ YN is the collection of observations from all NA analog sensors at the

fusion center which are located at points xi ∈ X A such that Card(X A) = NA.
• YD ⊆ YN is the collection of observations from all ND lower quality quantized

or digital sensors at the fusion center which are located at points xi ∈ X D such
that Card(X D) = ND .

• fN = { f1, . . . , fN } ∈ R
N×1 is the realization of the random spatial field being

monitored f (·) at the sensors located at xN .
• fA ⊆ fN is the realization of the random spatial field being monitored f (·) at the

analog sensors, located at xA ⊆ xN .
• fD ⊆ fN is the realization of the random spatial field being monitored f (·) at the

digital sensors, located at xD ⊆ xN .
• xN \n := [

x1, . . . , xn−1, xn+1, . . . , xN
]
.

Furthermore, we generically denote a location in space x∗ for which the lower script
∗ indicates that a sensor is not located at this point to make a measurement but for
which one wishes to reconstruct the spatial process f (x∗) = f∗.

2.2 Introduction to Spatial Gaussian Random Fields

We consider a generic system model where wireless sensors are deployed in the
field. The sensors monitor a spatial physical phenomenon which is observed with
measurement error, quantization error, and incomplete sampling of the spatial field.
These quantized measurements are transmitted over imperfect wireless channels to
the fusion center (FC) to obtain an estimate of the spatial phenomenon at any point of
interest in space. We first provide a formal definition of the spatial random Gaussian
field followed by detailed WSN assumptions.

We assume that the observed phenomenon can be adequately modeled by a spa-
tially dependent continuous process with a spatial correlation structure. The degree
of the spatial correlation in the process increases with the decrease of the separa-
tion between two observing locations and can be accurately modeled as a Gaussian
random field.1 A Gaussian process (GP) defines a distribution over a space of func-
tions and it is completely specified by the equivalent of sufficient statistics for such
a process, and is formally defined as follows:

Definition 2.1 (Gaussian process [1, 37]): Let X ⊂ R
D be some bounded domain

of a d-dimensional real-valued vector space. Denote by f (x) : X �→ R a stochas-
tic process parametrized by x ∈ X . Then, the random function f (x) is a Gaussian

1We use Gaussian Process and Gaussian random field interchangeably.
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process if all its finite-dimensional distributions are Gaussian, where for any m ∈ N,
the random variables ( f (x1) , . . . , f (xm)) are normally distributed.

A GP in this chapter is formally defined by the following class of random func-
tions:

F := { f (·) : X �→ R s.t. f (·) ∼ GP (μ (·;Θ) , C (·, ·;Ω)) , with

μ (x;Θ) := E [ f (x)] : X �→ R,

C (
xi , x j ;Ω

) := E
[
( f (xi ) − μ (xi ;Θ))

(
f
(
x j
) − μ

(
x j ;Θ

))] : X × X �→ R
}
,

where at each point the mean of the function is μ(·;Θ) : X �→ R, parameterised by
Θ , and the spatial dependence between any two points is given by the covariance
function (Mercer kernel) C (·, ·;Ω) : X × X �→ R, parameterised by Ω , see detailed
discussion in [37].

It will be useful to make the following notational definitions:

k (x∗, xN ) := E [ f (x∗) f (xN )] ∈ R
1×N

K (xN , xN ) :=
⎡

⎢
⎣

C (x1, x1) · · · C (x1, xn)
...

. . .
...

C (xn, x1) · · · C (xn, xn)

⎤

⎥
⎦ ∈ S+ (

R
n
)
,

withS+ (Rn) is the manifold of symmetric positive definite matrices. To proceed with
an understanding of this class of statistical model we need to consider the choice of
the kernel functions available as these will have important implications for the ability
of the GP model to capture the variability of the observed process over space.

2.2.1 Model Choices for Spatial Covariance Functions

In this section we discuss a few parametric family of kernels which characterize
the covariance function in the Guassian process. A kernel, also called a covariance
function, a kernel function, or a covariance kernel, is a positive definite function
of two input vectors, for instance locations in space xi ∈ R

2 and x j ∈ R
2. There

are many possible choices of covariance function that one may consider, sometimes
the choice is based upon a known physical structure for the spatial processing being
monitored, and other times the choice of kernel is obtained based on a statistical model
selection procedure. In this section we briefly note some common choices considered
in practice and the resulting properties of their implied covariance structure.

In many settings, it may be suitable to make a simplifying assumption such as
assuming a spatially isotropic covariance structure in which the spatial covariance
kernel may be modeled, for instance via the popular radial basis or the squared
exponential function kernel given by
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Cov
(

f (x), f (x′)
) = CΩ(x, x′) = σ 2 exp

(
−||x − x′||22

2l2

)
, (2.1)

for parameter vector Ω = (σ 2, l), with σ the magnitude of the covariance and l
defining the characteristic length scale.

The second more flexible family of isotropic covariance function is recommended
and used in a variety of application domains, see discussion in [25, 37], the Matern
family of Mercer kernels which is characterized by covariance functions given by

Cov
(

f (x), f (x′)
) = CΩ (x, x′) = 21−ν

Γ (ν)

(√
2ν||x − x′||2

l

)ν

Kν

(√
2ν||x − x′||2

l

)

,

(2.2)
for Ω = (ν, l) with ν > 0, l > 0 and the modified Bessel function given by

Kν(x) =
∫ ∞

0
exp (−x cosh t) cosh (νt) dt. (2.3)

Other possible kernel choices widely used in practice include cases in which there
is a periodic structure such as characterized by the kernel,

Cov
(

f (x), f (x′)
) = CΩ(x, x′) = σ 2 exp

(
− 2

l2
sin2

(
π

x − x′

p

))
, (2.4)

where Ω = (σ, l, p).
Though these kernels presented above are widely used, it has been argued in [37,

40] that in many problems such restrictive isotropic and smoothness assumptions may
not be appropriate for modeling realistic processes, in which case one may resort
to an alternative class of covariance kernel which is less restrictive in terms of their
spatial symmetries. For instance, one may consider the class of quadrant symmetric
kernels that make less restrictive assumptions regarding the isotropy and involves
selecting a kernel choice that satisfies the ‘even’ condition for each component given
by

C(x1, . . . , xk, . . . , xn) = C(x1, . . . ,−xk, . . . , xn). (2.5)

where, quadrant symmetry implies homogeneity in the weak sense, see discussions
in [41].

Another class of kernels one may consider is given by the anisotropic family of dot
product “regression” kernels in which one considers the basic regression structure
σ 2

0 + xt x and generalizes it with a covariance matrix and positive powers to obtain
for strictly positive σ > 0 an inhomogeneous family. Typically, one considers one
of three kernels in this family for the spatial covariance given by,

Linear Kernel:

Cov
(

f (x), f (x′)
) = CΩ

(
x, x′) = (

σ 2 + xT Σ1x′) ,
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Quadratic Kernel:

Cov
(

f (x), f (x′)
) = CΩ

(
x, x′) = (

σ 2 + xT Σ2x′)2
, (2.6)

Cubic Kernel:

Cov
(

f (x), f (x′)
) = CΩ

(
x, x′) = (

σ 2 + xT Σ3x′)3
,

with Ω = (σ,Σi , pi ). The linear covariance kernel can also be utilized under an
alternative parameterization, it will prove to be beneficial in the context of the esti-
mation developed in the following sections. Under this choice, one assumes that the
spatial variability in the process f (·) can be explained by a set of covariates, denoted
generically by w = [w1, w2, . . . , wN A ], where at each of a set of N A sensors, a set of
covariates wi ∈ R

(q×1) are observed and provide the following explanatory structure
for the spatial processes correlations, given by

Cov
[

f (xi ) , f
(
x j

) |w] = CΩ

(
xi , x j

) = (
σ 2 + bT

i wwT b j
)
,

where the parameters of association of the spatial field for each local point are defined
by vectors bi ∈ R

(q×1) for i ∈ {
1, . . . , N A

}
.

Having formally specified the semi-parametric class of Gaussian process models,
we proceed with presenting the system model.

2.3 Wireless Sensor Network System Model

We now present the WSN system with practical quantization and imperfect wireless
channels:

1. Consider a random spatial phenomenon to be monitored over a 2-dimensional
space X ∈ R

2. The mean response of the physical process is a smooth continu-
ous spatial function f (·) : X �→ R, and is modeled as a Gaussian Process (GP)
according to

f (·) ∼ GP (μ (·;Θ) , C (·, ·;Ω)) .

2. Let N be the number of sensors that are deployed over a 2-D region X ⊆ R
2,

with xn ∈ X , n = {1, . . . , N }, the physical location of the nth sensor, assumed
known by the FC. The number of analog (high quality) and digital (lower quality)
senors is NA and ND, respectively, so that N = NA + ND.

3. Sensors measurement model: each sensor collects a noisy observation of the
spatial phenomenon f (·). At the nth sensor, the observation is expressed as:

Z (xn) = f (xn) + V s
n , n = {1, . . . , N }

where V s
n are i.i.d. Gaussian noise terms, i.e., V s

n ∼ N
(
0, σ 2

S

)
.

4. Analog (high quality) sensors processing and communication model: each of
the analog high-quality NA sensors transmits its noisy observation to the FC over
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AWGN channels, as follows:

Y A
n = Z (xn) + V A

n , n = {1, . . . , NA} ,

where V A
n is i.i.d. Gaussian noise V A

n ∼ N
(
0, σ 2

A

)
.

5. Digital quantized (lower quality) sensors processing: each of the ND digital
sensors first performs a thresholding-based decision based on its noisy observa-
tions. This step is summarized as follows for two common settings: first for the
case in which an L-bit quantizer is assumed to operate at the sensor; second for
the case in which a simple binary thresholding decision is performed.

Setting 1—Low-Quality Power/Bandwidth Constrained Sensors:
the quantizer explicitly maps its input Zn = Z (xn) to the output Bn through a
mapping or encoder Bn : R �→ {0, . . . , L − 1}, as follows:

Bn = Q [Zn] :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, λ0 ≤ Zn < λ1

1, λ1 ≤ Zn < λ2

...
...

L − 2, λL−2 ≤Zn < λL−1

L − 1, λL−1 ≤Zn < λL ,

where λ0 = −∞ and λL = ∞.

Setting 2—Basic Thresholding:
the sensor simply thresholds via a binary decision rule (a special case of the L = 1
quantizer), with the binary decision rule given by:

Bn =
{

1, Z (xn) > λ

0, Z (xn) ≤ λ.
(2.7)

where λ is a predefined threshold. We denote the thresholding operation by Q [·].
6. Digital quantized (lower quality) sensors communication model: each of the

ND digital sensors, having first performed the quantization or thresholding-based
decision on its noisy observations, then transmits the L-bit decision over imper-
fect wireless channels [11, 19, 26]. The decision Bn = B (xn) is transmitted to
the FC over imperfect binary wireless channels, as in [32]. Under this model,
the statistic Bn is transmitted to the FC over imperfect wireless channels for
which the conditional probability mass function (PMF) of the quantized/encoded
observation from the nth sensor can be expressed, for all m ∈ {0, . . . , L − 1}, as:

P

(
Yn = m

∣∣
∣ f (xn)

)
=

L−1∑

l=0

P

(
Yn = m

∣∣
∣Bn = l

)
P

(
Bn = l

∣∣
∣ f (xn)

)
,



2 How to Utilize Sensor Network Data to Efficiently Perform Model Calibration… 33

where P

(
Yn = m

∣∣
∣Bn = l

)
represents the channels statistics (e.g., probability of

making an error).
7. Additional modalities sensed by high-quality analog sensors: it is assumed that

for the NA analog sensors they are capable of making observations of additional
spatial covariates, related to the physical process being monitored. At the nth
analog sensor location the vector of additional spatial covariates is denoted W̃n ∈
R

(q×1). The analog sensor then transmits this vector of additional covariates to
the FC over AWGN channels, as follows:

Wn = W̃n + VC
n , n = {1, . . . , NA} ,

where VC
n is i.i.d Gaussian noise V C

n ∼ N (0,Σ). In the remainder of this
chapter we consider to stack all the NA sensor covariates into a matrix W =[
W1, . . . , WNA

]
for which we denote the realization by the matrix w ∈ R

(q×NA).

2.3.1 Homogeneous and Heterogeneous WSNs

Hence, having specified this system model, we now consider two classes of WSN,
the first will be termed the “homogeneous sensor networks” in which we assume
each sensor performs processing of the sensed observed spatial phenomenon via the
L-bit quantization before transmission to the FC for spatial field reconstruction. We
note that in the ideal case L → ∞ one would obtain from such a network the optimal
estimation, in the sense of information content in the reconstruction of the spatial
field. The second class of WSN we consider is the “heterogeneous sensor networks”
in which a subset of sensors have capability, wireless transmission bandwidth and
battery power, to transmit unquantized observations to the FC, whilst the remainder
of cheaper sensors are bandwidth constrained, battery constrained, or inaccurate
enough to only transmit L-bit quantized observations to the FC. In practice these
lower quality sensors typically may even be simple binary quantizations of the analog
sensed signal, in such cases one has L = 1 binary thresholding of the observed spatial
field.

It is also not unreasonable to assume that the higher quality sensors which are not
battery or bandwidth constrained may have additional capabilities to also observe or
sense other spatial attributes in the monitoring environment. For instance, one may be
interested in monitoring wind speed as the primary target spatial process, however,
these higher quality sensors may also monitor other potentially related spatial physi-
cal attributes such as barometric pressure, temperature, humidity, and bathymetry. In
general these other processes being monitored will be termed alternative modalities,
and these modalities can often be very informative of the spatial structure and dynam-
ics of the target physical process that one wishes to reconstruct the spatial field for
based on the sensor observations. For this reason, we demonstrate next how to incor-
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porate such other sensed modality information into the covariance structure of the
target spatial process as part of a specialized form of spatial covariance regression.

In the case of the heterogeneous WSN model, we assumed that one may wish to
incorporate alternative sensed modalities, i.e., exogenous spatial covariates which
are observed jointly at the analog (high quality) sensors. This can be achieved in
two standard ways in the regression model, through the trend (mean of the GP)
or through the volatility in the sensed spatial process model (covariance function
of the GP). In this manuscript we focus on incorporation of the spatial covariates
into explaining helping to explain the spatial variability of the target spatial process
with respect to both spatial structure as well as variability in these other sensed
modalities. This creates a powerful class of models that has both spatial features and
explanatory power derived from incorporation of related local spatial processes that
should improve the accuracy of spatial reconstructions.

In this case one may consider to develop a spatial covariance kernel comprised of
the following structure for any two locations xi and x j :

C̃ (
xi , x j

) = E
[

f (xi ) f
(
x j
)]

= CΩ(xi , x j ) + (
ζ 2

i + bT
i wwT bi

)
I
[
xi ∈ X A, x j /∈ X A

]

+ (
ζ 2

j + bT
j wwT b j

)
I
[
xi /∈ X A, x j ∈ X A

]

+ (
ζ 2

i, j + bT
i j wwT bi j

)
I
[
xi ∈ X A, x j ∈ X A

]

(2.8)

where we denote the set of locations of the analog sensors in the WSN by the
subset X A ⊆ X . In this structure the first functional form CΩ(xi , x j ) represents the
parameterization, via a kernel, for the spatial dependence of the target spatial field.
The remaining three terms correspond to incorporated information in the spatial
covariance regression structures arising from realizations of the additional modalities
characterized by vector w which are only available at the analog sensor locations.
This is quite a generic structure since many possible choices may be made for what
would go into w.

The validity of construction of the spatial kernel in this manner utilizes the fact
that in general the linear combination of two kernels given by

k12
(
xi , x j

) = c1k1
(
xi , x j

) + c2k2
(
xi , x j

)
(2.9)

is a valid Mercer kernel and will construct a covariance matrix which will be sym-
metric and positive definite so long as c1, c2 > 0 and kernels k1 and k2 are Mercer
kernels.

The construction of the covariance kernel in this manner admits two different
types of interpretation of the resulting spatial model. The first is based on a linear
combination of two GPs, the second is based on a hybrid model which involves a
linear combination of a GP and a Gaussian graphical model (GMM) of [18]. In the
remainder of this chapter we adopt the first approach.
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When we interpret the spatial process model as a linear combination of two
Gaussian processes, then this would be like thinking that theoretically the sensed
additional modalities being utilized as covariates, which can be observed over the
entire spatial domain and that they have a smooth functional relationship spatially.
In this case the resulting GP model would be:

f (·) = h(·) + g(·) ∼ GP (
μ (·; θh) + μ

(·; θ g
)
, Ch (·, ·) + Cg (·, ·)) . (2.10)

Here, we associate Ch (·, ·) to CΩ(·, ·) and we interpret the Gaussian process h(·)
as the baseline spatial process model and we associate Cg (·, ·) with the additional
spatial covariate terms from the additionally sensed modalities giving the spatial
covariance function for the secondary, independent spatial Gaussian process g (·)
given by manipulating (2.8) as follows:

Cg (·, ·) := C̃ (
xi , x j

) − CΩ(xi , x j ) (2.11)

We note that if it is not suitable to make a smooth spatial relationship (potentially
nonstationary in space) for the additional covariates variability in space, then in this
case it would be more beneficial to think of the resulting model under the second
interpretation of a hybrid GP and GGM model.

2.4 Model Calibration for WSN Spatial Models

For the different classes of WSN system models developed above we will require
the ability to evaluate the spatial cross-correlation between observations of the target
spatial process. This will be useful for both calibration purposes as well as spatial
field estimation purposes.

Hence, we first consider the covariance matrix of the spatially distributed obser-
vations, given by EYN

[
YN YT

N
]
. The expression for the individual covariance terms

in the covariance matrix need to be considered under one of three possible cases:

• Case 1 with xi ∈ X A and x j ∈ X A, i.e., both sensors are high-quality analog
sensors;

• Case 2 with xi ∈ X A and x j ∈ X D , i.e., one sensor is analog and one sensor is a
cheaper quantized sensor; and

• Case 3 in which xi ∈ X D and x j ∈ X D . The resulting covariance matrix results
for the (i, j)th components are specified in Theorem 2.1.

Theorem 2.1 (Covariance between Spatial Observations) The (i, j)th term of EYN[
YN YT

N
]

is given by one of the following three cases where we define throughout
the notation
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c2 := C (
xi , x j

)

C (
x j , x j

) ,

c1 := μ (xi ) − c2μ
(
x j
)
,

G1 (a, b; m, s) := {Φ (a; m, s) − Φ (b; m, s)}
G2 (a, b; m, s) := {φ (a; m, s) − φ (b; m, s)} .

Case 1: xi ∈ XA and x j ∈ X A

In this case one has two high-quality analog sensors resulting in the cross-correlation
given by

EYi ,Y j

[
Yi Y j

] = E fi , f j

[
EYi ,Y j

[
Yi Y j

∣∣ fi , f j
]] = E fi , f j

[
fi f j

]

= Cg
(
xi , x j

) + Ch
(
xi , x j

)
.

Case 2: xi ∈ X A and x j ∈ X D

In this case one has a high-quality analog sensor and a lower quality L-bit quantized
sensor resulting in the cross-correlation given by

EYi ,Y j

[
Yi Y j

] = E fi , f j

[
EYi ,Y j

[
Yi Y j

∣∣ fi , f j
]]

= E f j

[
(
c1 + c2 f j

) L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

) [
G1

(
λk+1, λk; f j , σ

2
A

)]]

= c1

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

)
E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

+ c2

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

)
E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]
,

(2.12)
where we obtain for the first integral the closed form expression

E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

= 1

σ 2
f j

⎡

⎢
⎢⎢
⎢
⎣

Φ

⎛

⎜
⎜⎜
⎜
⎝

μ f j − λk+1
√

1 + σ 2
f j

σ 2
A

⎞

⎟
⎟⎟
⎟
⎠

− Φ

⎛

⎜
⎜⎜
⎜
⎝

μ f j − λk
√

1 + σ 2
f j

σ 2
A

⎞

⎟
⎟⎟
⎟
⎠

⎤

⎥
⎥⎥
⎥
⎦

.
(2.13)

and the second integral the closed form expression

E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]

=

⎛

⎜⎜
⎜⎜
⎝

σ 2
f j

+ μ f j

σ 2
A

√

1 + σ 2
f j

σ 2
A

⎞

⎟⎟
⎟⎟
⎠

⎡

⎢⎢
⎢⎢
⎣

Φ

⎛

⎜⎜
⎜⎜
⎝

μ f j − λk+1
√

1 + σ 2
f j

σ 2
A

⎞

⎟⎟
⎟⎟
⎠

− Φ

⎛

⎜⎜
⎜⎜
⎝

μ f j − λk
√

1 + σ 2
f j

σ 2
A

⎞

⎟⎟
⎟⎟
⎠

⎤

⎥⎥
⎥⎥
⎦

.
(2.14)
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Case 3: xi ∈ X D and x j ∈ X D

In this case one has two lower quality L-bit quantized sensors resulting in the cross-
correlation given by

EYi ,Y j

[
Yi Y j

] =
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

L−1∑

n=0

P (Yi = k|Bi = m)P
(
Y j = l|B j = n

)

× E fi , f j

[
G1

(
λm+1, λm; fi , σ

2
A

)
G1

(
λn+1, λn; f j , σ

2
A

)]
.

(2.15)

Note: the approximation of the expectations in case 3 will be provided in detail in
Sect. 2.5.1.2 where an efficient specialized form of quadrature rule will be developed
based on the discrete cosine transform, known as the Clenshaw–Curtis quadrature
rule.

2.4.1 Proof of Theorem 2.1

Using the law of total expectation, the (i, j)th term of EYN
[
YN YT

N
]

is expressed
as EYi ,Y j

[
Yi Y j

] = E fi , f j

[
EYi ,Y j

[
Yi Y j | fi , f j

]]
. Deriving this quantity for Case 1 is

trivial, so we focus on Case 2 and Case 3 below.

Case 2: xi ∈ X A and x j ∈ X D

In this case one has a high-quality analog sensor and a lower quality L-bit quantized
sensor resulting in the cross-correlation given by

EYi ,Y j

[
Yi Y j

] = E fi , f j

[
EYi ,Y j

[
Yi Y j

∣
∣ fi , f j

]]

= E fi , f j

⎡

⎣
∫ L−1∑

l=0

yi lPr
(
Y j = l| f j

)
fYi (yi | fi ) dyi

⎤

⎦

= E fi , f j

⎡

⎣
∫

yi

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

)
Pr

(
B j = k| f j

)
fYi (yi | fi ) dyi

⎤

⎦

= E fi , f j

⎡

⎣ fi

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

) [
G1

(
λk+1, λk ; f j , σ

2
A

)]
⎤

⎦

= E f j

⎡

⎣
∫

fi f fi | f j ( fi )d fi

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

) [
G1

(
λk+1, λk ; f j , σ

2
A

)]
⎤

⎦

= E f j

⎡

⎣
(
c1 + c2 f j

) L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

) [
G1

(
λk+1, λk ; f j , σ

2
A

)]
⎤

⎦
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We may now work out these integrals for case 2 given generically by

EYi ,Y j

[
Yi Y j

] = E fi , f j

[
EYi ,Y j

[
Yi Y j

∣
∣ fi , f j

]]

= E f j

[
(
c1 + c2 f j

) L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

) [
G1

(
λk+1, λk; f j , σ

2
A

)]
]

= c1

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

)
E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

+ c2

L−1∑

l=0

L−1∑

k=0

lPr
(
Y j = l|B j = k

)
E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]
,

(2.16)

and we need to evaluate the two expectations given by E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

and E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]
. We start by considering the first integral

E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

= E f j

[
Φ

(
λk+1; f j , σ

2
A

)
− Φ

(
λk; f j , σ

2
A

)]

= E f j

[
Φ

(
f j ; λk+1, σ 2

A

)
− Φ

(
f j ; λk , σ 2

A

)]

= E f j

[

Φ

(
f j − λk+1

σ 2
A

)

− Φ

(
f j − λk

σ 2
A

)]

=
∫ ∞
−∞

⎧
⎨

⎩
φ

⎛

⎝
f j − μ f j

σ 2
f j

⎞

⎠Φ

(
f j − λk+1

σ 2
A

)

− φ

⎛

⎝
f j − μ f j

σ 2
f j

⎞

⎠Φ

(
f j − λk

σ 2
A

)⎫⎬

⎭
d f j .

(2.17)

Now denote x = f j −μ f j

σ f j
with dx = 1

σ f j
d f j and

E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

= 1

σ 2
f j

∫ ∞
−∞

⎧
⎨

⎩
φ (x) Φ

⎛

⎝
σ 2

f j
x + μ f j − λk+1

σ 2
A

⎞

⎠ − φ (x)Φ

⎛

⎝
σ 2

f j
x + μ f j − λk

σ 2
A

⎞

⎠

⎫
⎬

⎭
dx .

(2.18)
Now we can use the identity given by

∫ ∞

−∞
φ(x)Φ(a + bx)dx = Φ

(
a√

1 + b2

)
, (2.19)

to obtain for the first expectation
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E f j

[
G1

(
λk+1, λk; f j , σ

2
A

)]

= 1

σ 2
f j

∫ ∞
−∞

⎧
⎨

⎩
φ (x) Φ

(
σ f j x + μ f j − λk+1

σ 2
A

)

− φ (x) Φ

⎛

⎝
σ 2

f j
x + μ f j − λk

σ 2
A

⎞

⎠

⎫
⎬

⎭
dx

= 1

σ 2
f j

⎡

⎢
⎢⎢
⎢
⎣

Φ

⎛

⎜
⎜⎜
⎜
⎝

μ f j − λk+1
√

1 +
σ 2

f j

σ 2
A

⎞

⎟
⎟⎟
⎟
⎠

− Φ

⎛

⎜
⎜⎜
⎜
⎝

μ f j − λk
√

1 +
σ 2

f j

σ 2
A

⎞

⎟
⎟⎟
⎟
⎠

⎤

⎥
⎥⎥
⎥
⎦

.

(2.20)

Now we consider the second integral E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]
which can be

rewritten as

E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]

=
∫ ∞
−∞

f j

⎧
⎨

⎩
φ

⎛

⎝
f j − μ f j

σ 2
f j

⎞

⎠Φ

(
f j − λk+1

σ 2
A

)

− φ

⎛

⎝
f j − μ f j

σ 2
f j

⎞

⎠Φ

(
f j − λk

σ 2
A

)⎫⎬

⎭
d f j .

(2.21)

Now denote x = f j −μ f j

σ f j
with dx = 1

σ f j
d f j and

E f j

[
f j G1

(
λk+1, λk ; f j , σ

2
A

)]

= 1

σ 2
f j

∫ ∞

−∞

(
σ 2

f j
x + μ f j

){

φ (x)Φ

(
σ 2

f j
x + μ f j − λk+1

σ 2
A

)

− φ (x)Φ

(
σ 2

f j
x + μ f j − λk

σ 2
A

)}

dx

=
∫ ∞

−∞
x

{

φ (x)Φ

(
σ 2

f j
x + μ f j − λk+1

σ 2
A

)

− φ (x)Φ

(
σ 2

f j
x + μ f j − λk

σ 2
A

)}

dx

+ μ f j

σ 2
f j

∫ ∞

−∞

{

φ (x) Φ

(
σ 2

f j
x + μ f j − λk+1

σ 2
A

)

− φ (x) Φ

(
σ 2

f j
x + μ f j − λk

σ 2
A

)}

dx .

(2.22)
Now we utilize the identity in Eq. 2.19 and the following additional identity

∫ ∞

−∞
xφ(x)Φ(a + bx)dx = b√

1 + b2
φ

(
a√

1 + b2

)
, (2.23)

to obtain the result

E f j

[
f j G1

(
λk+1, λk; f j , σ

2
A

)]

=

⎛

⎜⎜
⎝

σ 2
f j

+ μ f j

σ 2
A

√

1 + σ 2
f j

σ 2
A

⎞

⎟⎟
⎠

⎡

⎢⎢
⎣Φ

⎛

⎜⎜
⎝

μ f j − λk+1
√

1 + σ 2
f j

σ 2
A

⎞

⎟⎟
⎠ − Φ

⎛

⎜⎜
⎝

μ f j − λk
√

1 + σ 2
f j

σ 2
A

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦ .

(2.24)



40 G.W. Peters et al.

Case 3: xi ∈ X D and x j ∈ X D

The conditional expectation, EYi ,Y j

[
Yi Y j | fi , f j

]
, can be expressed as:

EYi ,Y j

[
Yi Y j | fi , f j

] =
L−1∑

k=0

L−1∑

l=0

klP
(
Yi = k, Y j = l| fi , f j

)

=
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

P (Yi = k|Bi = m) G1

(
λm+1, λm; fi , σ

2
A

)

×
L−1∑

n=0

P
(
Y j = l|B j = n

)
G1

(
λm+1, λm; f j , σ

2
A

)
.

Next we derive the unconditional expectation of E fi , f j

[
Yi Y j | fi , f j

]
:

EYi ,Y j

[
Yi Y j

] = E fi , f j

[
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

(
P (Yi = k|Bi = m) G1

(
λm+1, λm; fi , σ

2
A

))

×
L−1∑

n=0

(
P
(
Y j = l|B j = n

)
G1

(
λn+1, λn; f j , σ

2
A

))]

=
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

L−1∑

n=0

P (Yi = k|Bi = m)P
(
Y j = l|B j = n

)

× E fi , f j

[
G1

(
λm+1, λm; fi , σ

2
A

)
G1

(
λn+1, λn; f j , σ

2
A

)]
.

�

Having derived the spatial cross-correlation between the observations, our next
goal is to consider model calibrations. In the context of the spatial WSN models
developed this will correspond to addressing the issue of parameter estimation, in
particular hyperparameter estimation of the parameters in the covariance kernel func-
tions given the observed data. To achieve this we will consider calibration based on
the high-quality sensor information, given in Case 1.

To achieve the model calibration for the kernel parameters in an efficient manner
we will develop a special representation of the problem in the form of a regression
model through the introduction of an additional auxiliary variable for each observa-
tion, i.e., per sensor location. In doing this it will allow us to avoid directly trying to
perform maximum likelihood estimation in the models, which can be very difficult,
especially when it comes to the matrices of parameters given by each bi for each
analog sensor location. Instead, through the use of auxiliary variables we may write a
random effects regression model, which preserves the conditional covariance struc-
ture developed above, whilst admitting an efficient estimation procedure comprised
of simple expectation and maximization stages of the EM algorithm. In the models
considered we will see that the expectation stage is closed form and analytic and
the maximization stage is simply a least squares problem after a change of parame-
terization. Making estimation both guaranteed to converge to a maxima and highly
computationally efficient.
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2.4.2 Random Effects WSN Spatial Model Reinterpretation

We begin with the scenario in which the majority of the sensor are analog, i.e., the
spatial distribution of such high-quality sensors is distributed in some manner over
the entire field of interest when performing spatial field reconstruction. These high-
quality sensors can be sparse and will still be supplemented by cheaper sensors as
discussed above, however, in this stage we will concentrate on the calibration of the
model based solely on the high-quality analog sensors.

The advantage of this approach is that we will be able to utilize an interesting
result for the estimation of the model parameters which is based on results known for
covariance regressions, see [17]. Consider the observation covariance at the analog
sensors given in this case by

Cov
[
YN |w] = EYN

[
YN YT

N |w
]

= Eh

[
hhT

]
+ Eg

[
g gT |w

]
+ diag

(
σ 2

A, σ 2
A, . . . , σ 2

A

)

=
⎡

⎢
⎣

Ch (x1, x1) · · · Ch (x1, xn)

...
. . .

...

Ch (xn, x1) · · · Ch (xn, xn)

⎤

⎥
⎦ +

⎡

⎢
⎣

Cg (x1, x1) · · · Cg (x1, xn)

...
. . .

...

Cg (xn, x1) · · · Cg (xn, xn)

⎤

⎥
⎦ +

⎡

⎢
⎣

σ 2
A · · · 0
...

. . .
...

0 · · · σ 2
A

⎤

⎥
⎦

= Kh + BwwT BT + diag
(
σ 2

A, σ 2
A, . . . , σ 2

A

)
.

(2.25)

We note that under our model formulations, typically we would select ζ 2
i , ζ 2

j and
ζ 2

i, j all to zero, since we already have a baseline covariance function given by the
independent spatial GP h(·).

We may now reinterpret the model covariance as a form of covariance regres-
sion which admits a representation as a random effects model, making it an exten-
sion of the framework proposed in [17]. The random effects representation is
given for m realizations of the spatial process, i.e., y1, . . . , ym with yk = y1:N A,k =
[yk(x1), . . . , yk(xN A)] and μg = μg,1:N A = [

μg(x1), . . . , μg(xN A)
]

is the spatial
mean function of the first baseline spatial GP g(·), for each of the analog sensor
locations xi ∈ X A. This then gives the random effect model given by

Y k = μg + BwkΓk + Uk, (2.26)

where one defines

E [U i ] = 0, E [Γi U i ] = 0, E [Γi ] = 0, Var [Γi ] = 1,

Cov [U i ] = Kh + diag
(
σ 2

A, σ 2
A, . . . , σ 2

A

)
.

(2.27)
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To see that this random effects formulation of the spatial model indeed produces the
correct spatial covariance structure we consider the following:

E

[(
Y k − μg

) (
Y k − μg

)T
]

= E
[
γ 2

k BwwT BT + γk
(
BwuT

k + ukwT BT
) + uk uT

k

]

= BwwT BT + Kh + diag
(
σ 2

A, σ 2
A, . . . , σ 2

A

)
(2.28)

2.4.3 Random Effects WSN Spatial Model Estimation via EM
Algorithm

We can now perform the estimation of the spatial field using the information from
the high-quality analog sensors to make estimation via an EM algorithm using the
reinterpreted random effects model form from Sect. 2.4.2. To achieve this, we make
the following additional statistical assumptions regarding the random effects rein-
terpretation, in particular we assume that the regression errors are Guassian random
vectors, independent of the Gaussian random variables for the random effect:

uk
iid∼ N (0, A),∀k ∈ {1, . . . , m}

Γk
iid∼ N (0, 1),

(2.29)

with A := Kh + diag
(
σ 2

A, σ 2
A, . . . , σ 2

A

)
.

The resulting log-likelihood of the random effects model can be rewritten by
subtracting the mean from the observations to obtain the matrix of mean adjusted
residuals, given by E = (

eT
1 , . . . , eT

m

)T
, with residual vectors for the kth spatial map

observation given by ek = [
Y k − μ̂g

]
. This results in the following log-likelihood

for the model parameter matrices A and B, given the observation matrix of residuals
E and covariate matrix W from the other sensed modalities, producing for a constant
c the log-likelihood:

l(A, B; E, W ) = c − 1

2

m∑

k=1

log
∣∣A + BwkwT

k BT
∣∣

− 1

2

m∑

k=1

tr
[(

A + BwkwT
k BT

)−1
ek eT

k

] (2.30)

It is clear that direct maximization of this log-likelihood with respect to the matrices
A and B will be a very challenging non-convex optimization problem. This arises
since the matrix A must be optimized with respect to constraints that ensure that it
remains symmetric and positive definite in order for it to be a well-defined covariance
matrix.
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Therefore, instead of attempting this difficult direct likelihood-based inference, we
will adopt an alternative two-stage expectation maximization (EM) algorithm-based
approach. The EM algorithm developed will be even more efficient and numerically
robust, since both the expectation and maximization stages will be obtainable in
closed form. In addition, we can be sure that such a procedure will find an optimum.

The ability to obtain a closed form expression for the expectation stage of the EM
algorithm arises from the structure of the random effects model specified and the dis-
tributional assumptions made. One can show the following result given in Lemma 2.1
for the conditional distribution of the auxiliary random effects variable, conditional
on the observations and covariates (other sensed modalities at each analog sensor
location). Deriving this conditional distribution is important for the expectation step
of the EM algorithm.

Lemma 2.1 (Conditional Distribution of the Random Effects) The conditional dis-
tribution of the random effects given the data and covariates according to

[
Γk | y1, . . . , ym, w1, . . . , wm, A, B

] ∼ N (mi , vi ) (2.31)

with wi ∈ R
(q×1) and

vi = (
1 + wT

i BT A−1 Bwi
)−1 ∈ R

+,

mi = vi
(

yi − mu
)T

A−1 Bwi ∈ R.

Proof The derivation of this conditional distribution for the random effect follows
trivially from the standard multivariate Gaussian properties since the joint distribution
for the N A auxiliary variables and observations is multivariate Guassian:

p
(
γ1, . . . , γm, y1, . . . , ym

∣∣w1, . . . , wm, A, B
) = N (m, C) (2.32)

with m = [m1, m2] where m1 is a vector of m zeros and m2 a 1 × m N A vector
given by m2 = [μg, . . . ,μg]; and C = ⊕2

i=1Ci where C1 is a m × m matrix C1 =
diag(1, . . . , 1) and C2 = ⊕m

j=1 A. Then one can use the following properties of a
multivariate normal to obtain the conditional distribution, where if μ and Σ are the
mean and covariance of a Guassian random vector, which is partitioned as follows:

μ =
[
μ1

μ2

]
(2.33)

with sizes q × 1 and (N − q) × 1 and

Σ =
[
Σ11 Σ12

Σ21 Σ22

]
(2.34)

with sizes q × q, q × (N − q), (N − q) × q and (N − q) × (N − q) then, the dis-
tribution of x1 conditional on x2 = a is multivariate normal (x1|x2 = a) ∼ N (μ,Σ)
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where
μ̄ = μ1 + Σ12Σ

−1
22 (a − μ2) (2.35)

and covariance matrix
Σ = Σ11 − Σ12Σ

−1
22 Σ21. (2.36)

This decomposition completes the required proof. �

It will be assumed for now that the mean process is already estimated and given
by μ̂g . In this section we discuss the more challenging aspect of estimation of the
hyperparameters that make up the specifications of the covariance functions for
process g(·) and h(·). This is achieved by the EM algorithm as follows:

We first write the complete data log-likelihood ln p (E |A, B, W, γ1:m) with
respect to the matrix of p × m residuals E and random effects γ1, . . . , γm as fol-
lows:

l(A, B; E, W, γ1:m) = −1

2

(

mp ln(2π) + m ln |A| +
m∑

k=1

(ei − γi Bwi )
T A−1 (ei − γi Bwi ) .

)

(2.37)
Then from the complete data likelihood we consider the expectation step with respect
to the random effect (nuisance parameters) as obtained in Lemma 2.2.

Lemma 2.2 (Integrated Complete Data Likelihood) The following conditional exp-
ectation of the complete data likelihood with respect to the conditional distribution
of the random effects nuisance parameters is obtained:

− 2Eγ1:m
[
l(A, B; E, W, γ1:m)| Â, B̂

]

= mp ln(2π) + m ln |A| +
m∑

k=1

(ei − m̂i Bwi )
T A−1 (ei − m̂i Bwi )

+
m∑

k=1

ŝi wT
i BT A−1 Bwi ŝi ,

(2.38)

with si = √
vi and

v̂i = (
1 + wT

i B̂T Â−1 B̂wi
)−1

,

m̂i = v̂i
(

yi − mu
)T

Â−1 B̂wi .

Proof Here the previous estimates for the target model parameters, denoted Â, B̂
are conditioned upon in the expectation in the sense that they are used to calculate
the sufficient statistics for the distribution of the random effects γ1:m given by

v̂i = (
1 + wT

i B̂T Â−1 B̂wi
)−1

m̂i = v̂i
(

yi − mu
)T

Â−1 B̂wi .



2 How to Utilize Sensor Network Data to Efficiently Perform Model Calibration… 45

One takes the conditional expectations of the complete data likelihood as follows:

− 2Eγ1:m
[
l(A, B; E, W, γ1:m)| Â, B̂

]

= mp ln(2π) + m ln |A| +
m∑

k=1

Eγ1:m
[
(ei − γi Bwi )

T A−1 (ei − γi Bwi ) | Â, B̂
]

(2.39)
Next observe that γi ’s are i.i.d. hence we can consider the individual expectations

Eγi

[
(ei − γi Bwi )

T A−1 (ei − γi Bwi ) | Â, B̂
]

= Eγi

[
eT

i A−1ei − γ 2
i wT

i BT A−1 Bwi | Â, B̂
]

= Eγi

[
eT

i A−1ei | Â, B̂
] − Eγi

[
γ 2

i wT
i BT A−1 Bwi | Â, B̂

]

= (ei − m̂i Bwi )
T A−1 (ei − m̂i Bwi ) + ŝi wT

i BT A−1 Bwi ŝi .

(2.40)

Then one simply rewrites the expression using this mean and variance expressions
to complete the proof. �

Having obtained a closed form expression for the expectation step, we next need to
obtain the maximization step of the EM algorithm which involves the maximization
of

arg min
A,B

−2Eγ1:m
[
l(A, B; E, W, γ1:m)| Â, B̂

]

= arg min
A,B

{

mp ln(2π) + m ln |A| +
m∑

k=1

(ei − m̂i Bwi )
T A−1 (ei − m̂i Bwi )

+
m∑

k=1

ŝi wT
i BT A−1 Bwi ŝi

}

.

(2.41)
Finally, one observes that this maximization can be easily implemented through

a least squares solution by rewriting the argument in the form of a single quadratic
with a change of representation given by constructing:

• W̃ as a 2m × q matrix with i th row given by mi wi and whose (n + i)th row is
given by si wi ;

• Ẽ as a 2m × p matrix of residuals given by [ET , 0] with the matrix of 0 the same
dimension as matrix E , i.e., m × p.

This produces the new argument for the optimization as follows:

arg min
A,B

−2Eγ1:m
[
l(A, B; E, W, γ1:m)| Â, B̂

]

= arg min
A,B

{
mp ln(2π) + m ln |A| + tr

[
(Ẽ − BW̃ )(Ẽ − BW̃ )T A−1

]}
.

(2.42)
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Rewriting the problem in this manner makes it appear directly as a least squares
optimization problem which admits a solution given by:

B̂ = Ẽ T W̃
(
W̃ T W̃

)−1
,

Â = 1

n

(
Ẽ − W̃ B̂

)T (
Ẽ − W̃ B̂

) (2.43)

The EM algorithm proceeds as follows:

• Initialize the parameters making matrices Â and B̂, where A is comprised of kernel
hyperparameters and noise variance terms.

• Calculate the conditional estimators:

mi = E
[
Γi | Â, B̂, ei

]

vi = Var
[
Γi | Â, B̂, ei

] (2.44)

• Construct new matrices W̃ and Ẽ based on the data y1:m and covariates w1:m .
• Evaluate the updated model parameters via the following least squares solutions

for updated Â and B̂ according to

B̂ = Ẽ T W̃
(
W̃ T W̃

)−1

Â = 1

n

(
Ẽ − W̃ B̂

)T (
Ẽ − W̃ B̂

) (2.45)

where matrix Ẽ is the 2m × 1 matrix given by
(
ET , 0 × E T

)T
and W̃ is a 2m × d

matrix with i th row given by mi wi and whose (m + i)th is
√

vi wi .
• Having solved for the matrix Â, one then solves the system of equations given by

⎡

⎢
⎣

Â11 · · · Â1N A

...
. . .

...

ÂN A1 · · · ÂN A N A

⎤

⎥
⎦ =

⎡

⎢
⎣

Ch (x1, x1) · · · Ch (x1, xn)
...

. . .
...

Ch (xn, x1) · · · Ch (xn, xn)

⎤

⎥
⎦ +

⎡

⎢
⎣

σ 2
A · · · 0
...

. . .
...

0 · · · σ 2
A

⎤

⎥
⎦ (2.46)

for the variance and hyperparameter terms in the kernels.
• repeat the above procedure until convergence

Having outlined an estimation procedure, the remainder of the chapter focuses on
what can be done for spatial field reconstruction given an estimated model.

2.5 Spatial Field Reconstruction: Analytic Solutions

In this section we address the estimation problem known as spatial field recon-
struction in the case of either a homogeneous WSN sensor model with all sensors
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performing an L-bit quantization, which was recently studied in [29, 30], and then in
the second case based on a heterogeneous WSN framework with a mixture of analog
and binary sensors. In general the target criterion in developing the spatial estimator
of the field reconstruction is achieve the minimum mean squared error (MMSE) in
the estimation. This involved the following distortion metric:

D
(

f̂∗, f∗
) := E

[(
f∗ − f̂∗

)2
]
. (2.47)

Under this framework, one may develop two closed form approximations for the
estimators of the spatial field, in [27, 30] approximate series expansions based on
saddle point and Laplace types were developed for nonlinear estimators which are
optimal in the sense of minimizing the distortion metric in (2.47) [6].

In this chapter we wish to emphasize a computationally very efficient alternative
class of estimators that we denote the spatial best linear unbiased estimators (S-
BLUE) linear Bayes estimators. Such estimators are characterized by the following
formal estimation objective (Objective 1):

Objective 1: spatial field reconstruction via best linear unbiased (S-BLUE) estimate,
given by the solution to the following problem:

f̂∗ := â + B̂YN = arg min
a,B

E
[
( f∗ − (a + BYN ))2

]
, (2.48)

where â ∈ R and B̂ ∈ R
1×N .

The S-BLUE estimators are optimal in the sense that it achieves minimum variance
among all linear estimators and have the desirable properties of being unbiased and
efficient.

Theorem 2.2 (Spatial Best Linear Unbiased Estimator (S-BLUE)) The optimal lin-
ear estimator of the spatial field f̂∗ at location x∗ in the class of all linear estimators
taking the form f̂∗ = a + BYN for some scalar a ∈ R, vector B ∈ R

1×N at a location
x∗ that solves (2.48) is given by

f̂∗ = μ (x∗) + E f∗,YN
[

f∗YT
N
]
E

−1
YN

[
YN YT

N
] (

YN − EYN [YN ]
)
. (2.49)

In addition, one may derive the estimation accuracy of the S-BLUE in closed form
according to the result in Corollary [27, 30].
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Corollary 2.1 The associated MSE of the S-BLUE is given by

σ 2
∗ = C (x∗, x∗) − E f∗,YN

[
f∗YT

N
]
E

−1
YN

[
YN YT

N
]
E f∗,YN [YN f∗] . (2.50)

The following sequence of algorithmic steps are then required to perform estimation
of the S-BLUE, see Algorithm 1.

Algorithm 1 S-BLUE Field reconstruction
Input: YN , xN , x∗, σ 2

A, σ 2, μ (·)
Output: f̂∗
1: Calculate the cross-correlation vector, E f∗,YN

[
f∗YT

N
]
, where its i th element is implemented

according to Lemma 2.3.
2: Calculate the covariance matrix, EYN

[
YN YT

N
]
, where its (i, j)th element is implemented

according to Proposition 2.1 and the Clenshaw–Curtis coefficients in (2.57).
3: Calculate the S-BLUE of the intensity of the spatial field at a location x∗ as follows:

f̂∗ = μ (x∗) + E f∗,YN

[
f∗YT

N
]
E

−1
YN

[
YN YT

N
] (

YN − EYN [YN ]
)
.

The key components of the S-BLUE estimator that must be obtained for any form
of WSN design involve the following components:

• the cross-correlation E f∗,YN
[

f∗YT
N
]
; and

• the covariance EYN
[
YN YT

N
]
, (detailed in Lemma 2.1).

In the following set of results we will derive these quantities and subsequently
the S-BLUE estimators for two classes of WSN: the L-bit homogeneous quan-
tized/digitized WSN; and the heterogeneous L-bit digital/quantized and analog
WSN. We begin with a detailed account of the result for the heterogeneous case.

Note: the covariance matrix for case 1 is derived in Lemma 2.1, however, for case
2 and case 3 we provide in Sect. 2.5.1.2 an accurate and efficient approximation for
the expectations.

2.5.1 S-BLUE Spatial Field Estimator for Heterogeneous
L-bit and Analog WSNs

In this section we consider the development of the S-BLUE class of spatial field
reconstruction estimator to the Heterogeneous WSN setting in which we incorporate
also additional sensed modalities, included as regressors into the spatial covariance
structure through the kernel developed in (2.8) for the analog sensors.
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2.5.1.1 Deriving the Cross-Correlation E f∗,YN
[

f∗YT
N

]

We now derive the cross-correlation between the spatial phenomenon predictive
response, f∗ at x∗, and the observation vector YN . We prove that this quantity can
be obtained exactly in closed form in the following Lemma 2.3.

Lemma 2.3 (Cross-Correlation between Spatial Process and Observations) The i th
element of E f∗,YN

[
f∗YT

N
]

is given by one of two cases.

Case 1 - xi ∈ X D: where one has Cross-Correlation terms given by

E f∗,Yi

[
f∗Yi

]

= c1

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j) G1

(
λ j+1, λ j ; μ (xi ) , σ 2

A + C (xi , xi )
)

+ c2

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j)
{
μ (xi ) G1

(
λ j+1, λ j ; μ (xi ) , σ 2

A + C (xi , xi )
)

− C (xi , xi ) G2

(
λ j+1, λ j ; μ (xi ) , σ 2

A + C (xi , xi )
)}

.

where c2 := C(x∗,xi )

C(xi ,xi )
, c1 := μ (x∗) − c2μ (xi ) and

G1 (a, b; m, s) = {Φ (a; m, s) − Φ (b; m, s)}
G2 (a, b; m, s) = {φ (a; m, s) − φ (b; m, s)} .

Case 2 - xi ∈ X A: where one has Cross-Correlation terms given by

E f∗,Yi [ f∗Yi ] = c1μ (xi ) + c2
[C (xi , xi ) − μ (xi )

2
]
,

Proof To make the proof we consider the i th term of E f∗,YN
[

f∗YT
N
]

which has its
expectation decomposed via the tower property as follows:

E f∗,Yi [ f∗Yi ] = E fi

[
E f∗,Yi [ f∗Yi | fi ]

]
. (2.51)

We then consider for each of the possible cases, i.e., Case 1 xi ∈ X D and Case 2
xi ∈ X A, the analytic calculation of this cross-correlation. It will be useful to first
make the following definitions used throughout the proof:

c2 := C (x∗, xi )

C (xi , xi )
,

c1 := μ (x∗) − c2μ (xi ) ,

G1 (a, b; m, s) := {Φ (a; m, s) − Φ (b; m, s)}
G2 (a, b; m, s) := {φ (a; m, s) − φ (b; m, s)} .
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Case 1:
The conditional expectation, E f∗,Yi [ f∗Yi | fi ], can be expressed as:

E f∗,Yi [ f∗Yi | fi ] =
∫ ∞

−∞

L−1∑

l=0

f∗lp ( f∗, Yi = l| fi ) d f∗

=
∫ ∞

−∞
f∗φ

(
f∗; c1 + c2 fi , σ

2
fN |YN

) L−1∑

l=0

l
L−1∑

j=0

(P (Yi = l|Bi = j)P (Bi = j | fi )) d f∗

= (c1 + c2 fi )

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j) G1

(
λ j+1, λ j ; fi , σ

2
A

)
,

The expectation with respect to fi of the first term is given by

E fi

⎡

⎣c1

L−1∑

l=0

l
L−1∑

j=0

(
P (Yi = l|Bi = j) G1

(
λ j+1, λ j ; fi , σ

2
A

))
⎤

⎦

= c1

L−1∑

l=0

l
L−1∑

j=0

(
P (Yi = l|Bi = j)E fi

[
G1

(
λ j+1, λ j ; fi , σ

2
A

)])
(2.52)

= c1

L−1∑

l=0

l
L−1∑

j=0

(
P (Yi = l|Bi = j) G1

(
λ j+1, λ j ; μ (xi ) , σ 2

A + C (xi , xi )
))

.

The expectation of the second term is given by:

E fi

⎡

⎣c2 fi

L−1∑

l=0

l
L−1∑

j=0

(
P (Yi = l|Bi = j) G1

(
λ j+1, λ j ; fi , σ

2
A

))
⎤

⎦

= c2

L−1∑

l=0

l
L−1∑

j=0

(
P (Yi = l|Bi = j)E fi

[(
fi Φ

(
λ j+1, fi , σ

2
A

)
− fi Φ

(
λ j , fi , σ

2
A

)))]

= c2

L−1∑

l=0

l
L−1∑

j=0

(

P (Yi = l|Bi = j)

(∫ ∞
−∞

∫ λ j

−∞
fi φ

(
a; fi , σ

2
A

)
φ ( fi ; μ (xi ) ,C (xi , xi )) dad fi

−
∫ ∞
−∞

∫ λ j

−∞
fi φ

(
a; fi , σ

2
A

)
φ ( fi ; μ (xi ) ,C (xi , xi )) dad fi

))

(2.53)

= c2

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j)

×
{
μ (xi )Φ

(
λ j+1, μ (xi ) , σ 2

A + C (xi , xi )
)

− C (xi , xi ) φ
(
λ j+1, μ (xi ) , σ 2

A + C (xi , xi )
)

−
(
μ (xi )Φ

(
λ j , μ (xi ) , σ 2

A + C (xi , xi )
)

− C (xi , xi ) φ
(
λ j , μ (xi ) , σ 2

A + C (xi , xi )
))}

.
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Combining (2.52) and (2.53), we obtain that the i th term of E f∗,YN
[

f∗YT
N
]

is
expressed as:

E f∗,Yi

[
f∗Yi

] = c1

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j) G1

(
λ j+1, λ j ;μ (xi ) , σ 2

A + C (xi , xi )
)

+ c2

L−1∑

l=0

l
L−1∑

j=0

P (Yi = l|Bi = j)
{
μ (xi ) G1

(
λ j+1, λ j ;μ (xi ) , σ 2

A + C (xi , xi )
)

− C (xi , xi ) G2

(
λ j+1, λ j ; μ (xi ) , σ 2

A + C (xi , xi )
)}

.

Case 2:
The conditional expectation, E f∗,Yi [ f∗Yi | fi ], can be expressed as:

E f∗,Yi [ f∗Yi | fi ] =
∫ ∞

−∞

∫ ∞

−∞
f∗yi pYi | fi (yi | fi ) p f∗| fi ( f∗| fi ) dyi d f∗

= fi (c1 + c2 fi ) ,

The expectation with respect to fi is then given by

E fi [ fi (c1 + c2 fi )] = c1μ (xi ) + c2
[C (xi , xi ) − μ (xi )

2
]

(2.54)

Hence in Case 2 one obtains that the i th term of E f∗,YN
[

f∗YT
N
]

is expressed as:

E f∗,Yi [ f∗Yi ] = c1μ (xi ) + c2
[C (xi , xi ) − μ (xi )

2
]

�

2.5.1.2 Deriving the Covariance Matrix EYN
[
YN YT

N
]

Estimators

We have already derived the covariance matrix, EYN
[
YN YT

N
]

completely in case
one and case two, what remains is the expectations in case three. Recall, Case 1
involved xi ∈ X A and x j ∈ X A, i.e., both sensors are high-quality analog sensors;
Case 2 with xi ∈ X A and x j ∈ X D , i.e., one sensor is analog and one sensor is a
cheaper quantized sensor; and Case 3 in which xi ∈ X D and x j ∈ X D . These were
given in Case 3 up to an expectation which would need to be approximated. We
briefly explain in this section an efficient manner to perform such approximation
using a form of quadrature.



52 G.W. Peters et al.

Case 3: xi ∈ X D and x j ∈ X D

EYi ,Y j

[
Yi Y j

] =
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

L−1∑

n=0

P (Yi = k|Bi = m)P
(
Y j = l|B j = n

)

× E fi , f j

[(
Φ

(
λm+1, fi , σ

2
A

)
− Φ

(
λm , fi , σ

2
A

)) (
Φ

(
λn+1, f j , σ

2
A

)
− Φ

(
λn, f j , σ

2
A

))]
.

This involves an intractable integral which we solve via an efficient numerical pro-
cedure, based on the Clenshaw–Curtis quadrature rule [10]. We begin by solving the
first integral with respect to fi , thus reducing the dimension of the problem:

E fi , f j

[(
Φ

(
λm+1, fi , σ

2
A

)
− Φ

(
λm , fi , σ

2
A

)) (
Φ

(
λn+1, f j , σ

2
A

)
− Φ

(
λn, f j , σ

2
A

))]

=
∫ ∞

−∞

∫ ∞

−∞
p
(

fi , f j
) (

Φ
(
λm+1, fi , σ

2
A

)
− Φ

(
λm , fi , σ

2
A

)) (
Φ

(
λn+1, f j , σ

2
A

)

−Φ
(
λn, f j , σ

2
A

))
d fi d f j

=
∫ ∞

−∞

∫ ∞

−∞
p
(

fi | f j
)

p
(

f j
) (

Φ
(
λm+1, fi , σ

2
A

)
− Φ

(
λm , fi , σ

2
A

)) (
Φ

(
λn+1, f j , σ

2
A

)

−Φ
(
λn, f j , σ

2
A

))
d fi d f j

= E f j

[
Δ

(
λm , λm+1, c1 + c2 f j , σ

2
A + σ 2

)
Δ

(
λn, λn+1, f j , σ

2
A

)]
, (2.55)

where we define c2 := C(x∗,xi )

C(xi ,xi )
, and c1 := μ (x∗) − c2μ (xi ).

This integral with respect to f j does not admit a closed form representation, and
we utilize a numerical procedure to solve it. We now develop an efficient numerical
solution via the Clenshaw–Curtis quadrature [10].

The Clenshaw–Curtis quadrature only works on finite integral domains, while
(2.55) has infinite support. We shall first use a generic coordinate transformation
which will transform the integral in (2.55) from an infinite interval into a finite one,
presented in Lemma 2.4 and then utilize the Clenshaw–Curtis quadrature in Lemma
2.6 and finally calculate the covariance matrix in Proposition 2.1.

Lemma 2.4 (Generic Coordinate Transformation for Integration on Infinite Inter-
vals) Consider the generic coordinate transformation for the integrand and terminals
via the mapping x = t

1−t2 giving the mapped definite integral

∫ +∞

−∞
f (x)dx =

∫ +1

−1
f

(
t

1 − t2

)
1 + t2

(1 − t2)2
dt.

When Lemma 2.4 is applied to (2.55), one obtains

E f j

[
Δ

(
λm, λm+1, c1 + c2 f j , σ

2
A + σ 2

)
Δ

(
λn, λn+1, f j , σ

2
A

)]

=
∫ ∞

−∞
Δ

(
λm, λm+1, c1 + c2 f j , σ

2
A + σ 2

)
Δ

(
λn, λn+1, f j , σ

2
A

)
p
(

f j
)

d f j
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(
f j := t

1−t2

)

=
∫ 1

−1
Δ

(
λm, λm+1, c1 + c2

t

1 − t2
, σ 2

A + σ 2

)
Δ

(
λn, λn+1,

t

1 − t2
, σ 2

A

)

(2.56)

× p

(
t

1 − t2

)
1 + t2

(
1 − t2

)2 dt.

Next, we solve this integral via the Clenshaw–Curtis Quadrature rule.

Lemma 2.5 (Clenshaw–Curtis Quadrature Rule [10]) Consider the closed form
approximation of the integral

∫ π

0
g(cos θ) sin(θ) dθ � a0 +

M/2−1∑

k=1

2a2k

1 − (2k)2
+ aM

1 − M2
.

which involves finding a subset of the coefficients {ak}k≥0 given by a2k , due to aliasing
arguments in [8]. These coefficients are solution to integrals involving periodic func-
tions f (cos θ), then the Fourier series can be computed efficiently and accurately
up to Nyquist frequency k = M, through a (M + 1) equally spaced and equally
weighted points θm = mπ/M for m = 0, . . . , M. At the endpoints of the domain the
weights are given by 1/2 to ensure double-counting is avoided. This is equivalent to
a discrete cosine transform (DCT) approximation given by

ak = 2

M

⎡

⎣ g(1)

2
+ g(−1)

2
(−1)k +

M−1∑

m=1

g(cos[nπ/M]) cos(mkπ/M)

⎤

⎦ , ∀k ∈ {0, . . . , M} . (2.57)

We now apply the Clenshaw–Curtis quadrature rule to our integral in (2.55).

Lemma 2.6 The expectation in (2.55) can be evaluated by applying the Clenshaw–
Curtis quadrature to the transformed integral in (2.56), as follows:

E f j

[
Δ

(
λm , λm+1, c1 + c2 f j , σ

2
A + σ 2

)
Δ

(
λn , λn+1, f j , σ

2
A

)]

=
∫ 1

−1
Δ

(
λm , λm+1, c1 + c2

t

1 − t2 , σ 2
A + σ 2

)
Δ

(
λn , λn+1,

t

1 − t2 , σ 2
A

)
p

(
t

1 − t2

)
1 + t2

(
1 − t2

)2

︸ ︷︷ ︸
:=g(t)

dt

� a0 +
M/2−1∑

k=1

2a2k

1 − (2k)2 + aM

1 − M2 ,

with ak defined in (2.57).

Now that we have evaluated the expectation term, we derive the (i, j)th term of the
covariance matrix.
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Proposition 2.1 The (i, j)th term of EYN
[
YN YT

N
]

can be approximated as:

EYi ,Y j

[
Yi Y j

] �
L−1∑

k=0

L−1∑

l=0

kl
L−1∑

m=0

L−1∑

n=0

P (Yi = k|Bi = m)P
(
Y j = l|B j = n

)

×
(

a0 +
M/2−1∑

k=1

2a2k

1 − (2k)2
+ aM

1 − M2

)

.

2.6 Simulations

In this section we consider two studies, the first is based on synthetic data generated
from a known model. We use this controlled scenario to demonstrate the properties of
our estimation methods and illustrate how accurate they will be in different settings.
Then we study a real data application which involves analysis of wind speed data with
the application in mind related to storm surge modeling in Europe, under the class of
weather events known in insurance modeling as wind storms or storm surge insurance
storms. This type of application is of direct relevance for both safety assessment and
insurance pricing purposes, see [7, 13].

2.6.1 Synthetic Example

To evaluate the performance of the proposed algorithms and the improvement they
provide we generated 2-D realizations from a Gaussian process with the following
attributes: the mean is μ (x) = 0 and the kernel is a radial basis function with length
scale, l = 2.

C (
xi , x j ;Ω

) := exp

(

−
∥∥xi − x j

∥∥

l

)

. (2.58)

A realization from the GP is shown in Fig. 2.1. In this example we placed 10 high-
quality sensors which are marked by the black markers. We then tested the field
reconstruction algorithm for various system configurations, changing the number of
low-quality sensors, the SNR and the probabilities of incorrect wireless channels
transmission, denoted pe. To obtain the same measure of SNR for both types of sen-
sors, we set σ 2

v = 0 and define SNR = 10 log σ 2
w. The prediction mean squared errors

(PMSE) are presented in the right side of Fig. 2.1. The results show that substantial
improvements can be obtained by adding low-quality sensors. This is especially true
in the cases of high SNR and perfect wireless channels communications, where the
PMSE of the heterogeneous network is roughly 1/3 of the PMSE based only on
high-quality sensors.
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Fig. 2.1 Realization from a 2-d Gaussian process. The black markers denote the locations of the
10 high-quality sensors

2.6.2 Sensor Networks for Insurance: Wind Speed
and Insurance Storms

In this study we use a publicly available insurance storm surge database known as
the Extreme Wind Storms Catalogue.2 The data is available for research as the XWS
Datasets: (c) Copyright Met Office, University of Reading and University of Exeter.
Licensed under Creative Commons CC BY 4.0 International License. This database
is comprised of 23 storms which caused high insurance losses known as ‘insurance
storms’ and 27 storms which were selected because they are the top ‘noninsurance’
storms as ranked by the storm severity index, see details on the web site.

The data provided is comprehensive and provides features such as the footprint of
the observations on a location grid with a rotated pole at longitude = 177.5◦, latitude
= 37.5◦. As discussed in the data description provided with the dataset, this is a
standard technique used to ensure that the spacing in km between grid points remains
relatively consistent. The footprints are on a regular grid in the rotated coordinate
system, with horizontal grid spacing 0.22◦. The data for each of the storms provide
a list of grid number and maximum 3-s gust speed in meters per second. The true
locations (longitude and latitude) of the grid points are given in grid locations file.
We selected two storms to analyze, the first is known as Dagmar (Patrick or Tapani)
which took place on 26/12/2011 and affected are Finland and Norway; and the second
was the storm known as Ulli taking place on 03/01/2012 which affected the UK.

To understand the significance of this analysis, we note that the Dagmar-Patrick
storm is reported to have caused damage worth 40 Million USD and reached a
maximum wind speed of 70 mph over land. The storm Ulli is reported to have

2http://www.met.reading.ac.uk/~extws/database/dataDesc.

http://www.met.reading.ac.uk/~extws/database/dataDesc
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caused even more damage of 200 Million USD and reached a wind speed of 87 mph.
In our study, we reconstruct the spatial map of these wind speeds for a given instant
of time.

2.6.2.1 Model Calibration Wind Speed Data

To calibrate the model we first fit the hyperparameters of the model via maximum-
likelihood estimation (MLE) procedure. We used a 2-D radial basis function of the
following form:

C (
xi , x j ;Ω

) := σ 2
x exp

(

−
∥
∥xi − x j

∥
∥

lx

)

× σ 2
y exp

(

−
∥
∥yi − y j

∥
∥

ly

)

, (2.59)

thus decomposing the kernel into orthogonal coordinates which we found provided
a much more accurate fit. The reason for this is it allows for inhomogeneity through
differences in spatial dependence in vertical and horizontal directions, which is highly
likely to occur in the types of wind speed data studied. The MLE of the length and
scale parameters obtained are given by:

• Dagmar-Patrick storm: σ 2
x = 0.1, lx = 0.5 and σ 2

y = 10, ly = 0.1.
• Ulli storm: σ 2

x = 0.5, lx = 0.1 and σ 2
y = 1, ly = 0.1.

We note that details on how to estimate the GP hyperparameters can be found in
[Chap. 5] [37]. The covariance function estimates are presented in Fig. 2.4 for the
Dagmar-Patrick (left panel) and Ulli (right panel) wind storms. These plots show
the spatial dependence over UK and Europe between wind speeds during the peak
of the storm fronts as they transited across different regions of the English channel.
It is clear that the correlation of the Dagmar-Patrick storm is much stronger than of
the Ulli storm in both axes. This should have an impact on the quality of the field
reconstruction estimation that we will demonstrate next.

2.6.2.2 Wind Field Intensity Estimation for Insurance Wind Storms

We performed wind field intensity estimation using our algorithm and compared it
to the case where only high-quality sensors are utilized. The results are presented
in Figs. 2.2 and 2.3, for the Dagmar-Patrick and Ulli storms, respectively. We set
the region of interest (ROI) as shown in the upper left of Figs. 2.2 and 2.3. We then
chose 15 locations to place high-quality sensors. These locations are depicted with
black square markers. The actual wind speed field intensity is shown in the upper
right figures. The lower left figures show the estimated field based only on the 15
high-quality sensors. The lower right figures show the estimated field based on the
15 high-quality and 100 low-quality sensors. To illustrate the impact of adding low-
quality sensors make, we set the error probability of the wireless channels to zero. The
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Fig. 2.2 Wind speed prediction of the Dagmar-Patrick storm. The rectangular in the upper left
figure represents the region of interest which contains 15 high-quality sensors. The upper right
figure represents the “true” data wind speed intensities (m/s). The lower left figure shows the field
reconstruction based solely on the 15 high-quality sensors via Gaussian Process regression. The
lower right figure shows the field reconstruction of our algorithm based on the heterogeneous
network with 15 high-quality sensors and 100 low-quality sensors. The normalized mean squared
error based on the high-quality sensors is 0.67 and based on both high- and low-quality sensors is
0.25

figures show that a significant improvement can be obtained by augmenting the high-
quality sensor network with many cheap low-quality sensors. The field reconstruction
(the ROI contains 14006 spatial points) prediction mean squared error for the two
storms is given in Table 2.1. As expected the prediction performance for the Dagmar-
Patrick storm is better than for the Ulli storm. This can be explained by the higher
spatial correlation exhibited by the Dagmar-Patrick storm as shown in Fig. 2.4.
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Fig. 2.3 Wind speed prediction of the Ulli storm. The rectangular in the upper left figure represents
the region of interest which contains 15 high-quality sensors. The upper right figure represents the
“true” data wind speed intensities (m/s). The lower left figure shows the field reconstruction based
solely on the 15 high-quality sensors via Gaussian process regression. The lower right figure shows
the field reconstruction of our algorithm based on the heterogeneous network with 15 high-quality
sensors and 100 low-quality sensors. The normalized mean squared error based on the high-quality
sensors is 0.85 and based on both high- and low-quality sensors is 0.37

Table 2.1 Field reconstruction performance for the two storms

Normalized prediction mean squared error

Reconstruction method Dagmar-Patrick storm Ulli storm

15 high-quality sensors 0.67 0.85

15 high-quality and 100
low-quality sensors

0.25 0.37
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Fig. 2.4 The covariance function estimation of the Dagmar-Patrick (left panel) and Ulli (right
panel) storms. These results show that the spatial correlation of the Dagmar-Patrick storm is larger
than the Ulli storm
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Fig. 2.5 Ocean depth estimation results. The rectangular in the left figure represents the region of
interest and the intensity represents the true ocean’s depth. The right figure presents the prediction
MSE of our algorithm based on the heterogeneous network with 50, 100, 200, 250 high-quality
sensors and varying number of low-quality sensors
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2.6.3 Bathymetry Example

In this example we use the heterogeneous sensor network to estimate the spatial
field for the depth of the ocean floor based on measurements known as Bathymetry.
This type of analysis is also directly relevant to the wind speed and storm surge
modeling done in the firs example, as bathymetric measurements are known to vary
significantly during storm surge events and cyclones. This makes the spatial field
reconstruction of such a feature directly relevant to modeling practically important
spatial features. The ocean depth can help to provide an indication of the likely event
of a flooding event from a storm front.

We use a publicly available database known as the eSurge.3 We selected to ana-
lyze a square region in the north-east corner of Australia at the South-Pacific ocean
presented in the left panel of Fig. 2.5. This region is known to be frequently hit by
cyclones which cause a change in the topography of the ocean floor.

We performed the depth estimation using our algorithm and compared it to the
case where only high-quality sensors are utilized. In each simulation the sensors
were deployed on a regular grid and we changed the number of high-quality and
low-quality sensors deployed. We then calculated the prediction mean squared error
(PMSE) which is presented in the right panel of Fig. 2.5. Similarly to the synthetic
example in Sect. 2.6.1, there was a diminishing improvement when the number of
low-quality sensors was above 200.
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