
Chapter 1
Nonparametric Bayesian Inference
with Kernel Mean Embedding

Kenji Fukumizu

Abstract Kernel methods have been successfully used in many machine learning
problems with favorable performance in extracting nonlinear structure of high-
dimensional data. Recently, nonparametric inference methods with positive definite
kernels have been developed, employing the kernel mean expression of distribu-
tions. In this approach, the distribution of a variable is represented by the kernel
mean, which is the mean element of the random feature vector defined by the ker-
nel function, and relation among variables is expressed by covariance operators.
This article gives an introduction to this new approach called kernel Bayesian infer-
ence, in which the Bayes’ rule is realized with the computation of kernel means and
covariance expressions to estimate the kernel mean of posterior [11]. This approach
provides a novel nonparametric way of Bayesian inference, expressing a distribution
with weighted sample, and computing posterior with simple matrix calculation. As
an example of problems for which this kernel Bayesian inference is applied effec-
tively, nonparametric state-space model is discussed, in which it is assumed that the
state transition and observation model are neither known nor estimable with a simple
parametric model. This article gives detailed explanations on intuitions, derivations,
and implementation issues of kernel Bayesian inference.

1.1 Introduction

Recent data analysis often involves voluminous high-dimensional data, which may
include continuous and complex-structured variables. Classical toolboxes of statisti-
cal data analysis may not be sufficient to derive useful information or make reliable
predictions in such problems, since the methods often assume low-dimensional sim-
ple structure for data such as Gaussian distributions in Euclidean space. It is highly
desirable to develop more flexible approaches to tackle those modern data analysis.
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Kernel methods have been developed as useful tools for generalizing linear statis-
tical approaches to nonlinear settings. The main idea of kernel methods is to embed
original data to a high-dimensional feature space, called a reproducing kernel Hilbert
space (RKHS), and apply some linear methods of data analysis for the embedded fea-
ture vectors. With this approach, nonlinear features of data can be efficiently handled
by virtue of the special way of computing the inner product, which is often called
kernel trick. Since the proposal of support vector machines, a number of methods,
such as kernel principle component analysis and kernel ridge regression, have been
proposed along this discipline and successfully applied in many fields.

The aim of this article is to review recent development of kernel methods for
nonparametric statistical inference. In the methods, the mean of the feature vector
in the RKHS is considered as a summary for the distribution of feature vectors. We
call it kernel mean. Although it might be thought that taking the mean loses infor-
mation of the underlying distribution of data, if a kernel is chosen appropriately, the
kernel mean maintains all the information of the distribution. This is possible by the
fact that the kernel mean is a function with infinite degree of freedom in an infinite-
dimensional RKHS. With this kernel mean approach, probability distributions are
expressed by the corresponding kernelmeans, and linear operationswithGrammatri-
ces yield various algorithms for statistical inference,which includes homogeneity test
[13–15, 26], independence test [16, 17], conditional independence test [9], and
Bayes’ theorem[11]. See [29] for a gentle introduction to these researches.

This article focuses on nonparametric kernel methods for Bayesian inference. In
Bayesian inference, the sum rule, product rule, andBayes’ rule are important building
blocks of inference procedures. The general kernel implementation of these three
rules is first presented to realize a nonparametric method for Bayesian inference. As
a basis, the conditional kernel mean is introduced and a new theoretical result on the
convergence rate of its estimator is shown. A particularly important building block is
the kernel implementation of Bayes’ rule, called Kernel Bayes’ Rule [11]. The KBR
has special properties in comparison with other methods for Bayesian computation:
(a) unlike other popularmethods of computing posterior distributions such asMarkov
Chain Monte Carlo and sequential Monte Carlo, the KBR computes the kernel mean
of posterior simplywith linear operations ofGrammatriceswith no need of numerical
integration or advanced approximate inference, (b) the ingredients for the Bayesian
inference, prior and conditional probability (likelihood), are provided in the form
of samples nonparametrically. Thus, this KBR approach is a purely nonparametric
Bayesian inference.

A particularly useful application of the kernel Bayes’ rule is nonparametric state-
spacemodel, forwhich sequential application ofBayes’ rule realizes filtering, predic-
tion, and smoothing. This paper particularly focuses on filtering with nonparametric
state-space models, in which it is assumed that the state transition p(xt+1|xt ) and the
observation model p(yt |xt ) are unknown but paired data for the state and observa-
tion variables are available for training. The detailed derivation of the kernel filtering
algorithm based on the kernel Bayes’ rule is presented.
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The purpose of this article is to explain the kernel Bayesian inference with details
together with some new results. In particular, as building blocks, kernel sum rule,
kernel product rule, and kernel Bayes’ rule are explained in detail including intuitions
and derivations. A new theoretical result on the convergence rate of the conditional
kernel mean estimator is presented using the decay rate of eigenvalues of the covari-
ance operator. Additionally, as a typical application, details on the KBR filter are
discussed including efficient low-rank approximation.

1.2 Representing Distributions with Kernel
Mean Embedding

1.2.1 Preliminary: General Kernel Methods

Wefirst give a brief reviewof positive definite kernels and kernelmethods.A standard
reference for readers unfamiliar with kernel methods is [28].

Given a set Ω , a (R-valued) positive definite kernel k on Ω is a symmetric kernel
k : Ω × Ω→R that satisfies positive semidefiniteness, i.e.,

∑n
i, j=1 ci c j k(xi , x j ) ≥ 0

for arbitrary number of points x1, . . . , xn in Ω and real numbers c1, . . . , cn . The
matrix (k(xi , x j ))

n
i, j=1 is called a Gram matrix. It is known [1] that a positive def-

inite kernel on Ω uniquely defines a Hilbert space H consisting of functions on
Ω such that the following three conditions hold: (i) k(·, x) ∈ H for any x ∈ Ω ,
(ii) Span{k(·, x) | x ∈ Ω} is dense inH , and (iii) 〈 f, k(·, x)〉 = f (x) for any x ∈ Ω

and f ∈ H (the reproducing property), where 〈·, ·〉 is the inner product ofH . The
Hilbert spaceH is called the reproducing kernel Hilbert space (RKHS) associated
with k.

In kernel methods, Ω is a space where data exist, and a positive definite kernel
k is prepared for Ω . The corresponding RKHS H is used as a feature space, and a
nonlinear mapping (feature mapping) from data space Ω to the feature space H is
defined by

Φ : Ω → H , x → k(·, x),

where k(·, x) ∈ H should be interpreted as a function of the first argument with
x fixed. A data is thus mapped to a function, and this functional representation
of data extracts various nonlinear features of data. From computational side, the
reproducing property provides an efficient way of extracting nonlinear features in
data analysis, without expanding the original variables with basis functions, which
causes an intractably large number of components for high-dimensional original
variables.

The traditional way of kernel methods considers the mapping of data X1, . . . , Xn

in the original spaceΩ to feature vectorsΦ(Xi ), . . . , Φ(Xn) in the RKHS, and apply
some linear method of data analysis, such as principal component analysis, to those
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feature vectors. By the reproducing property, the inner product of two feature vectors
is reduced to evaluation of the kernel, that is

〈Φ(x),Φ(y)〉 = k(x, y).

This fact is sometimes referred to as kernel trick, providing one of the essential ele-
ments in kernel methods. More generally, given two linear combinations of the fea-
ture vectors, say f = ∑n

i=1 αiΦ(Xi ) and g = ∑n
j=1 β jΦ(X j ), then the inner product

between f and g is given by
〈 f, g〉 = αT GXβ,

where GX,i j = k(Xi , X j ) is the Gram matrix. Given that computation of an analysis
method for Euclidean data relies on the inner product among data points, the method
can be extended to a nonlinear version with the above inner products among feature
vectors. The computational cost thus does not depend on the dimensionality of data,
once the Gram matrices are computed. This is computational advantage of kernel
methods for handling high-dimensional data.

Computation with Gram matrices is obviously expensive if the sample size is
large. It is known, however, that low-rank approximation of a Gram matrix reduces
the size of the involved matrix drastically, while maintaining the approximation
accuracy reasonably. As typical methods for low-rank approximation, the incomplete
Cholesky decomposition [6] and Nyström approximation [38] approximate a Gram
matrix G of size n to the form G ≈ RRT with n × r matrix R in computational time
proportional to n. Once the low-rank approximation is done, inversion (G + λIn)

−1

can be approximated by In − R(RT R + λIr )
−1RT (Woodbury’s formula), in which

the inverse is taken for a matrix of size r . Here Im denotes the m × m identity matrix.
The merit of this approximation will be discussed in Sect. 1.4.2.

1.2.2 Kernel Mean Representation of Probability
Distributions

In the recent development of kernel methods for nonparametric inference, the mean
of the random feature vector Φ(X) = k(·, X) is considered to represent a probability
distribution on the random variable X.

More formally, let (X ,BX ) be a measurable space, X be a random variable
taking values in X with probability distribution P on X , and k be a measurable
positive definite kernel on X such that E[√k(X, X)] < ∞. The associated RKHS
is denoted by H . The kernel mean mX (also written by mP) of X in H is defined
by the mean E[k(·, X)] of the H -valued random variable Φ(X).1 Here, the mean

1As the kernelmean depends on k, it should bewritten bymk
X rigorously.Wewill, however, generally

write mX for simplicity, where there is no ambiguity.
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is interpreted as Bochner integral, which exists by the assumption E[‖k(·, X)‖] =
E[√k(X, X)] < ∞.

By the reproducing property, the kernel mean satisfies the relation

〈 f, mX〉 = E[ f (X)] (1.1)

for any f ∈ H . Plugging f = k(·, u) into this relation yields

mX(u) = E[k(u, X)] =
∫

k(u, x̃)dP(x̃), (1.2)

which is an explicit integral form of the kernel mean.
To represent probabilities, an important notion is the characteristic property. A

positive definite kernel k is called bounded if supx∈X k(x, x) < ∞. A bounded
measurable positive definite kernel k on a measurable space (Ω,B) is called char-
acteristic if the mapping from a probability Q on (Ω,B) to the kernel mean
mQ ∈ H is injective [7, 8, 32]. This is equivalent to assuming that EX∼P[k(·, X)] =
EX ′∼Q[k(·, X ′)] implies P = Q by definition: probabilities are uniquely determined
by their kernel means on the associated RKHS. A popular example of a charac-
teristic kernel defined on Euclidean space is the Gaussian RBF kernel k(x, y) =
exp(−‖x − y‖2/(2σ 2)). A characteristic kernel provides a RKHS that contains a
rich class of functions so that the moments E[ f (X)] for all f ∈ H can identify the
underlying distribution. Various conditions for a kernel to be characteristic can be
found in [12, 31, 32].

By the unique representation property of characteristic kernels, statistical infer-
ence problems on probability distribution can be converted to the inference problems
on the kernel means, which are easier to handle by the special properties of RKHS.
This is the principle of the nonparametric inference with kernel means. Various infer-
ence methods have been proposed under this discipline. If we consider a two-sample
problem, which aims at determining whether or not given two samples come from
the same distribution, it can be cast as the problem of comparing the correspond-
ing two kernel means in a RKHS [13]. The problem of independence test can be
solved by comparing the kernel means of joint distributions and the product of the
marginals [15].

When the relation of two random variables is discussed, covariance is useful in
addition to means. In the kernel mean framework, covariance of the two feature
vectors on the RKHS’s is considered, and it is called covariance operator. More
precisely, let (X ,BX ) and (Y ,BY ) be measurable spaces, (X, Y) be a random
variable on X × Y with distribution P, and kX and kY be measurable positive
definite kernels with respective RKHS HX and HY such that E[kX (X, X)] < ∞
and E[kY (Y , Y)] < ∞.2 The (uncentered) covariance operator CYX : HX → HY

2These conditions guarantee existence of the covariance operator. Note also E[k(X, X)] < ∞ is
stronger than the condition for kernel mean, E[√k(X, X)] < ∞; this is obvious from Cauchy–
Schwarz inequality.



6 K. Fukumizu

is defined by
CYX = E[kY (·, Y)〈kX (X, ·), ∗〉],

or equivalently, for f ∈ HX ,

(CYX f )(y) = E[kY (y, Y) f (X)] =
∫

kY (y, ỹ) f (x̃)dP(x̃, ỹ). (1.3)

From the reproducing property, the covariance operator is a linear operator that
satisfies

〈g, CYX f 〉HY = E[ f (X)g(Y)]

for all f ∈ HX , g ∈ HY . We also define CXX by the operator onHX that satisfies
〈 f2, CXX f1〉 = E[ f2(X) f1(X)] for any f1, f2 ∈ HX .

The covariance operator is a natural extension of an ordinary covariance matrix:
given two random vectors Z and W on Euclidean spaces, the covariance matrix can
be regarded as a linear mapping a �→ E[WZT ]a. Replacing Z and W with kX (·, X)

and kY (·, Y), respectively, yields the covariance operator E[kY (·, Y)〈kX (·, X), ∗〉].
Readers who are unfamiliar with the notion of operators can simply think of linear
mappings on infinite-dimensional vector spaces to grasp the general ideas in this
article.

Note also that by identifying the dual element 〈kX (·, X), ∗〉 with kX (·, X), the
covariance operator CYX can be identified with the kernel mean mYX = E[kY (·, Y)

kX (·, X)] in the direct product HY ⊗ HX , which is given by the product kernel
kY kX on Y × X [1]. This fact will be used in deriving kernel Bayes’ rule.

Given i.i.d. sample (X1, Y1), . . . , (Xn, Yn) with law P, the empirical estimators of
the kernel mean and covariance operator are given straightforwardly by the empirical
mean and covariance as

m̂X = 1

n

n∑

i=1

kX (·, Xi ), Ĉ(n)
YX = 1

n

n∑

i=1

kY (·, Yi ) ⊗ kX (·, Xi ),

where Ĉ(n)
YX is written in the tensor form. These estimators are known to be

√
n-

consistent in appropriate norms, and
√

n(m̂X − mX) converges to a Gaussian process
onHX [3].

1.3 Bayesian Inference with Kernel Means

There are three basic operations used in generalBayesian inference: sum rule, product
rule, and Bayes’ rule, which are summarized in Table1.1. Correspondingly, in the
framework of Bayesian inference with kernel means, these operations are realized
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Table 1.1 Operations for Bayesian inference.

Density form Kernel version m̂Π = ∑
j γ j kX (·, U j ),

(Xi , Yi ) ∼ P

Sum rule qY (y) =
∫

p(y|x)π(x)dx m̂QY = ∑
i wi kY (·, Yi ),

w = (GX + nεnIn)−1GXUγ

Product rule q(x, y) = p(y|x)π(x) m̂Q = ∑
i wi kX (·, Xi ) ⊗ kY (·, Yi ),

w = (GX + nεnIn)−1GXUγ

Bayes’ rule q(x |yobs) = p(yobs|x)π(x)
∫

p(yobs|x)π(x)dx
m̂Qx |yobs = ∑

i wi kX (·, Xi ),

Λ = Diag{(GX + nεnIn)−1GXUγ },
w = ΛGY ((ΛGY )2 + δnIn)−1ΛkY (yobs)

In the kernel version, GX = (k(Xi , X j )), GY = (k(Yi , Y j )), and GXU = (k(Xi , U j ))

in terms of kernel means. This section first provides an intuitive explanation for the
population version of the kernel realization, which may not be rigorous in handling
operator inversion, and then shows rigorous empirical expressions, which can be
proved to be consistent.

In the framework, each distribution is represented by the corresponding kernel
mean or its empirical estimate. An empirical estimator of the kernel mean of a
probability P is, in general, given by a weighted sum of feature vectors

m̂P =
n∑

i=1

wi k(·, Xi ),

where (Xi )
n
i=1 is some sample, which may not be generated by P.

1.3.1 Conditional Kernel Mean

For Bayesian inference with kernels, a basis is how to express or estimate the condi-
tional kernelmean. It is not straightforward, however, to have an empirical expression
of kernel mean of the conditional probability of Y given X. If we had many sam-
ples of Y for each value of x , we could just use the samples or their feature vectors
to represent the kernel mean of Y given x . It is unlikely, however, that we have
such conditional samples, if the variable X is continuous and random. We then need
an alternative way of expressing the kernel mean of a conditional probability. We
assume that there is a probability P with density p(x, y) that gives a conditional
density p(y|x), and we have data (Xi , Yi ) generated by P.

The theoretical basis of the conditional kernel mean is the following theorem.



8 K. Fukumizu

Theorem 1.3.1 ([7]) If, for g ∈ HY , E[g(Y)|X = x] is included in HX as a func-
tion of x, then

CXXE[g(Y)|X = ·] = CXY g.

The proof is easy from the fact 〈CXXE[g(Y)|X = ·], f 〉 = E[g(Y) f (X)] =
〈CXY g, f 〉 for any f ∈ HX . From this theorem, if CXX is invertible, we have

E[g(Y)|X = ·] = C−1
XX CXY g.

Taking the inner product with kX (·, x) derives

〈E[g(Y)|X = ·], kX (·, x)〉HX = 〈C−1
XX CXY g, kX (·, x)〉HX ,

which implies

〈g, E[kY (·, Y)|X = x]〉HY = 〈g, CYXC−1
XX kX (·, x)〉HY .

If E[g(Y)|X = ·] ∈ HX holds for any g ∈ HY , it follows that

E[kY (·, Y)|X = x] = CYXC−1
XX kX (·, x). (1.4)

Since the left-hand side of Eq. (1.4) is exactly the kernel mean of conditional prob-
ability of Y given X = x , this equation provides an expression of its kernel mean
in terms of the covariance operator of the joint distribution (X, Y). Note, however,
that the above reasoning involves a strong assumption: CXX is invertible. In fact, this
does not hold if the dimensionality of HX is infinite and CXX has arbitrarily small
or zero eigenvalues. This occurs in typical cases with a bounded kernel of infinite-
dimensional RKHS, since the trace of the infinite-dimensional linear map CXX is
finite [10].

Nonetheless, from the expression Eq. (1.4), we can introduce an empirical estima-
tor of the kernel mean of p(y|x), namely, given i.i.d. sample (X1, Y1), . . . , (Xn, Yn)

following the joint distribution P, an estimator is defined by

m̂Y |X=x := Ĉ(n)
YX

(
Ĉ(n)

XX + εnI)−1kX (·, x), (1.5)

where I is the identity operator and εn is a regularization constant so that the operator
can be inverted. This estimator is rigorously defined and proved to be consistent to
E[kY (·, Y)|X = x] under the sufficient condition in the following Theorem1.3.2.

To describe the following convergence result, decay rate of eigenvalues is intro-
duced. The eigenvalues of a positive compact operator C are said to decay at rate b
if there is a constant β > 0 such that λ� ≤ β�−b for all �, where (λ�) is the positive
eigenvalues of C in descending order. (See [4]). The following theorem shows the
convergence rate of the conditional kernel mean estimator.
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Theorem 1.3.2 Assume that E[k(X, X̃)|Y = ·, Ỹ = ∗] ∈ R(CYY ⊗ CYY ), where
(X̃, Ỹ) is an independent copy of (X, Y), and that the eigenvalues of CYY decay
at rate b (1 < b < +∞). Then, with εn = n−b/(4b+1),

∥
∥Ĉ(n)

XY (Ĉ(n)
YY + εnI)−1kY (·, y0) − E[kX (·, X)|Y = y0]

∥
∥
HX

= Op(n
−b/(4b+1))

as n → ∞.

See the appendix for the proof. The decay rates of eigenvalues of a covariance
operator are known in some typical cases; see [36, 37].Note that the assumption of the
decay rate of the covariance operator is related to the entropy number, and standard
in discussing the behavior of kernel regression [33]. The assumption E[k(X, X̃)|Y =
·, Ỹ = ∗] ∈ R(CYY ⊗ CYY ) requires the smoothness of the conditional expectation
when the kernel is smooth such as Gaussian kernel; the range space consists of
smoother functions by the smoothing effect of the integral in Eq. (1.3). To the best
of our knowledge, the convergence rate of the conditional kernel mean in the above
form has not been presented in existing literatures.3

1.3.2 Kernel Sum Rule and Kernel Product Rule

For the sum and product rules, this subsection gives intuitive explanation rather than
rigorous convergence results. See [11] for the results.

For the kernel mean implementation of the sum rule, let Π be a probability on
X with density π(x). As in the previous subsection, we assume that there is a joint
distribution P on X × Y with density p(x, y) of which the conditional p.d.f. is
equal to the given p(y|x). Suppose that the sum rule gives QY with density qY (y),
i.e.,

qY (y) =
∫

p(y|x)π(x)dx .

The kernel mean of QY is then given by

mQy =
∫ ∫

kY (·, y)p(y|x)π(x)dxdy.

3Some previous literatures derived a convergence rate at unrealistic assumptions. For example,
Theorem6 in [30] assumes k(·, y0) ∈ R(CYY ) to achieve the rate n−1/4, but in typical cases there
is no function f ∈ HY that satisfies

∫
k(y, z) f (z)dPY (z) = k(y, y0). Theorem1.3.2 shows that if

the eigenvalues decay sufficiently fast the rate approaches n−1/4. As a relevant result, Theorem11
in [11] shows a convergence rate of the kernel sum rule. While the conditional kernel mean is a
special case of kernel sum rule with prior given by Dirac’s delta function at x , the faster rate (n−1/3

at best) is not achievable by Theorem 1.3.2, since the former assumes that π/pX is a function in the
RKHS and smooth enough.
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From Eq. (1.4), we already know the (non-rigorous) expression

∫

kY (·, y)p(y|x)dy = CYXC−1
XX kX (·, x).

Plugging this into the previous equation, we have (the population version of) kernel
sum rule:

mQY =
∫

CYXC−1
XX kX (·, x)π(x)dx = CYXC−1

XX mΠ. (1.6)

There is another way to derive Eq. (1.6) in terms of density functions. Suppose
that the density ratio π/pX is included inHX . From Eqs. (1.2) and (1.3), we see

mΠ =
∫

kX (·, x)π(x)dx =
∫

kX (·, x)
π(x)

pX(x)
dPX(x) = CXX

(
π

pX

)

,

from which we obtain
C−1

XX mΠ = π

pX
.

It follows from Eq. (1.3) that

CYX C−1
XX mΠ = CYX

( π

pX

)
=

∫

kY (·, y)
π(x)

pX(x)
dP(x, y)

=
∫ ∫

kY (·, y)p(y|x)π(x)dxdy = mQY ,

which agrees with Eq. (1.6).
Given a consistent estimator m̂Π of mΠ and i.i.d. sample (X1, Y1), . . . , (Xn, Yn)

from P, the empirical version of the kernel sum rule is defined based on Eq. (1.6);

m̂QY = Ĉ(n)
YX

(
Ĉ(n)

XX + εnI
)−1

m̂Π. (1.7)

In a Gram matrix expression, given

m̂Π =
�∑

j=1

γ j kX (·, U j ),

we have

m̂QY =
n∑

i=1

wi kY (·, Yi ), w = (GX + nεnIn)
−1GXUγ,

where GX = (kX (Xi , X j ))i j and GXU = (kX (Xi , U j ))i j . The convergence of this
estimator to the true mQY and its convergence rate are shown in Theorems8 and



1 Nonparametric Bayesian Inference … 11

11 of [11]. For the convergence, it is assumed that the sample size � for the prior
increases as n → ∞.

The kernel version of product rule can be derived as a special case of the kernel
sum rule. Consider the conditional density p̃(y, x̃ |x) = p(y|x)δx (x̃) on the product
space Y × X , where δx is Dirac’s delta function with mass concentrated at x . Let
Q be a probability distribution onY × X with density p(y|x)π(x), i.e., the density
given by the product rule. The population version of kernel sum rule applied to
p̃(y, x̃ |x) and π(x) with the product kernel then yields

mQ =
∫ ∫ ∫

kY (·, y) ⊗ kX (·, x̃) p̃(y, x̃ |x)π(x)dx̃dydx = C(YX)XC−1
XX mΠ,

where C(YX)X : HX → HY ⊗ HX is the covariance operator for the random vari-
able (X, (X, Y)). Based on the (non-rigorous) population expression, we define the
empirical kernel product rule by

m̂Q := Ĉ(n)

(YX)X

(
Ĉ(n)

XX + εnI)−1m̂Π, (1.8)

or in Gram matrix expression

m̂Q =
n∑

i=1

wi kY (·, Yi ) ⊗ kX (·, Xi ), w = (GX + nεnIn)
−1GXUγ, (1.9)

Note that the weight vectors of Eqs. (1.7) and (1.9) are exactly the same, while the
feature vectors or the spaces of interest are different.

1.3.3 Kernel Bayes’ Rule

As demonstrated in this subsection, by combining the kernel product rule and con-
ditional kernel mean, we can easily derive the kernel Bayes’ rule. As in the previous
subsection, let Π be the prior and P be a probability on X × Y with conditional
density p(y|x). The distribution of the variable (X, Y) isP. The posterior distribution
given yobs is denoted by Qx |yobs .

From the expression of Bayes’ rule

q(x |yobs) = p(y|x)π(x)
∫

p(y|x)π(x)dx
,

we see that the posterior is simply the conditional distribution of x given yobs with the
joint distribution Q given by the product rule. Once we have covariance operators for
Q, Theorem1.3.1 tells how to derive the conditional kernel mean, that is the kernel
mean of posterior. The remaining task is thus to construct the covariance operators
for Q.
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Let (Z, W) denote a random variable taking values onX × Y with distribution
Q. Then, from Eq. (1.8),

m̂(WZ) = Ĉ(n)

(YX)X

(
Ĉ(n)

XX + εnI
)−1

m̂Π and m̂(WW) = Ĉ(n)

(YY)X

(
Ĉ(n)

XX + εnI
)−1

m̂Π,

where the second relation can be obtained in a similar way to the first one. Recall
that the covariance operators CWZ and CWW are identified with the kernel means mWZ

and mWW , respectively, on the product spaces, as discussed in Sect. 1.2.2. We can
therefore obtain the estimator of Ĉ(n)

WZ and Ĉ(n)
WW from the above empirical version of

kernel product rule. Namely, when the kernel product rule provides the empirical
expressions

m̂(WZ) =
n∑

i=1

μ̂i k(·, Yi ) ⊗ k(·, Xi ) and m̂(WW) =
n∑

i=1

μ̂i k(·, Xi ) ⊗ k(·, Xi )

with
μ̂ = (GX + nεnIn)

−1GXUγ, (1.10)

the empirical estimators of covariance operators for Q are given by

Ĉ(n)
WZ =

n∑

i=1

μ̂i kY (·, Yi )〈kX (·, Xi ), ∗〉, Ĉ(n)
WW =

n∑

i=1

μ̂i kY (·, Yi )〈kX (·, Yi ), ∗〉.

Note that the coefficients to the feature vectors are the same for Ĉ(n)
WZ and Ĉ(n)

WW .
In applying Eq. (1.5), there is another technical point. The estimated covariance

operator Ĉ(n)
WW maynot be positive definite, since the coefficients μ̂i are not necessarily

positive as the solution of the matrix operation Eq. (1.10). We use a more involved
regularization to make the operator inversion possible, and introduce

m̂Qx |yobs := ĈZW
(
Ĉ2

WW + δnI
)−1

ĈWW kY (·, yobs). (1.11)

This gives an estimator of the posterior kernel mean, and is called Kernel Bayes’
Rule (KBR).

Theorem 1.3.3 (Kernel Bayes’ Rule [11]) For any yobs ∈ Y , the estimator m̂Qx |yobs
of the posterior kernel mean is given by

m̂Qx |yobs =
n∑

i=1

wi k(·, Xi ), w = ΛGY ((ΛGY )2 + δnIn)
−1ΛkY (yobs), (1.12)

where Λ = diag(μ̂) is a diagonal matrix with elements μ̂i in Eq. (1.10), and
kY (yobs) = (kY (yobs, Y1), . . . , kY (yobs, Yn))

T ∈ R
n.
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It is known that under some conditions the estimator m̂Qx |yobs converges to the true
kernel mean of the posterior in probability, and an upper bound of its convergence
rate is also known (Theorem4, [11]).

The expression Eq. (1.12) takes the form of a weighted sum of feature vectors
k(·, Xi ), and is regarded as the kernel mean of the signed measure

∑n
i=1 wiδXi . The

KBR thus provides a weighted sample expression (wi , Xi )
n
i=1 of the posterior. Note

again that the weights may include negative values, which is different from ordinary
weighted sample expression used popularly in importance sampling and particle
filters. Figure1.1 illustrates the procedure of KBR.

The above estimator provides the kernelmeanof the posterior, andnot the posterior
itself. We need to develop methods for decoding necessary information of posterior
from the kernel mean expression. Two methods are discussed below: estimation of
expectation with respect to posterior and point estimation with the posterior.

If our aim is to estimate the expectation of a function f ∈ HX with respect to
the posterior, the reproducing property of Eq. (1.1) gives an estimator

〈 f, m̂Qx |yobs〉 =
n∑

i=1

wi f (Xi ). (1.13)

In fact, it is known that, under some conditions, the estimator Eq. (1.13) for any
f ∈ HX converges to the expectation of f w.r.t. the true posterior, and its conver-
gence rate is also known (Theorems6 and 7, [11]). A recent work has shown that
the consistency of

∑n
i=1 wi f (Xi ) to

∫
f (x)qx |yobs(x)dx is true for a wider class of

functions than HY [19]. This fact confirms similarity of (wi , Xi ) in KBR to the
standard weighted sample expression.

Fig. 1.1 Kernel Bayes’ rule
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If our aim is to obtain a point estimate based on the posterior, such as MAP, we
can use a point x ∈ X such that the feature vector is the closest to the kernel mean
of posterior [11, 30], i.e.,

x̂ = arg min
x∈X

∥
∥kX (·, x) − m̂Qx |yobs

∥
∥2

.

In the case of Gaussian kernel k(x, x ′) = exp(− 1
2σ 2 ‖x − x ′‖2), from ‖k(·, x)‖ = 1,

the above minimization is equivalent to

x̂ = argmax
x∈X

n∑

i=1

wi exp
(
− 1

2σ 2
‖x − Xi‖2

)
,

which is similar to the MAP estimation, though
∑

i wi k(x, Xi ) may not be a density
function.

The above optimization problem can be solved in the same manner as the pre-
image problem [24]. Taking the derivative of the squared norm in the right-hand side,
we obtain the consistence equation

x̂ =
∑n

i=1 wi exp(− 1
2σ 2 ‖x̂ − Xi‖2)

∑n
i=1 exp(− 1

2σ 2 ‖x̂ − Xi‖2)
,

which yields an iterative method for solving the point estimate:

x̂ (t+1) =
∑n

i=1 wi exp(− 1
2σ 2 ‖x̂ (t) − Xi‖2)

∑n
i=1 exp(− 1

2σ 2 ‖x̂ (t) − Xi‖2)
.

Note that the objective function of pre-image problem is not necessarily convex and
there may be local optima. The initial point of the above iteration must be chosen
carefully. One possible method for initialization is to use the posterior mean. In the
filtering problem discussed in Sect. 1.4, the estimate in the previous time step can
serve as an initial point. Other pre-image methods [21] can be also applied to the
above point estimation problem.

1.4 Kernel Bayesian Inference for State-Space Models

Wediscuss applications ofKBR to the sequential Bayesian inferencewith state-space
models. A time-invariant state-space model is defined by

p(X, Y) = π(X1)

T+1∏

t=1

p(Yt |Xt )

T∏

t=1

q(Xt+1|Xt ),
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whereYt is an observation andXt is a hidden state variable. The index t indicates time.
The conditional probability q(xt+1|xt ) and p(yt |xt ) are called the state transition and
observation model, respectively. With this model of time series, given Y1, . . . , Yt , we
wish to estimate the posteriors p(Xs |Y1, . . . , Yt ). Filtering, prediction, and smoothing
refer to as the case s = t , s > t , and s < t , respectively. This article discusses only
the filtering problem for simplicity, while the other cases can be solved similarly.

1.4.1 KBR Filter

It is well known that, under the assumption of state-space models, application of
Bayes’ rule derives a sequential algorithm of filtering, which consists of two steps:
prediction and correction steps.
Prediction step: Given an estimate of p(xt |y1, . . . , yt ), the conditional probability
p(xt+1|y1, . . . , yt ) is estimated. This is done by the sum rule,

p(xt+1|y1, . . . , yt ) =
∫

q(xt+1|xt )p(xt |y1, . . . , yt )dxt . (1.14)

Correction step: Given a new observation yt+1, Bayes’ rule derives the estimate of
p(xt+1|y1, . . . , yt+1) with the prior p(xt+1|y1, . . . , yt ) and likelihood p(yt |xt ),

p(xt+1|y1, . . . , yt+1) = p(yt+1|xt+1)p(xt+1|y1, . . . , yt )∫
p(yt+1|xt+1)p(xt+1|y1, . . . , yt )dxt+1

. (1.15)

If the state transition and observation model are given by linear mapping plus
Gaussian noise,Kalmanfilter is thewell-knownfilteringprocedure. If they arewritten
by known nonlinear dynamics, nonlinear extensions of Kalman filter, such as the
extended Kalman filter (EKF) and unscented Kalman filter (UKF, [35]), are popular
choices. In more general setting, given the state transition and observation model are
knownupto constant, the particle filter or sequentialMonteCarlo [5] gives aweighted
sample expression of the sequential update. These methods, however, require the
precise knowledge on the functional form of the state transition and observation
model, and not applicable unless they are known.

The KBR can be effectively applied to inference with the nonparametric setting
of state-space models. In the nonparametric state-space models, it is not assumed
that the conditional probabilities p(Yt |Xt ) and q(Xt+1|Xt ) are known explicitly, nor
estimated them with simple parametric models. Rather, it is assumed that training
data (X1, Y1), . . . , (XT+1, YT+1) are given for both the observable and state variables
in the training phase. In the testing phase, the state xt is inferred based on a dif-
ferent sequence of observations ỹ1, . . . , ỹt without knowing the corresponding state
variables.
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In the training phase, given the training sample, the observation model p(yt |xt )
and the state transition q(xt+1|xt ) are represented using the empirical covari-
ances operators4: ĈYX = 1

T

∑T
i=1 kY (·, Yi ) ⊗ kX (·, Xi ), ĈYY = 1

T

∑T
i=1 kY (·, Yi ) ⊗

kY
(·, Yi ), ĈXX = 1

T

∑T
i=1 kX (·, Xi ) ⊗ kX (·, Xi ), and ĈX+1X = 1

T

∑T
i=1 kX (·, Xi+1)⊗

kX (·, Xi ). In practice, we compute

GX = (kX (Xi , X j ))
T
i, j=1, GY = (kY (Yi , Y j ))

T
i, j=1, and GXX+1 = (kX (Xi , X j+1))

T
i, j=1,

where GXX+1 is the “transfer” matrix.
In the testing phase, given new observations ỹ1, . . . , ỹt , the prediction and correc-

tion steps are kernelized. Suppose we already have an estimate of the kernel mean
of p(xt |ỹ1, . . . , ỹt ) in the form

m̂xt |ỹ1,...,ỹt =
T∑

s=1

α(t)
s kX (·, Xs),

where α
(t)
i = α

(t)
i (ỹ1, . . . , ỹt ) are the coefficients at time t . For the prediction step

(1.14), we can simply apply the kernel sum rule (1.7) to estimate the kernel mean of
p(xt+1|ỹ1, . . . , ỹt ):

m̂xt+1|ỹ1,...,ỹt = Ĉ(n)
X+1X

(
Ĉ(n)

XX + εT I
)−1

m̂xt |ỹ1,...,ỹt =:
T∑

j=1

β
(t+1)
j k(·, X j+1),

where β(t+1) = (GX + TεT IT )−1GXα(t), (1.16)

In the correction step (1.15), the kernel Bayes’ rule first computes m̂(yt+1xt+1)|ỹ1,...,ỹt =
Ĉ(n)

(YX)X(Ĉ(n)
XX + εT I)−1m̂xt+1|ỹ1,...,ỹt and m̂(yt+1 yt+1)|ỹ1,...,ỹt = Ĉ(n)

(YY)X(Ĉ(n)
XX + εT I)−1

m̂xt+1|ỹ1,...,ỹt , of which the coefficients are given by

μ(t+1) = (
GX + TεT IT

)−1
GXX+1β

(t+1), (1.17)

and next takes the conditioning, which yields

α(t+1) = Λ(t+1)GY
(
(Λ(t+1)GY )2 + δT IT

)−1
Λ(t+1)kY (ỹt+1), (1.18)

where Λ(t+1) = diag(μ(t+1)
1 , . . . , μ

(t+1)
T ). Equations (1.16)–(1.18) describe the

sequential update rule of the KBR filtering. The initial estimate m̂(1)
x1|ỹ1 = ∑T

i=1 α
(1)
i

k(·, Xi ) can be computed by applying the KBR. We can also use the estimate of the

4Although the samples are not i.i.d., we assume an appropriate mixing condition and thus the
empirical covariances converge to the covariances with respect to the stationary distribution as
T → ∞.
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Table 1.2 Algorithm of the KBR filter

Input: Training data (X1, Y1), . . . , (XT , YT ), regularization constants εT , δT , kernels kX , kY .

Training phase:
• Compute GX = (kX (Xi , X j ))

T
i, j=1, GY = (kY (Yi , Y j ))

T
i, j=1, GXX+1 = (kX (Xi , X j+1))

T
i, j=1.

Testing phase:
• Compute the initial estimate α(1) given ỹ1.

• For t = 1, 2, . . ., given ỹt+1, do the following

1. β(t+1) = (GX + TεT IT )−1GXα(t).

2. μ(t+1) = (
GX + TεT IT

)−1
GXX+1β

(t+1), Λ(t+1) = Diag(μ(t+1)).

3. α(t+1) = Λ(t+1)GY
(
(Λ(t+1)GY )2 + δT IT

)−1
Λ(t+1)kY (ỹt+1)

conditional kernel mean E[k(·, X)|Y = ỹ1] if the prior π(X1) is not available. The
computation for the sequential filtering is summarized in Table1.2.

Applications of the KBR filter to artificial data and camera-angle estimation prob-
lems are shown in [11], which demonstrates favorable performance of the KBR filter
in comparison with other methods.

1.4.2 Discussions

The matrix inversion (GX + TεT IT )−1 can be computed only once before the testing
phase, while ((Λ(t+1)GY )2 + δT IT )−1 must be computed every time step in the testing
phase, since it depends on μ̂(t+1). Direct matrix inversion would costO(T 3), which is
not feasible for large T . Substantial reduction in computational cost can be achieved
by low-rankmatrix approximations such as incompleteCholesky factorization.Given
an approximation of rank r for the Grammatrices and transfer matrix, theWoodbury
identity yields the computation costs just O(Tr2) for each time step. In fact, let GX ≈
RXRT

X , GY ≈ RY RT
Y , and GXX+ ≈ AXBT

X+ be the low-rank approximations, where the
rank of RX , RY , AX and BX+ is r at most. It is easy to see from the Woodbury identity
that

β(t+1) ≈ 1

TεT

{
RXRT

Xα(t) − RX(RT
XRX + TεT Ir )

−1(RT
XRX)RT

Xα(t)
}
,

μ(t+1) ≈ 1

TεT

{
AXBT

X+β(t+1) − RX(RT
XRX + TεT Ir )

−1(RT
XAX)BT

X+β(t+1)
}
,
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and

α(t+1) ≈ 1

δT

{
Λ(t+1)RY RT

Y Λ(t+1)kY (ỹt+1)

− Λ(t+1)RY HY
(
H2

Y + δT Ir
)−1

HY RT
Y Λ(t+1)kY (ỹt+1)

}
,

where HY = RT
Y Λ(t+1)RY (r × r ). Since Λ(t+1) is a diagonal matrix, all of the above

computation can be done at the cost O(Tr2).
For the nonparametric state-space models, where training data are given as in the

KBR filter, an alternative method is the conditional density estimation, including
kernel density estimation or partitioning of the space [25, 34]. It is known, however,
that these estimators have low estimation accuracy if the dimensionality is more than
several. Empirical studies have shown that the KBR approach gives better estimation
accuracy than the density estimation approach for large-dimensional cases; see [11].

Another possible Bayesian method for the nonparametric setting is Gaussian
processes. An advantage of Gaussian processes is that one can use standard tech-
niques of Bayesian inference such as hyperparameter selection with the marginal
likelihood. Also, direct computation of the posterior is possible. On the other hand,
the obtained posterior is unimodal by the nature of Gaussian distribution so that it
may not be suitable for problems where multimodal posteriors are essential [22, 23].
In addition, since Gaussian processes are basically a model with univariate response,
it is difficult to handle the correlation among a large number of response variables.

A possible limitation of the KBR filter is the assumption that training data exist
including the state variable. While one might think it unrealistic, there are indeed
some problems where one can obtain training data. One of such cases is expensive
measurement: although one can observe the state variable, the measurement is very
expensive, and one wishes to use a limited number of training data for inference.
For instance, in sensor-based localization problems, pairs of sensor and location data
can be once measured with some expensive devises and used for location estimation
based solely on new sensor information [18, 27]. Another situation is that states are
observed with considerable time delay. In this case, we can use the observed state
variables for training, but the current state variable is not known and to be estimated.

It is true that performance of any kernelmethods depends on the choice of a kernel.
Additionally, in the KBR there are two regularization parameters to be chosen as
hyperparameters. In the KBR filter, since we have training data for state variables,
we can evaluate the prediction accuracy and thus use the validation approach by
dividing the training data into the data for training and evaluation. This method for
hyperparameter choice has been successfully used in the filtering applications of
KBR in [11, 20].

This article discusses only the fully nonparametric setting of state-space models;
both of the state transition and observation model are unknown and estimated non-
parametrically. There are, however, semiparametric situations, where one of them is
known. Consider vision-based robot localization problems, where the state xt is the
location and orientation of a robot, while the observation yt is a movie image taken
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by video camera mounted on the robot. In this case, it is easy to provide a reasonable
parametric model for the dynamics of robot move. On the other hand, the observation
model from the location/orientation to the image is too complex and environment-
dependent. It is thus preferable to apply a nonparametric method based on data for
this observation model. Since the kernel method is purely a nonparametric method
expressing the information with Gram matrices, it is not straightforward to combine
the kernel Bayesian approach with parametric models. Reference [20] has proposed
the kernel Monte Carlo filter, which is a combination of sampling and KBR method
for the semiparametric situation, and demonstrated the preferable performance of
the proposed method for the vision-based robot localization problem.

1.5 Conclusions

This article has provided detailed explanations of recently proposed kernel mean
approach to Bayesian inference. The basic ideas, intuitions, and implementation
issues have been discussed in details. A new result on the convergence rate of the
estimator of conditional kernel mean has been also presented. As an application of
the KBR approach, nonparametric state-space models are discussed focusing the
algorithm and efficient computation.

Acknowledgments The author has been supported in part by MEXT Grant-in-Aid for Scientific
Research on Innovative Areas 25120012.

Appendix: Proof of Theorem 1.3.2

First, we show a lemma to derive a convergence rate of conditional kernel mean.

Lemma 1.5.1 Assume that the kernels are measurable and bounded. Let N(ε) :=
Tr[CYY (CYY + εI)−1] and εn be a constant such that εn → 0 as n → ∞. Then,

∥
∥
∥(Ĉ(n)

YY − CYY )(CYY + εnI)−1
∥
∥
∥ = Op

(
1

εnn
+

√
N(εn)

εnn

)

and
∥
∥
∥(Ĉ(n)

XY − CXY )(CYY + εnI)−1
∥
∥
∥ = Op

(
1

εnn
+

√
N(εn)

εnn

)

as n → ∞.



20 K. Fukumizu

Proof The first result is shown in [4] (page 349). While the proof of the second one
is similar, it is shown below for completeness.

Let ξyx be an element inHY ⊗ HX defined by

ξyx := {
(CYY + εnI)−1k(·, y)

} ⊗ k(·, x).

With identification between H y ⊗ HX and the Hilbert–Schmidt operators from
HX toHY ,

E[ξYX ] = (CYY + εnI)−1CYX .

Take a > 0 such that k(x, x) ≤ a2 and k(y, y) ≤ a2. It follows from ‖ f ⊗ g‖ =
‖ f ‖ ‖g‖ and ‖(CYY + εnI)−1‖ ≤ 1/εn that

‖ξyx‖ = ∥
∥(CYY + εnI)−1k(·, y)

∥
∥
∥
∥k(·, x)

∥
∥ ≤ 1

εn
‖k(·, y)‖ ‖k(·, x)‖ ≤ a2

εn
,

and

E‖ξYX‖2 = E
∥
∥{(CYY + εnI)−1k(·, Y)} ⊗ k(·, X)

∥
∥2

= E‖k(·, X)‖2 ∥
∥(CYY + εnI)−1k(·, Y)

∥
∥2

≤ a2E
∥
∥(CYY + εnI)−1k(·, Y)

∥
∥2

= a2E
〈
(CYY + εnI)−2k(·, Y), k(·, Y)

〉

= a2ETr
[
(CYY + εnI)−2(k(·, Y) ⊗ k(·, Y)∗)

]

= a2Tr
[
(CYY + εnI)−2CYY

]

≤ a2

εn
Tr

[
(CYY + εnI)−1CYY

] = a2

εn
N(εn).

Here k(·, Y)∗ is the dual element of k(·, Y) and k(·, Y) ⊗ k(·, Y)∗ is regarded as an
operator on HY . In the last inequality, (CYY + εnI)−1 in the trace is replaced by its
upper bound ε−1

n I . Since 1
n

∑n
i=1(CYY + εnI)−1ξYi Xi = (CYY + εnI)−1Ĉ(n)

YX , it follows
from Proposition 2 in [4] that for all n ∈ N and 0 < η < 1

Pr

(∥
∥
∥
∥(CYY + εnI)−1Ĉ(n)

YX − (CYY + εnI)−1CYX

∥
∥
∥
∥

≥ 2

(
2a2

nεn
+

√
a2N(εn)

εnn

)

log
2

η

)

≤ η,

which proves the assertion. ��
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Proof of Theorem1.3.2 First, we have

∥
∥Ĉ(n)

XY (Ĉ(n)
YY + εnI)−1kY (·, y0) − E[kX (·, X)|Y = y0]

∥
∥
HX

≤ ∥
∥Ĉ(n)

XY (Ĉ(n)
YY + εnI)−1kY (·, y0) − CXY (CYY + εnI)−1kY (·, y0)‖HX (1.19)

+ ∥
∥CXY (CYY + εnI)−1kY (·, y0) − E[kX (·, X)|Y = y0]

∥
∥
HX

. (1.20)

Using the general formula A−1 − B−1 = A−1(B − A)B−1 for any invertible operators
A, B, the first term in the right-hand side of the above inequality is upper bounded by

∥
∥(Ĉ(n)

XY − CXY )(Ĉ(n)
YY + εnI)−1kY (·, y0)

∥
∥
HX

+ ∥
∥CXY (CYY + εnI)−1(CYY − Ĉ(n)

YY )(Ĉ(n)
YY + εnI)−1kY (·, y0)

∥
∥
HX

≤∥
∥(Ĉ(n)

XY − CXY )(Ĉ(n)
YY + εnI)−1

∥
∥

∥
∥kY (·, y0)

∥
∥
HY

+ 1√
εn

‖CXX‖1/2∥∥(Ĉ(n)
YY − CYY )(Ĉ(n)

YY + εnI)−1
∥
∥

∥
∥kY (·, y0)

∥
∥
HY

,

where in the second inequality the decomposition CXY = C1/2
XX WXY C1/2

YY with some
WXY : HY → HX (‖WXY‖ ≤ 1) [2] is used. It follows from Lemma 1.5.1 that

∥
∥Ĉ(n)

XY (Ĉ(n)
YY + εnI)−1kY (·, y0) − CXY (CYY + εnI)−1kY (·, y0)‖HX

= Op

(

ε−1/2
n

{
1

εnn
+

√
N(εn)

εnn

})

,

as n → ∞. It is known (Proposition 3, [4]) that, under the assumption on the decay
rate of the eigenvalues, N(ε) ≤ bβ

b−1ε
−1/b holds with some β ≥ 0. Since ε

−3/2
n n−1 �

ε
−1− 1

2b
n n−1/2 for b > 1 and nεn → ∞, we have

∥
∥Ĉ(n)

XY (Ĉ(n)
YY + εnI)−1kY (·, y0) − CXY (CYY + εnI)−1kY (·, y0)‖HX

= Op

(
ε

−1− 1
2b

n n−1/2
)

, (1.21)

as n → ∞.
For the second term of Eq. (1.19), letΘ := E[k(X, X̃)|Y = ·, Ỹ = ∗] ∈ R(CYY ⊗

CYY ). Note that for any ϕ ∈ HY we have

〈CXYϕ,CXYϕ〉 = E[k(X, X̃)ϕ(Y)ϕ(Ỹ)]
= E

[
E[k(X, X̃)|Y , Ỹ ]ϕ(Y)ϕ(Ỹ)

] = 〈(CYY ⊗ CYY )Θ, ϕ ⊗ ϕ〉HY ⊗HY .
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Similarly,

〈CXYϕ, E[k(·, X)|Y = y0]〉HX = 〈E[k(X, X̃)|Y = y0, Ỹ = ∗], CYYϕ〉HY

= 〈(I ⊗ CYY )Θ, k(·, y0) ⊗ ϕ〉HY ⊗HY .

It follows form these equalities with ϕ = (CYY + εnI)−1kY (·, y0) that

∥
∥CXY (CYY + εnI)−1kY (·, y0) − E[kX (·, X)|Y = y0]

∥
∥2
HX

= 〈{
(CYY + εnI)−1CYY ⊗ (CYY + εnI)−1CYY − I ⊗ (CYY + εnI)−1CYY

− (CYY + εnI)−1CYY ⊗ I + I ⊗ I
}
Θ, kY (·, y0) ⊗ kY (∗, y0)

〉
HY ⊗HY

.

From the assumption Θ ∈ R(CYY ⊗ CYY ), there is Ψ ∈ HY ⊗ HY such that Θ =
(CYY ⊗ CYY )Ψ . Let {φi } be the eigenvectors ofCYY with eigenvalues λ1 ≥ λ2 ≥ · · · 0.
Since the eigenvectors and eigenvalues of CYY ⊗ CYY are given by {φi ⊗ φ j }i j and
λiλ j , respectively, with the fact (CYY + εnI)−1C2

YYφi = (λ2
i /(1 + λi ))φi and Parse-

val’s theorem we have

∥
∥
{
(CYY + εnI)−1CYY ⊗ (CYY + εnI)−1CYY − I ⊗ (CYY + εnI)−1CYY

− (CYY + εnI)−1CYY ⊗ I + I ⊗ I
}
Θ

∥
∥2
HY ⊗HY

=
∑

i, j

{ λ2
i

λi + εn

λ2
j

λ j + εn
− λ2

i λ j

λi + εn
− λiλ

2
j

λ j + εn
+ λiλ j

}2〈φi ⊗ φ j , Ψ 〉2HX ⊗HX

= ε4n

∑

i, j

{ λiλ j

(λi + εn)(λ j + εn)

}2〈φi ⊗ φ j , Ψ 〉2HX ⊗HX
≤ ε4n‖Ψ ‖2HX ⊗HX

,

which shows

∥
∥CXY (CYY + εnI)−1kY (·, y0) − E[kX (·, X)|Y = y0]

∥
∥
HX

= O(εn). (1.22)

By balancing Eqs. (1.21) and (1.22), the assertion is obtained with εn = n−b/(4b+1).
��
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