
Chapter 2
An Overview of Recent Advances
in Monte-Carlo Methods for Bayesian
Filtering in High-Dimensional Spaces

François Septier and Gareth W. Peters

Abstract Nonlinear non-Gaussian state-space models arise in numerous applica-
tions in statistics and signal processing. In this context, one of the most success-
ful and popular approximation techniques is the sequential Monte-Carlo (SMC)
algorithm, also known as the particle filter. Nevertheless, this method tends to be
inefficient when applied to high-dimensional problems. In this chapter, we present,
an overview of recent contributions related to Monte-Carlo methods for sequential
simulation from ultra high-dimensional distributions, often arising for instance in
Bayesian applications.

2.1 Introduction

Inmany applications,we are interested in estimating a signal froma sequence of noisy
observations. Optimal filtering techniques for general nonlinear and non-Gaussian
state-space models are consequently of great interest. Except in a few special cases,
including linear and Gaussian state-space models (Kalman filter [26]) and hidden
finite-state space Markov chains [7], it is impossible to evaluate this filtering distri-
bution analytically. However, linear systems with Gaussian dynamics are generally
inappropriate for the accurate modeling of a dynamical system, since they fail to
account for the local nonlinearities in the state space or the dynamic changing nature
of the system which is under study. It is therefore increasingly common to consider
nonlinear or non-Gaussiandynamical systems. In the case of additiveGaussian errors,
one could adopt an Extended Kalman filter (EKF) or in the case of non-Gaussian
additive errors, an Unscented Kalman filter (UKF) [25].
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Since the 1990s, sequentialMonteCarlo (SMC) approaches have become a power-
ful methodology to cope with nonlinear and non-Gaussian problems [16]. In compar-
ison with standard approximation methods, such as the EKF, the principal advantage
of SMC methods is that they do not rely on any local linearization technique or any
crude functional approximation. These particle filtering (PF) methods [23], exploit
numerical representation techniques for approximating the filtering probability den-
sity function of inherently nonlinear non-Gaussian systems. Using these methods
for the empirical characterization of sequences of distributions and the resulting esti-
mators formed based on these empirical estimates can be set arbitrarily close to the
optimal solution at the expense of computational complexity.

However, due to their importance sampling-based design, classical SMC meth-
ods tend to be inefficient when applied to high-dimensional problems [36, 42].
This issue, known as the curse of dimensionality, has rendered traditional SMC
algorithms largely useless in high-dimensional applications such as multiple target
tracking, weather prediction, and oceanography. In this chapter, we aim at reviewing
recent developments in Monte-Carlo-based techniques that have been specifically
designed to deal with high-dimensional systems. The chapter is organized as fol-
lows. In Sect. 2.2, we describe the model and the different quantities of interest
in dynamic settings. Then, Sect. 2.3 discusses the general principle of SMC meth-
ods and their limitations in high-dimensional systems. Several recent developments
to improve their performance in this specific setting are then presented. Section2.4
describes another class of sequential inference algorithms based on the use ofMarkov
chainMonte-Carlomethods (SMCMC) as an alternative to SMCmethods.Numerical
results are shown in Sect. 2.6. Conclusions are given in Sect. 2.7.

2.2 Problem Formulation

A hidden Markov model (HMM) corresponds to a R
d -valued discrete-time Markov

process, {Xn}n≥1 that is not directly observable but we have only access to another
R

dy -valued discrete-time stochastic process, {Yn}n≥1, which is linked to the hidden
Markov process of interest. Owing to the Markovian property of the process, the
joint distribution of the process {Xn}n≥1,

p(x1:n) = μ(x1)
n∏

k=1

fk(xk |xk−1) (2.1)

is completely defined by an initial probability density function (pdf) μ(x1) and the
transition density function at any time k, denoted by fk(xk |xk−1).

In a HMM, the observed process {Yn}n≥1 is such that the conditional joint density
of Y1:n = y1:n given X1:n = x1:n has the following conditional independence (prod-
uct) form
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· · · Xn− 1 Xn Xn+ 1 · · ·

Yn− 1 Yn Yn+ 1

fn(·) fn+ 1(·)

gn− 1(·) gn(·) gn+ 1(·)

Fig. 2.1 Graphical representation of a hidden Markov model

p(y1:n|x1:n) =
n∏

k=1

gk(yk |xk). (2.2)

The dependence structure of an HMM can be represented by a graphical model
shown in Fig. 2.1.

Equations (2.1)–(2.2) define a Bayesian model where (2.1) defines the prior dis-
tribution of the “state” process of interest {Xn}n≥1 and (2.2) defines the likelihood
function of the conditional observations. One of the most common inference prob-
lems, known as optimal filtering, which occurs with HMMs is the estimation of the
current state value based upon the sequence of observations observed so far. Such
inference about Xn given a sequence of the observations Y1:n = y1:n relies upon the
posterior distribution,

p(x1:n|y1:n) = p(x1:n, y1:n)
p(y1:n)

= p(x1:n)p(y1:n|x1:n)
p(y1:n)

. (2.3)

This posterior distribution, known also as the smoothing distribution, satisfies the
following recursion

p(x1:n|y1:n) = gn(yn|xn) fn(xn|xn−1)

p(yn|y1:n−1)
p(x1:n−1|y1:n−1), (2.4)

where

p(yn|y1:n−1) =
∫

gn(yn|xn) fn(xn|xn−1)p(xn−1|y1:n−1)dxn−1:n . (2.5)

In the literature, this recursion is sometimes presented directly in terms of the
marginal posterior distribution, p(xn|y1:n), known as the filtering distribution:

p(xn|y1:n) = gn(yn|xn)p(xn|y1:n−1)

p(yn|y1:n−1)
, (2.6)
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with

p(xn|y1:n−1) =
∫

fn(xn|xn−1)p(xn−1|y1:n−1)dxn−1. (2.7)

However, most sequential Monte-Carlo-based algorithms rely on a numerical
approximation of recursion (2.4) instead of (2.6).

2.3 Sequential Monte-Carlo Methods

2.3.1 General Methodology

SMC methods have several variants sometimes appearing under the names of par-
ticle filtering or interacting particle systems, e.g. [10, 15, 37], and their theoretical
properties have been extensively studied in [8–10, 29].

The general context of a standard SMC method is that one wants to approximate
a (often naturally occurring) sequence of target probability density functions (pdf){
πn(x1:n)

}
n≥1 of increasing dimension, i.e. the support of every function in this

sequence is defined as supp
(
πn

) = R
dn and therefore the dimension of its support

forms an increasing sequence with n. We may also assume that πn is only known
up to a normalizing constant,

πn(x1:n) = γn(x1:n)
Zn

. (2.8)

SMC methods firstly provide an approximation of π1(x1) and an unbiased estimate
of Z1, then at the second iteration (“time step” 2) once a new observation is received,
an approximation of π2(x1:2) is formed as well as an unbiased estimate of Z2 and
this repeats with each distribution in the sequence.

Let us remark at this stage that SMC methods can be used for any sequence of
target distributions and therefore the application of SMC to optimal filtering, known
as particle filtering, is just a special case of this general methodology by choosing
γn(x1:n) = p(x1:n, y1:n) and Zn = p(y1:n).

Procedurally, we initialize the algorithm by sampling a set of N particles,{
X j
1

}N

j=1
, from the distribution π1 and set the normalized weights as W j

1 = 1/N ,

for all j = 1, . . . , N . If it is not possible to sample directly from π1, one should
sample from an importance distribution q1 and calculate its weights according to the
importance sampling principle, i.e. W j

1 ∝ π1(X j
1)/q1(X j

1). Then, the particles are
sequentially propagated thorough each distribution πt in the sequence via two main
processes: mutation and correction (incremental importance weighting). In the first
step (mutation), we propagate particles from time t − 1 to time t and in the second
one (correction) we calculate the new importance weights of the particles.
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This method can be seen as a sequence of importance sampling steps, where the
target distribution at each step n is πn(x1:n) and the importance distribution is given
by

qn(x1:n) = q1(x1)
n∏

k=2

qk(xk |x1:k−1), (2.9)

where qk(xk |x1:k−1) is the proposal distribution used to propagate particles from time
k − 1 to k. As a consequence, the unnormalized importance weights are computed
recursively by:

W (x1:n) = γn(x1:n)
qn(x1:n)

= γn−1(x1:n−1)

qn−1(x1:n−1)

γn(x1:n)
γn−1(x1:n−1)qn(xn|x1:n−1)

(2.10)

= W (x1:n−1)w̃(x1:n),

where w̃(x1:n) is known as the incremental importance weight. When SMC is applied
for the optimal filtering problem with γn(x1:n) = p(x1:n, y1:n), it is straightforward
to show by using the recursion of the smoothing distribution in Eq. (2.4) that the
incremental importance weight is given by:

w̃(x1:n) = γn(x1:n)
γn−1(x1:n−1)qn(xn|x1:n−1)

= gn(yn|xn) fn(xn|xn−1)

qn(xn|x1:n−1)
. (2.11)

At any time n, we obtain an approximation of the target distribution via the
empirical measure obtained by the collection of weighted samples, i.e.

π̂n(x1:n) =
N∑

j=1

W j
n δX j

1:n
(dx1:n), (2.12)

where W j
n is the normalized importance weights such that

∑N
j=1 W j

n = 1. Moreover,
an unbiased estimate of the ratio of two successive normalizing constants is also
provided as follows:

Ẑn

Zn−1
=

N∑

j=1

W j
n−1w̃(X j

1:n). (2.13)

The algorithm described above is known as the Sequential Importance Sampling
(SIS) algorithm. However, direct importance sampling on a very large space is rarely
efficient as the importance weights exhibit very high variance. As a consequence, SIS
will provide estimates whose variance increases exponentially with time n. Indeed,
after only a few iterations, all but a few particles will have negligible weights thus
leading to the phenomena known as weight degeneracy. A well-known criterion to
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quantify in an online manner this degeneracy is the effective sample size defined as
follows:

ESSn = 1
∑N

j=1

(
W i

n

)2 (2.14)

with 1 ≤ ESSn ≤ N . In order to overcome this degeneracy problem, a resampling
step is thus added in the basic algorithm when the effective sample size drops below
some threshold, which as a rough guide is typically in the range of 30–60% of the
total number of particles. The purpose of resampling is to reduce this degeneracy by
eliminating samples which have low importance weights and duplicating samples
with large importance weights [15]. It is quite obvious that when one is interested
in the filtering distribution p(xn|y1:n), performing a resampling step at the previous
time step will lead to a better level of sample diversity as those particles which
were already extremely improbable at time n − 1 are likely to have been eliminated
and those which remain have a better chance of representing the situation at time
n accurately. Unfortunately, when the smoothing distribution is really the quantity
of interest, it is more problematic since the resampling mechanism eliminates some
trajectories with every iteration, thus leading to problem known as path or sample
degeneracy. Indeed, resampling will reduce at every iteration the number of distinct
samples representing the first time instant of the hidden Markov process. Since in
filtering applications, one is generally only interested in the final filtering posterior
distribution, this resampling step is widely used in practice at the expense of further
diminishing the quality of the path samples. Some strategy that will be discussed in
Sect. 2.3.3.1 is generally employed in practice to increase the diversity of the samples.

This SMC algorithm which incorporates a resampling step is often referred to
as Sequential Importance Resampling (SIR) or Sequential Importance Sampling
and Resampling (SIS-R). This approach applied for filtering is summarized in
Algorithm1. By assuming that the cost of computing the product of the prior and the
likelihood distribution isO(d) (i.e., a function of the dimension of the hidden state),
the cost of the general SMC algorithm is O(nNd).

2.3.2 Limitations of SMC Methods

In this section, wewill discuss the limitations of SMCmethods when applied to high-
dimensional problems. The main reason why the SIR algorithm performs poorly
when the model dimension is high is essentially the same reason why the SIS algo-
rithm behaves badly when the time-horizon is large, and it has to do with the fact that
the importance sampling paradigm is typically very inefficient in high-dimensional
models. As discussed previously, the SIS algorithm is designed to approximate the
smoothing distribution p(x1:n|y1:n), weight degeneracy occurs as n increases since
the dimension of this target distribution increases with time. Now, if the hidden
Markov process is high-dimensional, weight degeneracy will occur as the dimension
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Algorithm 1 SMC algorithm for optimal filtering
1: if time n = 1 then
2: Sample X j

1 ∼ q1(x1), ∀ j = 1, . . . , N

3: Calculate the weights W j
1 ∝ g1(Y1|X j

1 )μ(X j
1 )

q1(X ( j)
1 )

, ∀ j = 1, . . . , N

4: else if time n ≥ 2 then
5: Sample X j

n ∼ qn(xn |X j
1:n−1) and set X j

1:n := (X j
1:n−1, X j

n ), ∀ j = 1, . . . , N

6: Calculate the weights W j
n ∝ W j

n−1

gn(Yn |X j
n ) fn(X j

n |X j
n−1)

qn(X j
n |X j

1:n−1)
, ∀ j = 1, . . . , N

7: end if
8: if E SSn < � then
9: Resample

{
W j

n , X j
1:n

}
to obtain N equally weighted particles

{
W j

n = 1/N , X j
1:n

}

10: end if
11: Output: Approximation of the smoothing distribution via the following empirical measure:

π(x1:n) ≈
N∑

j=1

W j
n δ

X j
1:n

(dx1:n)

of this process increases. As a consequence, this degeneracy is seen even in a single
iteration of the algorithm. In [4, 42], a careful analysis shows that the collapse phe-
nomenon occurs unless the sample size N is taken to be exponential in the dimension,
which provides a rigorous statement of the curse of dimensionality. Let us remark
that a similar weight degeneracy phenomena could be observed in SMC, even in low
dimensional models, when for example the noise driving both the dynamics and the
observation has very small variance.

The performance of the SMC strongly depends on the choice of the importance
distribution. In the literature, the “optimal” proposal distribution in the sense of
minimizing the variance of the importance weights is defined as:

qn(xn|xn−1) = πn(xn|x1:n−1)

= p(xn|yn, xn−1) (in HMM filtering problems) (2.15)

which leads to the following incremental weight w̃(x1:n) = p(yn|xn−1) whose vari-
ance conditional upon x1:n−1 is zero since it is independent of xn . Unfortunately,
in many scenarios, it is impossible to sample from this “optimal” distribution.
Many techniques have been proposed to design “efficient” importance distributions
qn(xn|xn−1) which approximate p(xn|yn, xn−1). In particular, approximations based
on the Extended Kalman Filter or the Unscented Kalman Filter to obtain importance
distributions are very popular in the literature [6].

While the practical performance of the SIR algorithm can be largely improved by
working with importance distributions that are tailored to the specific model being
investigated, the benefit is limited to reducing the constants sitting in front of the error
bounds, and this technique does not provide a fundamental solution to the curse of
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dimensionality [35, 41]. When the optimal importance distribution is used, the curse
of dimensionality would indeed still arise due to the recursive nature of the filtering
problem.

In the next section, we will describe several strategies that have been proposed
in order to improve the performance of standard particle filter in high-dimensional
systems.

2.3.3 SMC Strategies for High-Dimensional Systems

2.3.3.1 MCMC Moves and the Use of Bridging Densities

The use of Markov Chain Monte-Carlo (MCMC) algorithms within SMC methods
is a well-known strategy to improve the filter performance. As discussed previously,
repeated resampling stages progressively impoverish the set of particles, by decreas-
ing the number of distinct values represented in that set. This degeneracy problem
has historically been addressed using the resample-move algorithm [20] which con-
sists in applying one or more times after the resampling stage an MCMC transition
kernel,Kn(x1:n, x ′

1:n), such as a Gibbs sampler or Metropolis–Hastings scheme [38],
having π(x1:n) as its stationary distribution which means that the following property
holds: ∫

π(x1:n)Kn(x1:n, x ′
1:n)dx1:n = π(x ′

1:n). (2.16)

As a consequence, if the particles X j
1:n are truly drawn from π(x1:n), then theMarkov

kernel applied to any of the particles will simply generate new state sequences which
are also drawn from the desired distribution. Moreover, even if the particles are not
accurately drawn from π(x1:n), the use of such Markov transition kernel will move
the particles so that their distribution is closer to the target one (in total variation
norm). The use of such MCMC moves can therefore be very effective in reducing
the path degeneracy as well as in improving the accuracy of the empirical measure of
the posterior distribution. In practice for filtering problems, in order to keep a truly
online algorithm with a computational cost linear in time, the Markov transition
kernels will not operate on the entire state history, but rather on some fixed time lag
L by only updating the variables Xn−L+1:n .

An interesting generalization of the combination of SMC and MCMC has been
proposed in [21] in which the authors propose to introduce a sequence of bridging
densities between the initial sampling distribution (generally, the predictive posterior
distribution, i.e., p(x0:n|y0:n−1)) and the posterior at time n. By introducing gradu-
ally the effect of the likelihood function, the MCMC sampler is thus expected to
converge faster, especially when the likelihood for the new data point is centered far
from the points sampled from the importance distribution. As a consequence, such
strategy could be more effective than standard SMC techniques in high-dimensional
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problems. More specifically, the following sequence of M ≥ 1 bridging densities is
introduced at time n:

πm(x1:n) ∝ p(x1:n−1|y1:n−1) fn(xn|xn−1)gn(yn|xn)
αm (2.17)

with 0 ≤ α1 < · · · < αM = 1. In order to move the particles through this sequence
of bridging densities, the authors propose to use the framework of the annealed
importance sampling [33] (or its generalization the sequential Monte-Carlo sampler
[11, 34]). At time n, the particles are first propagated like in the standard SMC
methods using an importance distribution, qn(xn|x1:n−1), and let us denote them by
X j
0:n,0 and set W j

n,0 = W j
n−1 and π0(x1:n) = qn(xn|x1:n−1)π(x1:n−1). Then, at step

m = 1, . . . , M , the importance weights are computed as follows:

W j
n,m ∝ W j

n,m−1

πm(X j
1:n,m−1)

πm−1(x j
1:n,m−1)

. (2.18)

Then, a resampling step can be performed if the weights are too degenerate. Finally,
each particle is moved independently to obtain X j

1:n,m using a Markov transition

kernel, Km(x j
1:n,m−1, ·) having πm(x1:n) as stationary distribution. After the M

steps, a set of weighted samples from the posterior distribution π(x0:n) is therefore
obtained by setting

{
W j

n , X j
0:n

}
=

{
W j

n,M , X j
0:n,M

}
. The algorithm is summarized in

Algorithm2 and its cost is O(nN Md) by assuming that the cost of computing the
product of the prior and the likelihood distribution is O(d) as well as the MCMC
kernel used. Let us notice that the resample-move algorithm [20] is a special case
when M = 1 and also that this scheme is similar to some strategies known as annealed
particle filtering [12, 17].

2.3.3.2 Local SMC Methods or Block Particle Filter

The underlying idea of these local SMC methods is to partition the state space
into separate subspaces of small dimensions and run one SMC algorithm on each
subspace. Such strategies have been developed in [13, 14, 32, 36]. Generally, the
common assumption used in these approaches is that there exists an ensemble of
disjoint sets

{
Dn, j

}Bn

j=1 with ∪Bn
j=1Dn, j = {1 : d} and Dn, j ∩ Dn,i = ∅ for i �= j , for

some integer 0 < Bn ≤ d, such that we can factorize:

gn(yn|xn) fn(xn|xn−1) =
Bn∏

j=1

αn, j (yn, xn−1, xn(Dn, j )), (2.19)

for appropriate functions αn, j (·), where xn(D) = {xn( j) : j ∈ D} ∈ R
|D| (Fig. 2.2).

By running an SMC algorithm on each nonoverlapping subset, the filtering dis-
tribution of interest is therefore approximated at the end of each iteration as follows:
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Algorithm 2 SMC algorithm with Bridging densities for optimal filtering
Ensure: n ≥ 2
1: Sample X j

n,0 ∼ qn(xn |X j
1:n−1) and set X j

1:n,0 := (X j
1:n−1, X j

n,0), ∀ j = 1, . . . , N

2: Set W j
n,0 = W j

n−1, ∀ j = 1, . . . , N and define π0(x1:n) = qn(xn |x1:n−1)π(x1:n−1)

3: for m = 1, . . . , M do

4: Calculate the weights W j
n,m ∝ W j

n,m−1

πm(X j
1:n,m−1)

πm−1(x j
1:n,m−1)

, ∀ j = 1, . . . , N

5: if E SSn < � then
6: Resample

{
W j

n,m , X j
1:n,m−1

}
to obtain N equally weighted particles

{
W j

n,m = 1/N , X j
1:n,m−1

}

7: end if
8: Sample X j

1:n,m ∼ Km(X j
1:n,m−1, x1:n), ∀ j = 1, . . . , N using Km(·) a Markov kernel having

πm(·) as its stationary distribution.
9: end for
10: Set

{
W j

n , X j
1:n

}
=

{
W j

n,M , X j
1:n,M

}
, ∀ j = 1, . . . , N

11: Output: Approximation of the smoothing distribution via the following empirical measure:

π(x1:n) ≈
N∑

j=1

W j
n δ

X j
1:n

(dx1:n)

Yn− 1(i+ 1) Yn(i+ 1) Yn+ 1(i+ 1)

Yn− 1(i) Yn(i) Yn+ 1(i)

Yn− 1(i− 1) Yn(i− 1) Yn+ 1(i− 1)

· · · Xn− 1(i+ 1) Xn(i+ 1) Xn+ 1(i+ 1) · · ·

· · · Xn− 1(i) Xn(i) Xn+ 1(i) · · ·

· · · Xn− 1(i− 1) Xn(i− 1) Xn+ 1(i− 1) · · ·dimension

time

Fig. 2.2 Graphical representation of a hidden Markov model that satisfies an example of a factor-
ization in Eq. (2.19)

π(xn) ≈
Bn⊗

j=1

π(xn(Dn, j )). (2.20)

The local SMC method, summarized in Algorithm3, is well suited to distributed
computation as the particles weights are computed locally due to the factorization
described in Eq. (2.19). However, this strategy introduces some bias in the algorithm,
so that the estimates given by the local SMC method do not converge to the exact
filter distributions as the number of particles N goes to infinity. However, the hope
is that by introducing a small amount of bias in the algorithm, its variance can be
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reduced significantly since the Bn SMC algorithms are running on smaller dimen-
sion, i.e., |Dn, j | ≤ d for j = 1, . . . , Bn . Moreover, the local error induced by the
approximation of the target distribution as the product of marginals of the nonover-
lapping subset is spatially inhomogeneous, i.e., the error will be larger for elements
in xn closer to subset boundaries. The computational cost of the local particle filter
is O(nNd) by assuming that the cost of computing the product of the prior and
likelihood distribution is O(d) (or equivalently that the cost of computing αn, j is
O(|Dn, j |) for each n and j).

Algorithm 3 Local SMC algorithm
1: if time n = 1 then
2: Sample X j

1 (D1,i ) ∼ q1(x1(D1,i )), ∀ j = 1, . . . , N and ∀i = 1, . . . , B1

3: Calculate the weights W j
1,i ∝ α1,i (Y1, X j

1 (D1,i ))

q1(X j
1 (D1,i ))

, ∀ j = 1, . . . , N and ∀i = 1, . . . , B1

4: else if time n ≥ 2 then
5: Sample X j

n−1 from π̂(xn−1) for j = 1, . . . , N

6: Sample X j
n (Dn,i ) ∼ qn(xn(Dn,i )|X j

n−1) ∀ j = 1, . . . , N and ∀i = 1, . . . , Bn

7: Calculate theweightsW j
n,i ∝ αn,i (Yn, X j

n−1, X j
n (Dn,i ))

qn(X j
n (Dn,i )|X j

n−1)
,∀ j = 1, . . . , N and∀i = 1, . . . , Bn

8: end if
9: Output: Approximation of the filtering distribution via the following empirical measure:

π̂(xn) =
Bn⊗

i=1

N∑

j=1

W j
n,i δX j

n (Dn,i )
(dxn(Dn,i ))

2.3.3.3 Space-Time Particle Filter

The space–time Particle filter (STPF) has been recently proposed in [3]. As in both
previous approaches described in Sects. 2.3.3.1 and2.3.3.2, the idea is to have a
gradual introduction of the likelihood gn(yn|xn) into the successive steps of the
algorithm in order to decrease the variance of the importance weights which is the
main reason of the collapse of the SMC methods in high-dimensional systems. In
this work, the authors assume there exists an increasing sequence of sets

{
An, j

}Bn

j=1
with An,1 ⊂ An,2 ⊂ . . . ⊂ An,Bn = {1 : d}, for some integer 0 < Bn ≤ d, such that
we can factorize:

gn(yn|xn) fn(xn|xn−1) =
Bn∏

j=1

αn, j (yn, xn−1, xn(An, j )) (2.21)

for appropriate functions αn, j (·), where xn(A) = {xn( j) : j ∈ A} ∈ R
|A|. Let us

remark that the assumption required for this factorization is weaker than the one
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described in Eq. (2.19) for the local SMCmethods since some dependencies between
elements of xn from different subsets given xn−1 are allowed. As discussed by the
authors in their paper, this factorization is not a requirement but in such cases the
performance of the filter will be degraded as additional sampling and reweighting
steps are necessary.

The underlying idea of the STPF is to exploit the structure in Eq. (2.21) to design a
particle filter moving along both the space and time index (as opposed to traditional
particle filter that moves only along the time index). This approach can also be
viewed as a generalization of the particle island particle filter proposed in [43] since
the STPF combines a local filter running Bn space-step using M particles with a
global particle filter making time steps using N particles. The authors show that
this algorithm is asymptotically consistent and has a subexponential cost in d. Since
the local particle filters are running along the space dimension, a patch degeneracy
(on the space dimension) effect can be expected as the dimension of the system
increases. The authors describe different strategies based on MCMC rejuvenation
that could be employed to improve the performance of the algorithm at the expense
of additional cost. The algorithm is summarized in Algorithm4 and its computational
cost isO(nN Md) by assuming that the cost of computing αn, j isO(|An, j |) for each
n and j . More specifically, the authors present results that, in 1) an i.i.d. scenario
both in time and space and 2) aMarkovian model along space, the algorithm is stable
by setting the number of particles in the local systems equal to the dimension of the
system (i.e., M = d), thus leading in that case to a cost of O(nNd2).

2.4 Sequential Markov Chain Monte Carlo

In this section, another class of sequential Bayesian algorithm based onMCMC sam-
pling (unlike importance sampling as in the previous section) is described. MCMC
methods are generally more effective than importance sampling techniques in high-
dimensional spaces. Their traditional formulation, however, allows sampling from
probability distributions in a nonsequential fashion. Recently, advanced sequential
MCMC schemes were proposed in [2, 5, 22, 27, 40] for solving online filtering
inference problems. These approaches are distinct from the technique described
previously in Sect. 2.3.3.1 where the MCMC algorithm is used to move samples fol-
lowing importance sampling resampling since these sequential MCMC use neither
resampling nor importance sampling.

2.4.1 General Principle

Several sequential MCMC (SMCMC) methods have been proposed in the litera-
ture recently. In this section, we will describe a general framework that include
all of them. The underlying idea of all these SMCMC approaches is to perform a
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Algorithm 4 Space-Time Particle Filter
1: Define the subset Ωi = A1,i \ A1,i−1
2: if time n = 1 then
3: for j = 1, . . . , N do
4: for i = 1, . . . , B1 do
5: Sample X j,l

1 (Ωi ) ∼ q1(x1(Ωi )|X j,l
1 (A1,i−1)), ∀l = 1, . . . , M

6: Set X j,l
1 (Ai ) =

[
X j,l
1 (A1,i−1) X j,l

1 (Ωi )
]

7: Calculate the weights w j,l
i = α1,i (y1, ·, X j,l

1 (A1,i ))

q1(X j,l
1 (Ωi )|X j,l

1 (A1,i−1))
, ∀l = 1, . . . , M

8: Resample local particles
{

X j,l
1 (A1,i )

}M

l=1
according to their normalized weights

{
w j,l

i

[∑M
k=1 w j,k

i

]−1
}M

l=1
9: end for
10: end for

11: Resample the N -particle systems, i.e.,
{

X j,1:M
1

}N

j=1
, according to their weights defined as:

W j
1 ∝

B1∏

i=1

1

M

M∑

l=1

w j,l
i

12: else if time n ≥ 2 then
13: for j = 1, . . . , N do
14: for i = 1, . . . , Bn do
15: Sample X j,l

n (Ωi ) ∼ q1(xn(Ωi )|X j,l
n (An,i−1), X j,l

n−1), ∀l = 1, . . . , M

16: Set X j,l
n (An,i ) =

[
X j,l

n (An,i−1) X j,l
n (Ωi )

]

17: Calculate the weights w j,l
i = αn,i (yn, X j,l

n−1, X j,l
n (An,i ))

qn(X j,l
n (Ωi )|X j,l

n (An,i−1), X j,l
n−1)

, ∀l = 1, . . . , M

18: Resample local particles
{

X j,l
n−1, X j,l

n (An,i )
}M

l=1
according to their normalized weights

{
w j,l

i

[∑M
k=1 w j,k

i

]−1
}M

l=1
19: end for
20: end for

21: Resample the N -particle systems, i.e.,
{

X j,1:M
1:n

}N

j=1
, according to their weights defined as:

W j
n ∝

Bn∏

i=1

1

M

M∑

l=1

w j,l
i

22: end if
23: Output: Approximation of the filtering distribution via the following empirical measure:

π(xn) ≈ 1

N M

N∑

j=1

M∑

l=1

δ
X j,l

n
(dxn)
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Metropolis–Hastings (MH) accept-rejection step as a correction for having used a
proposal distribution to sample the current state in order to approximate the poste-
rior target distribution as opposed to SMC methods that use a correction based on
Importance sampling.

At time step n, the target distribution of interest to be sampled from is

p(x1:n|y1:n)︸ ︷︷ ︸
πn(x1:n)

∝ gn(yn|xn) fn(xn|xn−1) p(x1:n−1|y1:n−1)︸ ︷︷ ︸
πn−1(x1:n−1)

. (2.22)

Unfortunately, it is impossible to sample from p(x1:n−1|y1:n−1) since this distribution
is analytically intractable. The key idea of all existing SMCMCmethods is therefore
to replace p(x1:n−1|y1:n−1) by an empirical approximation obtained from previous
iterations of the algorithm. The target distribution of interest at time step n is therefore
defined as:

πn(x1:n) ∝ gn(yn|xn) fn(xn|xn−1)π̂
i
n−1(x1:n−1), (2.23)

with

π̂ i
n−1(x1:n−1) = 1

i − Nb

i∑

m=Nb+1

δXm
n−1,1:n−1

(dx1:n−1), (2.24)

where
{

Xm
n−1,1:n−1

}i

m=1
corresponds to the i samples of the (n − 1)th Markov chain,

whose distribution is πn−1(x1:n−1) as defined in Eq. (2.23) that has been generated
until the current iteration of the MCMC at time step n (Nb represents the length
of the burn-in period). By using this empirical approximation of the previous tar-
get distribution, an MCMC kernel can be employed in order to obtain a Markov
chain, denoted by

(
X1

n,1:n, X2
n,1:n, . . .

)
, with stationary distributionπn(x1:n) as defined

Eq. (2.23).
As summarized in Algorithm5, the SMCMC proceeds as follows. At time step

n = 1, an MCMC kernel K1 of invariant distribution π1(x1) ∝ g1(y1|x1)μ(x1) is

employed to generate a Markov chain denoted by
(

X1
1,1, . . . , X N+Nb

1,1

)
. At time step

n, the N + Nb iterations of the SMCMC aims at producing a Markov chain, denoted

by
(

X1
n,1:n, . . . , X N+Nb

n,1:n
)
, by using an MCMC kernel Kn of invariant distribution

πn(x1:n) as defined in Eq. (2.23). Moreover, samples can be added to the previous
L Markov chains, i.e., Xn−L ,1:n−L with L > 1, in order to improve the empirical
approximation π̂n−1(x1:n−1) required in the posterior distribution of interest at time
step n. Once the nth Markov chain has been generated, the last N are extracted to
obtain the empirical approximation of the filtering distribution:

p(xn|y1:n) ≈ 1

N

N+Nb∑

m=Nb+1

δXm
n,n

(dxn). (2.25)
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By assuming that the computation of the product of likelihood and prior as well
as the MCMC kernel used is O(d), the cost of this algorithm is O(nL Nd) since the
length of the burn-in period is generally considered to be a percentage of the useful
samples, i.e., Nb = βN with 0 ≤ β ≤ 1.

Algorithm 5 Generic Sequential MCMC algorithm for optimal filtering
1: Initialization {in}n≥0 = 0
2: if time n = 1 then
3: for j = 1, . . . , N + Nb do
4: Set i1 = i1 + 1
5: Sample Xi1

1,1 ∼ K1(xi1−1
1 , ·) with K1 an MCMC kernel of invariant distribution π1(x1) ∝

g1(y1|x1)μ(x1).
6: end for
7: else if time n ≥ 2 then
8: for j = 1, . . . , N + Nb do
9: for k = max(1, n − L + 1), . . . , n do
10: Set ik = ik + 1
11: Sample Xik

k,1:k ∼ K
(ik−1)

k (Xik−1
k,1:k , ·) with K

(ik−1)

k an MCMC kernel of invariant distrib-

ution π
(ik−1)

k given by:

π
(ik−1)

k (x1:k) ∝ gk(yk |xk) fk(xk |xk−1)π̂
(ik−1)

k−1 (x1:k−1)

with π̂
ik−1
k−1 being the empirical measure obtained using previous samples, i.e.

π̂
(ik−1)

k−1 (x1:k−1) = 1

ik−1 − Nb

ik−1∑

m=Nb+1

δXm
k−1,1:k−1

(dx1:k−1)

12: end for
13: end for
14: end if
15: Output: Approximation of the smoothing distribution with the following empirical measure:

π(xn) ≈ 1

N

N+Nb∑

j=Nb+1

δ
X j

n,1:n
(dx1:n)

2.4.2 Algorithm Settings

The overall performance of the SMCMC algorithm applied to optimal filtering
depends heavily upon the choice of the MCMC kernel. One of the attractive fea-
tures of this SMCMC is to be able to employ all the different MCMC methods
that have been proposed in the scientific literature. In practical implementation of
the SMCMC and more especially for high-dimensional systems, composite kernel
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based on joint and conditional draws are generally very efficient [40]. Summarized
in Algorithm6, such a composite kernel is based on the following two main steps:

1. A joint draw in which a Metropolis–Hastings sampler is used to update all the
path of states corresponding to x1:n

2. A refinement step inwhich previous history x1:n−1 and current state xn are updated
successively. Moreover, if xn is high-dimensional, an efficient way to update it
consists in firstly dividing its space into P disjoint subsets and update them
successively either via a random scan or a deterministic scan using a series of
block MH-within—Gibbs steps.

The cost of this MCMC kernel is O(d) if a factorization such as the one defined in
Eq. (2.21) is valid.

As a comparison, Berzuini et al. [2] made only use of the individual refinement
step described above (with L = 1 in Algorithm5). This can potentially lead to poor
mixing in high-dimensional problems due to the highly disjoint predictive density of
the particle representation. On the other hand, Golightly and Wilkinson [22] made
use of only the joint draw to move the MCMC chain. This can potentially reduce
the effectiveness of the MCMC as refinement moves are not employed to explore
the structured probabilistic space which is very challenging in high-dimensional
systems. Indeed, it could be difficult to design a proposal distribution for the joint
draw that does not lead to low acceptance rate. In [5], the authors propose a general
framework of SMCMCwith the possibility of updating previousMarkov chains (i.e.,
L > 1 in Algorithm5). An independent Metropolis–Hastings sampler as MCMC
kernel is employed. By doing so, the ratio of the normalizing constant Zn/Zn−1

can be easily estimated but it could be difficult to design the independent proposal
distribution leading to satisfactory performance. Finally, in [39], the authors proposed
to incorporate several attractive features of population-based MCMC methods [19,
31] such as genetic moves and simulated annealing in order to improve the mixing
of the Markov chain in complex scenarios.

2.5 Assessing Local and Global Sample Effective Sample
Size and SMCMC Convergence Diagnostics

Each of the discussed algorithms: SMC with MCMC moves; local SMC; Space–
Time SMC; and sequential MCMC will have different features with regard to the
effective sample size produced and even how one may consider the effective sample
size under each class of algorithm requires further consideration. In this section,
we provide a brief overview of two aspects, firstly how to determine the number of
independent samples present in the resulting set of samples or particles. Then, we
also discuss some convergence diagnostics in standard MCMC that may be adapted
for the setting of SMCMC to adaptively modify the past “population”MCMC chains
in the sequence.
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Algorithm 6 Example of an MCMC Kernel (in−1)
n (Xin−1

n,1:n , ·) for the SMCMC

1: Joint Draw
2: Propose {X∗

n,1:n} ∼ q1(x1:n|Xin−1
n,1:n )

3: Compute the MH acceptance probability ρ1 =min

⎛
⎝1,

π(in−1)
n (X∗

n,1:n)

q1(X∗
n,1:n|Xin−1

n,1:n )

q1(X
in−1
n,1:n |X∗

n,1:n)

π(in−1)
n (Xin−1

n,1:n )

⎞
⎠

4: Accept Xin
n,1:n = X∗

n,1:n with probability ρ1 otherwise set Xin
n,1:n = Xin−1

n,1:n
5: Refinement

6: Propose {X∗
n,1:n−1} ∼ qR,1(x1:n−1|Xin

n,1:n)
7: Compute the MH acceptance probability ρR,1 =

min

⎛
⎝1,

π(in−1)
n (X∗

n,1:n−1,X
in
n,n)

qR,1(X∗
n,1:n−1|Xin

n,1:n)

qR,1(X
in
n,1:n−1|X∗

n,1:n−1,X
in
n )

π(in−1)
n (Xin

n,1:n)

⎞
⎠

8: Accept Xin
n,1:n−1 = X∗

,1:n−1 with probability ρR,1.

9: Randomly divide xn into P disjoint blocks {Ωp}Pp=1 such that p Ωp = {1 : d}
10: for p = 1, . . . ,P do
11: Propose {X∗

n,n(Ωp)} ∼ qR,p(xn(Ωp)|Xin
n,1:n)

12: Compute the MH acceptance probability ρR,p =

min

⎛
⎝1,

π(in−1)
n (X∗

n,n(Ωp),Xin
n,n(Rd \Ωp),X

in
n,1:n−1)

qR,p(X∗
n,n(Ωp)|Xin

n,1:n)

qR,p(Xin
n,n(Ωp)|X∗

n,n(Ωp),Xin
n,n(Rd \Ωp),X

in
n,1:n−1)

π(in−1)
n (Xin

n,1:n)

⎞
⎠

13: Accept Xin
n,n(Ωp) = X∗

n,n(Ωp) with probability ρR,p

14: end for

2.5.1 Assessing Local and Global Sample Effective Sample
Size for SMCMC

We start by briefly recalling the properties of effective sample size in the standard
markov chain setting before talking about these in the context of the three classes of
algorithms we consider in the high-dimensional state space models discussed in this
chapter.

In general for a correlated time series one may define the effective sample size
which goes back to early studies such as those by [30] who studies the time between
effectively independent samples or the reciprocal effective number of independent
samples in a time span which is often referred to as the effective sample size (ESS). A
simple definition of such a quantity is to equate the ensemble mean square of a time-
averaged mean denoted by σ 2

X
which is based on the autocovariance function (acf)

to the standard formula for the variance of the mean of independent samples. The
solution to the number of independent samples is one measure of ESS. To proceed
consider the N values from a time series X1, . . . , X N of a stationary stochastic
process with variance σ 2, then one can write the ensemble mean as follows (see [1])
with respect to the mean μ and symmetric covariance between observations lagged
by a time interval τ denoted C(τ ) and corresponding lag-correlation function ρ(τ)

according to:
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σ 2
X

= 1

N

N∑

i, j

〈
(Xi − μ)(X j − μ)

〉 = 1

N 2

N∑

i, j

C(i − j)

= 1

N 2

(N−1)∑

τ=−(N−1)

[N − |τ |]C(τ ) (2.26)

= σ2

N

(N−1)∑

τ=−(N−1)

[
1 − |τ |

N

]
ρ(τ).

If one then considers the independence case with N ′ samples then one would have
had the variance of the sample mean given instead by σ 2/N ′, by equating these one
obtains the effective sample size

N ′ = σ 2

σ 2
X

= N

⎡

⎣
(N−1)∑

τ=−(N−1)

[
1 − |τ |

N

]
ρ(τ)

⎤

⎦
−1

. (2.27)

Therefore, such an estimator is typically used for standard MCMC settings where
the ESS is defined for a MCMC sample of size N by

ESSMCMC = N

1 + 2
∑∞

k=1 ρk
. (2.28)

In the context of Markov chain Monte-Carlo methods, this framework can be
adopted to study the asymptotic variance of the mean of a Markov chain, with
respect to a bounded and integrable test function generically denoted by ϕ, under
the central limit theorem. In this case, one can state the following results. Let
X = {Xi : i = 0, 1, 2, . . .} be a Harris ergodic Markov chain on a general space χ

with invariant probability distribution π having support χ . Let ϕ be a Borel function
and define ϕT := 1

T

∑T
i=1 ϕ (Xi ) andEπ [ϕ] := ∫

χ
ϕ(x)π(dx). WhenEπ [|ϕ|] < ∞

the ergodic theorem guarantees that ϕT → Eπ [ϕ] with probability 1 as T → ∞. The
conditions on the Markov chain for this convergence result to hold are stated for a
range of MCMCmethods in [24] and the following general CLT result applies under
these different conditions:

√
T (ϕT − Eπ [ϕ])

d→ N (0, σ 2
ϕ ). (2.29)

Here, the asymptotic variance of the estimated mean of a test function ϕ is given by
the finite variance given by

σ 2
ϕ := Varπ [ϕ(X0)] + 2

∞∑

i=1

Covπ [ϕ(X0), ϕ(Xi )] . (2.30)
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Fig. 2.3 SMCMC sampler construction

If one selects ϕ(X) = X and applies a truncation to the number of Markov chain
samples to N , then after renormalization, this is exactly the expression obtained in
Eq. (2.26). This is the typical framework used to understand effective sample size
and also it acts as a core ingredient in the derivation of the convergence diagnostics
for MCMC samplers. In the following, we will explain how to adapt this classical
MCMC ESS framework to the case of the SMCMC setting.

In the SMCMC setting, we are sampling sequentially the target distribution
sequence {πn}n∈N via a sequenceofMarkov chains constructed through aMetropolis–
Hastings accept reject framework, however, the sequence of chains are constructed
based on the previous sequence path-space genealogies. To understand this we refer
to Fig. 2.3 where the blue “particle” trajectories correspond to the previously sam-
pled path-space genealogies for the SMCMC algorithm that comprise the empirical
measure π̂n−1 (x1:n−1) for the construction of the sampler at targetπn . The blue trajec-
tories are the previously accepted sequences ofMarkov chain samples that have been
accepted, so that at iteration n we would randomly (with replacement) draw a trajec-
tory path, then construct conditionally on this path a new state sample denoted in red
which would be accepted or rejected based on a Metropolis–Hastings accept reject
mechanism. We will refer to the previous genealogical paths used in the proposal at
time n by the set of path-space branches χn (in blue).

We can see from this representation that one needs to develop an effective sample
size criterion for the SMCMC algorithm that would adequately reflect the effect of
the geneological path-space behaviour used to construct the sequence of distributions
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sampled. To achieve this we consider propose the forward and backward SMCMC
effective sample size criterions.

Definition 1 (Forward Efficiency of SMCMC)Consider the path-space genealogyχn

at distribution sequence iteration n, the conditional forward efficiency ηn ∈ [0.1] of
the algorithm having sampled N MCMC iterations is given, for a bounded integrable
test function ϕ by

ηn(ϕ;χn) := Var
(
ϕi.i.d.

N ′ |χn
)

Var
(
ϕN |χn

)

= 1

1 + 2
∑∞

k=1 ρk(χn)
(2.31)

where ρk(χn) denotes the autocorrelation which is implicitly dependent on the gene-
ological path-space χn , ϕN is the mean estimated from N correlatedMCMC samples
from πn(dx1:n|χn) = πn(dxn|χn)π̂

N (dx1:n−1) and ϕi.i.d.
N ′ is the estimator for the opti-

mal case of i.i.d. samples from πn(dx1:n|χn) with N ′ ≤ N .

For this forward measure of efficiency of the SMCMC algorithm, which can be
computed online for each target distribution πn one can approximate this efficiency
measure by the estimator given by first constructing from the N correlated MCMC
samples ϕi := ϕ(Xi

n,1:n) the autocoviariance function

γ̂ϕ(k;χn) = 1

N

N−|k|∑

i=1

(
ϕi+|k| − ϕN

) (
ϕi − ϕN

)
, −N < k < N . (2.32)

This would then lead to the estimator for the autocorrelations given by

ρ̂ϕ(k;χn) = γ̂ϕ(k;χn)

γ̂ϕ(0;χn)
, (2.33)

giving the estimator for the efficiency at stage n in Eq.2.31 by substitution. However,
it may also be of interest to consider the efficiency in another sense, to capture the
path-space implicit effect on the SMCMC. To achieve this, we consider also the
backward efficiency at stage n conditional on the SMCMC samples at stage n, this
is given in the following definition.

Definition 2 (Backward Efficiency of SMCMC) Consider, the path-space genealogy
χn at distribution sequence iteration n decomposed as χn = χn−1 ∪ {

Xi
n−1,n−1

}N

i=1
such thatχn−1 ⊆ χn , then the conditional one-stage backward efficiency viewed from

iteration n is given by
←
η n∈ [0, 1], for a bounded integrable test function ϕ according

to
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←
η n (ϕ;χn−1) :=

∫
ηn(ϕ; {Xi

n−1,n−1

}N

i=1
∪ χn−1)πn−1(dxn−1,1:n−1|χn−1). (2.34)

This can then be defined recursively for any number of backward looking steps from
distribution sequence iteration n.

One can approximate this using the path-space samples obtained in each iteration
according to the following estimator

←̂
η n(ϕ;χn−1) = 1

J

J∑

j=1

η( j)
n (ϕ; {Xi

n−1,n−1

}N

i=1
∪ χn−1). (2.35)

where η
( j)
n

(
ϕ;

{
X (i, j)

n−1,n−1

}N ,J

i=1, j=1
∪ χn−1

)
is obtained using the estimator at time n

of efficiency in Eq.2.31 for the j th population sample of
{

X (i, j)
n−1,n−1

}N

i=1
conditional

on previous genealogical paths in χn−1, a visual representation of how this estimator
is obtained based on resampling of the previous generation at time n − 1 is provided
in Fig. 2.4. This illustration shows in red the resampled path genealogies for iteration
n looking back in this case one time step to iteration n’s n − 1 parents and regener-
ating these j ∈ {1, . . . , J } times, with the j th regeneration producing the backward

Fig. 2.4 SMCMC sampler backward efficiency measure estimator
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looking effective sample size one step back approximation obtained by the estimated
autocorrelations.

In addition to these twomeasure of efficiency, one can also monitor at iteration n a
related quantity that can be estimated at each MCMC iteration of the SMCMC algo-
rithm at distribution sequence iteration n to decide if one should perform more local
or more global moves. This involves adapting the following well-known Geweke
[18] convergence diagnostic for MCMC methods can be adopted in the SMCMC
sampler setting at each iteration as follows. If the total chain has length N + Nb, the
initial burn-in stage will correspond to the first Nb samples.We denote by {X (t)

n,i }t=1:N
the Markov chain of the i th parameter after burn-in. The diagnostics we consider are
given by:

• For state Xn,i it is calculated as follows:

1. Split the Markov chain samples into two sequences, {X (t)
n,i }t=1:N1 and

{X (t)
n,i }t=N ∗:N , such that N ∗ = N − N2 + 1, andwith ratios N1/N and N2/N fixed

such that (N1 + N2)/N < 1 for all N .

2. Evaluate μ̂
(

X N1
n,i

)
and μ̂

(
X N2

n,i

)
corresponding to the sample means on each

subsequence.
3. Evaluate consistent spectral density estimates for each subsequence, at frequency

0, denoted ŜD(0; N1, Xn,i ) and ŜD(0; N2, Xn,i ). The spectral density estimator
considered in this paper is the classical nonparametric periodogram or power
spectral density estimator. We use Welch’s method with a Hanning window.

4. Evaluate convergence diagnostic given by

Z N = μ̂
(

X
N1
n,i

)
−μ̂

(
X

N2
n,i

)

N−1
1 ŜD(0;N1,Xn,i )+N−1

2 ŜD(0;N2,Xn,i )
.

According to the central limit theorem, as N → ∞ one has that Z N → N (0, 1)
if the sequence {X (t)

n,i }t=1:N is stationary.

Note, this can be monitored and tested online for each stage and each parameter
subspace of the SMCMC algorithm at iteration n in the distribution sequence to
decide if one should sample more local moves or more global moves.

2.5.2 Effective Sample Size for SMC Methods

In the SMC literature, the notion of ESS that is typically adopted is based on the
approach discussed for standard SMC algorithms of [28]. In this framework, an
approximation to the effective sample size of the filtering distribution is obtained at
time t . To understand this approximation we first define:

• the estimated sample mean from the filtering distribution weighted particle popu-
lation given by samples drawn from mutation kernel q(·),
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Ê
N
q = 1

N

N∑

i=1

W
(
X (i)

)
ϕ
(
X (i)

) ; (2.36)

• the estimated sample mean from the filtering distribution given by samples drawn
from the true filtering target distribution π(·),

Ê
N
π = 1

N

N∑

i=1

ϕ
(
X (i)

)
. (2.37)

Then in the standard SMC setting one typically starts by considering the ratio of
the following two sample mean variances and applies a Taylor series expansion and
applies the Delta method to obtain

ηSMC = Varπ
[
Ê

N
π

]

Varq
[
ÊN

q

] ≈ (
1 + Varq [W (X)]

)−1

= (
Eq

[
W (X)2

])−1
. (2.38)

2.6 Numerical Simulations

In this section, we study the empirical performance of the different algorithms that
have been previously described, namely: (a) SMC inAlgorithm1—(b) SMC-MCMC
in Algorithm2—(c) Local SMC in Algorithm3— (d) STPF in Algorithm4, and
(e) SMCMC in Algorithm5 and 6. For all the different SMC-based algorithms, the
resampling step is performed when the effective sample size, ESS, is below N/2.
All the proposal distributions required in these algorithms are based on the prior
distributions. The MCMC kernel used in the SMC-MCMC defined in Algorithm2
correspond to series of P Metropolis–Hastings within Gibbs samplers used in the
SMCMC and described in lines 9–13 of Algorithm6. The parametric function used
for the cooling schedule strategy used to design the sequence of bridging densities
within the SMC-MCMC in this section is defined as, for m = 1, . . . , M by the
sequence:

αm = exp(γ m/M) − 1

exp(γ ) − 1
(2.39)

with γ = 5. In results presented for the SMCMCalgorithm, only the current posterior
distribution is updated, i.e., L = 1.
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2.6.1 Linear and Gaussian Dynamical Model

As a first example, a simple linear and Gaussian state space model is considered, i.e.,
for n = 1, . . . , T :

fn(xn|xn−1) = N (xn; H xn−1, �x ) ,

gn(yn|xn) = N
(
yn; Gxn, �y

)
. (2.40)

Such a model is interesting for the understanding and the study of approximation
methods since the posterior distribution can be derived analytically via the use of the
Kalman filter [26]. In our simulation results, the matrix H of size d × d has been
obtained by randomly and independently selecting for each row two column indexes
for which the value is set to 0.495. The covariance matrices are defined as �x = Id

and �y = Idy . For a fair comparison between the different algorithms, we decide to
set their parameter as shown in Table2.1 in order to have an equivalent computational
cost for all algorithms.

The performances are studied with a scenario in which all the d-dimensions of
the hidden state are observed at each time step, i.e., dy = d and G = Id . From this
model, owing to the diagonality of G and the covariance matrix both in the prior
and the likelihood distribution, it is obvious that their product can be factorized as
in Eq. (2.19) with |Dn, j | = 1, ∀n, j . As a consequence, we define the partitioning
of the subset in the STPF such that ∀n, j : |An, j \ An,i−1| = 1. In Fig. 2.5, the ESS
scaled by the number of particles obtained for the different SMC-based algorithms is
depicted. The standard SMCalgorithmperforms very badly evenwhen the dimension
is 10 and completely collapses when d = 50. The same remarks hold when the
SMC-MCMC is used with only M = 1 which corresponds to the resample-move
algorithm. However, we can observe that the use of a sequence of bridging densities
that gradually introduces the effect of the likelihood distribution (SMC-MCMCwith
M = 10), improves the effective sample size remarkably. The effective sample size
of the local SMC filter corresponds to the average of the ESS obtained from the
d/Bn SMC filters used in each Bn subsets. As a consequence, the ESS depends
quite obviously on the cardinality of each subset. Finally, the performance of the
STPF in terms of ESS is deteriorating when the dimension increases due to the path
degeneracy effect that we have discussed previously. However, this ESS is obtained

Table 2.1 Value of the different parameters of Monte-Carlo algorithms used in the simulation

SMC SMC-MCMC Local
SMC

STPF SMCMC

Complexity O(nNd) O(nN Md) O(nNd) O(nN Md) O(nL Nd)

Parameter N N M N N M L N

Value 1000 100 10 1000 10 100 1 1000
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(a)

(b)

Fig. 2.5 Effective sample size, scaled by the number of particles, obtained with the different
algorithms for the linear and Gaussian state-space model at the different time steps using 100 runs.
a d = 10. b d = 50

using the global weights (line 21 of Algorithm4) which thus corresponds to the
number of local particle systems that contributes to the final estimator.

Figure2.6 shows the variance for the estimators of the d-dimensional latent states,
X (1), . . . , X (d) (with d = 100), averaged over time and obtained using 100 runs.
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Fig. 2.6 Variance for estimators of X (1), . . . , X (d) (with d = 100) averaged over time and
obtained using 100 runs. The MCMC kernel used in both SMC-MCMC and SMCMC partition
the space with subsets of dimension 5. The dimension of each subset in the local SMC is also 5

We can clearly see the path degeneracy problem in the STPF which leads to an
higher variance for X̂(1) compared to X̂(d). The variance of both SMC-MCMC and
SMCMC are quite stable across dimension of the state. The local SMC outperforms,
in terms of variance, the other techniques but suffers from a spatially inhomogeneous
approximation of the posterior distribution as we can see from unstable variance over
space.

Table2.2 summarizes the bias and the variance for the estimator of the posterior
mean for all the algorithms with different parameter configuration. As expected, the
performances of the classical SMC algorithm deteriorates quite significantly as d
increases. The introduction of the sequence of bridging densities (SMC-MCMC)
clearly improves the performances of the algorithm. Moreover, the use of smaller
dimension on each subset (P = d vs. P = d/5) for the Metropolis–Hastings within
Gibbs sampler used within the SMC-MCMC leads in that example to better perfor-
mance. The STPF performs quite well compared to both SMC and SMC-MCMC, but
as previously illustrated, could be subject to path degeneracy effects as d increases.
The Local SMC filter with block of dimension 1 (i.e., Bn = d) gives the smallest
variance, but at the expense of a nonnegligible bias, due to the approximation of the
posterior as a product of marginals on each block—Eq. (2.20). As an example, the
bias obtained with this technique is higher than the one from the classical SMCwhen
d = 10. Finally, the SMCMCalgorithm that uses anMCMCkernel with P = d gives
the smallest bias and reasonable variance. Let us remark that both the bias and the
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Table 2.2 Statistical properties of the estimator of the posterior mean—time and space average of
the absolute value of the bias and the variance across 100 MC runs

Algorithm d = 10 d = 50 d = 100

Bias Var Bias Var Bias Var

SMC 0.0481 0.0657 0.4460 0.7689 0.5536 1.0430

SMC-MCMC M = 1 P = d/5 0.0426 0.0507 0.3362 0.3703 0.4062 0.4369

P = d 0.0267 0.0206 0.2324 0.1885 0.2841 0.2366

M = 10 P = d/5 0.0282 0.0368 0.1225 0.1452 0.1660 0.2110

P = d 0.0141 0.0139 0.0602 0.0610 0.0929 0.1009

Local SMC Bn = d/5 0.0541 0.0101 0.0594 0.0133 0.0620 0.0129

Bn = d 0.0759 0.0009 0.0584 0.0012 0.0603 0.0012

STPF 0.0095 0.0114 0.0502 0.1017 0.0730 0.1778

SMCMC P = d/5 0.0074 0.0087 0.0211 0.0235 0.0416 0.0419

P = d 0.0038 0.0026 0.0162 0.0169 0.0388 0.0366

variance tends theoretically to zero asymptotically with the number of particles for
all the methods, except for the local SMC filter.

2.6.2 Two-Dimensional Graph Model

In this section, we consider a two-dimensional graph that has been used in both
[3, 36] to assess the performances of the different algorithms. Let the components
of state xn be indexed by vertices v ∈ V , where V = {1, . . . ,√d}2. The dimension
of the model is thus d. At time step n, the prior distribution at vertex v follows the
following mixture distribution:

f (xn(v)|xn−1) =
∑

u∈N (v)

wu(v) fu(xn(v)|xn−1(u)), (2.41)

where N (v) = {u : D(u, v) ≤ r} corresponds to the neighborhood of vertex v with
r ≥ 1 and D(u, v) = √

(a − c)2 + (b − d)2 the Euclidean distance between the two
vertices v = (a, b) and u = (c, d). The observations are

Yn(v) = Xn(v) + ηn(v), (2.42)

for v ∈ V where ηn(v) are i.i.d. t-distributed random variables with degree of free-
dom ν. In the simulation experiments, a Gaussian mixture is used with component
mean Xn−1(u) and unity variance. The mixture weights are set to be wu(v) ∝
1/(D(u, v) + δ) such that

∑
u∈N (v) wu(v) = 1. Finally, the data has been generated

by using r = 1, δ = 1 and ν = 10.
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Fig. 2.7 Illustration of the
block partitioning of the state
for the local SMC in the
two-dimensional graph
example

Xn(1, 1)

Xn(1, 2)

Xn(1, 3)

Xn(1, 4)

Xn(2, 1)

Xn(2, 2)

Xn(2, 3)

Xn(2, 4)

Xn(3, 1)

Xn(3, 2)

Xn(3, 3)

Xn(3, 4)

Xn(4, 1)

Xn(4, 2)

Xn(4, 3)

Xn(4, 4)

Table 2.3 Mean squared error of the posterior mean averaged over time, space and 100 runs with
d = 144

SMC-MCMC Local SMC SMCMC

SMC M = 1 M = 10 Bn = d/9 Bn = d STPF P = d/9 P = d

P =
d/9

P = d P =
d/9

P = d

3154 2266 1392 1154 261 617 152 174 344 151

From this model description, it is straightforward to see that the product of the
likelihood and the prior can be factorized as in Eq. (2.19) with |Dn, j | = 1, ∀n, j . As
a consequence, we define the partitioning of the subset in the STPF such that ∀n, j :
|An, j | = 1. For the local SMC filter, the space is partitioned such that each block is
itself a square as illustrated inFig. 2.7. The sameconfiguration concerning the number
of particles shown in Table2.1 is used in this example. Table2.3 shows the mean
squared error for the posterior mean obtained using all the Monte-Carlo algorithms
under different settings. The SMCMC (P = d) and the local SMC (Bn = d) give
similar performance and outperform slightly the STPF and more significantly the
other algorithms. Once again, the introduction of the sequence of bridging densities
within the SMC-MCMC clearly improves the performance of the estimators.
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2.7 Conclusion

In this chapter, after describing the generic framework of traditional SMC methods
for the optimal filtering problem in a general HMM, we discuss their limitation when
applied to high-dimensional systems. We thus provide an overview of recent Monte-
Carlo-based approaches that have been proposed in order to improve the performance
of such approaches in high-dimensional systems. Through two examples, we have
shown empirically that the use of these recent developments could lead to a significant
improvement. It is however difficult to state that in general case one technique would
be better than another. Indeed, the choice will be clearly dependent on the model
which is under study and on possible constraints like computing resources available,
storage capacity, or desired level of accuracy. A more detailed analysis of all these
algorithms with a finite number of samples will be clearly interesting for comparison
purpose and could be used to design some automatic strategy to select the “optimal”
algorithm and its parameters given the model and the constraints.
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