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Abstract  Living cells in human body exhibit their function in microstructured three 
dimensional (3D) environments composed of soluble factors, extracellular matrix 
(ECM), and neighboring cells. Fabricating biological 3D in vitro models of tissue 
and organ is a critical step for developing new strategies for cell based assay in 
drug discovery. To date, a number of research groups have developed micropattern-
ing of hydrogels using photocurable and photodegradable hydrogels. This chapter 
reviews recent development on the techniques for microscale 3D fabrication of bio-
materials by means of photolithography. Also, this chapter introduces an activated-
ester-type photocleavable crosslinker, which we recently synthesized to generate 
photodegradable hydrogels using biocompatible materials such as polyethylene 
glycol and gelatin. This new type of crosslinker enabled convenient preparation of 
photodegradable hydrogel by two component mixing reaction. The hydrogels were 
degraded by micropatterned light irradiation, local light irradiation, and two-photon 
excitation. This simple and convenient approach to prepare and fabricate photode-
gradable hydrogels is creating new opportunity for novel cell manipulation and 3D 
tissue engineering techniques.
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11.1 � Introduction

In order to develop new cell based assay technique for drug discovery, researchers 
in academia and industry require in vitro models that could reproduce biological 
events in vivo models. Current two dimensional (2D) in vitro platforms are useful 
for investigating the molecular responses in tissue and organ based on physiologi-
cal and pathological studies. Recent advances in molecular biology can identify 
the proteins, receptors and ligands responses 2D in vitro models. However, these 
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2D in vitro platforms do not precisely simulate the complicated cell-cell and cell-
extracellular matrix (ECM) interactions, while cells in vivo communicate with each 
other in a microstructured three dimensional (3D) environment in response to solu-
ble factors, ECM molecules and intercellular contact dependent signals. Therefore, 
cell culture on 2D substrates, which has been employed in conventional biological 
research, does not adequately recapitulate the 3D nature of native cellular microen-
vironment [1, 2]. In addition, spatially uniform and static materials lack the intri-
cate spatial and temporal aspects of in vivo systems. Cells dynamically respond to 
the local microenvironment during diverse processes such as tissue morphogenesis, 
stem cell differentiation, cancer progression [3, 4]. Recapitulating such dynamic 
microenvironments 3D in vitro platforms would have high potential impact in cell 
biology by providing an excellent model for systematic differentiation of stem cells, 
and for understanding of tissue regeneration, ultimately leading to more rational 
tissue engineering strategies. Recently, the approaches for fabricating 3D in vitro 
models using biocompatible hydrogels based on top-down and bottom-up methods 
have been used in stem cell research, regenerative medicine and tissue engineering. 
In particular, photoresponsible hydrogels such as photocurable and photodegrad-
able hydrogels have been employed to reproduce complicated structures for mim-
icking complicated 3D tissue and organ.

11.2 � Photocurable Hydrogels

Photocrosslinkable polymers are popular materials for controlling not only hydro-
gel microstructure and stiffness but also cellular behavior on and within the hydro-
gels. A number of research groups have generated micropatterned hydrogels for 
tissue engineering applications with photocrosslinked polymers, including deriva-
tives of poly(ethylene glycol) diacrylate (PEGDA) [5–7], polysaccharides [8–10], 
and proteins (e.g., gelatin) [11, 12]. In order to construct 3D Microarchitecture, 
photolithography and stereolithography have been applied to fabricate hydrogels 
using these photocurable materials [12, 13–17, 18]. Also, the approaches can pro-
vide the 3D in vitro platforms for controlling systematic differentiation of stem 
cells [13, 19]. Although Photocurable Hydrogels are useful materials to construct 
complex engineered tissues, they may not be readily applicable to generating 
complex 3D vascularized tissue. Eventually, either microengineered 3D porous 
or perfusable structures in these hydrogels to perform long-term cell culture are 
necessary for supplying oxygen, nutrients and other soluble factors for cell growth 
inside engineered 3D thick tissues [7, 12, 13, 15, 16, 17, 18, 20]. To construct 
perfusable 3D thick tissue, fabrication of porous or hollow structure in hydrogels 
is desirable. For this application, use of photodegradable hydrogels, which are 
degraded by light irradiation, can be another possible approach.
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11.3 � Photodegradable Hydrogels

Recently, photodegradable hydrogels have attracted significant attention due to 
their tunable mechanical, chemical properties and their use in the fabrication of 
3D microstructures [21, 22] in biomaterials and tissue engineering research [23]. 
Such photodegradable hydrogels have garnered substantial attention from the bio-
materials and tissue engineering research fields [24, 25]. The physical and chemical 
properties of photodegradable hydrogels can be both temporally and spatially con-
trolled by irradiation with light (single- and two-photon) [26, 27], and this process 
is compatible with living cells [21, 28].

To date, despite reporting many approaches, current methods to prepare pho-
todegradable hydrogels are restricted to reactions between synthetic molecules, 
such as radical reactions [21, 27, 29, 30–32], Michael-type conjugations [33], and 
orthogonal click reactions [22, 34]. In these reactions, one class of convenient hy-
drogel preparation methods is multicomponent mixing reaction, in which two or 
more molecular-scale components react with each other and gelation takes place 
spontaneously after mixing. Such systems are highly tunable as either component 
can be easily modified to alter the hydrogel performance or to introduce additional 
functionalities. In the previous study, Michael-type conjugations [34] and orthogo-
nal click reactions [22, 33] have been applied to fabrication of photodegradable 
hydrogels, by multicomponent mixing reaction. However, these reactions require 
chemical modification of the component materials. In addition, most of the result-
ing photodegradable hydrogels were composed of derivatives of PEG or polysac-
charides [22, 34], which are biologically inactive; cells can neither bind to nor 
degrade them. This lack of cell-responsive features possibly affects the viability 
and activities of cells, and greatly limits the cultural types of cells and applicable 
culture conditions. Although cell-binding sequences such as Arg-Gly-Asp and other 
peptides can be incorporated into photodegradable hydrogels by using a combina-
tion of synthetic homo- and heterofunctional crosslinkers [21, 22], development of 
simple systems to prepare biologically functional photodegradable hydrogels can 
facilitate widespread use of this technology.

11.4 � Activated-Ester-Type Photocleavable Crosslinker

We recently reported an activated-ester-type photocleavable crosslinker, namely 
photocleavable N-hydroxysuccinimide (NHS) tetra-arm polyethylene glycol (NHS-
PC-4armPEG), which facilitated the formation of photodegradable hydrogels by 
means of a one-step, two-component mixing reaction with a biocompatible polymer 
containing amino moieties (amino-terminated tetra-arm PEG (amino-4armPEG) 
or gelatin) [35]. The NHS-PC-4armPEG is composed of the following functional 
groups (Fig. 11.1): (i) poly(ethylene glycol)  as a water-soluble main polymer chain; 
(ii) nitrobenzyl groups, which are cleavable in response to light irradiation; and 
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Fig. 11.1   Shematic diagram of, a chemical structure and cleavage process of photocleav-
able crosslinker. Shematic diagram of degradation process of photo-degradable hydrogels with, 
b amino-4arm PEG and, c gelatin
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(iii) NHS ether groups, which react with primary amine groups and form peptide 
bonds under physiological conditions.

To demonstrate hydrogel micropatterning by photolithography, prepolymer 
solution which included 5.0 mM amino-4arm polyethylene glycol (amino-4arm-
PEG, Mw = 9,617) or 2.5 % (w/v) gelatin was mixed with 0.25–5.0 mM NHS-PC-
4armPEG solution. After mixing of the two components, a drop of mixture was 
placed onto an amino coated glass slide covered by a cover slip and separated by a 
cover slip or pet film spacers to provide hydrogel units with controlled thickness-
es. Subsequently, film masks were placed on a cover slip between light source and 
hydrogel, and then each sample were exposed to light. Light irradiation through 
film mask degraded exposed regions in hydrogels and created micropatterned 
structure (Fig. 11.2), whereas unexposed regions remained intact. Patterning on 

Fig. 11.2   Microscopic images of patterned photodegradable hydrogels crosslinked with amino-
4arm PEG (a), and gelatin (b). Bars = 1 mm (a) and 500 μm (b)
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photodegradable hydrogels with microscale precision (20–500 μm) by photoli-
thography was achieved. To estimate morphology of hydrogels degradation, mic-
roparticles suspension was put onto patterned hydrogels and the 3D images were 
captured using confocal microscope. As expected, the depth of degraded regions 
increased proportionally to light exposure time. That is, morphology of degraded 
regions was a function of the amount of light exposure energy. We have also dem-
onstrated cell micropatterning in the photodegradable hydrogel (Fig. 11.3). Hu-
man liver carcinoma (HepG2) cells has been successfully encapsulated in gelatin 
based photodegradable hydrogel and patterned by micropatterned light irradiation 
with maintaining their viability.

11.5 � Conclusion

Our new Photocleavable crosslinker can be utilized to prepare photodegradable 
hydrogel using biomaterials by two-component mixing. Theoretically, NHS group 
can crosslink any molecules with primary amine. Therefore, many types of compo-
nents including synthetic polymer, peptide, and cells can be crosslinked in the pho-
todegradable hydrogels (Fig. 11.4). The prepared photodegradable hydrogel were 
precisely fabricated with desired morphology by micropatterned light irradiation 
through photomask, local light irradiation from maskless light irradiation system, 
and two-photon reaction. We recently applied our photodegradable hydrogel and 
maskless light irradiation system to single cell manipulation in the hydrogels [36]. 
These approaches could provide variety of tools to fabrication, manipulation, and 
evaluation of cells and 3D tissues in the future.

Fig. 11.3   Cell encapsulation (HepG2) in patterned photodegradable hydrogels prepared with gela-
tin and photocleavable crosslinker. Live/dead test was carried out after 2 days of culture.
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