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Abstract A construction is presented that provides a correspondence between
renormalization groups in models of perturbative massless Quantum Field Theory
and models of vertex algebras.

The aim of this talk is to show how two different areas in Quantum Field Theory
(QFT) are governed by one and the same algebraic structure. This opens perspec-
tives of transferring constructions in both directions via this common structure. The
two connected fields are the theory of Operator Product Expansion (OPE) algebras
(called also vertex algebras) and the renormalization theory in perturbative QFT
and more concretely, the renormalization group and its action. The bridge between
these two structures is an operad, which we call the expansion operad E , and
whose algebras are the vertex (or OPE) algebras, while the group associated to this
operand is the renormalization group. Thus, our plan in this lecture is to consider
the following topics:

A. What is a vertex algebra?
B. What is an operad?
C. What is the renormalization group and its action (i.e., a representation by formal

diffeomorphisms on the physical parameters)?

A. Starting with the firs topic, a vertex algebra is the structure that is closed
by the OPE. The OPE in turn was introduced for the analysis of the short
distance behavior in QFT [10]. According to the general principles of locality
and causality in QFT one expects that the product of two local quantum fields
posses an asymptotic expansion at short distances x � y ! 0 of the form

�.x/  .y/ �
x ! y

X

A

�A.y/ CA.x � y/;
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for a suitable system of two-point numerical functions (distributions) CA.x � y/
that describes the local behavior of the product, and the coefficients �A.y/ are
again local fields (the sign �

x ! y
stands for the asymptotic expansion at short

distances). For instance, in perturbative massless QFT one can choose

CA.x � y/ D �
.x � y/2

�� �
.log.x � y//

�`
hm;� .x � y/ ; A D .�; `;m; �/ ;

where � 2 R, ` 2 f0; 1; : : : g and fhm;� .x/g� is a basis of harmonic homogeneous
polynomials (spherical functions) of degreem D 0; 1; : : : . Thus, for every index
A we obtain a binary operation

�A DW � �
A
 H) ˚ �

A

�
A

in the vector space of all local quantum fields (this space is called “Borchers
class”). A vertex algebra is determined as the algebraic structure defined by this
infinite system of binary products

˚ �
A

�
A

. The main condition on the latter system

of operations comes from the operator product associativity:

�1.x1/
�
�2.x2/ �3.x3/

� D �
�1.x1/ �2.x2/

�
�3.x3/ :

However, it is rather nontrivial to reformulate this associativity in a purely algebraic
way for the system of binary products

˚ �
A

�
A

. This is completely understood only in

the following cases:

• In space-time dimension D D 1 (chiral) Conformal Field Theory (“on a light
ray”) the OPE takes the form

�.z/  .w/ D
X

n2Z

�
�.n/ 

�
.w/.z � x/�n�1

and its associativity and further properties was first axiomatized by
R. Borcherds [1].

• A generalization to higher D was introduced in [2] but in the context of QFT
vertex algebras have been considered in [6]. It has been shown it the latter paper
that these algebras are in one–to–one correspondence with models of Wightman
axioms possessing the so called Global Conformal Invariance [8].

B. We proceed by considering vertex algebras as algebras over an operad. So first,
what is an operad? Besides one of the first references on this topic [5] we
shall mention one recent book [4], from which we follow the definitions and
conventions.

One can think of an operad as a generalized type of algebras. An algebra of
a certain type is determined by introducing a set of multilinear operations subject
to certain identities that use compositions of these operations, eventually combined
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with permutations of the input arguments. Instead of this one can consider the spaces
of all possible multilinear operations obtained under compositions and the action
of permutations (and all this quotient by the relations). This will be the operad
corresponding to the considered type of algebras.

In more details, an operad includes

• a sequence of vector spaces fM.n/g1
nD 1 (M.2/ being the space of binary

operations, . . . ).
• The structure is endowed by various structure maps called operadic

compositions,

M.k/˝ M.j1/ ˝ � � � ˝ M.jk/ �! M.n/

�00 ˝ �0
1 ˝ � � � ˝ �0

k 7�! �00 ı .�0
1; � � � ; �0

k/ ;

where n D j1 C � � � C jk , and permutation actions

M.n/ � Sn 3 � � � 7! �� 2 M.n/ ; .��1/�2 D ��1�2 :

The operadic composition �00 ı .�0
1; � � � ; �0

k/ is pictorially drawn as:

One of the main examples of an operad is the endomorphism operad EndV for a
vector space V :

EndV .n/ WD Hom
�
V ˝n; V

�
;

where �00 ı .�0
1; � � � ; �0

k/ is the actual composition of multilinear maps and

��.v1; � � � ; vn/ WD �.v�1 ; � � � ; v�n/ :
Morphisms of operads are defined as follows:

fM.n/g1
nD 1 ! fN .n/g1

nD 1 � ˚M.n/ ! N .n/�1
nD 1

plus compatibility with all structure maps. In particular, morphisms from an operad
to the endomorphisms operads have a meaning of “representations” but are called
algebras over the corresponding operad:

Representation � Algebra over an operad,

i.e., fM.n/gn ! fEndV .n/gn – morphism of operads,

i.e., M.n/ ! Hom
�
V ˝n; V

�

(the abstract operations in M.n/ become actual n–linear maps on V that is the
underlined space of the algebra).
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Example. The Lie operad Lie corresponds the class of Lie algebras and is defined as:

Lie.1/ D SpanCf1g �1�! Hom.V; V / ;

Lie.2/ D SpanCf�g �2�! Hom.V ˝2; V / ;

�2.�/.a; b/ D Œa; b	 ;

Lie.3/ D Span
C
f� ı .1; �/ ; � ı .�; 1/ g

# #�
� ı .�; 1/�.1;3;2/ ! ŒŒa; c	; b	 D Œa; Œb; c		 � ŒŒa; b	; c	 ;

�
� ı .�; 1/�.1;3;2/ D � ı .�; 1/ � � ı .1; �/ ;

where �� for an element � in the nth operadic space and a permutation � 2 Sn
stands for the (right) actions of the permutation groups on the operad (that is one of
the basic structures in the operad).

The main construction in this work is based on a particular example of an operad,
which we call the expansion operad E D ˚E.n/�

n
. It is defined for a sequence of

graded function spaces

On � C1��
R
D

��n n all diagonals
�

for n D 2; 3; : : : admitting expansions

G.x1; : : : ; xn/ D
X

`

G 0̀.xj ; : : : ; xjCk/G00̀.x1; : : : ; xj�1; xjCk; : : : ; xn/

for jxa � xjCkj 	 jxb � xjCkj when a 2 fj; : : : ; j C kg 3= b. We set

E.n/ D On
0 ;

which is the graded dual. In the applications to vertex algebras and renormalization
theory of massless fields:

On D The algebra of rational n–point functions P.x1 � x2; : : : ; xn�1 � xn/Q
16 j <k6n

�
.xj � xk/2

��j;k

on R
D 3 x1; : : : ; xn with light–cone singularities, graded by the degree

of homogeneity.

The key relation between the operad E and the vertex algebras is that every vertex
algebra induces a system of linear maps

E(n) −→ EndV (n)

O′
n −→ HomC

(
V ⊗n, V

) ∼= V ′ ⊗n ⊗ V ,
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where the down arrow is the dual of the correlation functions maps:

V ˝n ˝ V 0 7�! On

a1 ˝ � � � ˝ an ˝ � 7�! �
�
a1.x1 � xn/ � � � an�1.xn�1 � xn/ an

�

� ˝
�

ˇ̌
a1.x1 � xn/ � � � an�1.xn�1 � xn/ an

˛

(here we assume that the graded pieces of V are finite dimensional). Thus, the
operadic structure on E is such that the above system maps E.n/ �! EndV .n/
gives an operadic morphism. On the other hand, one can show that this operadic
structure can be described entirely in terms of the expansions’ operations in On.

C. Passing to the renormalization let us mention first that the same rational
functions belonging to On appear as “Feynman amplitudes” (= integrands in
the Feynman integrals) in massless field theories. Here is an example of such a
Feynman amplitude in the �4–theory:

←→

1(
(x1 − x2)2

)2
1

(x2 − x3)2

× 1(
(x3 − x4)2

)2
1

(x1 − x4)2
∈ O4

3

4

1

2

It is important for the present construction that we consider the ultraviolet
renormalization on configuration space. In terms of Feynman amplitudes the
renormalization is given by a system of linear maps

On ! D 0�.RD/�.n�1/�

subject to (recursive) conditions (cf. [7, 9] and references therein). In particular,
the renormalization ambiguity at order n is described by a linear map: On !
D 0Œ0n	, where D 0Œ0n	 stands for the space of distributions on .RD/�.n�1/
supported at the origin. We obtain a sequence of vector spaces

R.n/ WD ˚
Q W On ! D 0Œ0n	

ˇ̌
commuting with multiplication by polynomials

�

where the condition comes from the requirements on the renormalization maps
(as explained in [7] and [9]).

The bridge between the theory of the vertex algebras and renormalization is based
on an existence of a natural isomorphism [7]

E.n/ Š R.n/ :
Furthermore, the operadic compositions in E.n/ have an interpretation on R.n/ that
corresponds to basic operations used in the renormalization group composition. The
later has a very natural pictorial illustration
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and its combinatorial version was described in [3].
The role of the operad R in renormalization theory is that it describes the

Stückelberg–Bogoliubov renormalization group. The latter group is formed by all
possible changes in the renormalization:

{On → D ′((RD)×n
)}

↓ {Q′
n}

{On → D ′((RD)×n
)}

↓ {Q′′
n}

{On → D ′((RD)×n
)}

{Qn
′′′ ∈ R(n)} ,

where fQ0
ng and fQ00

ng are arbitrary sequences of changes of the renormalization
Q0
n;Q

00
n 2 R.n/.

In the paper [3] a functor was constructed
n
Operads

o
�!

n
Groups

o
;

which produces:

• the Renormalization group when applied to E ;
• the group of formal diffeomorphisms when applied on EndV ;
• the renormalization group action via an operadic morphism E ! EndV .

Our conclusion is summarized in the following scheme:

The E-algebras are vertex algebras

"
Expansion operad E Š Renormalization operad R

#
The group associated to R is the renormalization group



Operadic Bridge Between Renormalization Theory and Vertex Algebras 463

Acknowledgements The author is grateful to Spencer Bloch, Francis Brown, Michel Dubois-
Violette, Maxim Kontsevich, Raymond Stora and Ivan Todorov for useful discussions. This work
was partially done at the Institut des Hautes Études Scientifiques. The author thanks for the support
and hospitality.

References

1. Borcherds, R.E.: Vertex algebras, Kac-Moody algebras, and the Monster. Proc. Natl. Acad. Sci.
USA 83, 3068–3071 (1986)

2. Borcherds, R.E.: Vertex algebras. In: Kashiwara, M. (ed.) Topological Field Theory, Primitive
Forms and Related Topics. Progress in Mathematics, vol. 160, pp. 35–77. Birkhäuser, Boston
(1998)

3. Loday, J.-L., Nikolov, N.M.: Operadic construction of the renormalization group. In: Dobrev,
V. (ed.) Proceedings of the IX International Workshop “Lie Theory and Its Applications
in Physics. Springer Proceedings in Mathematics, pp. 169–189. Springer, Tokyo/Heidelberg
(2013). Preprint: arxiv:1202.1206

4. Loday, J.-L., Vallette, B.: Algebraic Operads. Grundlehren der mathematischen Wis-
senschaften, vol. 346. Springer, Berlin (2012)

5. May, J.-P.: The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics, vol. 271.
Springer, Berlin (1972)

6. Nikolov, N.M.: Vertex algebras in higher dimensions and globally conformal invariant quantum
field theory. Commun. Math. Phys. 253, 283–322 (2005)

7. Nikolov, N.M.: Anomalies in quantum field theory and cohomologies in configuration
spaces (2009); arXiv:0903.0187 [math-ph]; Talk on anomaly in quantum field theory and
cohomologies of configuration spaces (2009); arXiv:0907.3735 [hep-th]

8. Nikolov, N.M., Todorov, I.T.: Rationality of conformally invariant local correlation functions
on compactified Minkowski space. Commun. Math. Phys. 218, 417–436 (2001)

9. Nikolov, M.N., Stora, R., Todorov, I.: Renormalization of massless Feynman amplitudes in
configuration space. Preprint CERN-TH-PH/2013-107 (2013); arXiv:1307.6854 [hep-th]

10. Wilson, K.G.: Non-Lagrangian models of current algebra. Phys. Rev. 179, 1499–1512 (1969)


	Operadic Bridge Between Renormalization Theoryand Vertex Algebras
	References


