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Preface

The Workshop series ‘Lie Theory and Its Applications in Physics’ is designed
to serve the community of theoretical physicists, mathematical physicists and
mathematicians working on mathematical models for physical systems based on
geometrical methods and in the field of Lie theory.

The series reflects the trend towards a geometrisation of the mathematical
description of physical systems and objects. A geometric approach to a system
yields in general some notion of symmetry which is very helpful in understanding
its structure. Geometrisation and symmetries are meant in their widest sense, i.e.,
representation theory, algebraic geometry, infinite-dimensional Lie algebras and
groups, superalgebras and supergroups, groups and quantum groups, noncom-
mutative geometry, symmetries of linear and nonlinear PDE, special functions.
Furthermore we include the necessary tools from functional analysis and number
theory. This is a big interdisciplinary and interrelated field.

The first three workshops were organised in Clausthal (1995, 1997, 1999), the
4th was part of the 2nd Symposium ‘Quantum Theory and Symmetries’ in Cracow
(2001), the 5th, 7th, 8th and 9th were organised in Varna (2003, 2007, 2009, 2011),
the 6th was part of the 4th Symposium ‘Quantum Theory and Symmetries’ in Varna
(2005), but has its own volume of Proceedings.

The 10th Workshop of the series (LT-10) was organized by the Institute of
Nuclear Research and Nuclear Energy of the Bulgarian Academy of Sciences (BAS)
in June 2013 (17–23), at the Guest House of BAS near Varna on the Bulgarian Black
Sea Coast.

The overall number of participants was 71 and they came from 21 countries.
The scientific level was very high as can be judged by the speakers. The

plenary speakers were: Loriano Bonora (Trieste), Branko Dragovich (Belgrade),
Ludvig Faddeev (St. Petersburg), Malte Henkel (Nancy), Evgeny Ivanov (Dubna),
Toshiyuki Kobayashi (Tokyo), Ivan Kostov (Saclay), Karl-Hermann Neeb (Erlan-
gen), Eric Ragoucy (Annecy), Ivan Todorov (Sofia), Joris Van Der Jeugt (Ghent),
George Zoupanos (Athens).

The topics covered the most modern trends in the field of the Workshop:
Symmetries in String Theories and Gravity Theories, Conformal Field Theory,
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vi Preface

Integrable Systems, Representation Theory, Supersymmetry, Quantum Groups,
Vertex Algebras and Superalgebras, Quantum Computing.

There is some similarity with the topics of preceding workshops, however, the
comparison shows how certain topics evolve and that new structures were found
and used. For the present workshop we mention more emphasis on: representation
theory, quantum groups, integrable systems, vertex algebras and superalgebras,
on conformal field theories, applications to the minimal supersymmetric standard
model.

The International Organizing Committee was: V.K. Dobrev (Sofia) and H.-D.
Doebner (Clausthal) in collaboration with G. Rudolph (Leipzig).

The Local Organizing Committee was: V.K. Dobrev (Chairman), V.I. Doseva,
A.Ch. Ganchev, S.G. Mihov, D.T. Nedanovski, T.V. Popov, T.P. Stefanova, M.N.
Stoilov, N.I. Stoilova, S.T. Stoimenov.
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Revisiting Trace Anomalies in Chiral Theories

Loriano Bonora, Stefano Giaccari, and Bruno Lima De Souza

Abstract This is a report on work in progress about gravitational trace anomalies.
We review the problem of trace anomalies in chiral theories in view of the possibility
that such anomalies may contain not yet considered CP violating terms. The
research consists of various stages. In the first stage we examine chiral theories
at one-loop with external gravity and show that a (CP violating) Pontryagin term
appears in the trace anomaly in the presence of an unbalance of left and right
chirality. However the imaginary coupling of such term implies a breakdown of
unitarity, putting a severe constraint on such type of models. In a second stage we
consider the compatibility of the presence of the Pontryagin density in the trace
anomaly with (local) supersymmetry, coming to an essentially negative conclusion.

1 Introduction

We revisit trace anomalies in theories coupled to gravity, an old subject brought back
to people’s attention thanks to the importance acquired recently by conformal field
theories both in themselves and in relation to the AdS/CFT correspondence. What
has stimulated specifically this research is the suggestion by Nakayama [1] that
trace anomalies may contain a CP violating term (the Pontryagin density). It is well
known that a basic condition for baryogenesis is the existence of CP nonconserving
reactions in an early stage of the universe. Many possible mechanisms for this have
been put forward, but to date none is completely satisfactory. The appearance of a
CP violating term in the trace anomaly of a theory weakly coupled to gravity may
provide a so far unexplored new mechanism for baryogenesis.

Let us recall that the energy-momentum tensor in field theory is defined by T�� D
2p�g

ıS
ıg��

. Under an infinitesimal local rescaling of the matrix: ıg�� D 2�g�� we
have

L. Bonora (�) • S. Giaccari • B. Lima De Souza
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4 L. Bonora et al.

ıS D 1

2

Z
d4x

p�gT��ıg�� D �
Z
d4x

p�g�T �
� : (1)

If the action is invariant, classically T �
� D 0, but at one loop (in which case

S is replaced by the one-loop effective action W ) the trace of the e.m. tensor
is generically nonvanishing. In D=4 it may contain, in principle, beside the Weyl
density (square of the Weyl tensor)

W2 D RnmklR
nmkl � 2RnmRnm C 1

3
R2 (2)

and the Gauss-Bonnet (or Euler) one,

E D RnmklR
nmkl � 4RnmRnm C R2; (3)

another nontrivial piece, the Pontryagin density,

P D 1

2

�
�nmlkRnmpqRlk

pq
�

(4)

Each of these terms appears in the trace with its own coefficient:

T�
� D aE C cW2 C eP (5)

The coefficient a and c are known at one-loop for any type of matter. The coefficient
of (4) has not been sufficiently studied yet. The purpose of this paper is to fill up
this gap. The plan of our research consists of three stages. To start with we analyse
the one loop calculation of the trace anomaly in chiral models. Both the problem
and the relevant results are not new: the trace anomaly contains beside the square
Weyl density and the Euler density also the Pontryagin density. What is important
is that the e coefficient is purely imaginary. This entails a violation of unitarity at
one-loop and, consequently, introduces an additional criterion for a theory to be
acceptable. The latter is similar to the analogous criterion for chiral gauge and
gravitational anomalies, which is since long a selection criterion for acceptable
theories. A second stage of our research concerns the compatibility between
the appearance of the Pontryagin term in the trace anomaly and supersymmetry.
Since it is hard to supersymmetrize the above three terms and relate them to one
another in a supersymmetric context, the best course is to consider a conformal
theory in 4D coupled to (external) N D 1 supergravity formulated in terms of
superfields and find all the potential superconformal anomalies. This will allow
us to see whether (4) can be accommodated in an anomaly supermultiplet as a
trace anomaly member. The result of our analysis seems to exclude this possibility.
Finally, a third stage of our research is to analyse the possibility that the Pontryagin
density appears in the trace anomaly in a nonperturbative way, for instance via an
AdS/CFT correspondence as suggested in [1].
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In this contribution we will consider the first two issues above. In the next section
we will examine the problem of the one-loop trace anomaly in a prototype chiral
theory. Section 3 is devoted to the compatibility of the Pontryagin term in the trace
anomaly with supersymmetry.

2 One-Loop Trace Anomaly in Chiral Theories

The model we will consider is the simplest possible one: a left-handed spinor
coupled to external gravity in 4D. The action is

S D
Z
d4x

p
jgj i N L�m.rm C 1

2
!m/ L (6)

where �m D ema �
a, r (m; n; : : : are world indices, a; b; : : : are flat indices) is the

covariant derivative with respect to the world indices and !m is the spin connection:

!m D !abm ˙ab

where˙ab D 1
4
Œ�a; �b� are the Lorentz generators. Finally L D 1C�5

2
 . Classically

the energy-momentum tensor

T�� D i

2
N L��

$r� L (7)

is both conserved on shell and traceless. At one loop to make sense of the calcula-
tions one must introduce regulators. The latter generally break both diffeomorphism
and conformal invariance. A careful choice of the regularization procedure may
preserve diff invariance, but anyhow breaks conformal invariance, so that the trace
of the e.m. tensor takes the form (5), with specific nonvanishing coefficients a; c; e.
There are various techniques to calculate the latter: cutoff, point splitting, Pauli-
Villars, dimensional regularizations. Here we would like to briefly recall the heat
kernel method utilized in [2] and in references cited therein (a more complete
account will appear elsewhere). Denoting by D the relevant Dirac operator in (6)
one can prove that

ıW D �
Z
d4x

p�g�T �
� D � 1

16�2

Z
d4x

p�g�b4
�
x; xID	D

�
:

Thus

T �
� D b4

�
x; xID	D

�
(8)
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The coefficient b4
�
x; xID	D

�
appear in the heat kernel. The latter has the general

form

K .t; x; yID/� 1

.4�t/2
e�

�.x;y/
2t

�
1Ctb2 .x; yID/Ct 2b4 .x; yID/C � � � � ; (9)

where D D D	D and � .x; y/ is the half square length of the geodesic connecting
x and y, so that � .x; x/ D 0. For coincident points we therefore have

K .t; x; xID/ � 1

16�2

�
1

t2
C 1

t
b2 .x; xID/C b4 .x; xID/C � � �

�
: (10)

This expression is divergent for t ! 0 and needs to be regularized. This can be done
in various ways. The finite part, which we are interested in, has been calculated first
by DeWitt [3], and then by others with different methods. The results are reported
in [2]. For a spin 1

2
left-handed spinor as in our example one gets

b4
�
x; xID	D

� D 1

180 � 16�2
Z
d4x

p�g �aE4 C c W 2 C e P
�

(11)

with

a D 11

4
; c D �9

2
; e D 15

4
(12)

This result was obtained with an entirely Euclidean calculation. Turning to the
Minkowski the actual e.m trace at one loop is

T�
� D 1

180 � 16�2
�
11

4
E C cW2 C i

15

4
P

�
(13)

As pointed out above the important aspect of (13) is the i appearing in front of the
Pontryagin density. The origin of this imaginary coupling is easy to trace. It comes
from the trace of gamma matrices including a �5 factor. In 4D, while the trace of
an even number of gamma matrices, which give rise to first two terms in the RHS
of (13), is a real number, the trace of an even number of gamma’s multiplied by �5
is always imaginary. The Pontryagin term comes precisely from the latter type of
traces. It follows that, as a one loop effect, the energy momentum tensor becomes
complex, and, in particular, since T 00 is the Hamiltonian density, we must conclude
that unitarity is not preserved in this type of theories. Exactly as chiral gauge
theories with nonvanishing chiral gauge anomalies are rejected as sick theories,
also chiral models with complex trace anomalies are not acceptable theories. For
instance the old-fashioned standard model with massless left-handed neutrinos is
in this situation. This model, provided it has an UV fixed point, has a complex
trace anomaly and breaks unitarity. This is avoided in the modern formulation of
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the electroweak interactions by the addition of a right-handed neutrino (for each
flavor), or, alternatively, by using Majorana neutrinos. So, in hindsight, one could
have predicted massive neutrinos.

In general we can say that in models with a chirality unbalance a problem with
unitarity may arise due to the trace anomaly and has to be carefully taken into
account.

3 Pontryagin Density and Supersymmetry

In this section we discuss the problem posed by the possible appearance of the
Pontryagin term in the trace anomaly: is it compatible with supersymmetry? It is
a well known fact that trace anomalies in supersymmetric theories are members
of supermultiplets, to which also the Abelian chiral anomaly belongs. Thus one
way to analyse this issue would be to try and supersymmetrize the three terms
(2)–(4) and see whether they can be accommodated in supermultiplets. This direct
approach, however, is far from practical. What we will do, instead, is to consider a
conformal theory in 4D coupled to (external) supergravity formulated in terms of
superfields, and find all the potential superconformal anomalies. This will allow us
to see whether (4) can be accommodated in an anomaly supermultiplet as a trace
anomaly member.

3.1 Minimal Supergravity

The most well known model of N D 1 supergravity in D D 4 is the so-
called minimal supergravity, see for instance [4]. The superspace of N D 1

supergravity is spanned by the supercoordinates ZM D .xm; 
�; N
 P�/. In this
superspace one introduces a superconnection, a supertorsion and the relevant super-
curvature. To determine the dynamics one imposes constraints on the supertorsion.
Such constraints are not unique. A particular choice of the latter, the minimal
constraints, define the minimal supergravity model, which can be formulated in
terms of the superfields R.z/; Ga.z/ and W˛ˇ�.z/. R and W˛ˇ� are chiral while
Ga is real. One also needs the antichiral superfields RC.z/ and NW P̨ P̌ P� .z/. W˛ˇ�

is completely symmetric in the spinor indices ˛; ˇ; : : :. These superfields satisfy
themselves certain constraints. Altogether the independent degrees of freedom are
12 bosons C 12 fermions. One can define superconformal transformations in terms
of a parameter superfield � . For instance

ıR D .2 N� � 4�/R � 1

4
r P̨r P̨ N�

ıGa D �.� C N�/Ga C ira. N� � �/
ıW˛ˇ� D �3�W˛ˇ�
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To find the possible superconformal anomalies we use a cohomological approach.
Having in mind a superconformal matter theory coupled to a N D 1 supergravity,
we define the functional operator that implements these transformations, i.e.

˙ D
Z
x


ı�i
ı

ı�i

where �i represent the various superfields in the game and x
 denotes integration
d4xd4
 . This operator is nilpotent:˙2 D 0. As a consequence it defines a cohomol-
ogy problem. The cochains are integrated local expressions of the superfields and
their superderivatives, invariant under superdiffeomorphism and local superLorentz
transformations. Candidates for superconformal anomalies are nontrivial cocycles
of ˙ which are not coboundaries, i.e. integrated local functionals �� , linear in � ,
such that

˙ �� D 0; and �� ¤ ˙ C

for any integrated local functional C (not containing � ).
The complete analysis of all the possible nontrivial cocycles of the operator ˙

was carried out in [5]. It was shown there that the latter can be cast into the form

�� D
Z
x


�
E.z/

�8R.z/ �.z/ S.z/C h:c:

�
(14)

where S.z/ is a suitable chiral superfield, and all the possibilities for S were
classified. For supergravity alone (without matter) the only nontrivial possibilities
turn out to be:

S1.z/ D W ˛ˇ�W˛ˇ� and S2.z/ D . Nr P̨ Nr P̨ � 8R/.GaGa C 2RRC/ (15)

(the operator . Nr P̨ Nr P̨ � 8R/ maps a real superfield into a chiral one).
It is well-known that the (14) cocycles contain not only the trace anomaly, but a

full supermultiplet of anomalies. The local expressions of the latter are obtained by
stripping off the corresponding parameters from the integrals in (14).

In order to recognize the ordinary field content of the cocycles (15) one has to
pass to the component form. This is done by choosing the lowest components of the
supervielbein as follows:

EM
A.z/

ˇ̌

DN
D0 D

0
@em

a.x/ 1
2
 m

˛.x/ 1
2

N m P̨ .x/
0 ı�

˛ 0

0 0 ı P� P̨

1
A

where em
a are the usual 4D vierbein and  m

˛.x/; N m P̨ .x/ the gravitino field
components. Similarly one identifies the independent components of the other
superfields (the lowest component of R and Ga). For � we have
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�.z/ D !.x/C i˛.x/C p
2
˛�˛.x/C
˛
˛.F.x/C iG.x// (16)

where 
˛ are Lorentz covariant anticommuting coordinates [4]. The component
fields of (16) identify the various anomalies in the cocycles (15). In particular ! is
the parameter of the ordinary conformal transformations and ˛ the parameter of the
chiral transformations. They single out the corresponding anomalies. At this point
it is a matter of algebra to write down the anomalies in component. Retaining for
simplicity only the metric we obtain the ordinary form of the cocycles. This is

�.1/
� �

Z
x

e
n
!

�
RnmklR

nmkl�2RnmRnmC1

3
R2
�

�1
2
˛ �nmlkRnmpqRlk

pq
o

(17)

for the first cocycle (� denotes precisely the ordinary form), and

�.2/
� � 4

Z
x

e !
�2
3
R2 � 2RnmRnm

�
(18)

for the second. Taking a suitable linear combination of the two we get

�.1/
� C 1

2
�.2/
� � (19)

Z
x

e
n
!
�
RnmklR

nmkl � 4RnmRnm C R2
� � 1

2
˛ �nmlkRnmpqRlk

pq
o

We see that (17) contain W2 while (19) contains the Euler density in the terms
proportional to ! (trace anomaly). They both contain the Pontryagin density in the
term proportional to ˛ (chiral anomaly).

In conclusion �.1/
� corresponds to a multiplet of anomalies, whose first compo-

nent is the Weyl density multiplied by !, accompanied by the Pontryagin density
(the Delbourgo-Salam anomaly) multiplied by ˛. On the other hand �.2/� does not
contain the Pontryagin density and the part linear in ! is a combination of the Weyl
and Gauss-Bonnet density. None of them contains the Pontryagin density in the
trace anomaly part. Therefore we must conclude that, as far as N D 1 minimal
supergravity is concerned, our conclusion about the compatibility between the
Pontryagin density as a trace anomaly terms and local supersymmetry, is negative.

3.2 Other Nonminimal Supergravities

As previously mentioned the minimal model of supergravity is far from unique.
There are many other choices of the supertorsion constraints, beside the minimal
one. Most of them are connected by field redefinitions and represent the same theory.
But there are choices that give rise to different dynamics. This is the case for the
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nonminimal 20C20 and 16C16models. In the former case one introduces two new
spinor superfields T˛ and NT P̨ , while setting R D RC D 0. This model has 20C 20

degrees of freedom. The bosonic degrees of freedom are those of the minimal model,
excluding R and RC, plus ten additional ones which can be identified with the
lowest components of the superfields S D D˛T˛ � .nC 1/T ˛T˛ and NS , ND P̨T˛ and
D˛T P̨ . The superconformal parameter is a generic complex superfield˙ constrained
by the condition

.D˛D˛ C .nC 1/T ˛D˛/
�
3n. Ṅ �˙/ � . Ṅ C˙/

	 D 0

where n is a numerical parameter. It is easy to find a nontrivial cocycle of this
symmetry

�.1/
n:m: D

Z
x;


E ˙ W ˛ˇ�W˛ˇ�

NT P̨ NT P̨
NS2 C h:c:

and to prove that its ordinary component form is, up to a multiplicative factor,

�
.1/
˙ �1

4

Z
x

e
n
!

�
RnmklR

nmkl�2RnmRnmC1

3
R2
�

�1
2
˛ �nmlkRnmpqRlk

pq
o

where ! C i˛ is the lowest component of the superfield ˙ . That is, the same
ordinary form as �.1/

� . As for other possible cocycles they can be obtained from the
minimal supergravity ones by way of superfield redefinitions. To understand this
point one should remember what was said above: different models of supergravity
are defined by making a definite choice of the torsion constraints and, after such a
choice, by identifying the dynamical degrees of freedom. This is the way minimal
and nonminimal models are introduced. However it is possible to transform the
choices of constraints into one another by means of linear transformations of the
supervierbein and the superconnection [6, 7]:

E 0MA D EM
BXB

A; E 0AM D X�1ABEBM ; ˚ 0MAB D ˚MA
B C �MA

B

for suitable XAB and �MAB . This was done in [8] and will not be repeated here.
The result is a very complicated form for the cocycle �.2/

n:m:, derived from �
.2/
� .

However the ordinary component form is the same for both.
As for the 16 C 16 nonminimal supergravity, it is obtained from the 20 C 20

model by imposing

T˛ D D˛ ; T P̨ D D P̨ 

where  is a (dimensionless) real superfield. The independent bosonic degrees of
freedom are the lowest component of S; NS , c˛ P̨ and G˛ P̨ , beside the metric. The
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superconformal transformation are expressed in terms of a real vector superfield L
and an arbitrary chiral superfield � satisfying the constraint

.D˛D˛ C .nC 1/T ˛D˛/ .2LC .3nC 1/�/ D 0:

The derivation of the nontrivial superconformal cocycles is much the same as for the
previous model. The end result is two cocycles whose form, in terms of superfields,
is considerably complicated, but whose ordinary form is the same as �.1/� and �.2/

� .
At this point we must clarify whether the cocycles we have found in 20+20 and

16+16 nonminimal supergravities are the only ones. In [8] a systematic cohomologi-
cal search of such nontrivial cocycles has not been done, the reason being that when
dimensionless fields, like  and N , are present in a theory a polynomial analysis
is not sufficient (and a non-polynomial one is of course very complicated). But
we can argue as follows: consider a nontrivial cocycle in nonminimal or 16 C 16

nonminimal supergravity; it can be mapped to a minimal cocycle which either
vanishes or coincides with the ones classified in [5]. There is no other possibility
because in minimal supergravity there are no dimensionless superfields (apart from
the vielbein) and the polynomial analysis carried out in [5] is sufficient to identify all
cocycles. We conclude that the 20C20 and 16C16 nonminimal nontrivial cocycles,
which reduce in the ordinary form to a nonvanishing expression, correspond to�.1/�
and �.2/

� in minimal supergravity and only to them.
None of these cocycles contains the Pontryagin density in the trace anomaly

part. Therefore we must conclude that, as far as N D 1 minimal and nonminimal
supergravity is concerned, our conclusion about the compatibility between the
Pontryagin density as a trace anomaly terms and local supersymmetry, is negative.

Conclusion
A component of the trace anomaly which appear in chiral theories (the
Pontryagin density) may have interesting implications. It is a CP violating
term and, as such, it could be an interesting mechanism for baryogenesis.
At one loop, as we have seen, this term violates unitarity and the only use we
can make of it is as a selection criterion for phenomenological models with an
UV fixed point. If, on the other hand, by some other kind of mechanism still
to be discovered, this term appears in the trace of the em tensor with a real
coefficient, it may become very interesting as a CP violating term. In the last
section we have seen that, however, this is incompatible with supersymmetry.
In other words, if such mechanism exists, it can become effective only after
supersymmetry breaking. The search for the P term continues.
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Complete T-Dualization of a String in a Weakly
Curved Background

Lj. Davidović, B. Nikolić, and B. Sazdović

Abstract We apply the generalized Buscher procedure, to a subset of the initial
coordinates of the bosonic string moving in the weakly curved background, com-
posed of a constant metric and a linearly coordinate dependent Kalb-Ramond field
with the infinitesimal strength. In this way we obtain the partially T-dualized action.
Applying the procedure to the rest of the original coordinates we obtain the totally T-
dualized action. This derivation allows the investigation of the relations between the
Poisson structures of the original, the partially T-dualized and the totally T-dualized
theory.

1 Bosonic String in the Weakly Curved Background

Let us consider the closed string moving in the coordinate dependent background,
described by the action [1]

SŒx� D �

Z
˙

d2� @Cx�˘C��Œx�@�x�: (1)

The background is defined by the space-time metric G�� and the antisymmetric
Kalb-Ramond field B��

˘˙��Œx� D B��Œx�˙ 1

2
G��Œx�: (2)

The light-cone coordinates are

�˙ D 1

2
.� ˙ �/; @˙ D @� ˙ @� ; (3)

and the action is given in the conformal gauge (the world-sheet metric is taken to be
g˛ˇ D e2F �˛ˇ).
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The world-sheet conformal invariance is required, as a condition of having a
consistent theory on a quantum level. This leads to the space-time equations for the
background fields, which equal

R�� � 1

4
B���B

��
� D 0; D�B

�
�� D 0; (4)

in the lowest order in slope parameter ˛0 and for the constant dilaton field ˚ D
const . Here B��� D @�B�� C @�B�� C @�B�� is the field strength of the field
B�� , and R�� and D� are Ricci tensor and covariant derivative with respect to the
space-time metric.

We will consider a weakly curved background [2, 3], defined by

G��Œx� D const;

B��Œx� D b�� C h��Œx� D b�� C 1

3
B���x

�; b��; B��� D const: (5)

Here, the constant B��� is infinitesimal. The background (5) is the solution of the
field equations (4) in the first order in B���.

2 Partial T-Dualization

In the paper [3], we generalized the Buscher prescription for a construction of
a T-dual theory. This prescription, unlike the standard one [4], is applicable to
the string backgrounds depending on all the space-time coordinates, such as the
weakly curved background. We performed the procedure along all the coordinates
and obtained T-dual theory. The noncommutativity of the T-dual coordinates we
investigated in [5]. In the present paper we consider the partial T-dualization, i.e. the
application of the procedure to some without subset of the coordinates. We construct
the partially T-dualized theory. The noncommutativity of the coordinates in similar
theories was considered in [6].

Let us mark the T-dualization along the coordinate x� by T�, and separate the
coordinates into two subsets .xi ; xa/ with i D 0; : : : ; d � 1 and a D d; : : : ;D � 1

and mark the T-dualizations along these subsets of coordinates by

T i � T0 ı � � � ı Td�1; T a � Td ı � � � ı TD�1: (6)

In this section we will find the partially T-dualized action performing T-dualization
along coordinates xa, T a W S .
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The closed string action in the weakly curved background has a global symmetry

ıx� D ��: (7)

Let us localize this symmetry for the coordinates xa

ıxa D �a.�; �/; a D d; : : : ;D � 1; (8)

by introducing the gauge fields va˛ and substituting the ordinary derivatives with the
covariant ones

@˛x
a ! D˛x

a D @˛x
a C va˛: (9)

The gauge invariance of the covariant derivatives is obtained by imposing the
following transformation law for the gauge fields

ıva˛ D �@˛�a: (10)

Also, substitute xa in the argument of the background fields with its invariant
extension, defined by

�xainv �
Z
P

d�˛ D˛x
a D

Z
P

.d�CDCxa C d��D�xa/

D xa � xa.�0/C�V a; (11)

where

�V a �
Z
P

d�˛va˛ D
Z
P

.d�CvaC C d��va�/: (12)

The line integral is taken along the path P , from the initial point �˛0 .�0; �0/ to the
final one �˛.�; �/. To preserve the physical equivalence between the gauged and
the original theory, one introduces the Lagrange multiplier ya and adds the term
1
2
yaF

aC� to the Lagrangian, which will force the field strength F aC� � @Cva� �
@�vaC D �2F a

01 to vanish. In this way, we obtain the gauge invariant action

Sinv D �

Z
d2�

h
@Cxi˘Cij Œxi ; �xainv�@�xj C @Cxi˘CiaŒxi ; �xainv�D�xa

CDCxa˘Cai Œxi ; �xainv�@�xi CDCxa˘CabŒxi ; �xainv�D�xb

C1

2
.vaC@�ya � va�@Cya/

i
; (13)

where the last term is equal to 1
2
yaF

aC� up to the total divergence. Now, we can use
the gauge freedom to fix the gauge xa.�/ D xa.�0/. The gauge fixed action equals
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Sf ix D �

Z
d2�

h
@Cxi˘Cij Œxi ; �V a�@�xj C @Cxi˘CiaŒxi ; �V a�va�

C vaC˘Cai Œxi ; �V a�@�xi C vaC˘CabŒxi ; �V a�vb�

C 1

2
.vaC@�ya � va�@Cya/

i
: (14)

The equations of motion for the Lagrange multiplier ya, @Cva� � @�vaC D 0, have a
solution va˙ D @˙xa, which turns the gauge fixed action to the initial one.

2.1 The Partially T-Dualized Action

The partially T-dualized action will be obtained after elimination of the gauge fields
from the gauge fixed action (14), using their equations of motion. Varying over the
gauge fields va˙ one obtains

˘˙ai Œxi ; �V a�@�xi C˘˙abŒxi ; �V a�vb� C 1

2
@�ya D ˙ˇȧ Œxi ; V a�; (15)

where ˇȧ Œx
i ; V a� is the infinitesimal contribution from the background fields

argument. Using the inverse of the background fields composition 2�˘˙ab , defined
by Q
ab˙ � � 2

�
. QG�1E /ac˘˙cd . QG�1/db; where QGab � Gab and QGEab � Gab �

4Bac. QG�1/cdBdb , we can extract the gauge fields va˙ from Eq. (15)

va� D �2� Q
ab� Œxi ; �V a�
h
˘˙bi Œxi ; �V a�@�xi C 1

2
@�yb � ˇḃ Œx

i ; V a�
i
: (16)

Substituting (16) into the action (14), we obtain the partially T-dualized action

S�Œx
i ; ya� D �

Z
d2�

�
@Cxi N̆Cij Œxi ; �V a.xi ; ya/�@�xj

C�

2
@Cya Q
ab� Œxi ; �V a.xi ; ya/�@�yb

�� @Cxi˘CiaŒxi ; �V a.xi ; ya/� Q
ab� Œxi ; �V a.xi ; ya/�@�yb

C� @Cya Q
ab� Œxi ; �V a.xi ; ya/�˘Cbi Œxi ; �V a.xi ; ya/�@�xi
�
; (17)

where

N̆Cij � ˘Cij � 2�˘Cia Q
ab� ˘Cbj : (18)
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In order to find the explicit value of the background fields argument�V a.xi ; ya/,
one substitutes the zeroth order of the equations of motion (16) into (12) and obtains

�V .0/a D ��
h Q
ab

0C˘0�bi C Q
ab
0�˘0Cbi

i
�x.0/i

� �
h Q
ab

0C˘0�bi � Q
ab
0�˘0Cbi

i
� Qx.0/i

� �

2

h Q
ab
0C C Q
ab

0�
i
�y

.0/

b � �

2

h Q
ab
0C � Q
ab

0�
i
� Qy.0/b ; (19)

where Q
ab
0˙ stands for the zeroth order value of Q
ab˙ , which can be written as

Q
ab
0˙ � �2

�
. Qg�1/ac ˘0˙cd . QG�1/db D Q
ab0 � 1

�
. Qg�1/ab; (20)

where Qgab D Gab � 4bac. QG�1/cd bdb; Q
ab0 � � 2
�
. Qg�1/ac bcd . QG�1/db and

� Qy.0/a D
Z
.d�y.0/0a C d� Py.0/a /; � Qx.0/i D

Z
.d�x.0/0i C d� Px.0/i /: (21)

Initial theory, the partially T-dualized theory and the totally T-dualized theory
obtained in [3] are physically equivalent theories. In the next section we will
partially T-dualize the partially T-dualized theory.

3 The Total T-Dualization of the Initial Action

The T-dual theory, derived in [3], a result of T-dualization of the initial action along
all the coordinates, is given by

?SŒy� D �

Z
d2� @Cy� ?˘��

C Œ�V.y/� @�y� D �2

2

Z
d2� @Cy�
��� Œ�V.y/�@�y�;

(22)
with



��

˙ � �2
�
.G�1E ˘˙G�1/�� D 
�� � 1

�
.G�1E /��; (23)

where

GE�� � G�� � 4.BG�1B/��; 
�� � �2
�
.G�1E BG�1/��: (24)
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The T-dual background fields are equal to

?G��Œ�V.y/� D .G�1E /��Œ�V.y/�; ?B��Œ�V.y/� D �

2

��Œ�V.y/�: (25)

The argument of the background fields is given by

�V �.y/ D ��
��0 �y� C .g�1/��� Qy�; (26)

where�y� D y�.�/�y�.�0/ and Qy� D R
.d�y0�Cd� Py�/, while g�� D G���4b2��

and 
��0 D � 2
�
.g�1bG�1/�� .

Let us now show that the same result will be obtained applying the T-dualization
procedure to the coordinates xi of the partially T-dualized theory (17), T i W
S�Œx

i ; ya�. Substituting the ordinary derivatives @˙xi with the covariant derivatives

D˙xi D @˙xi C vi˙; (27)

where the gauge fields vi˙ transform as ıvi˙ D �@˙�i , and substituting the
coordinates xi in the background field arguments by

�xiinv D
Z
P

.d�CDCxi C d��D�xi /; (28)

we obtain the gauge invariant action, which after fixing the gauge by xi .�/ D xi .�0/

becomes

Sf ix� D �

Z
d2�

�
viC N̆Cij Œ�V ��vj� C �

2
@Cya Q
ab� Œ�V ��@�yb

�� viC˘CiaŒ�V �� Q
ab� Œ�V ��@�yb C � @Cya Q
ab� Œ�V ��˘Cbi Œ�V ��vi�

C1

2
.viC@�yi � vi�@Cyi /

�
: (29)

Here �V i is defined by

�V i �
Z
P

.d�CviC C d��vi�/; (30)

and �V a is defined in (19), whose arguments are in this case �V i and ya.
The totally T-dualized action will be obtained by eliminating the gauge fields

from the gauge fixed action, using their equations of motion. Varying the action
(29) over the gauge fields vi˙ one obtains

N̆˙ij vj� � �˘˙ia Q
ab� @�yb C 1

2
@�yi D ˙ˇi̇ : (31)
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Using the fact that the background field composition N̆˙ij is inverse to 2�
ij
� ,

we can rewrite the equation of motion (31) expressing the gauge fields as

vi� D 2�

ij
�
h
�˘˙ja Q
ab� @�yb � 1

2
@�yj ˙ ˇj̇

i
: (32)

Using ˘˙ab
bi� D �˘˙aj
ji
� ; we note that



ij
�˘˙ja Q
ab� D �
ic�˘˙ca Q
ab� D � 1

2�

ib� ; (33)

and obtain

vi� D ��
i�
� @�y� ˙ 2�


ij
�ˇj̇ : (34)

Substituting (34) into (29), the action becomes

S D �

Z
d2�

h
@Cyi



�
ij� � �2
ik� N̆Ckl
lj�

�
@�yj (35)

C @Cya



� �2
aj� N̆Cjk
ki� C �

2

ai� � �2 Q
ab� ˘Cbj
ji�

�
@�yi

C @Cyi



� �2
ij� N̆Cjk
ka� C �

2

ia� � �2
ij�˘Cjb Q
ba�

�
@�ya

C @Cya

�
2

Q
ab� � �2
ai� N̆Cij 
jb� � �2
ai� ˘Cic Q
cb� � �2 Q
ac� ˘Cci
ib�
�
@�yb

i
:

Using N̆˙ij
jk
� D 


kj
� N̆˙j i D 1

2�
ıki ; Q̆˙ab
bc� D 
cb� Q̆˙ba D 1

2�
ıca;˘˙ab
bi� D

�˘˙aj
ji
� ; ˘˙ij
ja

� D �˘˙ib
ba� and 
ci� N̆˙ik D � Q
ca�˘˙ak , one can rewrite
this action as

S D �2

2

Z
d2� @Cy�
��� @�y�: (36)

In order to find the background fields argument �V i , we consider the zeroth
order of Eq. (34)

vi0� D ��
i�
0�@�y�; (37)

and conclude that

�V i D ��
i�0 �y� C .g�1/i�� Qy�: (38)

Using the integral form of the variables and the relations ˘˙ac
cb� C ˘˙ai
ib� D
1
2�
ıba ; 
ib� D �2� N
ij

�˘˙ja
ab� ; 
aj
� D �2� Q
ab�˘˙bi


ij
�, we obtain that

�V a.�V i ; ya/ defined in (19) equals
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�V a.�V i ; ya/ D ��
a�0 �y� C .g�1/a�� Qy�: (39)

Therefore, we conclude that action (36) is the totally T-dualized action (22).
In this paper we performed the partial T-dualizations and obtained the T-duality

chain

SŒx��
T a

�! S�Œx
i ; ya�

T i

�! ?SŒy��: (40)

The first action describes the geometrical background, while the second and the third
describe the non-geometrical backgrounds with nontrivial fluxes. From this chain
one can find the relations between the arbitrary two coordinates in the chain. These
general T-duality coordinate transformation laws are used in the investigation of
the relations between the Poisson structures of the original, the partially T-dualized
and the totally T-dualized theory [5]. Their canonical form will be used in deriving
the complete closed string non-commutativity relations, which are the important
features of the non-geometrical backgrounds.

Acknowledgements Work supported in part by the Serbian Ministry of Education, Science and
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Modular Double of the Quantum Group
SLq.2;R/

L.D. Faddeev

Abstract The term “quantum group”, introduced by V. Drinfeld (Proceedings of
ICM-86, Berkeley, vol. 1, p. 798. AMS, Providence, 1987), applies in fact to
two dual objects: q-deformation of the algebra A of functions on the Lie group
and that for the universal enveloping algebra U of the corresponding Lie algebra.
See Faddeev [1] for the short history. It is instructive to stress, that the construction
of q-deformation originates in the theory of the quantum integrable models and
conformal field theory [see Faddeev [2]]. In this lecture I plan to survey some new
developments on a representative example of the rang 1 SL.2/ case.

1 Definitions

A—commutative algebra of functions of the matrix elements of matrix

g D
�
˛ ˇ

� ı

�
; ˛ı � ˇ� D 1

U—noncommutative algebra of functions of the generators e; f; h with relations

Œe; h� D e; Œf; h� D �f; ef � fe D h

Corresponding q-deformations are given in terms of generators as follows
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Algebra Aq

T D
�
a b

c d

�

ab D qba; ac D qca; db D q�1bd; dc D q�1cd (1)

ad � da D .q � q�1/bc; bc D cb; ad � q�1bc D 1

Algebra Uq

E; F;K KE D q2EK; KF D q�2FK; (2)

EF � FE D K �K�1
q � q�1

These relations turn into the undeformed ones in the limit q ! 1 if we putK D qH .
Algebra Uq appeared first in the paper [3] of Kulish and Reshetikhin. Correspond-

ing commutation relations are those for the generalized spin operators appearing in
the higher spin XXZ model. Parameter q is an anisotropy parameter, entering the
definition of the model. The algebra Aq was introduced by L. Takhtajan and me [4]
in course of definition of the quantum Liouville model. The relations (1) are those
for the monodromy matrix of the corresponding quantized Lax matrix. Parameter q
is defined via the coupling constant.

The mathematical side of the story began after short commentary of Sklyanin
[5] on the connection of the developed formalism with the Hopf algebra (incidently,
in 1982 Thierry-Mieg, who was a student of Les Houches summer school told me,
that what I was presenting on my lectures is a Hopf Algebra). However a solid
mathematical foundation was done by Drinfeld [6] and thereupon theory began
to develop rapidly with important contribution of Jimbo [7], Bazhanov [8]. The
approach of Leningrad group was described in detail in [9].

2 Weyl Pair

In the following we shall heavily use the Weyl pair u, v

uv D q2vu

It is convenient to use the notations from the theory of the automorphic functions

q D ei�� ; � D !0

!
; !!0 D �1

4
; Im � 	 0
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Here !, !0 are so called half periods and they lie in the upper half plane. We shall
use u and v represented by operators acting on the functions f .x/, x 2 R by
multiplication and shift

uf .x/ D e�i�x=!f .x/; vf .x/ D f .x C 2!0/: (3)

For general � these are unbounded operators inL2.R/ defined on a dense domain D,
consisting of the analytic functions on C rapidly vanishing along the lines parallel
to the real axis.

There are two distinguished real structures:

1. � > 0, N! D �!, N!0 D �!0, u; v—positive, essentially selfadjoint,
2. � < 0, !;!0—real, u; v—unitary.

It is instructive to observe, that the action of u and v is not irreducible. Indeed, a
second pair of operators Qu, Qv, defined by formula similar to (3) after interchange of
! and !0

Quf .x/ D e�i�x=!0f .x/; Qvf .x/ D f .x C 2!/

commute with u and v, which can be easily checked. Indeed we have

uQvf De�i�x=!f .x C 2!/;

Qvuf De�i�.xC2!/=!f .x C 2!/ D e�2�iuQvf D uQvf
Formally we can say, that u, v and Qu, Qv are connected as follows

Qu D u1=� ; Qv D v1=� :

I must confess, that I realized this feature rather late in my life. Amazing fact,
that the algebra of operators in L2.R/, which is an algebra for observables for the
system with one degree of freedom, is factorized in two commuting factors, was so
impressive, that I even have published a short note on this [10]. Later I realized, that
this fact is known to some more learned people, in particular by Alain Connes [11],
he likes to call u-v system as quantum torus but considers only the case of unitary
operators u, v. In the factorization

B D A� ˝ A1=�

for irrational � algebras A� and A1=� are factors II1. However the interpretation of
this formula in general case is still lacking, because the von Neumann theory of C �
algebras is unapplicable. I believe that here we have an interesting mathematical
problem.

From now on I consider u, v, Qu, Qv as independent generators of algebra, which
I propose to call “modular double”. This algebra has one more real structure for
j� j D 1
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u� D Qu; v� D Qv
The involution 
 interchanges A� and A1=� , however

.
/2 D id:

In conformal field theory of rang 1 appears a projective representation of the
Virasoro algebra with central charge c D 1C 6.� C 1

�
C 2/

1. � > 0, c > 25—weak coupling
2. � < 0, c < 1—minimal models for rational � D �P=Q
3. j� j D 1, 1 < c < 25—strong coupling

so that the use of the modular double is indispensable in the case 3.
Now I say several words about irreducibility. The question when the commuta-

tivity

ŒA; u� D 0; ŒA; v� D 0; ŒA; Qu� D 0; ŒA; Qv� D 0

leads to

A D const I

is not completely answered. It can be proved for the complex � but for � > 0 one
should require that � is irrational. We shall comment on this later.

3 Explicit Realization

Generators of rank 1 algebras Aq and Uq can be expressed via a pair u, v and one
central element. It is a generalization of Gelfand-Kirillov theorem on the structure of
the universal enveloping algebra of a simple Lie algebra. Here are explicit formulas

Aq W T D
�

u C v �t

��1t u�1
�
; t D q1=4u�1=2v1=2

�2 D b=c—central element

Uq W E D i

q � q�1 e; e D qu�1v C u�1Z

F D i

q � q�1 f; f D u C quv�1Z�1

K D v Z—central element
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C D fe � qK � q�1K�1 D Z CZ�1

Operator C is a q-generalization of the corresponding Casimir operator.
The modular double of Aq and Uq are given by completion of these generators

by those written similarly via Qu and Qv. In the more explicit use of such formulas it is
important to know the property

.u C v/1=� D u1=� C v1=� (4)

derived by A. Volkov [12].

4 Representation �s

From now on we shall deal only with modular double of Uq . In the case of real
forms 1 and 3 we can speak about the modular double of quantum group SLq.2;R/.
Consider the first real form � > 0 and parametrize the central elementsZ and QZ via
real parameter s

Z D ei�s=!; QZ D ei�s=!
0

:

Then generators E, F , K and QE, QF , QK are positive and essentially selfadjoint in
L2.R/. We shall consider this case as a definition of the selfadjoint representation
�s of the modular double SLq.2;R/. This representation was already introduced
in my paper [13] with the definition of the modular double and investigated in detail
by J. Teschner [14]. The main theorem on the decomposition of the tensor product
�s ˝ �s0 , due to R. Ponsot and J. Teschner [15] will be discussed below.

The case of the third real structure is also very interesting. We shall comment on
it later.

The real variable s can be called the spin of the representation �s . The reflection

s ! �s

is analogous to the Weyl reflection for the algebra SL.2;R/. Let us show, that the
representations �s and �s0 are equivalent. We should find an intertwiner R such that

e.s/R D Re.�s/
f .s/R D Rf .�s/ (5)

KR D RK
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and similarly for Qe, Qf , Qk. From commutativity of R with K and QK it follows, that it
is a function of the generator v.

Introduce the Fourier transform

Ff .x/ D
Z 1
�1

e�2�ixyf .y/ dy

so that

uF D F v; vF D F u�1

and look for R in the form

OR D F �1R.v/F:

We have

F �1e.s/F Dv�1.qu�1 CZ/ D .q�1u�1 CZ/v�1

F �1f .s/F Dv.1C qZ�1u/ D .1C q�1Z�1u/v

and

OR D OR.u/:

Now from

.q�1u�1 CZ/ OR.q2u/ D OR.u/.q�1u�1 CZ�1/

we get a functional equation

OR.q2u/
OR.u/ D 1C quZ�1

1C quZ
:

Let ˚.u/ satisfy the equation

˚.qu/

˚.q�1u/
D 1

1C u
(6)

then

OR.u/ D ˚.Zu/

˚.Z�1u/
:
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Due to the Volkov relation (4) the same ˚ serves the second half of relations (5).
Thus the intertwiner is constructed as soon as we know the solution of Eq. (6). We
shall discuss the problem of solving (6) in the next section.

5 Quantum Dilogarithm

Equation (6) is solved by Euler q-exponent

eq.u/ D
1Y
kD0
.1C q2kC1u/

D 1C
1X
nD1

qn.nC1/=2un

.q � q�1/ : : : .qn � q�n/ D exp
X .�1/nun

n.qn � q�n/ : (7)

The last formula, where we have in the denominator the integer n and q-analog of
n, prompted me to introduce the term “quantum dilogarithm” [16]. However, the
formula (7) is correct only for jqj < 1 or Im� > 0. So we can not use it for our
case of real structure 1. My proposal in the spirit of modular double was to modify
the product in (7), adding the second factor with � changed into 1=�

˚.u/ D eq.u/

eQq.Qu/ ; Qq D e�i�=� ; Qu D u1=� : (8)

One can consider each factor as a quasiconstant with respect to shift associated with
� or 1=� .

The product can be realized via the integral

�.x/ D exp �1
4

Z 1Ci0
�1Ci0

eixt

sin!t sin!0t
dt

t
(9)

such that

˚.u/ D �.x/; u D e�i�x=!:

Integral (9) has its own long history. It is related to the functions which we call
Barnes double � -function [17], which was in fact introduced in the end of nineteenth
century by Russian mathematician Alexseievsky [18]. More exactly the function
�.x/ plays the role of argument of double � -function, so it has a second name double
sinus. The origin of this name is the functional equation

�.x C !0/
�.x � !0/ D 1C e�i�x=!
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and the dual one

�.x C !/

�.x � !/ D 1C e�i�x=!0 ;

which is equivalent to Eq. (6).
The function �.x/ acquired a host of applications in the last 15 years and the

term “quantum dilogarithm” was inherited by it. The beautiful paper by Volkov [12]
contain a list of its important properties.

Let us observe, that contrary to the case of product (7), the integral (9) has
no singularities for real � . The singularities of numerator and denominator in (8)
cancel each other. In particular, the problem of irrational � disappears. Everything
is smooth for the positive � .

I shall conclude the lecture by describing the role of the quantum dilogarithm in
the problem of decomposition of the tensor product of two representations �s1 and
�s2 into direct sum of �s .

6 Decomposition of �s1
˝ �s2

It is clear that the definition of �s1 ˝ �s2 should be done according to comultiplica-
tion rule in Uq , which is a deformation for those in U

�E DE ˝K C I ˝E

�F DF ˝ I CK�1 ˝ F (10)

�K DK ˝K

Teschner and Ponsot [15] has shown that

�s1 ˝ �s2 D
Z 1
0

�.s/ d�.s/; d�.s/ D �4 sin
�s

!
sin

�s

!0
ds;

so that in the decomposition for any pair of spins s1, s2 enter representations with
all spins s3.

To construct the intertwiner S.x1; x2; x3js1; s2; s3/ we should solve the equations

e12S DSe03
f12S DSf 03 (11)

K12S DSK 03;
where 0 means the transposition and e12, f12, K12 are defined according to (10) I
present here shortly the way of solution, proposed by S. Derkachov and me [19].
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Equation (11) can be rewritten more explicitly in the form

v1v2v3S D S

S.q2u1; u2; u3/ D 1

Z2Z3
� 1 � u3

u1

1C Z1
qZ2Z3

u3
u1

� 1 �Z2Z3 u1
u2

1C q

Z1

u1
u2

S.u1; u2; u3/

and similar for S.u1; u2; q�2u3/ and S.u1; q�2u2; u3/. Here we freely use variables
u1, u2, u3 instead of x1, x2, x3. The use of property (6) leads to the explicit formula

S.x1; x2; x3/ D S0 expf�2�i.s1x23 C s2x31 C s3x21/g

� �.x12 � s1/
�.x12 C s2 C s3 C !00/

� �.x23 C s3 � s2 � !00/
�.x23 � s1/ � �.x31 � !00/

�.x31 C s1 � s2 � s3/

xij D xi � xj ; !00 D ! C !0; !00 ! !00 � i0:

One should prove the main properties of the intertwiner—orthogonality and
completeness. To achieve this goal we use the spectral problem with the use of
the Casimir for �s1 ˝ �s2

C12S.x1; x2; x3/ D .Z3 CZ�13 /S.x1; x2; x3/ (12)

The equation is in two variables x1, x2; s1, s2—parameters, s3—eigenvalue, x3—
multiplicity.

The main tool—reduction to spectral problem

.u C u�1 C v/ D � ; (13)

� D Z.s/CZ�1.s/;

which is solved by a generalized function

 .x; s/ D �.x � s � !00 C i0/ �.x C s � !00 C i0/ e�i�.x�!00/2 :

One should observe, that �.x/ has a pole in �!00 so that

�.x � !00/ � c

x

and term i0 define the corresponding rule of treating this. It is instructive to observe,
that the operator in the left hand side of (13) coincide with the trace of matrix T
in (1).

This spectral problem (13) was analyzed in detail by Kashaev [20], who proved
the orthogonality and completeness relation
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� > 0;

Z
 .x; s/ .x; s0/dx D 1

�.s/

�
ı.s � s0/C ı.s C s0/

�

�.s/ D �4 sin
�s

!
sin

�s

!0
Z 1
0

 .x; s/ .y; s/�.s/ ds D ı.x � y/

Derkachov and me reduced the problem (12) to (13) by means of some
“redressing”. We found an intertwiner A such that

OC12 D A�1C12A; A�1K12A D K12

with rather simple expression for OC12

OC12 D Z2
u1
u2

C 1

Z2

u2
u1

CZ1v2 C Z1

qZ2

u2
u1

v�11

Now we use K12 to count the multiplicity. The new spectral problem looks as

OC12 p.x1; x2/ D .Z3 CZ3/
�1 p.x1; x2/

K12 p.x1; x2/ D ei�p=! p.x1; x2/

and the last equation allows to express v1 via v2. Thus we get S.x1; x2; x3/ as a
Fourier transform  p.x1; x2/ over p and dressing A and Kashaev’s properties allow
to prove all necessary properties of S .

Conclusions
We have shown in this lecture the importance of combining the two
q-deformations for dual expressions of the parameter q

q D ei�� ; Qq D e�i�=�

and illustrated its usefulness on one example. There are many other examples
appearing in the construction of quantum Teichmüller space and theory
of cluster algebras. There is no doubt, that the proper construction of the
conformal blocks in the Liouville model should use modular double. So we
have a lot of work ahead.
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Physical Ageing and New Representations
of Some Lie Algebras of Local Scale-Invariance

Malte Henkel and Stoimen Stoimenov

Abstract Indecomposable but reducible representations of several Lie algebras
of local scale-transformations, including the Schrödinger and conformal Galilean
algebras, and their applications in physical ageing are reviewed. The physical
requirement of the decay of co-variant two-point functions for large distances is
related to analyticity properties in the coordinates dual to the physical masses or
rapidities.

1 Introduction

Scale-invariance is recognised as one of the main characteristics of phase transitions
and critical phenomena. In addition, it has also become common folklore that
given sufficiently local interactions, scale-invariance can be extended to larger
Lie groups of coordinate transformations. Quite a few counter-examples exist,
but the folklore carries on. Here, we are interested in the phenomenology of
phase transitions, either at equilibrium or far from equilibrium and shall study
situations when scale-invariance does indeed extend to conformal invariance or
one of the generalisations appropriate for scale-invariant dynamics. We review
recent results on indecomposable, but reducible (“logarithmic”) representations and
discuss sufficient conditions which guarantee they decay of co-variant two-point
functions at large distances.

Consider the transformations in .1C d/-dimensional time-space R ˝ R
d
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where R 2 SO .d/, v0; : : : ; v2` 2 R
d and ˛; ˇ; �; ı 2 R. The infinitesimal gener-

ators from these transformations only close in a Lie algebra if ` 2 1
2
N (sometimes

called “spin-` algebra”). In .1 C 1/ dimensions, this algebra can be formulated in
terms of two infinite families of generators sc.1; `/ WD hXn; Ymin2Z;mC`2Z of the
form

Xn D �tnC1@t � .nC 1/`tnr@r ; Ym D �tmC`@r (2)

with the non-vanishing commutators [20]

ŒXn;Xn0 � D �
n � n0�XnCn0 ; ŒXn; Ym� D .`n �m/YnCm (3)

and where z WD 1=` is the dynamical exponent. The maximal finite-dimensional
sub-algebra is spi.1; `/ WD hX˙1;0; Y�`;:::;`�1;`i, for ` 2 1

2
N. In analogy with

conformal invariance, Ward identities must be formulated which will describe the
action of these generators on scaling operators such that the co-variance under
these transformations can be used to derive differential equations to be satisfied by
n-point correlators. Alternatively, one may include the corresponding terms directly
into the generators themselves, which has the advantage that the verification of the
commutators guarantees the self-consistency of co-variance. However, the explicit
representation (2) does not take into account any transformation properties of the
(quasi-)primary scaling operators on which it is assumed to act.

Dynamic time-space symmetries with a generic dynamical exponent (z ¤ 1

possible) often arise as “non-relativistic limits” of the conformal algebra. The
two best-known examples are (1) the Schrödinger algebra sch.d/ which in (2)
corresponds to ` D 1

2
(discovered in 1842/1843 by Jacobi and in 1881 by Lie)

and (2) the conformal Galilean algebra CGA.d/ [18] which corresponds in (2) to
` D 1. These two important special cases can also be obtained by two distinct,
complementary approaches

1. The non-relativistic limit of time-space conformal transformations such that a
fixed value of the dynamical exponent z is assumed, reproduces the Schrödinger
and conformal Galilean algebras from the restriction to flat time-like and light-
like geodesics, along with z D 2 and z D 1 [13].

2. If one tries to include the transformations of scaling operators into the representa-
tion (3) of the infinite-dimensional algebra (3) only the cases with ` D 1

2
; 1 close

as a Lie algebra. Besides the conformal algebra, this reproduces the Schrödinger
and conformal Galilean algebras [21].

Including the terms which describe the transformation of quasi-primary scaling
operators often leads to central extensions of the above algebras. For ` D 1

2
, one has

instead of spi.1; 1
2
/ the Schrödinger-Virasoro algebra sv D hXn; Ym;Mnin2Z;m2ZC 1

2

[19, 49] spanned by the generators
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Xn D �tnC1@t � nC 1

2
tnr@r � nC 1

2
xtn � n.nC 1/

4
Mtn�1r2

Ym D �tmC 1
2 @r �

�
mC 1

2

�
Mtm� 12 r ; Mn D �tnM (4)

(x is the scaling dimension and M the mass) and the non-vanishing commutators

ŒXn;Xn0 � D .n � n0/XnCn0 ; ŒXn; Ym� D

n
2

�m
�
YnCm

ŒXn;Mn0 � D �n0MnCn0 ; ŒYm; Ym0 � D �
m �m0�MmCm0 (5)

Its maximal finite-dimensional sub-algebra is the Schrödinger algebra sch.1/ D
hX˙1;0; Y˙ 1

2
;M0i, which centrally extends spi.1; 1

2
/. It is the maximal dynamical

symmetry of the free Schrödinger equation S� D 0 with S D 2M0X�1 � Y 2� 12
D

2M@t � @2r , in the sense that solutions of S� D 0 with scaling dimension x D
x� D 1

2
are mapped onto solutions, a fact already known to Jacobi and to Lie. More

generally, unitarity implies the bound x 	 1
2

[36].
On the other hand, for ` D 1 one obtains the altern-Virasoro algebra av WD

hXn; Ynin2Z (also called “full CGA”), with an explicit representation spanned by
[1, 3–5, 11, 12, 15, 18, 20, 21, 28, 31–33, 37, 40, 43]

Xn D �tnC1@t � .nC 1/tnr@r � .nC 1/xtn � n.nC 1/� tn�1r

Yn D �tnC1@r � .nC 1/� tn (6)

which obeys (3) and has CGA.1/ D hX˙1;0; Y˙1;0i as maximal finite-dimensional
sub-algebra.1 The representation (6) is spanned by the two scalars x and � .

The relationship between sch.1/ and CGA.1/ can in be understood in a different
way by considering the imbedding sch.1/ � B2 into the complex Lie algebra B2.
This can be visualised in terms of a root diagram, see Fig. 1a, where the generators
of sch.1/ are indicated by full black circles and the remaining ones by the grey
circles. As it is well-known [34], a standard parabolic sub-algebra p, of a semi-
simple Lie algebra g consists of the Cartan sub-algebra h � g and of all “positive”
generators in g. The meaning of “positive” can be simply illustrated in Fig. 1 for the
special case g D B2: one draws a straight line through the centre of the root diagram
and all generators on that line or to the right of it are “positive”. From Fig. 1a, one
also sees that the Schrödinger algebra can be extended to a parabolic sub-algebrafsch.1/ D sch.1/˚ CN by adding an extra generator N , which is indicated by the
red double circle in the centre. Since the Weyl reflections and rotations can be used

1In the context of asymptotically flat 3D gravity, an isomorphic Lie algebra is known as BMS
algebra, bms3 � CGA.1/ [6–9].
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a b c

Fig. 1 Root diagrams of (a) sch.1/, (b) age.1/ and (c) alt.1/ D CGA.1/ as sub-algebras of the
complex Lie algebra B2. If the second generator in the centre is included (double red circle) one
obtains the maximal parabolic sub-algebras of B2

to map isomorphic sub-algebras onto each other, the classification of the maximal
parabolic sub-algebras of B2 can now be illustrated simply through the value of the
slope p of the straight line in Fig. 1 [25]:

1. if p D 1, one has fsch.1/ D sch.1/ C CN , the parabolic extension of the
Schrödinger algebra, see Fig. 1a. See below for explicit forms for N .

2. if 1 < p < 1, one has fage.1/ D age.1/ C CN , the parabolic extension of
the ageing algebra, see Fig. 1b.

3. if p D 1, one has eCGA.1/ D CGA.1/ C CN , the parabolic extension of the
conformal Galilean algebra, see Fig. 1c.

While CGA(1) does not have a central extension, this is different in d D 2

space dimensions, where a so-called “exotic” central extension exists. This gives
the exotic conformal Galilean algebra ECGA D hX˙1;0; Y˙1;0; 
; R0i [38, 39] with
an explicit representation (where j; k; ` D 1; 2 and summation over repeated indices
is implied)

Xn D �tnC1@t � .nC 1/tnrj @j � x.nC 1/tn

�n.nC 1/tn�1�j rj � n.nC 1/hj rj

Y .j /n D �tnC1@j � .nC 1/tn�j � .nC 1/tnhj � n.nC 1/
"jkrk (7)

J D �"k` rk@` � "k` �k @

@�`
� 1

2

hj hj

characterised by a scalar scaling dimension x and a vector � D .�1; �2/ of
“rapidities” [12, 28, 40]. The components of the vector h D .h1; h2/ satisfy
Œhi ; hj � D "ij 
 , where 
 is central. " is the totally antisymmetric 2 � 2 tensor and
"12 D 1. The non-vanishing commutators of the ECGA read

ŒXn;Xm� D .n �m/XnCm ;
�
Xn; Y

.i/
m

	 D .n �m/Y .i/nCm�
Y .i/n ; Y .j /m

	 D "ij ınCm;0 .3ın;0 � 2/ 
 ;
�
J; Y .i/n

	 D "ij Y
.j /
n (8)



Physical Ageing and Lie Algebras of Local Scale-Invariance 37

and the ECGA-invariant Schrödinger operator is

S D �
X�1 C "ij Y
.i/
0 Y

.j /
�1 D 
@t C "ij .�i C hi / @j (9)

with x D x� D 1. The unitary bound gives x 	 1 [40].
The common sub-algebra of sch.1/ and CGA.1/ is called the ageing algebra

age.1/ WD hX0;1; Y˙ 1
2
;M0i and does not include time-translations. Starting from

the representation (4), only the generators Xn assume a more general form [26]

Xn D �tnC1@t � nC 1

2
tnr@r � nC 1

2
xtn � n.nC 1/�tn � n.nC 1/

4
Mtn�1r2

(10)

which also admits a more general invariant Schrödinger operator S D 2M@t �
@2r C 2Mt�1

�
x C � � 1

2

�
, but without any constraint on neither x nor � [48].

This representation of age.1/ is characterised by the scalars .x; �;M/. The name
of this algebra comes from its use as dynamical symmetry in physical ageing,
which can be observed in strongly interacting many-body systems quenched from
a disordered initial state to the co-existence regime below the critical temperature
Tc > 0where several equivalent equilibrium states exist. For example, for quenched
Ising spins in d 	 2 dimensions without disorder, nor frustrations, and with a
purely relaxational dynamics without any conservation law, it can be shown that
the dynamical exponent z D 2 [10]. Assuming age.d/ as a dynamical symmetry
predicts the form of the two-time linear response function of the average order
parameter h�.t; r/i with respect to its canonically conjugate magnetic field h.s; r0/
[19, 25, 26]

R.t; sI r/ D ıh�.t; r/i
ıh.s; 0/

ˇ̌
ˇ̌
hD0

D ˝
�.t; r/ Q�.s; 0/˛ D s�1�aFR

�
t

s
;

r2

t � s
�

(11)

FR.y; u/ D F0 ı.M � QM/
.y � 1/ y1Ca0��R=z.y � 1/�1�a0 exp

�
�1
2
Mu

�

where the standard Janssen-de Dominicis formalism (see e.g. [23]) was used to
re-write R D h� Q�i as a correlator of the order parameter scaling operator � and
the conjugate response operator Q�. Both of these are assumed to be quasi-primary
under age.d/. The ageing exponents a; a0; �R=z are related to x; � and Qx; Q� in a
known way, e.g. a0 � a D 2

z .� C Q�/. F0 is a normalisation constant and the 
-
function expresses the causality condition y D t=s > 1, of which we shall say more
in Sect. 3 below. Spatial translation-invariance was assumed.

The case of a Schrödinger-invariance response is obtained if one sets � D Q� D 0,
hence a D a0 in (11).

Equation (11) has been confirmed in numerous spin systems (e.g. Ising,
Potts, XY, spherical, Hilhorst-van Leeuven, Edwards-Wilkinson,. . . models) which
undergo simple ageing with z D 2, both for the time- and space-dependence; either
from a known exact solution or using simulational data. For a detailed review,
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see [23]. Current empirical evidence suggests that for quenches to low temperatures
T < Tc , one should have for the second scaling dimensions �CQ� D 0, hence a D a0.
However, the full representation (10) of age.1/ is needed in the d D 1 Glauber-
Ising model, where the exact solution reproduces (11) with a D 0, a0 � a D � 1

2

and �R D 1 [26]. One might anticipate that a0 � a ¤ 0 for quenches to the critical
point T D Tc .

For critical quenches, one has in general z ¤ 2, such that (11) does no longer
apply. However, the form of the auto-response R.t; s/ D R.t; sI 0/ does not contain
the precise spatial form so that at least that part of (11) can be used for preliminary
tests of dynamical symmetries for generic values of z.

In Sect. 2, various logarithmic representations of these algebras and some of
their properties are reviewed. Known applications to physical ageing will be briefly
discussed. In Sect. 3, the requirement of a physically sensible limit in the case of
large spatial separation jr1�r2j ! 1 leads to the derivation of causality conditions.
These inform on the interpretation in terms of either responses or correlators.

2 Logarithmic Representations

Logarithmic conformal field-theories arise from indecomposable but reducible
representations of the Virasoro algebra [17, 41, 45, 46], see [14] for a collection
of recent reviews. Formally, in the most simple case, this can be implemented

[17, 44] by replacing the order parameter � by a vector ˚ D
�
 

�

�
such that

the scaling dimension x in the Lie algebra generators becomes a Jordan matrix�
x 1

0 x

�
. Anticipating the notation used for the algebras we are going to consider,

we introduce, instead of a single two-point function h�1�2i, the three two-point
functions

F WD h�1.t1; r1/��2 .t2; r2/i ; G WD h�1.t1; r1/ �2 .t2; r2/i ;
H WD h 1.t1; r1/ �2 .t2; r2/i (12)

Temporal and spatial translation-invariance imply that F D F.t; r/, G D G.t; r/
and H D H.t; r/ with t D t1 � t2 and r D r1 � r2. The shape of these functions is
derived from the algebras introduced in Sect. 1, as we now review.

2.1 Schrödinger Algebra

For the Schrödinger and the ageing algebras, the “complex conjugate” �� in (12)
refers to the mapping M 7! � QM when in a response function such as (11)
one goes from the order parameter � to its conjugate response operator Q� [23].
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This is necessary in applications to physical ageing. In particular, extending
sch.1/ ! fsch.1/ and using the physical convention M 	 0 of non-negative masses,
implies causality t1 � t2 > 0, as we shall see in Sect. 3. While common in statistical
physics applications in models described by stochastic Langevin equations [26], this
was recently re-discovered in string-theory contexts [42].

Replacing in the generators (4) the scaling dimension x by a 2�2 Jordan matrix,
the Schrödinger Ward identities (or co-variance conditions) can be written down for
the three two-point functions (12). The result is, in d 	 1 dimensions [30]

F.t; r/ D h�1.t; r/��2 .0; 0/i D 0;

G.t; r/ D h�.t; r/ �2 .0; 0/i D a t�2x1 exp

�
�M1r2

2t

�
ıx1;x2ıM1;M2 ; (13)

H.t; r/ D h 1.t; r/ �2 .0; 0/i D t�2x1 .b � 2a ln t / exp

�
�M1r2

2t

�
ıx1;x2ıM1;M2 :

where a; b are scalar normalisation constants. Time- and space-translation-
invariance and also rotation-invariance for scalar �; were used.

2.2 Conformal Galilean Algebra

The representation (6) of CGA.1/ depends on both the scaling dimension x [29] as
well as the rapidity � . Now, either of them may become a Jordan matrix and it turns
out that the CGA.1/-commutators imply that simultaneously [28]

x 7!
�
x x0
0 x

�
; � 7!

�
� � 0
0 �

�
(14)

In contrast to sch.d/, the “complex conjugate” is not needed here. The CGA-Ward
identities lead to [28], immediately written down for d 	 1 spatial dimensions

F D h�1�2i.t; r/ D 0

G D h�1 2i.t; r/ D ajt j�2x1e�2�1�r=t ıx1;x2ı�1;�2 ıx01;x
0

2
ı�0

1;�
0

2
(15)

H D h 1 2i.t; r/ D jt j�2x1e�2�1�r=t
h
b � 2a r

t
� � 0

1 � 2ax01 ln jt j
i

� ıx1;x2ı�1;�2ıx01;x
0

2
ı�0

1;�
0

2

where the normalisation a D a.�21;�
0
1
2
;�1 �� 01/ as follows from rotation-invariance

for d > 1 and an analogous form holds for b.
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2.3 Exotic Conformal Galilean Algebra

Again, both the scalar x as well as the vector � may become simultaneously Jordan
matrices, according to (14). One then needs four distinct two-point functions

F D h�1�2i ; G12 D h�1 2i ; G21 D h 1�2i ; H D h 1 2i (16)

which all depend merely on t D t1 � t2 and r D r1 � r2. The operators h; 
 are
realised in terms of auxiliary variables � such that hi D @�i � 1

2
�ij �j 
 with i; j D

1; 2. Remarkably, it turns out that two cases must be distinguished [28]:

Case 1: defined by x01 ¤ 0 or x02 ¤ 0 and F D 0.
In what follows, the indices always refer to the identity of the two primary

operators˚1;2 D
�
 1;2
�1;2

�
. We also use the two-dimensional vector product (with

a scalar value) a ^ b WD �ij aibj . Then G12 D G.t; r/ D G.�t;�r/ D G21 DW G
such that one has the constraints x1 D x2, x01 D x02, 
1 C 
2 D 0 and (recall
d D 2)

G D jt j�2x1e�.�1C�2/�u� 12 .�1��2/�.�1��2/ e
1u^.�1��2/C 1
2 
1�1^�2 g0.w/ (17)

H D jt j�2x1e�.�1C�2/�u� 12 .�1��2/�.�1��2/ e
1u^.�1��2/C 1
2 
1�1^�2 h.u; �1; �2/

h D h0.w/ � g0.w/
�
2x01 ln jt j C u � �� 01 C � 02

�C 1

2
.�1 � �2/ � �� 01 � � 02

��

together with the abbreviations u D r=t and w WD u� 1
2
.�1 C �2/. The functions

g0.w/ and h0.w/ remain undetermined.
Case 2: defined by x01 D x02 D 0, hence only the vector � has a Jordan form.
One has the constraints x1 D x2, 
1 C 
2 D 0 and

F D jt j�2x1e�.�1C�2/�u� 12 .�1��2/�.�1��2/ e
1u^.�1��2/C 1
2 
1�1^�2 f0.w/ (18)

G12 D jt j�2x1e�.�1C�2/�u� 12 .�1��2/�.�1��2/ e
1u^.�1��2/C 1
2 
1�1^�2 g12.u; �1; �2/

G21 D jt j�2x1e�.�1C�2/�u� 12 .�1��2/�.�1��2/ e
1u^.�1��2/C 1
2 
1�1^�2 g21.u; �1; �2/

H D jt j�2x1e�.�1C�2/�u� 12 .�1��2/�.�1��2/ e�1u^.�1��2/C 1
2 
1�1^�2 h.u; �1; �2/

where

g12 D g0.w/ � f0.w/
�

u � 1

2
.�1 � �2/

�
� � 02

g21 D g0.w/ � f0.w/
�

u C 1

2
.�1 � �2/

�
� � 01 (19)
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h D h0.w/ � g0.w/
�

u � �� 01 C � 02
�C 1

2
.�1 � �2/ � �� 01 � � 02

��

C1

2
f0.w/

�
u C 1

2
.�1 � �2/

�
� � 01

�
u � 1

2
.�1 � �2/

�
� � 02

The functions f0.w/, g0.w/ and h0.w/ remain undetermined.

Finally, two distinct choices for the rotation generator have been considered in
the littérature, namely (single-particle form)

J D �r ^ @r � � ^ @� � 1

2

h � h and R D �r ^ @r � � ^ @� � � ^ @� (20)

The generator J arises naturally when one derives the generators of the ECGA from
a contraction of a pair conformal algebras with non-vanishing spin [40], whereas
the choice R has a fairly natural form, especially in the auxiliary variables �.
Both generators obey the same commutators (8) with the other generators of ECGA

and commute with the Schrödinger operator (9). One speaks of “J -invariance”
if the generator J is used and of “R-invariance”, if the generator R is used.
The consequences of both cases are different [28]:

(A) If one uses R-invariance, in both cases the functions f0.w/, g0.w/ and h0.w/
are short-hand notations for undetermined functions of nine rotation-invariant
combinations of w, �1;2 and � 01;2, for example

f0 D f0



w2;�21;�

2
2;�
0
1
2
;� 02

2
;w � �1;w � �2;w � � 01;w � � 02

�
(21)

and analogously for g0 and h0.
(B) For J -invariance, the �-matrices become diagonal, viz. � 01 D � 02 D 0. Then

only case 1 retains a logarithmic (i.e. indecomposable) structure and, with O� D�
0 1

�1 0
�

g0 D g0
�
�21;�

2
2;�1 � �2;w C O� .�1 � �2/ .2
1/

�1�
h0 D h0

�
�21;�

2
2;�1 � �2;w C O� .�1 � �2/ .2
1/

�1� (22)

In all these ECGA-covariant two-point functions, there never is a constraint on
the � i , and on the � 0i only in the case of J -invariance.
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2.4 Ageing Algebra

Since the representation (10) of age.1/ contains the two independent scaling
dimensions x; � , either of those may take a matrix form. From the commutators,
it can be shown that both are simultaneously of Jordan form [22]

x 7!
�
x x0
0 x

�
; � 7!

�
� � 0
0 �

�
(23)

We use again the definitions (16). Since the space-dependent part of the two-point
functions has the same form as already derived above, in the case of Schrödinger-
invariance, we set r D r1�r2 D 0 and consider only the time-dependent part where
only the values of the exponents change when z ¤ 2 is admitted. The requirement
of co-variance under this logarithmic representation of age.1/ leads to [22]

F.t; s/ D s�.x1Cx2/=2 F
�
t

s

�
f0

G12.t; s/ D s�.x1Cx2/=2 F
�
t

s

��
g12

�
t

s

�
C �12

�
t

s

�
ln s

�

G21.t; s/ D s�.x1Cx2/=2 F
�
t

s

��
g21

�
t

s

�
C �21

�
t

s

�
ln s

�
(24)

H.t; s/ D s�.x1Cx2/=2 F
�
t

s

��
h0

�
t

s

�
C h1

�
t

s

�
ln s C h2

�
t

s

�
ln2 s

�

with the abbreviation F.y/ D y2�2=zC.x2�x1/=z.y�1/�.x1Cx2/=z�2.�1C�2/=z. Herein the
scaling functions, depending only on y D t=s, are given by

�12.y/ D �1
2
x02f0 ; �21.y/ D �1

2
x01f0

h1.y/ D �1
2

�
x01g12.y/C x02g21.y/

�
; h2.y/ D 1

4
x01x02f0 (25)

and

g12.y/ D g12;0 C
�
x02
2

C � 02
�
f0 ln

ˇ̌
ˇ̌ y

y � 1
ˇ̌
ˇ̌

g21.y/ D g21;0 �
�
x01
2

C � 01
�
f0 ln jy � 1j � x01

2
f0 ln jyj

h0.y/ D h0 �
��
x01
2

C � 01
�
g21;0 C

�
x02
2

C � 02
�
g12;0

�
ln jy � 1j
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Table 1 Constraints of co-variant two-point functions in logarithmic representations of some
algebras of local scale-transformations

Algebra Eq. Constraints

sch (13) x1 D x2 x01 D x02 D 1 MCM� D 0

age (24) M1 CM2 D 0

CGA (15) x1 D x2 x01 D x02 �1 D �2 � 01 D � 02

ECGA (17) x1 D x2 x01 D x02 
1 C 
2 D 0 R1

ECGA (18) x1 D x2 x01 D x02 D 0 
1 C 
2 D 0 R2

ECGA (17) x1 D x2 x01 D x02 � 01 D � 02 D 0 
1 C 
2 D 0 J1

The equation labels refer to the explicit form of the two-point function. The constraints apply
to scaling dimensions x; � , rapidities � or the Bargman super-selection rules on the “masses” 

or M. For the ECGA, the last three lines refer either to R-invariance with the two distinct cases
labelled R1 and R2 and normalisations given by (21) or else J -invariance, labelled by J1, where
the normalisations are given by (22)

�
�
x01
2
g21;0 �

�
x02
2

C � 02
�
g12;0

�
ln jyj (26)

C 1

2
f0

"��
x01
2

C � 01
�

ln jy � 1j C x01
2

ln jyj
�2

�
�
x02
2

C � 02
�2

ln2
ˇ̌
ˇ̌ y

y � 1
ˇ̌
ˇ̌
#

and f0; g12;0; g21;0; h0 are normalisation constants. There are no constraints on any
of the xi ; x0i ; �i ; � 0i . However, for z D 2 the Bargman superselection rule M1 C
M2 D 0 holds true.

2.5 Discussion

Table 1 summarises some features of the various logarithmic representations consid-
ered here. First, logarithmic Schrödinger-invariance, with a single scaling dimension
x elevated to a Jordan matrix, is the straightforward extension of analogous results
of logarithmic conformal invariance. In the other algebra, a more rich structure
arises since there are at least two distinct quantities (x and � for CGA and ECGA

and x and � for age, respectively) which simultaneously become Jordan matrices.
In this respect the results form the CGA is the next natural step of generalisations,

in that all naturally expected constraints between the labels of the representation are
realised. In addition, from the explicit for of H D h 1 2i in (15) one sees that for
x01 D x02 D 0, no explicitly logarithmic terms remain, although the representation is
still indecomposable. The possibility of finding such explicit examples of this kind
was pointed out long ago [35]. More examples of this kind, including several ones
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of direct physical relevance, will be mentioned shortly. Next, when going over to
the ECGA, we notice that the extra non-commutative structure with its non-trivial
central charge has suppressed some of the constraints we had found before for the
CGA. In addition, two quite distinct forms of the two-point functions are found.
In the first case, see (17), the structure of the scaling function is quite analogous
to the examples treated before, including an explicitly logarithmic contribution �
x01 ln jt j. However, the second case gives the first surprise2 that F D h�1�2i ¤ 0 !
Again, since now x01 D x02 D 0, no explicitly logarithmic term remains for this
indecomposable representation. It is hoped that these explicit forms might be helpful
in identifying physical examples with these representations.

Finally, the case of age is again different, since the breaking of time-translation-
invariance which was present in all other algebras studied here gives rise to new
possibilities. Especially, besides the ubiquitous Bargman superselection rule, no fur-
ther constraints remain. On the other hand, two explicitly logarithmic contributions
� ln s and � ln2 s are obtained.

The scaling function (24) has been used as a phenomenological device to describe
numerical data for the auto-response function R.t; s/ D R.t; sI 0/ for the slow
non-equilibrium relaxation in several model systems. For maximal flexibility, one
interprets the measured response function as the correlator R.t; s/ D H.t; s/ D
h .t/ Q .s/i in the Janssen-de Dominicis formulation of non-equilibrium field-
theory, where  is the logarithmic partner and Q is the corresponding response
operator. Because of the excellent quality of the data collapse for several values of
the waiting time s, one concludes that the logarithmic corrections to scaling which
occur in (24) should be vanishing, which implies that x0 D x0 D x01 D 0 and
Qx0 D x0Q D x02 D 0. Hence, empirically, only the second scaling dimensions � and

Q� carry the indecomposable structure and the shape of R.t; s/ will be given by the
scaling function h0 in (26). Although there are no logarithmic corrections to time-
dependent scaling, there are logarithmic modification in the shape of the scaling
functions. Clearly, one can always arrange for the scaling � 0 D � 0 D � 01 D 0; 1

and Q� 0 D � 0Q D � 02 D 1 such that four free parameters remain to be fitted to the

data. Excellent fits have been obtained for (1) the Kardar-Parisi-Zhang equation of
interface growth [27], (2) the directed percolation universality class [22] and (3) the
critical 2D voter model on a triangular lattice [47]. These comparisons also clearly
show that a non-logarithmic representation of age with � 0 D Q� 0 D 0 would not
nearly reproduce the data as satisfactorially. For a recent review and a detailed list
of references, see [24].

2The only previously known example of this had been obtained for the ageing algebra, where
time-translations are excluded, see (24).
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3 Large-Distance Behaviour and Causality

In Sect. 2, the two-point functions were seen to be of the form F.t; sI r/ D h���i �
exp



�M

2
r2

t�s
�

for sch.d/ and � exp .�2� � r=t/ for CGA.d/, respectively, where

the purely time-dependent parts are suppressed. Can one show from an algebraic
argument that jF.t; sI r/j ! 0 for large distances jrj ! 1 ?

As we shall see, the F.t; sI r/ cannot be considered as differentiable functions,
but must rather seen as singular distributions, whose form may become more simple
in convenient “dual” variables. It will be necessary to identify these first before
trying to reconstruct F . For notational simplicity, we restrict to the scalar case.

3.1 Schrödinger Algebra

One introduces first a new coordinate � dual to M (consider as a “.�1/st”
coordinate) by the transformation [16]

O�.�; t; r/ WD 1p
2�

Z
R

dM eiM��M.t; r/ (27)

Next, one extends sch.1/ to the parabolic sub-algebra fsch.1/ � B2 by adding the
extra generator N [25]. When acting on O�, the generators take the form

Xn D i

2
.nC 1/ntn�1r2@� � tnC1@t � nC 1

2
tnr@r � nC 1

2
xtn

Ym D i

�
mC 1

2

�
tm�1=2r@� � tmC1=2@j (28)

Mn D itn@�

N D �@� � t@t C � :

Herein, the constant � is identical to the second scaling dimension which arises in
the representation (10) of the ageing algebra age.1/. The Schrödinger-Ward iden-
tities of the generators M0;X�1; Y� 12 readily imply translation-invariance in �; t; r .

Co-variance under the generators X0;1 and Y1
2

leads to OF .�; t; u/ D jt j�xf .ujt j�1/,
with x WD x1 D x2 and where u D 2�t C r2 in an otherwise natural notation; f
remains an undetermined function. This form is still to general to solve the question
raised above. Co-variance under N restricts its form further, to a simple power law:

OF .�; t; r/ D h O�.�; t; r/ O��.0; 0; 0/i D Of0 jt j�x
�
2�t C ir2

jt j
��x��1��2

(29)
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with a normalisation constant f0. Now, one imposes the physical convention that the
mass M > 0 of the scaling operator � should be positive. If 1

2
.x1Cx2/C�1C�2 > 0,

then a standard calculation of the inverse of the transformation (27) applied to both
scaling operators in (29) leads to, already extended to dimensions d 	 1

F.t; r/ D ı.M C M�/ ıx1;x2 
.t/ t�x1 exp

�
�M
2

r2

t

�
F0.M/ (30)

where the 
-function expresses the causality condition t > 0 [25].
The same argument goes through for logarithmic representations of fsch.d/ [25].

3.2 Conformal Galilean Algebra

The dual coordinate � is now introduced via

O�.�; t; r/ WD 1p
2�

Z
R

d� ei���� .t; r/ (31)

The generators of the parabolic sub-algebra eCGA.1/ � B2 (see Fig.1c), including
the new generator N , acting on O�, read

Xn D �tnC1@t � .nC 1/tnr@r C i.nC 1/ntn�1r@� � .nC 1/xtn

Yn D �tnC1@r C i.nC 1/tn@� (32)

N D ��@� � r@r � �

Letting OF D h O�1 O�2i, time- and space-translation-invariance imply OF D
OF .�C; ��; t; r/, with �˙ WD 1

2
.�1 ˙ �2/. There is no translation-invariance in

the �j ; rather, combination of the generators Y0;1 leads to @�� OF D 0. As usual,
combination of X0;1 gives the constraint x1 D x2 and the two remaining generators
of CGA.1/ give OF D jt j�2x1 Of .�C C ir=t/, with a yet un-determined function Of .
As for sch.1/, this form is still too general to answer the question raised above.
However, co-variance under N gives Of .u/ D Of0u�2� , with 2� WD �1 C �2 and a
normalisation constant Of0.

To proceed, we require the following fact [2, ch. 11].

Definition. A function g W HC ! C, where HC is the upper complex half-plane of
all w D u C iv with v > 0, is in the Hardy class HC2 , if g.w/ is holomorphic in HC
and if

M2 D sup
v>0

Z
R

du jg.u C iv/j2 < 1 (33)
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We shall also need the Hardy classH�2 , where HC is replaced by the lower complex
half-plane H� and the supremum in (33) is taken over v < 0.

Lemma ([2]). If g 2 H2̇ , then there are functions G˙ 2 L2.0;1/ such that for
v > 0

g.w/ D g.u ˙ iv/ D 1p
2�

Z 1
0

d� e˙i�w G˙.�/ (34)

Next, we fix � WD r=t and re-write the function Of which determines the structure
of the two-point function OF , as

Of .�C C i�/ D f�.�C/ (35)

Proposition. If � > 1
4

and if � > 0, then f� 2 HC2 .

Proof. The analyticity in HC is obvious from the definition of f�. For the bound

(33), observe that jf�.u C iv/j D
ˇ̌
ˇ Of0.u C i.v C �//�2�

ˇ̌
ˇ D

D Nf0
�
u2 C .v C �/2

���
. Hence

M2 D sup
v>0

Z
R

du jf�.u C iv/j2 D Nf 2
0

p
� � .2� � 1

2
/

� .2�/
sup
v>0

.v C �/1�4� < 1

since the integral converges for � > 1
4
. ut

Similarly, for � > 1
4

and � < 0, we have f� 2 H�2 .

For � > 0, we use Eq. (34) from the lemma to re-write Of as follows

p
2� Of .�CCi�/D

Z 1
0

d�Cei.�CCi�/�C OFC.�C/D
Z
R

d�C
.�C/ ei.�CCi�/�C OFC.�C/
(36)

such that by inverting (31), the two-point function F finally becomes, with x1 D x2

F D jt j�2x1
�

p
2�

Z
R2

d�Cd�� e�i.�1C�2/�Ce�i.�1��2/��

�
Z
R

d�C 
.�C/ OFC.�C/e��C�ei�C�C

D jt j�2x1
�

p
2�

Z
R

d�C 
.�C/ OFC.�C/e��C�
Z
R

d�� e�i.�1��2/��

�
Z
R

d�C ei.�C��1��2/�C

D ı.�1 � �2/
.�1/F0;C.�1/e�2�1�jt j�2x1 (37)

where in the last line, two ı-functions were used and F0;C contains the unspecified
dependence on the positive constant �1.
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For � < 0, we can use again the second form of the lemma, with f� 2 H�2 ,
and find F D ı.�1 � �2/
.��1/F0;�.�1/e2�1j�jjt j�2x1 . These two forms can be
combined into a single one, immediately generalised to d 	 1 dimensions, and
assumed continuous in r and rotation-invariant as well

F.t; r/ D ıx1;x2ı.�1 � �2/ jt j�2x1 exp
h
�2

ˇ̌
ˇ�1 � r
t

ˇ̌
ˇ
i
F0.�

2
1/ (38)

3.3 Discussion

Surprisingly, our attempts to establish sufficient criteria that the two-point function
F.t; sI r/ vanishes in the limit jrj ! 0, led to qualitatively different types of
results.

(A) For the Schrödinger algebra with the representation (4), the extension to the
corresponding maximal parabolic sub-algebra and the dualisation of the mass
M has led to the form (30). It is maximally asymmetric under permutation
of its two scaling operators and obeys a causality condition t1 � t2 > 0. In
applications, it should predict the form of response functions. Indeed, we quoted
in Sect. 2 several examples where response functions of non-equilibrium many-
body systems undergoing physical ageing are described by (30), or logarithmic
extensions thereof.

(B) For the conformal Galilean algebra with the representation (6), there is no
central extension which would produce a Bargman superselection rule for the
rapidities � . An analogous extension to the maximal parabolic sub-algebra
and the dualisation of the rapidities rather produced the form (38). It is fully
symmetric under the permutation of its scaling operators. This is a characteristic
of correlation functions. Our result therefore suggests that searches for physical
applications of the conformal Galilean algebra should concentrate on studying
co-variant correlators, rather than response functions.

Also, these examples indicate that a deeper analytic structure might be found
upon investigating the dual two-point functions OF , rather than keeping masses M
or rapidities � fixed.

Another possibility concerns the extension of these lines to non-local represen-
tations of these algebras [48], see also elsewhere in this volume.
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New Type of N D 4 Supersymmetric Mechanics

Evgeny Ivanov and Stepan Sidorov

Abstract We give a short account of the superfield approach based on deformed
analogs of the standard ND4; dD1 superspace and present a few models of
supersymmetric quantum mechanics constructed within this new framework. The
relevant superspaces are the proper cosets of the supergroup SU.2j1/. As instructive
examples we consider the models associated with the worldline SU.2j1/ super-
multiplets (1,4,3) and (2,4,2). An essential ingredient of these models is the mass
parameter m which deforms the standard ND4; dD1 supersymmetry to SU.2j1/
supersymmetry.

1 Introduction

Recently, there was a substantial interest in rigid supersymmetric theories based
on curved analogs of the Poincaré supergroup in diverse dimensions [1]. One
can hope that their study will lead to a further progress in understanding the
generic gauge/gravity correspondence. Motivated by this interest, in [2] we defined
the simplest analogous deformation of the one-dimensional N D 4; d D 1

supersymmetry. The present talk is an overview of the relevant new class of models
of supersymmetric quantum mechanics (SQM) and the appropriate superfield
approach.

The symmetry group of the standard SQM models [3] is N extended d D 1

analog of the higher-dimensional super Poincaré groups:

fQA;QBg D 2ıABH ; ŒH;QA� D 0 ; A;B D 1 : : :N ; (1)

where QA are N real supercharges and H is the time-translation generator.
The general automorphism group of this superalgebra is O.N /. A possible way
of generalizing the relevant SQM models is suggested by the following form of the
N D 2; d D 1 superalgebra extended by the U.1/ automorphism generator J
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Q D 1p
2

�
Q1 C iQ2

�
; NQ D 1p

2

�
Q1 � iQ2

�
; (2)

fQ; NQg D 2H; Q2 D NQ2 D 0; ŒH;Q� D ŒH; NQ� D 0;

ŒJ;Q� D Q ; ŒJ; NQ� D � NQ ; ŒH; J � D 0 : (3)

These relations are recognized as defining the superalgebra u.1j1/, H being the
central charge generator.

The interpretation of N D 2; d D 1 superalgebra as u.1j1/ suggests a new type
of its extensions to the higher-rank d D 1 supersymmetries. It corresponds to the
following sequence of embeddings:

.N D 2 ; d D 1/ � u.1j1/ � su.2j1/ � su.2j2/ � : : : : (4)

In the relevant superalgebras, the closure of supercharges contains, besides an
analog of the Hamiltonian H , also internal symmetry generators. They commute
with the Hamiltonian H , but not with the supercharges.

The SQM models to be reviewed here correspond to the simplest su.2j1/ case.
Our basic aim is to construct the worldline superfield approach to SU.2j1/ and to
demonstrate that most of the off-shell multiplets of N D 4; d D 1 supersymmetry
admit the well-defined SU.2j1/ analogs. In particular, the so-called “weak super-
symmetry models” [4] prove to be associated with the SU.2j1/ multiplet .1; 4; 3/.
The second multiplet that we consider is the chiral multiplet .2; 4; 2/. An interesting
feature of the relevant component SQM actions is the presence of the bosonic d D 1

Wess-Zumino (WZ) terms in parallel with the second-order kinetic terms.

2 SU.2j1/ Superspace

We consider the (centrally-extended) superalgebra su.2j1/:

fQi; NQj g D 2m


I ij � ıij F

�
C 2ıijH ;

h
I ij ; I

k
l

i
D ıkj I

i
l � ıil I kj ;

h
I ij ;

NQl

i
D 1

2
ıij

NQl � ıil NQj ;
h
I ij ;Q

k
i

D ıkjQ
i � 1

2
ıijQ

k;

�
F; NQl

	 D �1
2

NQl ;
�
F;Qk

	 D 1

2
Qk: (5)

The bosonic subalgebra of (5) consists of the U.2/ symmetry generators .I ij ; F /
and the central charge generator H . In the quantum-mechanical realization of
SU.2j1/ the central charge H is interpreted as the canonical Hamiltonian, while
in the superspace realization it is the time-translation generator. The SU.2j1/
supersymmetry is a deformation of the standard N D 4; d D 1 supersymmetry
which is recovered in the limit m D 0 .
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2.1 Deformed Superspace

The superspace coordinates ft; 
i ; N
j g are identified with the parameters of the
following coset of the supergroup SU.2j1/:

SU.2j1/
SU.2/ � U.1/ � fQi; NQj ;H; I

i
j ; F g

fI ij ; F g : (6)

The relevant coset element can be conveniently parametrized as

g D exp


i tH C i Q
iQi � i QN
j NQj

�
; Q
i D

�
1 � 2m

3

� N
 � 
�
�

i : (7)

The superspace realization of the SU.2j1/ generators is given by1

Qi D �i @
@
i

C 2im N
i N
j @

@ N
j C N
i @
@t
; NQj D i

@

@ N
j C 2im
j 
k
@

@
k
� 
j @

@t
;

I ij D
�

N
i @
@ N
j � 
j @

@
i

�
� ıij

2

�
N
k @

@ N
k � 
k @

@
k

�
;

F D 1

2

�
N
k @

@ N
k � 
k @

@
k

�
; H D i@t : (8)

The supercharges Qi; NQj generate the following coordinate transformations:

ıt D i
��
� � N
 �C .N� � 
/	 ; (9)

ı
i D �i C 2m .N� � 
/ 
i ; ı N
j D N�i � 2m �� � N
 � N
i :

The invariant integration measure � is defined as

� D dtd2
d2 N
.1C 2m N
 � 
/ ; ı� D 0 : (10)

2.2 Covariant Derivatives

In order to construct the covariant derivatives of the superspace coordinates, we
should calculate the left-covariant Cartan one-forms. They are defined by the
relation

1We use the convention
� N
 � 
� D N
i 
i .
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˝ WD g�1dg D i�
iQ
i � i� N
j NQj C i�h

j
i I

i
j C i� OhF C i�t H ; (11)

and have the following explicit expressions:

�
i D d
i Cm
�
d
l N
l
i � d
i N
k
k

�C m2

4
d
i

� N
 � 
�2 ;

� N
j D d N
j �m �d N
l
l N
j � d N
j 
k N
k�C m2

4
d N
j � N
 � 
�2 ;

�t D dt C i
�
d
i N
i C d N
i
i

� �
1 � 2m � N
 � 
�	 ;

� Oh D �im �d
i N
i C d N
i
i
� �
1 � 2m � N
 � 
�	 ;

�h
j
i D im

 
d
i N
j C d N
j 
i � ı

j
i

2

�
d
l N
l C d N
l
l

�!�
1 � 3m

2

� N
 � 
�
�

� im
2

2

�
d
l N
l C d N
l
l

�  N
j 
i � ı
j
i

2

� N
 � 
�
!
: (12)

The covariant derivatives can now be figured out from the covariant differential

D˚A W Dd˚AC
h
i�h

j
i

QI ijCi� Oh QF
iB
A
˚B� �

�
iDi�� N
j NDjC�t Dt

	
˚A ; (13)

where ˚B.t; 
i ; N
j / is some superfield and B is the index of some U.2/ representa-
tion. They are

Di D
�
1Cm

� N
 � 
� � 3m2

4

� N
 � 
�2
�
@

@
i
�m N
i
j @

@
j
� i N
i @

@t

Cm N
i QF �m N
j QI ij C m2

2

� N
 � 
� N
j QI ij � m2

2
N
i N
j 
k QI kj ;

NDj D �
�
1Cm

� N
 � 
� � 3m2

4

� N
 � 
�2
�
@

@ N
j Cm N
k
j @

@ N
k C i
j
@

@t

�m
j QF Cm
k QI kj � m2

2

� N
 � 
� 
k QI kj C m2

2

j N
l
k QI kl ;

Dt D @t : (14)

3 The Supermultiplet .1; 4; 3/

The SU.2j1/ superfields are the appropriate analogs of the superfields defined on
the standard superspace. For example, the multiplet .1; 4; 3/ [5, 6] is described by
the real neutral superfield G.t; 
; N
/ satisfying the constraints
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"lj NDl
NDjG D "ljDl DjG D 0: (15)

Their solution is

G D x �mx � N
 � 
� Œ1 � 2m � N
 � 
��C Rx
2

� N
 � 
�2 � i � N
 � 
� 

i P i C N
j PN j
�

C �
1 � 2m � N
 � 
�	 �
i  i � N
j N j

�C N
j 
i Bi
j ; Bk

k D 0 : (16)

The irreducible set of off-shell fields is x.t/,  i.t/, N i.t/, Bi
j .t/, that just amounts

to the .1; 4; 3/ content. In the limit m D 0, the real superfield G becomes the
ordinary .1; 4; 3/ superfield. The � transformation law of G,

ıG D � �i�iQi � i N�j NQj

�
G; (17)

implies

ıx D �N� � N � � .� �  / ; ı i D i N�i Px �mN�ix C N�kBi
k ;

ıBi
j D �2i

 
�j P i C N�i PN j � ıij

2

h
�k P k C N�k PN k

i!

C2m
 

N�i N j � �j i C ıij

2

�N�k N k � �k k
	!
: (18)

We construct the general Lagrangian and action as

L D �
Z
d2
 d2 N
 �1C 2m N
 � 
� f .G/ ; S D

Z
dt L : (19)

After doing 
 integral and eliminating the auxiliary field by its equation of motion,

Bi
j D g0.x/

g.x/

 
ıij

2
N k k � N j i

!
; g.x/ D f 00.x/; (20)

we obtain the on-shell Lagrangian

L D Px2g.x/C i

 N i P i � PN i i

�
g.x/ � 1

2

� N i i
�2 "

g00.x/ � 3 .g0.x//2

2g.x/

#

�m2x2g.x/C 2m N i ig.x/Cmx N i ig0.x/: (21)

It can be simplified by passing to the new variables y.x/,
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Px2g.x/ D 1

2
Py2 ; ) y0.x/ D

p
2g.x/ ; (22)

and �i D  iy0.x/. In terms of the new variables, the Lagrangian is rewritten as

L D Py2
2

C i

2


 N�i P�i � PN�i �i
�

� m2

2
V 2.y/Cm N�i �iV 0.y/

�1
2

� N�i �i�2 @y
�
V 0.y/ � 1
V.y/

�
: (23)

Here, V.y/ WD xy0.x/ D x.y/=x0.y/. Thus we have obtained the Lagrangian
involving an arbitrary function V.y/. The on-shell supersymmetry transformations
read

ıy D N�k N�k � �k�k;

ı�i D i N�i Py �mN�iV .y/ � �
�k�

k�i C N�k N�k�i � N�i N�k�k
� V 0.y/ � 1

V.y/
: (24)

These Lagrangian and the transformation laws are recognized as those defining the
general SQM model with the “weak” N D 4 supersymmetry [4].

4 The .1; 4; 3/ Oscillator Model

We consider the simplest Lagrangian

L D Px2
2

� m2x2

2
C i

2


 N i P i � PN i i
�

Cm N i i ; (25)

which corresponds to the Lagrangian (21) with f .x/ D x2=4. The action is invariant
under the transformations

ıx D �N� � N � � .� �  / ; ı i D i N�i Px �mN�ix : (26)

The conserved Noether charges read:

Qi D  i .p � imx/ ; NQi D N i .p C imx/ ;

F D 1

2
 k N k ; I ij D  i N j � 1

2
ıij 

k N k : (27)

The canonical Hamiltonian is easily calculated to be
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H D p2

2
C m2x2

2
Cm i N i : (28)

It provides an SU.2j1/ extension of the harmonic oscillator Hamiltonian.
The Poisson (Dirac) brackets are imposed as

fx; pg D 1; f i ; N j g D �iıij : (29)

We quantize them in the standard way

Œ Ox; Op� D i ; f O i ; ON j g D ıij ; Op D �i@x ; ON j D @=@ O j ; (30)

and write the quantum Hamiltonian as

OH D 1

2
. Op C im Ox/ . Op � im Ox/Cm O i ON i : (31)

The Hamiltonian OH and the remaining quantum generators

OQi D O i . Op � im Ox/ ; ONQi D ON i . Op C im Ox/ ; (32)

OF D 1

2
O k ON k; OI ij D O i ON j � 1

2
ıij

O k ON k : (33)

constitute the su.2j1/ superalgebra (5).

4.1 Wave Functions

We construct the super-wave functions of the model in terms of the harmonic
oscillator wave functions. The super wave-function˝.`/ at the energy level ` reveals
the four-fold degeneracy

˝.`/ D a.`/j`i C b
.`/
i  i j` � 1i C 1

2
c.`/ "ij  

i j j` � 2i; ` 	 2 ; (34)

where j`i; j`�1i; j`�2i are the harmonic oscillator functions at the relevant levels.
The operators Op ˙ imx in (31) and (33) are treated as the creation and annihilation
operators. We impose the standard conditions

ON kj`i D 0; . Op � im Ox/ j0i D 0; . Op C im Ox/ j`i D j`C 1i: (35)

The ground state (` D 0) and the first excited states (` D 1) are special, they
encompass non-equal numbers of bosonic and fermionic states:
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˝.0/ D a.0/ j0i ; ˝.1/ D a.1/ j1i C b
.1/
i  i j0i : (36)

The ground state is annihilated by all SU.2j1/ generators includingQi and NQi , so it
is SU.2j1/ singlet. The states with ` D 1 form the fundamental .2j1/ representation
of SU.2j1/. The action of the supercharges on them is given by

Qi  kj0i D 0 ; NQi  
kj0i D ıki j1i ;

Qi j1i D 2m i j0i ; NQi j1i D 0 : (37)

The states with ` 	 2 form the representations .2j2/, with equal numbers of bosonic
and fermionic states.

4.2 Spectrum and SU.2j1/ Representations

For all states ` 	 0, the spectrum of the Hamiltonian (33) is

OH ˝.`/ D m`˝.`/; m > 0: (38)

It is instructive to see which values two SU.2j1/ Casimir operators C2; C3 take
on all these states. The explicit form of these operators in terms of the SU.2j1/
generators is as follows

4m2C2 D C i
i ; 12m3C3 D 6m3F 0.1C 2C2/CmI ikC

k
i ; (39)

where

F 0 D F � 1

m
H ; C i

j D 2m2 ıij
QF 2 �m2

n
I il ; I

l
j

o
Cm

�
Qi; NQj

	
: (40)

These expressions are valid irrespective of the particular realization of the SU.2j1/
generators.

For our quantum-mechanical “hat” realization Casimirs are reduced to the
following nice form

m2C2 D OH

 OH �m

�
; m3C3 D OH


 OH �m
� 
 OH � m

2

�
: (41)

Thus they are fully specified by the number `:

C2.`/ D .` � 1/ `; C3.`/ D .` � 1=2/ .` � 1/ `: (42)

These values of Casimirs characterize the finite-dimensional SU.2j1/ representa-
tions. The eigenvalues (42) can be written in the following generic form [7]:
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C2 D .ˇ2 � �2/; C3 D ˇ.ˇ2 � �2/ D ˇC2: (43)

The positive number � (“highest weight”) can be half-integer or integer, while the
number ˇ is an arbitrary real number. Comparing this with the above values of
Casimirs in terms of `, we find that � D 1=2 for any ˝.`/ and ˇ.`/ D .` � 1=2/.

The states with ` D 0; 1 are atypical SU.2j1/ representations, because Casimir
operators take zero values on them. Indeed, Qi ˝.0/ D NQi ˝

.0/ D 0, i.e. ˝.0/

is a singlet of SU.2j1/. The wave functions for ` D 1 form the fundamental
representation of SU.2j1/ (one bosonic and two fermionic states). The fact that
the fundamental representation of SU.2j1/ is atypical is well known. On the other
hand, on the ` 	 2 states both Casimirs are non-zero. Correspondingly, these states
form typical .2j2/ representations, with two bosonic and two fermionic states.

5 The Supermultiplet .2; 4; 2/

5.1 Chiral Subspaces

One can also define SU.2j1/ counterpart of the N D 4; d D 1 chiral multi-
plet (2; 4; 2). This is due to the existence of the invariant chiral coset SU.2j1/
superspaces

fQi; NQj ;H; I
i
k ; F g

f NQj ; I
i
k ; F g � .tL; 
i / ;

fQi; NQj ;H; I
i
k ; F g

fQi; I ik ; F g � .tR; 
i / ; (44)

where

tL D t C i

2m
ln
�
1C 2m

� N
 � 
�	; tR D t � i

2m
ln
�
1C 2m

� N
 � 
�	: (45)

The chiral subspaces are closed under the supersymmetry transformations

ı
i D �i C 2m .N� � 
/
i ; ıtL D 2i .N� � 
/ ; c.c.: (46)

The multiplet (2; 4; 2) is described by the chiral superfield ˚ satisfying the
constraints

NDj˚ D 0; QI ij˚ D 0; QF˚ D 2�˚; (47)

where � is a fixed external U.1/ charge. The constraints fix the structure of ˚ as

˚.t; 
; N
 / D e2i�m.tL�t/˚L.tL; 
/ D �
1C 2m

� N
 � 
�	�� ˚L.tL; 
/;
˚L.tL; 
/ D z C p

2 
i �
i C "ij 
i 
jB; (48)
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In the central basis ft; 
i ; N
kg, the same superfield is written as

˚.t; 
; N
 / D z C p
2 
i �

i C "ij 
i 
jB C i
� N
 � 
�rt z C p

2 i
� N
 � 
� 
irt �

i

�1
2

� N
 � 
�2 �2imrt z C r2
t z
	
; rt D @t C 2i�m: (49)

The superfields ˚ and ˚L transform according to

ı˚ D 2�m .�i N
i C N�j 
j / ˚ ; ) ı˚L D 4�m N�j 
j ˚L : (50)

For the component fields, this implies

ız D �p
2 �i �

i ; ı�i D p
2 i N�irt z � p

2 "ik�kB;

ıB D �p
2 "ik N�k �m�i C irt �

i
	
: (51)

5.2 SU.2j1/ Invariant Lagrangian

General superfield Lagrangian is constructed as

Lk D 1

4

Z
d2
 d2 N
 .1C 2m N
 � 
/ f .˚;˚	/; (52)

where f
�
˚;˚	

�
is the Kähler potential. This is a direct analog of the kinetic term

defined in the standard N D 4 mechanics based on the multiplet .2; 4; 2/ [8]. After
eliminating the complex auxiliary field B by its equation of motion,

B D � 1

2g
"kl �

k�lgz ; (53)

the Lagrangian takes the following on-shell form2

L D gPNzPz C 2i�m
�PNzz � PzNz�g � im

2

�PNzfNz � Pzfz
� � i

2

� N� � �� �PNzgNz � Pzgz
�

C i

2


 N�i P�i � PN�i �i
�
g �m2V �m � N� � ��U C 1

2

� N� � ��2 R ; (54)

where

V D � .Nz@Nz C z@z/ f � �2 .Nz@Nz C z@z/
2 f;

U D � .Nz@Nz C z@z/ g � .1 � 2�/ g;

2Here, the lower indices mean the differentiation in z; Nz: fz D @zf , fNz D @Nzf , etc.
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R D gzNz � gzgNz
g

; (55)

f D f .z; Nz/; g D g.z; Nz/ D @z@Nzf .z; Nz/ :

The physical fields .z; Nz; �i ; N�j / transform as

ız D �p
2 �i �

i ; ı�i D p
2 i N�i .@t C 2i�m/ z C p

2 �k�
k�i

gz

g
: (56)

The bosonic Lagrangian has the form

L D gPNzPz C 2i�m
�PNzz � PzNz�g � im

2

�PNzfNz � Pzfz
� �m2V : (57)

Thus the standard N D 4; d D 1 kinetic term is deformed to non-trivial Lagrangian
with WZ-term, and potential term. The latter vanishes for � D 0, while the WZ term
vanishes only in the limitm D 0. So, the basic novel point compared to the standard
N D 4 Kähler sigma model for the multiplet .2; 4; 2/ is the necessary presence of
the WZ term with the strength m, alongside with the standard Kähler kinetic term.

5.3 Quantum Generators

To construct the quantum supercharges, we resort to the procedure worked out in [9].
Its basic point is the Weyl-ordering of the bosonic and fermionic operators in the
classical Noether supercharges: the quantum Hamiltonian is then defined as the
anticommutator of these ordered supercharges. As the first step, we impose Poisson
(Dirac) brackets

fz; pzg D 1; f�i ; N�j g D �iıij g�1 : (58)

It is convenient to make the substitution

�
z; �i

� �! �
z; �i

�
; �i D g

1
2 �i ;

fz; pzg D 1; f�i ; N�j g D �iıij ; fpz; �
ig D fpz; N�j g D 0 : (59)

The standard way of quantization then implies

ŒOz; Opz� D i ; f O�i ; ON�j g D ıij ; Œ Opz; O�i � D Œ Opz; ON�j � D 0 ;

Opz D �i@z ; ON�j D @

@ O�j : (60)
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Using these relations, we obtain

OQi D p
2 O�i g� 12 rz ;

ONQj D p
2 ON�j g� 12 NrNz ;

OF D �2�



Oz@z � ONz@Nz
�

�
�
2� � 1

2

�
O�k ON�k ; OI ij D O�i ON�j � 1

2
ıij O�k ON�k : (61)

These operators satisfy the su.2j1/ superalgebra with the following quantum
Hamiltonian

OH D g�1 NrNz rz � 2�m



Oz@z � ONz@Nz
�

Cm.1 � 2�/ O�k ON�k � 1

4
g�2R O�k O�k ON�i ON�i : (62)

Here, we used the relation

�rz; NrNz
	 D mg � 1

2
g�1R



O�k ON�k � ON�k O�k

�
; (63)

where

rz D �i@z � i

2
m@zf C i

4
g�1@zg

h
O�k; ON�k

i
;

NrNz D �i@Nz C i

2
m@Nzf � i

4
g�1@Nzg

h
O�k; ON�k

i
: (64)

6 Simplified Model on a Complex Plane

The model on a plane corresponds to the simplest choice f
�
˚;˚	

� D ˚˚	 in (54).
It leads to the Lagrangian

L D PNzPz C im

�
2� � 1

2

� �PNzz � PzNz�C i

2


 N�i P�i � PN�i �i
�

C 2� .2� � 1/m2Nzz C .1 � 2�/m � N� � �� : (65)

This Lagrangian is invariant under the transformations

ız D �p
2 �i �

i ; ı�i D p
2 i N�i Pz � 2p2 �mN�i z: (66)

The quantum Hamiltonian reads

OH D NrNz rz � 2�m



Oz@z � ONz@Nz
�

Cm.1 � 2�/ O�k ON�k (67)
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and forms, together with the quantum operators

OQi D p
2 O�irz ;

ONQj D p
2 ON�j NrNz ;

OF D �2�



Oz@z � ONz@Nz
�

�
�
2� � 1

2

�
O�k ON�k ; OI ij D O�i ON�j � 1

2
ıij O�k ON�k ; (68)

the su.2j1/ superalgebra (5). Here,

rz D �i@z � i

2
mNz; NrNz D �i@Nz C i

2
mz;

�rz; NrNz
	 D m : (69)

Note that the sum OH � m OF does not depend on �. This is a consequence of the

fact that the supercharges do not depend on �. Since the anticommutator f OQ; ONQg
yields only the combination OH �m OF , without any specific splitting, the super wave
functions do not contain �-dependent terms in their �-expansions too.

6.1 Wave Functions and Spectrum

We will make use of the fact that there exists an extra U.1/ charge generator,

OE D �



Oz@z � ONz@Nz
�

� O�k ON�k ; (70)

which commutes with all SU.2j1/ generators, including OH . Hence we can construct
the relevant wave functions in terms of the set of bosonic eigenfunctions of this
external generator

OE ˝ D n˝; OH ˝ D E ˝ D mq˝: (71)

The first equation yields

˝ D NznA .w/ ; w � zNz : (72)

Then the second equation amounts to the following one for A .w/:

�
�w@2w � .1C n/@w C m2

4
w � m

2

�
A .w/ D m



q � 2�nC n

2

�
A .w/ : (73)

Solving the latter and combining it with the first solution (72), the eigenvalue
problem for OH is rewritten as

OH ˝.`In/ D E .`In/ ˝.`In/ ; (74)
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with E .`In/ D m.`C 2�n/. It is solved by

˝.`In/ D Nzne�mzNz
2 L

.n/

` .mzNz/ D z�n

`Š
e
mzNz
2

d `

dw`
�
e�mwwnC`

�ˇ̌ˇ̌
wDzNz

: (75)

The bosonic functions L.n/` .mzNz/ are the generalized Laguerre polynomials, with `
a non-negative integer, ` 	 0. The number n is also integer and it takes the values
n 	 �` , due to the orthogonality of the eigenfunctions ˝.`In/. This means that the
energies E .`In/ are positive only under the following restriction on the parameter �:

0 � � � 1=2 : (76)

Acting by the supercharges on ˝.`In/ and imposing the obvious physical
condition,

N�j ˝.`In/ D 0 ) NQj ˝
.`In/ D 0 ; (77)

we obtain other eigenstates of OH and OE. The full set of eigenfunctions obtained in
this way reads:

�.`In/ D a.`In/˝.`In/ C b
.`In/
i �i ˝.`�1InC1/

C 1

2
c.`In/ "ij �i�j ˝.`�2InC2/; ` 	 2;

�.1In/ D a.1In/ ˝.1In/ C b
.1In/
i �i ˝.0InC1/;

� .0In/ D a.0In/ ˝.0In/ : (78)

These super wave functions span the full Hilbert space of quantum states of the
model. The eigenvalues of OE and OH are given by

OE �.`In/ D n�.`In/; OH �.`In/ D E .`In/ � .`In/ ; E .`In/ D m.2�nC `/ (79)

We observe that the ground state (` D 0) and the first excited states (` D 1) are
special, in the sense that they comprise non-equal numbers of bosonic and fermionic
states. Indeed,

Qi ˝.0In/ D NQi ˝
.0In/ D 0; (80)

i.e. ˝.0In/ is a singlet of SU.2j1/ for any n. The wave functions for ` D 1 form
the fundamental representation of SU.2j1/ (one bosonic and two fermionic states),
while those for ` 	 2 form the typical .2j2/ representations.

Casimir operators (39)–(40) for the considered model can be expressed through
the operators OH and OE:
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m2C2 D

 OH � 2�m OE

� 
 OH � 2�m OE �m
�
; (81)

m3C3 D

 OH � 2�m OE

� 
 OH � 2�m OE �m
� 
 OH � 2�m OE � m

2

�
: (82)

For the quantum states they do not depend on the additional parameter � and in fact
have the same form (42) as for the .1; 4; 3/ model

C2.`/ D .` � 1/ `; C3.`/ D .` � 1=2/ .` � 1/ `; ˇ.`/ D .` � 1=2/ : (83)

Thus they are vanishing for the wave functions with ` D 0; 1, confirming
the interpretation of the corresponding representations as atypical, and are non-
vanishing on the wave functions with ` 	 2, implying them to form typical
representations of SU.2j1/.

7 Summary and Outlook

We constructed the new type of N D 4 supersymmetric mechanics which is based
on the supergroup SU.2j1/. It is a deformation of the standard N D 4 mechanics
by a mass parameter m. These models are expected to be related to the rigid
supersymmetric models in higher-dimensional curved superspaces.

We constructed the superfield formalism for two different coset manifolds of
SU.2j1/ treated as the real and chiral SU.2j1/; d D 1 superspaces. The corre-
sponding SQM models are built on the off-shell multiplets .1; 4; 3/ and .2; 4; 2/.
The relevant Lagrangians were presented and the quantization was explicitly
performed for some particular cases. The SQM models with N D 4 “weak
supersymmetry” [4] are easily reproduced from our superfield approach as those
associated with the SU.2j1/ multiplet .1; 4; 3/.

The models constructed reveal surprising features. For the .1; 4; 3/ multiplet, the
kinetic term of the physical bosonic field is inevitably accompanied by the gener-
alized oscillator-type mass term with m playing the role of mass. For the .2; 4; 2/
models, the kinetic term is accompanied by the d D 1 WZ term with the strength
� m. In both cases the spaces of the quantum states reveal deviations from the
standard rule of equality of the bosonic and fermionic states, in accordance with the
existence of atypical SU.2j1/ representations.

There are some further lines of development which will be pursued in the
future:

• Multi-particle extensions: to take a few superfields of one or different types,
to construct the relevant off- and on-shell actions, to quantize, to identify the
relevant target bosonic geometries (m-deformed?), etc.

• To inquire whether other N D 4; d D 1 multiplets (e.g. the multiplet
.3; 4; 1/) have their SU.2j1/ counterparts and to construct the corresponding
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SQM models. In this connection, it would be useful to define some other coset
SU.2j1/ superspaces. For instance, there exists the coset

fQi; NQj ;H; I
i
j ; F g

fQ1; NQ2; F; I
1
2 ; I

1
1 D �I 22 g � fQ2; NQ1;H; I

2
1 g ; (84)

which is none other than SU.2j1/ analog of the analytic harmonic N D 4; d D 1

superspace [10]. The latter superspace is the carrier of the “root” N D 4; d D 1

multiplet .4; 4; 0/ from which all other N D 4; d D 1multiplets can be deduced,
following the well defined procedure [11]. Thus the similar root multiplet can be
defined in the SU.2j1/ case too.

• To generalize all this to the next in complexity case of the supergroup SU.2j2/.
It involves eight supercharges and so can be treated as a deformation of
N D 8; d D 1 supersymmetry (and of N D .4; 4/; d D 2 supersymmetry,
in fact).
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Vector-Valued Covariant Differential Operators
for the Möbius Transformation
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Abstract We obtain a family of functional identities satisfied by vector-valued
functions of two variables and their geometric inversions. For this we introduce
particular differential operators of arbitrary order attached to Gegenbauer polyno-
mials. These differential operators are symmetry breaking for the pair of Lie groups
.SL.2;C/; SL.2;R// that arise from conformal geometry.
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1 A Family of Vector-Valued Functional Identities

Given a pair of functions f , g on R
2nf.0; 0/g, we consider a C

2-valued function
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�
f

g

�
. Define its “twisted inversion” F� with parameter � 2 C by
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F_� .r cos 
; r sin 
/ WD r�2�
�

cos 2
 � sin 2

sin 2
 cos 2


�
F
�� cos 


r
;

sin 


r

�
: (1)

Clearly, F 7! F_� is involutive, namely, .F_� /_� D F.

A pair of differential operators D1, D2 on R
2 yields a linear map

D W C1.R2/˚ C1.R2/ ! C1.R/; .f; g/ 7! .D1f /.x; 0/C .D2g/.x; 0/:

We write

D WD RestyD0 ı .D1;D2/:

Our main concern in this article is the following:

Question A (1) For which parameters �; � 2 C, do there exist differential
operators D1 and D2 on R

2 with the following properties?

• D1 and D2 have constant coefficients.
• For any F 2 C1.R2/˚ C1.R2/, the functional identity

.DF_� /.x/ D jxj�2�.DF/
�

� 1
x

�
; for x 2 R

� (M�;�)

holds, where D D RestyD0 ı .D1;D2/.
(2) Find an explicit formula of such D � D�;� if exists.

Our motivation will be explained in Sect. 2 by giving three equivalent formu-
lations of Question A. Here are some examples of the operators D�;� satisfying
(M�;�).

Example 1. (0) � D �:

D�;� WD RestyD0 ı .id; 0/ ;
namely,

D�;�

�
f

g

�
.x/ D f .x; 0/

satisfies .M�;�/ for � D �.
(1) � D �C 1:

D�;� WD RestyD0 ı
�
@

@x
;
@

@y

�
;

namely,

D�;�

�
f

g

�
.x/ D @f

@x
.x; 0/C �

@g

@y
.x; 0/

satisfies (M�;�) for � D �C 1.
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(2) � D �C 2:

D�;� WD RestyD0 ı
�
2.2�C 1/

@2

@x@y
; .� � 1/ @

2

@x2
C .�C 1/.2�C 1/

@2

@y2

�
;

namely,

D�;�
 
f

g

!
.x/D2.2�C 1/

@2f

@x@y
.x; 0/C.� � 1/@

2g

@x2
.x; 0/C.�C1/.2�C1/@

2g

@y2
.x; 0/

satisfies (M�;�) for � D �C 2.

Given D D RestyD0 ı .D1;D2/, define

D_ WD RestyD0 ı .�D2;D1/: (2)

Clearly, D_ is determined only by D, and is independent of the choice of D1 and D2.
Proposition 1 below shows that the map D 7! D_ is an automorphism of the set of
the operators D such that (M�;�) is satisfied.

Proposition 1. If D satisfies (M�;�) for all F, so does D_.

Proof. For F D
�
f

g

�
, we set _F WD

�
g

�f
�

. Then we have

__F D �F; D
�_F� D .D_/F; ._F/_� D _.F_� /: (3)

To see this we note that w WD
�
0 �1
1 0

�
commutes with

�
cos 2
 � sin 2

sin 2
 cos 2


�
and

that D_ and _F are expressed as D_ D Dw�1 and _F D w�1F, respectively.
Therefore,

�
D_F_�

�
.x/ D D

�_F�_
�
.x/

D jxj�2� �D _F�
�

� 1

x

�

D jxj�2� �D_ F
� � � 1

x

�
;

where the passage from the first line to the second one is justified by the fact that _F
satisfies (M�;�).

In order to answer Question A for general .�; �/, we recall that the Gegenbauer
polynomial or ultraspherical polynomial C˛

` .t/ is a polynomial in one variable t of
degree ` given by

C˛
` .t/ D

Œ `2 �X
kD0
.�1/k � .` � k C ˛/

� .˛/� .` � 2k C 1/kŠ
.2t/`�2k;



70 T. Kobayashi et al.

where Œs� denotes the greatest integer that does not exceed s. Following [9], we
inflate C˛

` .t/ to a polynomial of two variables by

C˛
` .s; t/ WD s

`
2 C ˛

`

�
tp
s

�
: (4)

By formally substituting � @2

@x2
and @

@y
to s and t in C˛

` .s; t/, respectively, we obtain

a homogeneous differential operator C˛` WD C˛
`



� @2

@x2
; @
@y

�
of order ` on R

2. Here

are the first four operators:

C˛0 D id,
C˛1 D 2˛ @

@y
,

C˛2 D ˛


@2

@x2
C 2.˛ C 1/ @

2

@y2

�
,

C˛3 D 2
3
˛.˛ C 1/



3 @3

@x2@y
C 2.˛ C 2/ @

3

@y3

�
.

Theorem A Suppose that a WD � � � is a non-negative integer. For a > 0, we
define the following pair of homogeneous differential operators of order a on R

2 by

D1 WD a.2�C a � 1/ @
@x

ı C�C
1
2

a�1

D2 WD �
2�2 C 2.a � 1/�C a.a � 1/� @

@y
ı C�C

1
2

a�1

C .� � 1/.2�C 1/

�
@2

@x2
C @2

@y2

�
ı C�C

3
2

a�2 :

For a D 0, we set

D1 WD id; D2 WD 0:

Then D WD RestyD0ı.D1;D2/ and D_ WD RestyD0ı.�D2;D1/ satisfy the functional
identity .M�;�/. Moreover, when 2� … f0;�1;�2; � � � g, there exists a non-trivial
solution to .M�;�/ only if � � � is a non-negative integer and any differential
operator satisfying .M�;�/ is a linear combination of D and D_.

Notation: N WD f0; 1; 2; : : :g,
NC WD f1; 2; : : :g.

2 Three Equivalent Formulations

Question A arises from various disciplines of mathematics. In this section we
describe it in three equivalent ways.
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2.1 Covariance of SL.2;R/ for Vector-Valued Functions

For � 2 C, we define a group homomorphism

 � W C� ! GL.2;R/; z D rei
 7! r�
�

cos 
 sin 

� sin 
 cos 


�
: (5)

For a C
2-valued function F on C ' R

2, we set

Fh�.z/ WD  �
�
.cz C d/�2

�
F
�
az C b

cz C d

�

for � 2 C, h�1 D
�
a b

c d

�
2 SL.2;R/, and z 2 C such that cz C d ¤ 0.

Question A0 (1) Determine complex parameters �; � 2 C for which there exist
differential operators D1 and D2 on R

2 with the following property: D D
RestyD0 ı .D1;D2/ satisfies

.DFh�/.x/ D jcx C d j�2�.DF/
�
ax C b

cx C d

�
(6)

for all F 2 C1.C/˚ C1.C/; h�1 D
�
a b

c d

�
2 SL.2;R/, and x 2 R n f� d

c
g.

(2) Find an explicit formula of such D � D�;� .

The equivalence between Questions A and A0 follows from the following three
observations:

• The functional identity (6) for h D
�
1 t

0 1

�
.t 2 R/ implies that D D RestyD0 ı

.D1;D2/ is a translation invariant operator. Therefore, we can take D1 and D2 to
have constant coefficients.

• F_� D Fw
� .

• The group SL.2;R/ is generated by w and

��
1 t

0 1

�
W t 2 R



.

2.2 Conformally Covariant Differential Operators

Let X be a smooth manifold equipped with a Riemannian metric g. Suppose that a
group G acts on X by the map G � X ! X , .h; x/ 7! h � x. This action is called
conformal if there is a positive-valued smooth function (conformal factor) ˝ on
G �X such that

h�.gh�x/ D ˝.h; x/2gx for any h 2 G and x 2 X .
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Given � 2 C, we define aG-equivariant line bundle L� � Lconf
� overX by letting

G act on the direct product X �C by .x; u/ 7! .h �x;˝.h; x/��u/ for h 2 G. Then
we have a natural action of G on the vector space E�.X/ WD C1.X;L�/ consisting
of smooth sections for L�. Since L� ! X is topologically a trivial bundle, we may
identify E�.X/ with C1.X/, and corresponding G-action on C1.X/ is given as
the multiplier representation $� � $X

� :

.$�.h/f / .x/ D ˝.h�1; x/�f .h�1 � x/ for h 2 G and f 2 C1.X/.

See [7] for the basic properties of the representation .$�; C
1.X//.

Example 2. We endow P
1
C ' C [ f1g with a Riemannian metric g via the

stereographic projection of the unit sphere S2:

R
3 
 S2

�! C [ f1g; .p; q; r/ 7! p C p�1q
1C r

:

Then g.u; v/ D 4
.1Cjzj2/2 .u; v/R2 for u; v 2 TzC ' R

2, and the Möbius transforma-
tion, defined by

P
1
C ! P

1
C; z 7! g � z D az C b

cz C d
for g D

�
a b

c d

�
2 SL.2;C/;

is conformal with conformal factor

˝.g; z/ D jcz C d j�2: (7)

Therefore,

.$�.h/f / .z/ D jcz C d j�2�f
�
az C b

cz C d

�
for h�1 D

�
a b

c d

�
.

This is a (non-unitary) spherical principal series representation IndGC

BC
.1˝ �˛ ˝ 1/

of GC D SL.2;C/, where ˛ is the unique positive restricted root which defines a
Borel subgroup BC.

Let ^i T �X be the i th exterior power of the cotangent bundle T �X for 0 �
i � n, where n is the dimension of X . Then sections ! for ^i T �X are i th
differential forms on X , and G acts on E i .X/ D C1.X;^i T �X/ as the pull-back
of differential forms:

$.h/! D .h�1/�! for ! 2 E i .X/.

More generally, the tensor bundle L�˝^i T �X is also aG-equivariant vector bundle
over X , and we denote by $X

�;i the regular representation of G on the space of
sections
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E i�.X/ WD C1.X;L� ˝ ^i T �X/:

By definition E0�.X/ D E�.X/. In our normalization we have a natural
G-isomorphism

E0n.X/ ' En0 .X/;

if X admits a G-invariant orientation.
Denote by Conf.X/ the full group of conformal transformations of the Rieman-

nian manifold .X; g/. Given a submanifold Y of X , we define a subgroup by

Conf.X IY / WD f' 2 Conf.X/ W '.Y / D Y g:

Then the induced action of Conf.X IY / on the Riemannian manifold .Y; gjY / is
again conformal. We then consider the following problem.

Problem 1. (1) Given 0 � i � dimX and 0 � j � dimY , classify .�; �/ 2 C
2

such that there exists a non-zero local/non-local operator

T W E i�.X/ ! Ej� .Y /

satisfying

$Y
�;j .h/ ı T D T ı$X

�;i .h/ for all h 2 Conf.X IY /.

(2) Find explicit formulæ of the operators T � T
i;j

�;� .

The case i D j D 0 is a question that was raised in [6, Problem 4.2] as a
geometric aspect of the branching problem for representations with respect to the
pair of groups Conf.X/ 
 Conf.X IY /.

As a special case, one may ask:

Question A00 Solve Problem 1 for covariant differential operators in the setting that
.X; Y / D .S2; S1/ and .i; j / D .1; 0/.

We note that, for .X; Y / D .S2; S1/, there are natural homomorphisms

GC WD SL.2;C/ ! Conf.X/

[ [
GR WD SL.2;R/ ! Conf.X IY /;



74 T. Kobayashi et al.

and the images of SL.2;C/ and SL.2;R/ coincide with the identity component
groups of Conf.X/ ' O.3; 1/ and Conf.X IY /, respectively. Question A is
equivalent to Question A00 with Conf.X IY / replaced by its identity component
SO0.2; 1/ ' SL.2;R/=f˙I g. In fact, the differential operator D D RestyD0 ı
.D1;D2/ in Question A gives a GR-equivariant differential operator

E1��1.S2/ ! E0� .S1/ � E�.S1/

in our normalization, which takes the form

E1.R2/ ! C1.R/; fdx C gdy 7! .D1f /.x; 0/C .D2g/.x; 0/

in the flat coordinates via the stereographic projection.

2.3 Branching Laws of Verma Modules

Let g D sl.2;C/, and b a Borel subalgebra consisting of lower triangular matrices
in g. For � 2 C, we define a character of b, to be denoted by C�, as

b ! C;

��x 0
y x

�
7! �x:

If � 2 Z then C� is the differential of the holomorphic character ��;� of the Borel
subgroup BC, which will be defined in (9) in Sect. 3.1.

We consider a g-module, referred to as a Verma module, defined by

M.�/ WD U.g/˝U.b/ C�:

Then 1� WD 1 ˝ 1 2 M.�/ is a highest weight vector with weight � 2 C, and
it generates M.�/ as a g-module. The g-module M.�/ is irreducible if and only if
� … N.

We consider the following algebraic question:

Question A000 (1) Classify .�; �1; �2/ 2 C
3 such that

Homg .M.�/;M.�1/˝M.�2// ¤ f0g:

(2) Find an explicit expression of '.1�/ in M.�1/ ˝ M.�2/ for any ' 2
Homg .M.�/;M.�1/˝M.�2//.

An answer to Question A000 is given as follows:
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Proposition 2. If �1C�2 … N then the tensor productM.�1/˝M.�2/ decomposes
into the direct sum of Verma modules as follows:

M.�1/˝M.�2/ '
1M
aD0

M.�1 C �2 � 2a/:

For the proof, consult [4] for instance. In fact, in [4], one finds the (abstract)
branching laws of (parabolic) Verma modules in the general setting of the restriction
with respect to symmetric pairs. By the duality theorem ([8], [9, Theorem 2.7])
between differential symmetry breaking operators (covariant differential operators
to submanifolds) and (discretely decomposable) branching laws of Verma modules,
we have the following one-to-one correspondence

fThe differential operators D yielding the functional identity (M�;�)g
$ Homg .M.�2�/;M.�� � 1/˝M.��C 1// (8)

˚ Homg .M.�2�/;M.��C 1/˝M.�� � 1// ;

because To.GC=BC/ ˝ C ' C�2 � C C C � C�2 as b ˝ C ' b ˚ b-modules.
Combining this with Proposition 2, we obtain

Proposition 3. If 2� … �N then a non-zero differential operator D satisfying
(M�;�) exists if and only if � � � 2 N, and the set of such differential operators
forms a two-dimensional vector space.

Owing to Proposition 1, we get the two-dimensional solution space as the linear
span of D and D_, once we find a generic solution D.

3 Rankin–Cohen Brackets

As a preparation for the proof of Theorem A, we briefly review the Rankin–Cohen
brackets, which originated in number theory [1, 2, 11].

3.1 Homogeneous Line Bundles over P1
C

First, we shall fix a normalization of three homogeneous line bundles over X D
P
1
C, namely, Lconf

� (Sect. 2), Lhol
� , and Ln;�.

We define a Borel subgroup of GC D SL.2;C/ by

BC WD
� �

a 0

c 1
a

�
W a 2 C

�; c 2 C



;

and identify GC=BC with X D P
1
C by hBC 7! h � 0.
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Given n 2 Z and � 2 C, we define a one-dimensional representation of BC by

�n;� W BC ! C
�;

 
1

rei

0

c rei


!
7! ein
 r�; (9)

and a GC-equivariant line bundle Ln;� D GC �BC
�n;� as the set of equivalence

classes of GC � C given by

.g; u/ � .gb�1; �n;�.b/u/ for some b 2 BC.

The conformal line bundle Lconf
� defined in Sect. 2.2 amounts to L0;2� by the

formula (7).
On the other hand, if � D n 2 Z then ��;� is a holomorphic character of BC,

and consequently, L�;� ! X becomes a holomorphic line bundle, which we denote
by Lhol

� . The complexified cotangent bundle .T �X/˝ C splits into a Whitney sum
of the holomorphic and anti-holomorphic cotangent bundle .T �X/1;0 ˚ .T �X/0;1,
which amounts to L2;2 ˚ L�2;2. In summary, we have:

Lemma 1. We have the following isomorphisms of GC-equivariant line bundles
over X ' P

1
C.

Lhol
� ' L�;� for � 2 Z,

Lconf
� ' L0;2� for � 2 C,

.T �X/1;0 ' L2;2;

.T �X/0;1 ' L�2;2:

The line bundle Ln;� ! X is GC-equivariant; thus, there is the regular
representation �n;� of GC on C1.X;Ln;�/. This is called the (unnormalized, non-
unitary) principal series representation ofGC. The restriction to the open Bruhat cell
C ,! X D C [ f1g yields an injection C1.X;Ln;�/ ,! C1.C/, on which �n;�
is given as a multiplier representation:

.�n;�.h/F / .z/ D
�
cz C d

jcz C d j
��n

jcz C d j��F
�
az C b

cz C d

�
for h�1 D

�
a b

c d

�
:

Comparing this with the conformal construction of the representation $� in
Example 2, we have $� ' �0;2�.

Similarly to the smooth line bundle Ln;�, we consider holomorphic sections for
the holomorphic line bundle Lhol

� . For this, letD be a domain of C andG a subgroup
ofGC, which leavesD invariant. Then we can define a representation, to be denoted
by �hol

� , of G on the space O.D/ � O.D;Lhol
� / of holomorphic sections, which is

identified with a multiplier representation
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�
�hol
� .h/F

�
.z/ D .cz C d/��F

�
az C b

cz C d

�
for F 2 O.D/:

Example 3.

(1) D D fz 2 C W jzj < 1g, G D SU.1; 1/.
(2) D D fz 2 C W Imz > 0g, G D SL.2;R/.

(For the application below we shall use the unit disc model.)

3.2 Rankin–Cohen Bidifferential Operator

Let D be a domain in C. For a 2 N and �1; �2 2 C, the bidifferential operator
RCa�1;�2 W O.D/˝O.D/ ! O.D/, referred to as the Rankin–Cohen bracket [1,11],
is defined by

RCa�1;�2.f1 ˝ f2/.z/ WD
aX
`D0
.�1/`

 
�1 C a � 1

`

! 
�2 C a � 1
a � `

!
@a�`f1
@za�`

.z/
@`f2

@z`
.z/:

In the theory of automorphic forms, RCa�1;�2 yields a new holomorphic modular
form of weight �1 C �2 C 2a out of two holomorphic modular forms f1 and f2 of
weights �1 and �2, respectively.

From the viewpoint of representation theory, RCa�1;�2 is an intertwining operator:

�hol
�1C�2C2a.h/ ı RCa�1;�2 D RCa�1;�2 ı ��hol

�1
.h/˝ �hol

�2
.h/
�

(10)

for all h 2 G.
The coefficients of the Rankin–Cohen brackets look somewhat complicated.

Eicheler–Zagier [2, Chapter 3] found that they are related to those of a classical
orthogonal polynomial. A short proof for this fact is given by the F-method in [9].

To see the relation, we define a polynomial RCa�1;�2.x; y/ of two variables x and
y by

RCa�1;�2.x; y/ WD
aX
`D0
.�1/`

 
�1 C a � 1

`

! 
�2 C a � 1
a � `

!
xa�`y`; (11)

so that the Rankin–Cohen bidifferential operator RCa�1;�2 is given by

RCa�1;�2 D Restz1Dz2Dz ı RCa�1;�2

�
@

@z1
;
@

@z2

�
:
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The polynomial RCa�1;�2.x; y/ is of homogeneous degree a. Clearly we have:

Lemma 2. RCa�1;�2.x; y/ D .�1/aRCa�2;�1.y; x/.

Second we recall that the Jacobi polynomial P˛;ˇ

` .t/ is a polynomial of one
variable t of degree ` given by

P
˛;ˇ

` .t/ D � .˛ C `C 1/

� .˛ C ˇ C `C 1/

X̀
mD0

� .˛ C ˇ C `CmC 1/

.` �m/ŠmŠ� .˛ CmC 1/

�
t � 1
2

�m
:

We inflate it to a homogeneous polynomial of two variables x and y of degree
` by

P
˛;ˇ

` .x; y/ WD y`P
˛;ˇ

`

�
2
x

y
C 1

�
:

For instance, P˛;ˇ
0 .x; y/ D 1 and P˛;ˇ

1 .x; y/ D .2C ˛ C ˇ/x C .˛ C 1/y. It turns
out that

RCa�1;�2.x; y/ D .�1/aRCa�2;�1.y; x/:

In particular, the following holds.

Lemma 3. We have

RCa�1;�2 D .�1/aRestz1Dz2Dz ı P�1�1;��1��2�2aC1
a

�
@

@z1
;
@

@z2

�
:

4 Holomorphic Trick

In this section we give a proof for Theorem A by using the results of the previous
sections

4.1 Restriction to a Totally Real Submanifold

Consider a totally real embedding of X D P
1
C ' C [ f1g defined by

� W P1C ! P
1
C � P

1
C; z 7! .z; Nz/: (12)

The map � respects the action of GC via the following group homomorphism
(we regard GC as a real group), denoted by the same letter,

� W GC ! GC �GC; g 7! .g; Ng/:
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This is because GC=BC ' P
1
C and because the Borel subgroup BC is stable by

the complex conjugation g 7! Ng. Then the following lemma is immediate from
Lemma 1.

Lemma 4. We have an isomorphism of GC-equivariant line bundles:

��
�
Lhol
�1

� Lhol
�2

� ' L�1��2;�1C�2 :

In particular,

��.Lhol
�C1 � Lhol

��1/ ' Lconf
��1 ˝ .T �X/1;0; (13)

��.Lhol
��1 � Lhol

�C1/ ' Lconf
��1 ˝ .T �X/0;1: (14)

Proposition 4. The isomorphisms (13) and (14) induce injective GC-equivariant
homomorphisms between equivariant sheaves:

.��/1;0 W O.Lhol
�C1/˝ O.Lhol

��1/ ! E1;0��1; f1.z1/˝ f2.z2/ 7! f1.z/f2.Nz/d z;

.��/0;1 W O.Lhol
��1/˝ O.Lhol

�C1/ ! E0;1��1; f1.z1/˝ f2.z2/ 7! f1.z/f2.Nz/d Nz;

that is, .��/1;0 and .��/0;1 are injective on every open set D in P
1
C, and

.��/1;0 ı ��hol
�C1.g/˝ �hol

��1. Ng/� D $��1;1.g/ ı .��/1;0

.��/0;1 ı ��hol
��1.g/˝ �hol

�C1. Ng/� D $��1;1.g/ ı .��/0;1

hold for any g whenever they make sense.

Proof. The injectivity follows from the identity theorem of holomorphic functions
because � W P1C ! P

1
C�P

1
C is a totally real embedding. The covariance property

is derived from (13) and (14).

Fix � 2 Z and a 2 N. We set � D �C a. We want to relate the Rankin–Cohen
brackets RCa�˙1;��1 to our differential operator D (see Question A) in the sense that
both of the following diagrams commute:

O.Lhol
�C1/˝ O.Lhol

��1/ ,� .��/1;0������! E1;0��1.C/ � E1��1.R2/ ' C1.R2/˚ C1.R2/

RCa
�C1; ��1

?y ?yD
O.Lhol

2�C2a/ ,����������������! E�.R/ ' C1.R/;
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and

O.Lhol
��1/˝ O.Lhol

�C1/ ,� .��/0;1������! E0;1��1.C/ � E1��1.R2/ ' C1.R2/˚ C1.R2/

.�1/aRCa
��1;�C1

?y ?yD
O.Lhol

2�C2a/ ,����������������! E�.R/ ' C1.R/:

Here we have used the following identification:

E1��1.R2/ ' C1.R2/˚ C1.R2/; fdx C gdy 7! .f; g/:

We define homogeneous polynomials D1, D2 with real coefficients so that

D1.x; y/C p�1D2.x; y/ D 2�aRCa�C1;��1.x � p�1y; x C p�1y/;

where RCa�1;�2.x; y/ is a polynomial defined in (11). We set

D1 WD D1

�
@

@x
;
@

@y

�
; D2 WD D2

�
@

@x
;
@

@y

�
; D WD RestyD0 ı .D1;D2/ :

(15)

Lemma 5. For any holomorphic functions f1 and f2,

D
�
.��/1;0.f1 ˝ f2/

� D ��RCa�C1;��1.f1 ˝ f2/;

D
�
.��/0;1.f1 ˝ f2/

� D .�1/a��RCa��1;�C1.f1 ˝ f2/:

Proof. Let ! WD .��/1;0.f1 ˝ f2/ D f1.z/f2.Nz/d z. If we write ! D fdx C gdy

then f .z/ D f1.z/f2.Nz/ and g D p�1f . Therefore,

D! D RestyD0 ı .D1;D2/

�
f

g

�
;

.D1;D2/

�
f

g

�
D


D1 C p�1D2/.f1.z/f2.Nz/

�
:

If we write RCa�C1;��1.x; y/ D Pa
`D0 r`xa�`y` then

.D1 C p�1D2/ .f1.z/f2.Nz// D RCa�C1;��1
�
@

@z
;
@

@Nz
�
.f1.z/f2.Nz//

D
aX
`D0

r`
@a�`f1
@za�`

.z/
@`f2

@Nz` .Nz/;
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because f1 and f2 are holomorphic. Taking the restriction to y D 0, we get

D.!/ D
aX
`D0

r`
@a�`f1
@xa�`

.x/
@`f2

@x`
.x/ D ��RCa�C1;��1.f1 ˝ f2/:

Hence we have proved the first identity. The second identity follows from Lemma 2.

Remark 1. If we multiply the bidifferential operator RCa�C1;��1 by
p�1 then

obviously (10) holds, where the role of .D1;D2/ is changed into .�D2;D1/ because

p�1.D1 C p�1D2/ D �D2 C p�1D1:

This explains Proposition 1 from the “holomorphic trick.”

4.2 Identities of Jacobi Polynomials

For a 2 NC, we define the following three meromorphic functions of � by

Aa.�/ WD 2�2 C 2.a � 1/�C a.a � 1/
a.2�C a � 1/ ;

Ba.�/ WD .� � 1/.2�C 1/

a.2�C a � 1/ ;

Ua.�/ WD
2
�
�C Œ a

2
�
�
Œ a�12 ��

�C 1
2

�
Œ a�12 �

;

where .�/k WD �.�C 1/ � � � .�C k � 1/ D � .�Ck/
� .�/

is the Pochhammer symbol.

Proposition 5. We have

.1 � z/aP �;�2��2aC1
a

�
3C z

1 � z

�

D .�1/a�1Ua.�/
�
.1 � Aa.�/z/C �C 1

2

a�1 .z/C Ba.�/.1 � z2/C
�C 3

2

a�2 .z/
�
:

Equivalently,

P�;�2��2aC1
a .x � p�1y; x C p�1y/

D .
p�1/a�1Ua.�/

�
xC

�C 1
2

a�1 .�x2; y/C p�1
�
Aa.�/yC

�C 1
2

a�1 .�x2; y/

C Ba.�/.x
2 C y2/C

�C 3
2

a�2 .�x2; y/
��

:
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Proposition 5 will be used in the proof of Theorem A in the next subsection.
We want to note that we wondered if the first equation of Proposition 5 was already
known; however, we could not find the identity in the literature.

One might give an alternative proof of Proposition 5 by applying the F-method
to a vector bundle case. We will discuss this approach in a subsequent paper.

4.3 Proof of Theorem A

The relations in Lemma 5 and the covariance property (10) of the Rankin–Cohen
brackets imply that the differential operator D defined in (15) satisfies the covariance
relations (6) on the image

.��/1;0
�
O.Lhol

�C1/˝ O.Lhol
��1/

�C .��/0;1
�
O.Lhol

��1/˝ O.Lhol
�C1/

�
:

In order to prove (6), we need to show that the image is dense in C1.R2/ ˚
C1.R2/ topologized by uniform convergence on compact sets. To see this we note
that the image contains a linear span of the following 1-forms

zmNznd z; zmNznd Nz; .m; n 2 N/:

Since a linear span of .xC p�1 y/m.x� p�1 y/n .m; n 2 N/ is dense in C1.R2/
by the Stone–Weierstrass theorem, we conclude that D satisfies (6). An explicit
formula for the operators .D1;D2/ is derived from the Rankin–Cohen brackets by
using Lemma 3 and Proposition 5 for � 2 Z. Then the covariance relations (1) are
satisfied for all � 2 C because Z is Zariski dense in C.

If 2� … �N then the dimension of solutions is two by Proposition 2 and the
one-to-one correspondence (8). Since D and D_ are linearly independent for our
solution D, the linear span of D and D_ exhausts all the solutions by Proposition 1.
Hence Theorem A is proved.

4.4 Scalar-Valued Case

So far we have discussed a family of vector-valued differential operators that yield
functional identities satisfied by vector-valued functions. We close this article with
some comments on the scalar-valued case.

Let � 2 C. Given f 2 C1.R2 n f.0; 0/g/ ' C1.C n f0g/, we define its twisted
inversion f _� by

f _� .r cos 
; r sin 
/ WD r�2�f
�� cos 


r
;

sin 


r

�



Covariant Differential Operators for the Möbius Transformation 83

as in (1), and more generally,

f h
� .z/ WD jcz C d j�2�f

�
az C b

cz C d

�
for h�1 D

�
a b

c d

�
2 SL.2;C/

as in (5).
For a differential operator D on R

2, we define a linear operator QD W C1.R2/ !
C1.R/ by

QD WD RestyD0 ı D:

Fix �; � 2 C. As in Questions A, A0, A00, and A000, we may consider the following
equivalent questions:

Question B Find QD with constant coefficients such that

� QDf _�
�
.x/ D jxj�2�. QDf /

�
� 1
x

�
for all f 2 C1.C/; h 2 SL.2;R/, and x 2 R

�.

Question B0 Find QD such that

� QDf h
�

�
.x/ D jcx C d j�2�. QDf /

�
ax C b

cx C d

�

for all f 2 C1.C/; h 2 SL.2;R/, and x 2 R
�.

Question B00 Find an explicit formula of conformally covariant differential opera-
tor E�.S2/ ! E�.S1/.

Question B000 Find an explicit expression of the element '.1��/ for any ' 2
Homg .M.��/;M.��/˝M.��//, where g D sl.2;C/.

An answer to Question B00 (and also in the case Sn�1 � Sn for arbitrary n 	 2)
was first given by Juhl [3]. In the flat model (Questions B and B0), if a WD ��� 2 N

then

A

C��
1
2

a � RestyD0 ı C�� 12
a

�
� @2

@x2
;
@

@y

�
W E�.R2/ ! E�.R1/

intertwines the SL.2;R/-action. There have been several proofs for this (and also
for more general cases) based on:

• Recurrence relations among coefficients of D [3],
• F-method [5, 8, 9], and
• Residue formulæ of a meromorphic family of non-local symmetry breaking

operators [6, 10].
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The holomorphic trick in Sect. 4 applied to this case gives yet another proof by
using the Rankin–Cohen brackets and the following proposition analogous to (and
much simpler than) Proposition 5.

Proposition 6. For a 2 N, we have

.1 � z/aP ��1;�2��2aC1
a

�
3C z

1 � z

�
D .�1/a

�
�C Œ a

2
�
�
Œ aC12 ��

� � 1
2

�
Œ aC12 �

C
�� 12
a .z/:

Equivalently,

P��1;�2��2aC1
a .x � p�1y; x C p�1y/ D .

p�1/a
�
�C Œ a

2
�
�
Œ aC12 ��

� � 1
2

�
Œ aC12 �

C
�� 12
a .�x2; y/:
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Semi-classical Scalar Products
in the Generalised SU.2/ Model

Ivan Kostov

Abstract In these notes we review the field-theoretical approach to the computation
of the scalar product of multi-magnon states in the Sutherland limit where the
magnon rapidities condense into one or several macroscopic arrays. We formulate
a systematic procedure for computing the 1=M expansion of the on-shell/off-
shell scalar product of M -magnon states in the generalised integrable model with
SU.2/-invariant rational R-matrix. The coefficients of the expansion are obtained
as multiple contour integrals in the rapidity plane.

1 Introduction

In many cases the calculation of form factors and correlation functions within
quantum integrable models solvable by the Bethe Ansatz reduces to the calculation
of scalar products of Bethe vectors. The best studied case is that of the models based
on the SU.2/-invariant R-matrix. A determinant formula for the norm-squared of
an on-shell state has been conjectured by Gaudin [1], and then proved by Korepin
in [2]. Sum formulas for the scalar product between two generic Bethe states were
obtained by Izergin and Korepin [2–4]. Furthermore, the scalar product between an
on-shell and off-shell Bethe vector was expressed in determinant form by Slavnov
[5]. This representation proved to be very useful in the computation of correlation
functions of the XXX and XXZ models [6]. Although the Slavnov determinant
formula is, by all evidence, not generalisable for higher rank groups, compact and
potentially useful expressions of the scalar products as multiple contour integrals of
(products of) determinants were proposed in [7–10].

The above-mentioned sum and determinant formulas are efficient for states
composed of few magnons. In order to evaluate scalar products of multi-magnon
states, new semi-classical methods specific for the problem need to be developed.
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Of particular interest is the evaluation of the scalar product of Bethe wave func-
tions describing the lowest excitations above the ferromagnetic vacuum composed
of given (large) number of magnons. The magnon rapidities for such excitations
organise themselves in a small number of macroscopically large bound complexes
[11, 12]. It is common to refer this limit as a thermodynamical, or semi-classical,
or Sutherland limit. In the last years the thermodynamical limit attracted much
attention in the context of the integrability in AdS/CFT [13], where it describes
“heavy” operators in the N D 4 supersymmetric Yang-Mills (SYM) theory, dual to
classical strings embedded in the curved AdS5 �S5 space-time [14,15]. It has been
realised that the computation of some three-point functions of such heavy operators
boils down to the computation of the scalar product of the corresponding Bethe
wave functions in the thermodynamical limit [16–20].

In this notes, based largely on the results obtained in [16, 17, 21, 22], we
review the field-theoretical approach developed by E. Bettelheim and the author
[22], which leads to a systematical semi-classical expansion of the on-shell/off-
shell scalar product. The field-theoretical representation is not sensitive to the
particular representation of the monodromy matrix and we put it in the context of
the generalised integrable model with SU.2/ invariant rational R-matrix.

The text is organised as follows. In Sect. 2 we remind the basic facts and
conventions concerning the Algebraic Bethe Ansatz for rational SU.2/-invariant
R-matrix. In Sect. 3 we give an alternative determinant representation of the on-
shell/off-shell scalar product of two M -magnon Bethe vectors in spin chains with
rational SU.2/-invariant R-matrix. This representation, which has the form of an
2M � 2M determinant, possesses an unexpected symmetry: it is invariant under
the group S2M of the permutations of the union of the magnon rapidities of the left
and the right states, while the Korepin sum formulas and the Slavnov determinant
have a smaller SM � SM symmetry. We refer to the symmetric expression in
question as A -functional to underline the relation with a similar quantity, previously
studied in the papers [18, 23] and denoted there by the same letter. In the
generalised SU.2/-invariant integrable model the A -functional depends on the
ratio of the eigenvalues of the diagonal elements of the monodromy matrix on the
pseudo-vacuum, considered as a free functional variable. In Sect. 4 we write the
A -functional as an expectation value in the Fock space of free chiral fermions.
The fermionic representation implies that the A -functional is a KP � -function, but
we do not use this fact explicitly. By two-dimensional bosonization we obtain a
formulation of the A -functional in terms of a chiral bosonic field with exponential
interaction. The bosonic field describes a Coulomb gas of dipole charges. The
thermodynamical limitM � 1 is described by an effective .0C1/-dimensional field
theory, obtained by integrating the fast-scale modes of the original bosonic field. In
terms of the dipole gas the effective theory contains composite particles representing
bound states of any number of dipoles. The Feynman diagram technique for the
effective field theory for the slow-scale modes is expected to give the perturbative
1=M expansion of the scalar product. We evaluate explicitly the first two terms
of this expansion. The leading term reproduces the known expression as a contour
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integral of a dilogarithm, obtained by different methods in [23] and [16, 17], while
the subleading term, given by a double contour integral, is a new result reported
recently in [22].

2 Algebraic Bethe Ansatz for Integrable Models
with su.2/ R-Matrix

We remind some facts about the ABA for the su.2/-type models and introduce our
notations. The monodromy matrix M.u/ is a 2 � 2 matrix [24, 25]

M.u/ D
�
A.u/ B.u/
C.u/ D.u/

�
: (1)

The matrix elements A;B;C;D are operators in the Hilbert space of the model and
depend on the complex spectral parameter u called rapidity. The monodromy matrix
obeys the RT T -relation (Yang-Baxter equation)

R.u � v/.M.u/˝ I /.I ˝M.v// D .I ˝M.u//.M.v/˝ I /R.u � v/: (2)

Here I denotes the 2 � 2 identity matrix and the 4 � 4 matrix R.u/ is the SU.2/
rationalR-matrix whose entries are c-numbers. The latter is given, up to a numerical
factor, by

R˛ˇ.u/ D u I˛ˇ C i" P˛ˇ; (3)

with the operator P˛ˇ acting as a permutation of the spins in the spaces ˛ and ˇ. In
the standard normalization " D 1.

The RT T relation determines the algebra of the monodromy matrix ele-
ments, which is the same for all su.2/-type models. In particular, ŒB.u/; B.v/� D
ŒC.u/; C.v/� D 0 for all u and v.

The trace T D A C D of the monodromy matrix is called transfer matrix.
Sometimes it is useful to introduce a twist parameter � (see, for example, [26]).
The twist preserves the integrability: the twisted transfer matrix

T .u/ D tr
�
.1 00 �/M.u/

	 D A.u/C � D.u/ (4)

satisfies ŒT .u/; T .v/� D 0 for all u and v.
To define a quantum-mechanical system completely, one must determine the

action of the elements of the monodromy matrix in the Hilbert space. In the
framework of the ABA the Hilbert space is constructed as a Fock space associated
with a cyclic vector j˝i, called pseudovacuum, which is an eigenvector of the
operators A and D and is annihilated by the operator C :

A.u/j˝i D a.u/j˝i; D.u/j˝i D d.u/j˝i; C.u/j˝i D 0: (5)
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The dual pseudo-vacuum satisfies the relations

h˝jA.u/ D a.u/h˝j; h˝jD.u/ D d.u/h˝j; h˝jB.u/ D 0: (6)

Here a.u/ and d.u/ are complex-valued functions whose explicit form depends on
the choice of the representation of the algebra (2). We will not need the specific form
of these functions, except for some mild analyticity requirements. In other words,
we will consider the generalized SU.2/ model in the sense of [2], in which the
functions a.u/ and d.u/ are considered as free functional parameters.

The vectors obtained from the pseudo-vacuum j˝i by acting with the “raising
operators” B.u/,

jui D B.u1/ : : : B.uM/j˝i; u D fu1; : : : ; uM g (7)

are called Bethe states. Since the B-operators commute, the state jui is invariant
under the permutations of the elements of the set u.

The Bethe states that are eigenstates of the (twisted) transfer matrix are called
“on-shell”. Their rapidities obey the Bethe Ansatz equations

a.uj /

d.uj /
C �

Qu.uj C i"/

Qu.uj � i"/ D 1 .j D 1; : : : ;M/: (8)

Here and in the following we will use the notation

Qu.v/ D
MY
iD1
.v � ui /; u D fu1; : : : ; uM g: (9)

The corresponding eigenvalue of the transfer matrix T .x/ is

t .v/ D Qu.v � i"/
Qu.v/

C �
d.v/

a.v/

Qu.v C i"/

Qu.v/
: (10)

If the rapidities u are generic, the Bethe state is called “off-shell”.
In the unitary representations of the RT T -algebra, like the XXX1=2 spin chain,

the on-shell states form a complete set in the Hilbert space. The XXX spin chain
of length L can be deformed by introducing inhomogeneities 
1; : : : ; 
L associated
with the L sites of the spin chain. The eigenvalues of the operators A.v/ and D.v/
on the vacuum in the inhomogeneous XXX chain are given by

a.v/ D Q�.v C 1
2
i"/ ; d.v/ D Q�.v � 1

2
i"/; (11)
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where the polynomial Q�.x/ is defined as1

Q�.x/ D
LY
lD1
.x � 
l /; � D f
1; : : : ; 
Lg: (12)

Any Bethe state is completely characterised by its pseudo-momentum, known also
under the name of counting function [28]

2ip.v/ D log
Qu.v C i"/

Qu.v � i"/ � log
a.v/

d.v/
C log �: (13)

The Bethe equations (8) imply that

p.uj / D 2�nj � � .j D 1; : : : ;M/ (14)

where the integers nj are called mode numbers.

3 Determinant Formulas for the Inner Product

In order to expand the states jvi with given a set of rapidities in the basis of
eigenvectors jui of the monodromy matrix,

jvi D
X

u on shell

h ujv i
h uju i jui; (15)

we need to compute the scalar product h vju i of an off-shell and an on-shell Bethe
state. The scalar product is related to the bilinear form

.v;u/ D h˝j
MY
jD1

C.vj /
MY
jD1

B.uj /j˝i (16)

by .u; v/ D .�1/M h u�jv i. This follows from the complex Hermitian convention
B.u/	 D �C.u�/. The inner product can be computed by commuting the
B-operators to the left and the A-operators to the right according to the algebra (2),
and then applying the relations (5) and (6). The resulting sum formula written down
by Korepin [2] works well for small number of magnons but for larger M becomes
intractable.

1This is a particular case of the Drinfeld polynomial P1.u/ [27] when all spins along the chain are
equal to 1=2.
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An important observation was made by N. Slavnov [5], who realised that when
one of the two states is on-shell, the Korepin sum formula gives the expansion of the
determinant of a sum of two M �M matrices.2 Although the Slavnov determinant
formula does not give obvious advantages for taking the thermodynamical limit, is
was used to elaborate alternative determinant formulas, which are better suited for
this task [16, 17, 21, 22].

Up to a trivial factor, the inner product depends on the functional argument

f .v/ � �
d.v/

a.v/
(17)

and on two sets of rapidities, u D fu1; : : : ; uM g and v D fv1; : : : ; vM g. Since
the rapidities within each of the two sets are not ordered, the inner product has
symmetry SM � SM , where SM is the group of permutations of M elements. It
came then as a surprise that the inner product can be written [21]3 as a restriction
on the mass shell (for one of the two sets of rapidities) of an expression completely
symmetric with respect of the permutations of the union w � fw1; : : : ;w2M g D
fu1; : : : ; uM ; v1; : : : ; vM g of the rapidities of the two states:

.vju/ D
u!on shell

MY
jD1

a.vj /d.uj / AwŒf � ; w D u [ v; (18)

where the functional AwŒf � is given by the followingN�N determinant (N D 2M )

AwŒf � D det
jk



wk�1j � f .wj / .wj C i"/k�1

�
= det
jk



wk�1j

�
: (19)

In the XXX1=2 spin chain, the r.h.s. of (18) is proportional to the inner product
of an off-shell Bethe state jwi and a state obtained from the left vacuum by a global
SU.2/ rotation [21]. Such inner products can be given statistical interpretation as a
partial domain-wall partition function (pDWPF) [30]. In this case the identity (18)
can be explained with the global su.2/ symmetry [21].

Another determinant formula, which is particularly useful for taking the thermo-
dynamical limit, is derived in [22]:

Aw D det .1 �K/ ; (20)

2This property is particular for the SU.2/ model. The the inner product in the SU.n/ model is a
determinant only for a restricted class of states [29].
3The case considered in [21] was that of the periodic inhomogeneous XXX1=2 spin chain of length
L, but the proof given there is trivially extended to the generalised SU.2/ model.



Semi-classical Scalar Products in the Generalised SU.2/ Model 93

where the N �N matrix K has matrix elements

Kjk D Qj

wj � wk C i"
.j; k D 1; : : : ; N / ; (21)

and the weightsQj are obtained as the residues of the same function at the roots wj :

Qj � Res
z!wj

Q.z/; Q.z/ � f .z/
Qw.z C i"/

Qw.z/
: (22)

Here Qw is the Baxter polynomial for the set w, c.f. (9). The determinant formula
(20) has the advantage that it exponentiates in a simple way:

logAwŒf � D �
1X
nD1

1

n

NX
j1;:::;jnD1

Qj1

wj1 � wj2 C i"

Qj2

wj1 � wj3 C i"

� � � Qjn

wjn � wj1 C i"
: (23)

The identity (20) is the basis for the field-theoretical approach to the computation
of the scalar product in the thermodynamical limit.

4 Field Theory of the Inner Product

4.1 The A -Functional in Terms of Free Fermions

This determinant on the RHS of (20) can be expressed as a Fock-space expectation
value for a Neveu-Schwarz chiral fermion living in the rapidity plane with two-point
function

h0j .z/ �.u/j0i D h0j �.z/ .u/j0i D 1

z � u
: (24)

Representing the matrix K in (20) as

Kjk D h0j �.wj C i"/ .wk/j0i (25)

it is easy to see that the A -functional is given by the expectation value

AwŒf � D h0j exp

0
@ NX
jD1

Qj  
�.wj / .wj C i"/

1
A j0i: (26)
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In order to take the large N limit, we will need reformulate the problem entirely
in terms of the meromorphic function Q.z/. The discrete sum of fermion bilinears
in the exponent on the RHS of (26) can be written as a contour integral using the
fact that the quantities Qj , defined by (22), are residues of the same function Q.z/
at z D wj . As a consequence, the Fock space representation (26) takes the form

AwŒf � D h0j exp

�I
Cw

d z

2�i
Q.z/  �.z/ .z C i"/

�
j0i ; (27)

where the contour Cw encircles the points w and leaves outside all other singularities
of Q, as shown in Fig. 1. Expanding the exponent and performing the gaussian
contractions, one writes the A -functional in the form of a Fredholm determinant

AwŒf � D
1X
nD0

.�1/n
nŠ

I

C�nw

nY
jD1

d zj Q.zj /
2�i

n

det
j;kD1

1

zj � zk C i"
: (28)

Since the function Q has exactly N poles inside the contour Cw, only the first N
terms of the series are non-zero. The series exponentiates to

logAwŒf � D �
1X
nD1

1

n

I

C�nw

d z1 : : : d zn
.2�i/n

Q.z1/
z1 � z2 C i"

: : :
Q.zn/

zn � z1 C i"
: (29)

This is the vacuum energy of the fermionic theory, given by the sum of all vacuum
loops. The factor .�1/ comes from the Fermi statistics and the factor 1=n accounts
for the cyclic symmetry of the loops. The series (29) can be of course obtained
directly from (23).

4.2 Bosonic Theory and Coulomb Gas

Alternatively, one can express the A -function in term of a chiral boson �.x/ with
two-point function

h0j�.z/�.u/j0i D log.z � u/: (30)

After bosonization  .z/ ! e�.z/ and  �.z/ ! e��.z/, where we assumed that
the exponents of the gaussian field are normally ordered, the fermion bilinear
 �.z/ .z C i"/ becomes, up to a numerical factor, a chiral vertex operator of zero
charge

V.z/ � e�.zCi"/��.z/: (31)
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The coefficient is obtained from the OPE

e��.z/ e�.u/ � 1

z � u
e�.u/��.z/ (32)

with u D z C i":

 �.z/ .z C i"/ ! e��.z/e�.zCi"/ D � 1

i"
V.z/: (33)

The bosonized form of the operator representation (27) is therefore

AwŒf � D h0j exp

�
� 1

i"

I
Cw

d z

2�i
Q.z/V.z/

�
j0i; (34)

where j0i is the bosonic vacuum state with zero charge. Expanding the exponential
and applying the OPE (32) one writes the expectation value as the grand-canonical
Coulomb-gas partition function

AwŒf � D
NX
nD0

.�1/n
nŠ

nY
jD1

I
Cw

d zj
2�i

Q.zj /
i"

nY
j<k

.zj � zk/2

.zj � zk/2 � i"2 : (35)

After applying the Cauchy identity, we get back the Fredholm determinant (28).

4.3 The Thermodynamical Limit

Although the roots w D fw1; : : : ;wN g are off-shell, typically they can be divided
into two or three on-shell subsets w.k/, each representing a lowest energy solution of
the Bethe equations for given (large) magnon numberN.k/. The Bethe roots for such
solution are organised in one of several arrays with spacing � ", called macroscopic
Bethe strings, and the distribution of the roots along these arrays is approximated
by continuous densities on a collection of contours in the complex rapidity plane
[11, 12, 14, 15].

We choose an N -dependent normalisation of the rapidity such that " � 1=N .
Then the typical size of the contours and the densities remains finite in the limit
" ! 0.

In order to compute the A -functional in the large N limit, we will follow the
method developed on [22] and based on the field-theoretical formulation of the
problem, Eq. (34). The method involves a coarse-graining procedure, as does the
original computation of the quantity A, carried out in [23].

Let us mention that there is a close analogy between the above semiclas-
sical analysis and the computation of the instanton partition functions of four-
dimensional N D 2 supersymmetric gauge theories in the so-called˝-background,
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Fig. 1 Schematic
representation of the contour
Cw and the deformed
contour C

characterised by two deformation parameters, "1 and "2 [31, 32], in the Nekrasov-
Shatashvili limit "2 ! 0 [33]. In this limit the result is expressed in terms of
the solution of a non-linear integral equation. The derivation, outlined in [33] and
explained in great detail in the recent papers [34,35], is based on the iterated Mayer
expansion for a one-dimensional non-ideal gas. Our method is a field-theoretical
alternative of the Mayer expansion of the gas of dipole charges created by the
exponential operators Vn. In our problem the saddle-point of the action (56) also
lead to a non-linear integral equation, but the non-linearity disappears when " ! 0.

Of crucial relevance to our approach is the possibility to deform the contour of
integration. In order to take advantage of the contour-integral representation, the
original integration contour Cw surrounding the poles w of the integrand, should be
deformed to a contour C which remains at finite distance from the singularities of the
function Q when " ! 0, as shown in Fig. 1. Along the contour C the function Q.z/
changes slowly at distances � ". In all nontrivial applications the weight function
Q has additional poles, which are those of the function f . The contour C separates
the roots w from the poles of f .

4.4 Coarse-Graining

We would like to compute the "-expansion of the expectation value (34), with Cw

replaced by C. This is a semi-classical expansion with Planck constant „ D ".
As any semi-classical expansion, the perturbative expansion in " is an asymptotic
expansion. Our strategy is to introduce a cutoff �, such that

" � � � N" .N" � 1/; (36)

integrate the ultra-violet (fast-scale) part of the theory in order to obtain an effective
infrared (slow-scale) theory. The splitting of the bosonic field into slow and fast
pieces into slow and fast pieces is possible only in the thermodynamical limit
" ! 0. In this limit the dependence on � enters through exponentially small non-
perturbative terms and the perturbative expansion in " does not depend on �.
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We thus cut the contour C into segments of length � and compute the effective
action for the slow piece as the sum of the connected n-point correlators (cumulants)
of the vertex operator V . The nth cumulant#n.z/ is obtained by integrating the OPE
of a product of n vertex operators

V.z1/ : : :V.zn/ D
Y
j<k

.zj � zk/2

.zj � zk/2 C "2
W V.z1/ : : :V.zn/ W (37)

along a segment of the contour C of size�, containing the point z. Since we want to
evaluate the effect of the short-distance interaction due to the poles, we can assume
that the rest of the integrand is analytic everywhere. Then the integration can be
performed by residues using the Cauchy identity. This computation has been done
previously in [31] in a different context. The easiest way to compute the integral
is to fix z1 D z and integrate with respect to z2; : : : ; zn. We expand the numerical
factor in (37) as a sum over permutations. The .n � 1/Š permutations representing
maximal cycles of length n give identical contributions to the residue. For the rest
of the permutations the contour integral vanishes. We find (zjk � zj � zk)

#n D
I V.z1/ : : :V.zn/

.�i"/n nŠ
nY

kD2

d zk
2�i

� .n � 1/Š
nŠ

I Qn
kD2

d zk
2�i

W V.z1/ � � �V.zn/ W
.i" � z12/ : : : .i" � zn�1;n/.i" � zn;1/

D � 1

n2i"
Vn.z/ ; (38)

where

Vn.z/ � W V.z/V.z C i"/ : : :V.z C ni"/ W D e�.zCni"/��.z/ : (39)

The interaction potential of the effective coarse-grained theory therefore con-
tains, besides the original vertex operator V � V1, all composite vertex operators
Vn with n . �. If one repeats the computation (38) with the weights Q, one obtains
for the nth cumulant

#n.z/ D � 1

i"

Qn.z/Vn.z/
n2

; Qn.z/ D Q.z/Q.z C i"/ : : :Q.z C in"/: (40)

#n.z/ D � 1

i"

Qn.z/Vn.z/
n2

; Qn.z/ D Q.z/Q.z C i"/ : : :Q.z C in"/

D e�˚.x/C˚.xCni"/ : (41)
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As the spacing n" should be smaller than the cut-off length �, from the perspective
of the effective infrared theory all these particles are point-like. We thus obtained
that in the semi-classical limit the A -functional is given, up to non-perturbative
terms, by the expectation value

Au;z �
*

exp

0
@1
"

�="X
nD1

1

n2

I
C

d z

2�
Qn.z/Vn.z/

1
A
+
: (42)

The effective potential can be given a nice operator form, which will be used to
extract the perturbative series in ". For that it is convenient to represent the function
f .z/ as the ratio

f .z/ D g.z/

g.z C i"/
D g.z/�1Dg.z/ ; (43)

where we introduced the shift operator

D � ei"@ : (44)

Then the weight factor Qn takes the form

Qn D e�˚ D
n e˚ ; ˚.z/ D Qw.z/=g.z/ ; (45)

and the series in the exponent in (42) can be summed up to

AwŒf � D
�

exp

�
1

"

I
C

d z

2�
W e�˚.z/��.z/ Li2.D/ e

˚.z/C�.z/ W
� �

; (46)

with the operator Li2.D/ given by the dilogarithmic series

Li2.D/ D
1X
nD1

D
n

n2
: (47)

Here we extended the sum over n to infinity, which can be done with exponential
accuracy. The function ˚.z/, which we will refer to as “classical potential”, plays
the role of classical expectation value for the bosonic field �.

If we specify to the case of the (inhomogeneous, twisted) spin chain, considered
in [22], then f D � d=a with a; d given by (11). In this case the classical potential is

˚.z/ D logQw.z/ � logQ�.z � i"=2/: (48)
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Remark. Going back to the fermion representation, we write the result as a
Fredholm determinant with different Fredholm kernel,

AwŒf � � h0j exp

�I
C

d z

2�i
e�˚.z/ �.z/ log.1 � D/  .z/e˚.z/

�
j0i D Det.1 � OK/;

(49)

where the Fredholm operator OK acts in the space of functions analytic in the vicinity
of the contour C:

OK�.z/ D
I
C

du

2�i
OK.z; u/�.u/; OK.z; u/ D

1X
nD1

e�˚.z/C˚.zCi"n/

z � u C i"n
: (50)

The expression in terms of a Fredholm determinant can be obtained directly by
performing the cumulant expansion for the expression of the A -functional as a
product of shift operators [17]

A Œf � D 1

�wŒg�

NY
jD1

.1 � ei"@=@wj /

NY
jD1

�wŒg�;

�wŒg� D
Q
j<k.wj � wk/QN
jD1 g.wj /

; f .z/ D g.z/

g.z C i"/
: (51)

4.5 The First Two Orders of the Semi-classical Expansion

The effective IR theory is compatible with the semi-classical expansion being of the
form

logAw D F0

"
C F1 C "F2 C � � � C O.e��="/: (52)

Below we develop a diagram technique for computing the coefficients in the
expansion. First we notice that the "-expansion of the effective interaction in (46)
depends on the field � through the derivatives @�; @2�, etc. We therefore consider
the first derivative @� as an independent field

'.z/ � �@�.z/ (53)

with two-point function

G.z; u/ D @z@u log.z � u/ D 1

.z � u/2
: (54)



100 I. Kostov

In order to derive the diagram technique, we formulate the expectation value (46)
as a path integral for the .0 C 1/-dimensional field '.x/ defined on the contour C.
The two-point function (54) can be imposed in the standard way by introducing a
second field �.x/ linearly coupled to '. The path integral reads

AwŒf � D
Z
ŒD' D�� e�YŒ';�� ; (55)

with action functional

YŒ'; �� D � 1
2

Z

C�C
d zdu

�.z/�.u/

.z � u/2
C
I
C
dx �.z/'.z/C

I
C

d z

2�
W.'; '0; : : : /: (56)

The dependence on " is through the potential W , obtained by expanding the
exponent in (46):

W.'; '0; : : : / D �1
"
e�˚.x/��.x/ Li2.D/ e

˚.x/C�.x/

D �1
"

Li2.Q/C i log.1 � Q/' � "

1 � Q .'
2 C '0/C O."2/: (57)

The potential contains a constant term, which gives the leading contribution to the
free energy, a tadpole of order 1 and higher vertices that disappears in the limit
" ! 0. The Feynman rules for the effective action YŒ'; �� are such that each given
order in " is obtained as a sum of finite number of Feynman graphs. For the first two
orders one obtains

F0 D
I

C

dx

2�
Li2ŒQ.x/� ; (58)

F1 D � 1
2

I

C�C

dx du

.2�/2
log Œ1 � Q.x/� log Œ1 � Q.u/�

.x � u/2
: (59)

where the double integral is understood as a principal value. The actual choice of
the contour C is a subtle issue and depends on the analytic properties of the function
Q.x/. The contour should be placed in such away that it does not cross the cuts of
the integrand (Figs. 2 and 3).

Returning to the scalar product and ignoring the trivial factors in (18), we find
that the first two coefficients of the semi-classical expansion are given by Eqs. (58)
and (59) with

Q D eipuCipv : (60)
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Fig. 2 Feynman rules for the effective field theory

Fig. 3 The leading and the
subleading orders of the
vacuum energy

5 Discussion

In these notes we reviewed the field-theoretical approach to the computation of
scalar products of on-shell/off-shell Bethe vectors in the generalised model with
SU.2/ rational R-matrix, which leads to a systematic procedure for computing the
semi-classical expansion. The results reported here represent a slight generalisation
if those already reported in [17, 21, 22]. We hope that the field-theoretical method
could be used to compute scalar products in integrable models associated with
higher rank groups, using the fact that the integrands in the multiple contour
integrals of in [7–10] is expressed as products of A -functionals.

The problem considered here is formally similar to the problem of computing
the instanton partition functions in N D 1 and N D 2 SYM [31–33]. As a matter
of fact, the scalar product in the form (35) is the grand-canonical version of the
partition function of the N D 1 SUSY in four dimensions, which was studied in a
different large N limit in [36].

Our main motivation was the computation of the three-point function of heavy
operators in N D 4 four-dimensional SYM. Such operators are dual to classical
strings in AdS5 � S5 and can be compared with certain limit of the string-theory
results. For a special class of three-point functions, the semi-classical expansion is
readily obtained from that of the scalar product. The leading term F0 should be
obtained on the string theory side as the classical action of a minimal world sheet
with three prescribed singularities. The comparison with the recent computation in
[37] looks very encouraging. We expect that the meaning of the subleading term on
the string theory side is that it takes account of the gaussian fluctuations around the
minimal world sheet. In this context it would be interesting to obtain the subleading
order of the heavy-heavy-light correlation function in the su.2/ sector in string
theory [38–40]. In the near-plane-wave limit the subleading order was obtained
in [41].
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Weak Poisson Structures on Infinite Dimensional
Manifolds and Hamiltonian Actions

K.-H. Neeb, H. Sahlmann, and T. Thiemann

Abstract We introduce a notion of a weak Poisson structure on a manifold M
modeled on a locally convex space. This is done by specifying a Poisson bracket
on a subalgebra A � C1.M/ which has to satisfy a non-degeneracy condition
(the differentials of elements of A separate tangent vectors) and we postulate
the existence of smooth Hamiltonian vector fields. Motivated by applications to
Hamiltonian actions, we focus on affine Poisson spaces which include in particular
the linear and affine Poisson structures on duals of locally convex Lie algebras. As
an interesting byproduct of our approach, we can associate to an invariant symmetric
bilinear form � on a Lie algebra g and a �-skew-symmetric derivation D a weak
affine Poisson structure on g itself. This leads naturally to a concept of a Hamiltonian
G-action on a weak Poisson manifold with a g-valued momentum map and hence
to a generalization of quasi-hamiltonian group actions.

1 Introduction

In geometric mechanics symplectic and Poisson manifolds form the basic
underlying geometric structures on manifolds. In the finite dimensional context,
this provides a perfect setting to model systems whose states depend on finitely
many parameters [17]. In the context of symplectic geometry, resp., Hamiltonian
flows, Banach manifolds were introduced by Marsden [16], and Weinstein obtained
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a Darboux Theorem for strong symplectic Banach manifolds [29].1 Schmid’s
monograph [27] provides a nice introduction to infinite dimensional Hamiltonian
systems. For more recent results on Banach–Lie–Poisson spaces we refer to the
recent work of Ratiu, Odzijewicz and Beltita [2, 23–26] and in particular for [8] for
certain classes of locally convex spaces.

In the present note we describe a possible approach to Poisson structures on
infinite dimensional manifolds that works naturally for smooth manifolds modeled
on locally convex spaces, such as spaces of test functions, smooth sections of
bundles and distributions [9, 21]. Our requirements are minimal in the sense that
any other concept of an infinite dimensional Poisson manifold should at least satisfy
our requirements.

In the finite dimensional case, the main focus of the theory of Poisson manifolds
lies on the Poisson tensor � which is a section of the vector bundle �2.T .M//

and defines a skew-symmetric form on each cotangent space T �m.M/. This does not
generalize naturally to infinite dimensional manifolds because continuous bilinear
maps may be of infinite rank. Our main point is to define a weak Poisson structure
on a smooth manifold M by a Poisson bracket f�; �g on a unital subalgebra A �
C1.M/ satisfying the Leibniz rule and the Jacobi identity. In addition to that, we
require that A is large in the sense that, for every m 2 M , the differentials dF.m/,
F 2 A, separate the points in the tangent space Tm.M/. We also require for each
H 2 A the existence of a smooth Hamiltonian vector field XH determined by
fF;H g D XHF for every F 2 A. The main difference to the traditional approaches
is that we do not require the Poisson bracket to be defined on all smooth functions,
instead we restrict the class of admissible differentials to define Poisson brackets.
It turns out that this rather algebraic approach is strong enough to capture the main
formal features of momentum maps and affine Poisson structures on locally convex
space as well as their relations with Lie algebras and their duals. In the affine case
M D V , the minimal choice of A is the subalgebra generated by a point separating
subspace V� of the topological dual space V 0. In this context one can also enlarge the
algebra A by adding certain exponential functions and extend the Poisson bracket
appropriately; see [28] for such constructions.

Although our approach largely ignores geometric difficulties we hope that it
provides a natural language for dealing with Poisson structures on rather general
infinite dimensional manifolds and that this leads to precise specifications of the
key difficulties arising for concrete examples. A discussion of similar structures is
used in the context of hydrodynamics [13] and for free boundary problems [15].

One of our main objectives was to understand the nature of the affine Poisson
structures arising implicitly on Lie algebras of smooth loops in the context of
Hamiltonian actions of loop groups and quasihamiltonian actions [1] (Sect. 4).

Although the construction of the tangent bundle T .M/ of a locally convex
manifoldM and the Lie algebra V.M/ of smooth vector fields onM follows pretty

1A symplectic form ! on M is called strong if, for every p 2 M , every continuous linear
functional on Tp.M/ is of the form !p.v; �/ for some v 2 Tp.M/.
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much the constructions from finite dimensional geometry (cf. [10, Chap. 8]), serious
difficulties arise when one wants to put a smooth manifold structure on the cotangent
bundle T 0.M/ WD P[p2MTp.M/0 whose elements are continuous linear functionals
on the tangent spaces Tp.M/ ofM . This works well for Banach manifolds when the
dual spaces carry the norm topology, but if M is not modeled on a Banach space,
there may not be any topology for which the natural chart changes for T 0.M/ are
smooth. Accordingly, cotangent bundles can be constructed naturally if M is an
open subset of a locally convex space or if the tangent bundle T .M/ is trivial, in
which case T .M/ Š M �V leads to T 0.M/ Š M �V 0, so that any locally convex
topology on V 0 leads to a manifold structure on T 0.M/. This works in particular for
Lie groups.

Since our main concern is with the algebraic framework for Poisson structures,
we do not go into analytical aspects of symplectic leaves which are already subtle
for Poisson manifolds not modeled on Hilbert spaces [2, 3, 26].

The structure of this paper is as follows. In Sect. 2 we introduce the notion
of a weak Poisson manifold and discuss various types of examples, in particular
affine ones and weak symplectic manifolds. We also take a brief look at Poisson
maps arising from inclusions of submanifolds and from submersions. In Sect. 3 we
then turn to momentum maps, which we consider as Poisson morphisms into affine
Poisson spaces which arise naturally as subspaces of the dual of a Lie algebra g.
If g is the Lie algebra of a Lie group, we also have a global structure coming from
the corresponding coadjoint action, but unfortunately there need not be any locally
convex topology on g0 for which the coadjoint action is smooth.

As an interesting byproduct of our approach, one can use an invariant symmetric
bilinear form � and a �-skew-symmetric derivation D on a Lie algebra g to obtain
a weak affine Poisson structure on g itself. This leads naturally to a concept of
a Hamiltonian G-action on a weak Poisson manifold with a g-valued momentum
map. For the classical case where G is the loop group L.K/ D C1.S1;K/ of a
compact Lie group and the derivation is given by the derivative, we thus obtain the
affine action on g D L.k/which corresponds to the natural action of the gauge group
L.K/ on gauge potentials on the trivial K-bundle over S1. At this point we obtain
a natural concept of a Hamiltonian L.K/-space generalizing the one used in the
context of quasi-hamiltonianK-spaces, where it is only defined for weak symplectic
manifolds [1, 19].

2 Infinite Dimensional Poisson Manifolds

In this section we introduce the concept of a weak Poisson structure on a locally
convex manifold. Our requirements are minimal in the sense that any other concept
of an infinite dimensional Poisson manifold should at least satisfy our requirements.
The concept discussed below is strong enough to capture the main algebraic features
of momentum maps and the Poisson structure on the dual of a Lie algebra.
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2.1 Locally Convex Manifolds

We first recall the basic concepts concerning infinite dimensional manifolds mod-
eled on locally convex spaces. Throughout these notes all topological vector spaces
are assumed to be Hausdorff.

Let E and F be locally convex spaces, U � E open and f WU ! F a map.
Then the derivative of f at x in the direction h is defined as

df .x/.h/ WD .@hf /.x/ WD d

dt

ˇ̌
ˇ
tD0f .x C th/ D lim

t!0
1

t
.f .x C th/ � f .x//

whenever it exists. The function f is called differentiable at x if df .x/.h/ exists for
all h 2 E. It is called continuously differentiable, if it is differentiable at all points
of U and

df WU �E ! F; .x; h/ 7! df .x/.h/

is a continuous map. The map f is called aCk-map, k 2 N[f1g, if it is continuous,
the iterated directional derivatives

dj f .x/.h1; : : : ; hj / WD .@hj � � � @h1f /.x/
exist for all integers 1 � j � k, x 2 U and h1; : : : ; hj 2 E, and all maps
dj f WU �Ej ! F are continuous. As usual, C1-maps are called smooth.

Once the concept of a smooth function between open subsets of locally convex
spaces is established, it is clear how to define a locally convex smooth manifold. The
tangent bundle T .M/ and the Lie algebra V.M/ of smooth vector fields on M are
now defined as in the finite dimensional case (cf. [10, Chap. 8]) and differential
p-forms are defined as smooth functions on the p-fold Whitney sum T .M/˚p .
Although it is clear what the cotangent bundle is as a set, namely the disjoint union
T 0.M/ WD P[p2MTp.M/0 of the topological dual spaces of the tangent spaces, in
general it is not clear how to put a smooth manifold structure on T 0.M/. This
is due to the fact that the dual V 0 of the model space V need not carry a locally
convex topology for which the chart changes for T 0.M/ are smooth. For a Banach
manifold this works with the natural Banach space structure on the dual, and it also
works for manifolds with a single chart and the weak-
-topology on the dual, but for
general locally convex manifolds M there seems to be no natural smooth structure
on T 0.M/ (see [9, 21] for more details).

2.2 Weak Poisson Manifolds

Definition 2.1. Let M be a smooth manifold modeled on a locally convex space.
A weak Poisson structure on M is a unital subalgebra A � C1.M;R/, i.e., it
contains the constant functions and is closed under pointwise multiplication, with
the following properties:
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(P1) A is endowed with a Poisson bracket f�; �g, this means that it is a Lie
bracket, i.e.,

fF;Gg D �fG;F g; fF; fG;H gg D ffF;Gg;H g C fG; fF;H gg; (J)

and it satisfies the Leibniz rule

fF;GH g D fF;GgH CGfF;H g: (L)

(P2) For every m 2 M and v 2 Tm.M/ satisfying dF.m/v D 0 for every F 2 A
we have v D 0.

(P3) For everyF 2 A, there exists a smooth vector fieldXH 2 V.M/withXHF D
fF;H g for F;H 2 A. It is called the corresponding Hamiltonian vector field.

If (P1–3) are satisfied, then we call the triple .M;A; f�; �g/ a weak Poisson
manifold.

Remark 2.2. (a) (P2) implies that the vector fieldXH in (P3) is uniquely determined
by the relation fF;H g.m/ D .XHF /.m/ D dF.m/XH.m/ for every F 2A.

(b) For F;G;H 2 A,

ŒXF ;XG�H D ffH;Gg; F g � ffH;F g; Gg D fH; fG;F gg D XfG;F gH;

so that

ŒXF ;XG� D XfG;F g for F;G 2 A: (1)

We also note that the Leibniz rule leads to

XFG D FXG CGXF for F;G 2 A: (2)

(c) If f�; �gWA � A ! A is a skew-symmetric bracket satisfying the Leibniz rule,
then the Jacobiator

J.F;G;H/ WD fF; fG;H gg C fG; fH;F gg C fH; fF;Ggg
D fF; fG;H gg � fG; fF;H gg � ffF;Gg;H g

defines an alternating map A3 ! A which satisfies the Leibniz rule in every
argument. It vanishes if and only if f�; �g is a Lie bracket, i.e., if (P1) is satisfied.
For a subset S � A generating A as a unital algebra, this observation implies
that J vanishes if it vanishes for F;G;H 2 S .

(d) If (P1) and (P2) are satisfied, then (2) implies that the subspace of all elements
X 2 A for which XH as in (P3) exists is a subalgebra with respect to the
pointwise product. Therefore it suffices to verify (P3) for a generating subset
S � A.

Remark 2.3. From (P3) it follows that the value of the Poisson bracket
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fF;Gg.p/ D dF.p/XG.p/ D �dG.p/XF .p/

in p 2 M only depends on dF.p/, resp., dG.p/. On the separating subspace

Tp.M/� WD fdF.p/WF 2 Ag � Tp.M/0

we thus obtain a well-defined skew-symmetric bilinear map

�pWTp.M/� � Tp.M/� ! R; �p.˛; ˇ/ WD fF;Gg.p/

for ˛ D dF.p/; ˇ D dG.p/:

This suggests an extension of the Poisson bracket to the subalgebra B � C1.M/

of those functions F , for which dF.p/ 2 Tp.M/� holds for every p 2 M , by the
formula

fF;Gg.p/ WD �p.dF.p/;dG.p//:

At this point it is not clear that this results in a smooth function fF;Gg nor that,
for G 2 B, there exists a smooth vector field XG on M such that fF;Gg D XGF

holds for F 2 B (cf. Example 2.13 below for criteria). If both these conditions are
satisfied and, in addition, the Poisson bracket on B satisfies the Jacobi identity, then
we can also work with the larger algebra B instead of A.

Remark 2.4. Suppose that M is a Banach manifold. The notion of a Banach–
Poisson manifold used in [25, 26] differs from our concept of a weak Poisson
structure on M in the sense that it is required that A D C1.M/ and that every
continuous linear functional on the dual space Tp.M/0 of the form ˛] WD �p.˛; �/ 2
Tp.M/00 can be represented by an element of Tp.M/.

Remark 2.5. Let .M;A; f�; �g/ be a weak Poisson manifold. For p 2 M , we call

Cp.M/ WD fXF .p/WF 2 Ag � Tp.M/

the characteristic subspace in p. Then

!pWCp.M/ � Cp.M/ ! R;

!p.XF .p/;XG.p// WD fF;Gg.p/ D dF.p/XG.p/ D �dG.p/XF .p/

is a well-defined skew-symmetric form. On the Lie algebra

ham.M;A/ WD fXF WF 2 Ag � V.M/

of hamiltonian vector fields, every form !p defines a 2-cocycle



Weak Poisson Structures and Hamiltonian Actions 111

Q!p.X; Y / WD !p.X.p/; Y.p//

because

Q!p.ŒXF ;XG�; XH/ D Q!p.XfG;F g; XH / D ffG;F g;H g.p/

and f�; �g satisfies the Jacobi identity.

2.3 Examples of Weak Poisson Manifolds

We now turn to natural examples of weak Poisson manifolds.

Example 2.6 (Finite dimensional Poisson manifolds). Every finite dimensional
(paracompact) Poisson manifold .M;�/ carries a natural weak Poisson structure
with A WD C1.M/ and fF;Gg.m/ WD �m.dF.m/;dG.m//. Then Tm.M/� D
fdF.m/WF 2 Ag implies (P2) and the existence of XH 2 V.M/ follows from the
fact that every derivation of the algebra C1.M/ is of the form F 7! XF for some
smooth vector field X 2 V.M/ [10, Thm. 8.4.18].

Remark 2.7. Let V be a real vector space. We call a linear subspace V� � V �
separating if ˛.v/ D 0 for every ˛ 2 V� implies v D 0. This implies that, for every
finite dimensional subspace F � V , the restriction map V� ! F � is surjective,
and this in turn implies that the natural map S.V / ! R

V� of the symmetric algebra
S.V / over V to the algebra of functions on V� is injective.

Theorem 2.8 (Affine Poisson Structures). Let V be a locally convex space and
V� � V 0 be a separating subspace. Further, let

(a) �WV� � V� ! R be a skew-symmetric bilinear map with the property that, for
every ˛ 2 V�, there exists an element ˛] 2 V with �.ˇ; ˛/ D ˇ.˛]/ for every
ˇ 2 V�, and

(b) let Œ�; ��0 be a Lie bracket on V� for which

(i) � is a 2-cocycle, i.e., �.Œ˛; ˇ�; �/ C �.Œˇ; ��; ˛/ C �.Œ�; ˛�; ˇ/ D 0 for
˛; ˇ; � 2 V�.

(ii) The linear maps ad0 ˛WV� ! V�; ˇ 7! Œ˛; ˇ�0 have continuous adjoint maps
ad�0 ˛WV ! V defined by ˇ.ad�0 ˛v/ D Œ˛; ˇ�0.v/ for ˛; ˇ 2 V� and v 2 V .

This leads to a Lie algebra structure on the space OV� WD R1 ˚ V� of affine
functions on V by

Œt C ˛; s C ˇ� WD �.˛; ˇ/C Œ˛; ˇ�0 for t; s 2 R; ˛; ˇ 2 V�:

Let A Š S.V�/ � C1.V / denote the unital subalgebra generated by V�. Then
dF.v/ 2 V� for F 2 A and v 2 V , and
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fF;Gg.v/ WD hŒdF.v/;dG.v/�; vi for v 2 V; F;G 2 A

defines a weak Poisson structure on V .

This weak Poisson structure is affine in the sense that, for ˛; ˇ 2 V�, the function
f˛; ˇg on V is affine.

Proof. First we observe that, for every F 2 A and v 2 V , the Leibniz rule
implies that the differential dF.v/ is contained in V�. Therefore f�; �g defines a
skew-symmetric bracket A � A ! R

V satisfying the Leibniz rule. For ˛; ˇ 2 V�,
the function f˛; ˇg is contained in OV� � A, and this implies that fA;Ag � A.
To verify the Jacobi identity, it suffices to do this on the generating subspace V� � A
(Remark 2.2(c)). For ˛; ˇ; � 2 V� we have f˛; fˇ; �gg D Œ˛; Œˇ; ���, so that (P1)
follows from the Jacobi identity in the Lie algebra OV�. Condition (P2) follows from
the fact that V� � A separates the points of V . To verify (P3), we first observe that,
for ˛ 2 V� and F 2 A, we have

fF; ˛g.v/ D hŒdF.v/; ˛�; vi D �.dF.v/; ˛/C ŒdF.v/; ˛�0.v/

D dF.v/.˛]/ � dF.v/.ad0 ˛/
�v:

Therefore the affine vector field

X˛.v/ WD ˛] � .ad0 ˛/
�v (3)

is a smooth vector field satisfying (P3). Now (P3) follows from an easy induction
and (2) (cf. Remark 2.2(d)). This completes the proof. ut

Specializing to the two particular cases Œ�; ��0 D 0 and� D 0, we obtain constant,
resp., linear Poisson structures as special cases.

Corollary 2.9 (Constant Poisson Structures). Let V be a locally convex space,
V� � V 0 be a separating subspace and �WV� � V� ! R be a skew-symmetric
bilinear map with the property that, for every ˛ 2 V�, there exists an element ˛] 2
V with �.ˇ; ˛/ D ˇ.˛]/ for every ˇ 2 V�. Let A � C1.V / denote the unital
subalgebra generated by the linear functions in V�. Then

fF;Gg.v/ WD �.dF.v/;dG.v// for v 2 V; F;G 2 A

defines a weak Poisson structure on V .

Example 2.10 (Canonical Poisson Structures). Let V be a locally convex space and
V� � V 0 be a separating subspace, endowed with a locally convex topology for
which the pairing V� � V ! R is separately continuous. We consider the product
space W WD V � V�. Then W� WD V� � V is a separating subspace of W 0 Š
V 0 � .V�/0,
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�..˛; v/; .˛0; v0// WD ˛.v0/ � ˛0.v/

is a skew-symmetric bilinear form on W�, and for .˛; v/] WD .v;�˛/ 2 W , we have

�..˛; v/; .˛0; v0// D h.˛; v/; .v0;�˛0/i D h.˛; v/; .˛0; v0/]i:

Therefore we obtain with Corollary 2.9 on W a constant weak Poisson structure
with A Š S.W�/ which is given on W� �W� by �.

Corollary 2.11 (Linear Poisson Structures). Let V be a locally convex space,
V� � V 0 be a separating subspace and Œ�; �� be a Lie bracket on V� for which
the linear maps ad˛WV� ! V� have continuous adjoint maps ad� ˛WV ! V . Let
A � C1.V / denote the unital subalgebra generated by V�. Then

fF;Gg.v/ WD hŒdF.v/;dG.v/�; vi for v 2 V; F;G 2 A

defines a weak Poisson structure on V .

For a version of the preceding corollary for Banach spaces, we refer to [26,
Thm. 3.2] and [23]. In this context V is a Banach space and V� WD V 0 is the
dual Banach space. Typical examples of Banach–Lie–Poisson space are the duals
of C �-algebras and preduals of W �-algebras. Here the example of the space V D
Herm1.H/ of hermitian trace class operators on a Hilbert space H is of particular
importance in Quantum Mechanics. By the trace pairing, its dual can be identified
with the Lie algebra of skew-hermitian compact operators.

Remark 2.12. In the context of Theorem 2.8 one can enlarge the algebra A �
C1.V / under the following topological assumptions. We assume that V� carries
a locally convex topology for which

(A1) the pairing h�; �iWV� � V ! R is continuous,
(A2) the Lie bracket Œ�; ��WV� � V� ! OV� is continuous,
(A3) the map V� � V ! V; .˛; v/ 7! .ad0 ˛/�v is continuous, and
(A4) the map ]WV� ! V is continuous.

Then

B WD fF 2 C1.V /WdF 2 C1.V; V�/g

is a subalgebra of C1.V / with respect to the pointwise multiplication. For
F;G 2 B, the function

fF;Gg.v/ WD ŒdF.v/;dG.v/�.v/ D hŒdF.v/;dG.v/�0; vi C�.dF.v/;dG.v//

is smooth and so is the vector field

XG.v/ D �.ad0 dG.v//
�v C dG.v/]
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on V (cf. (3)) which satisfies

fF;Gg D XGF D hdF;XGi and

h˛;XG.v/i D hŒ˛;dG.v/�; vi for ˛ 2 V�; v 2 V:

For every F 2 B, we now identify d2F with a smooth function Qd2F WV � V !
V� which is linear in the second argument. The symmetry of the second derivative
then leads to the relation

d2Fv.w; u/ D hQd2Fv.w/; ui D h Qd2Fv.u/;wi:

We now show that fF;Gg 2 B. The calculation

dfF;Gg.v/.h/ D Œd2Fv.h/;dG.v/�.v/C ŒdF.v/;d2Gv.h/�.v/

C hŒdF.v/;dG.v/�0; hi
D d2Fv.h;XG.v// � d2Gv.h;XF .v//C hŒdF.v/;dG.v/�0; hi
D h Qd2Fv.XG.v//; hi � h Qd2Gv.XF .v//; hi C hŒdF.v/;dG.v/�0; hi

shows that

dfF;Gg.v/ D Qd2Fv.XG.v// � Qd2Gv.XG.v//C ŒdF.v/;dG.v/�0

is a smooth V�-valued function. Therefore the Poisson bracket extends to B. From

hŒdF.v/;dG.v/�0; XH .v/i DhŒdF.v/;dG.v/�0;�.ad0 dH.v//
�v C dH.v/]i

Dh�ŒdF.v/;dG.v/�0;dH.v/	0; vi
C�.ŒdF.v/;dG.v/�0;dH.v//

D�ŒdF.v/;dG.v/�0;dH.v/	.v/
D�ŒdF.v/;dG.v/�;dH.v/	.v/

we now derive

ffF;Gg;H g.v/ Dd2Fv.XH.v/; XG.v// � d2Gv.XH.v/; XF .v//

C �
ŒdF.v/;dG.v/�;dH.v/

	
.v/:

Now the symmetry of the second derivative implies that the Poisson bracket on B
satisfies the Jacobi identity, so that .V;B; f�; �g/ also is a weak Poisson structure
on V .
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If V is a Banach space with V� D V 0 (in particular if dimV < 1), then the
preceding construction actually leads to all smooth functions B D C1.V /, so that
we are in the context of Banach–Lie–Poisson spaces. However, one can do better:

Remark 2.13 (Glöckner’s Locally Convex Poisson Vector Spaces). To obtain
Poisson structures on V for the algebra A D C1.V / of all smooth functions, one
has to impose stronger assumptions on topologies on V and V�. In [8, Def. 16.35]
these are encoded in the concept of a locally convex Poisson vector space, which
requires that the locally convex space V has the following properties:

(a) For the topology of uniform convergence on compact (S D c), resp., bounded
(S D b) subsets of V (or even more general classes S of subsets) the linear
injection �V WV ! .V 0S /0S ; �V .v/.˛/ D ˛.v/ is a topological embedding.

(b) The topology on every product space V n is determined by its restriction to
compact subsets (V is a k1 space).

(c) The dual space V 0S carries an S -hypocontinuous Lie bracket Œ�; ��, i.e., it is
separately continuous and continuous on all subsets of the form V 0S �B , B 2 S .

(d) The Lie bracket on V 0S satisfies �V .v/ ı ad˛ 2 �V .V / for v 2 V and ˛ 2 V 0S .

If these conditions are satisfied, then [8, Thm. 16.40] asserts that, for two smooth
functions F;G 2 C1.V /, their Poisson bracket

fF;Gg.v/ WD hŒdF.v/;dG.v/�; vi

is smooth and that

XF .v/ WD ���1V .�V .v/ ı ad.dF.v///

is a smooth vector field satisfying fG;F g D XFG. As in the preceding remark it
now follows that .V; C1.V /; f�; �g/ is a weak Poisson manifold. This is the special
case of Corollary 2.11, where V� D V 0S .

Example 2.14. (a) Let g be a locally convex Lie algebra, i.e., a locally convex
space with a continuous Lie bracket. We write g0 for its topological dual space,
endowed with the weak-
-topology. Then Corollary 2.11 applies to V WD g0
and V� WD g because, for each X 2 g, the bracket map adX W g ! g has a
continuous adjoint ad�X W g0 ! g0. If g is finite dimensional, we thus obtain the
KKS (Kirillov–Kostant–Souriau) Poisson structure on g� D g0.

(b) The preceding construction can be varied by changing the topology on g0 and by
passing to a smaller subspace. Let g� � g0 be a separating subspace on which
the adjoint maps ad�X˛ WD ˛ ı adX induce for each X 2 g a continuous
linear map. Then Corollary 2.11 applies with V WD g� and V� WD g, and we
thus obtain a weak Poisson structure on g� for which the Hamiltonian functions
HX.˛/ D ˛.X/ satisfy
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fHX;HY g D HŒX;Y � for X; Y 2 g:

(c) Suppose that g is a locally convex Lie algebra and �W g� g ! R is a continuous
non-degenerate symmetric bilinear form which is invariant under the adjoint
representation, i.e.,

�.Œx; y�; z/C �.y; Œx; z�/ D 0 for x; y; z 2 g:

Then the natural map

[W g ! g0; X[.Y / WD �.X; Y /

is injective and g-equivariant with respect to the adjoint and coadjoint represen-
tation, respectively. We may thus apply (b) with g� D g[ D fX[WX 2 gg Š g
to obtain a linear weak Poisson structure on g with A Š S.g/. The Hamiltonian
functions X[.Y / D �.X; Y / satisfy

fX[; Y [g D ŒX; Y �[ for X; Y 2 g:

(d) Let g be a locally convex Lie algebra and !W g � g ! R be a continuous
2-cocycle, i.e.,

!.ŒX; Y �; Z/C !.ŒY;Z�; X/C !.ŒZ;X�; Y / D 0;

so that Og D R˚ g is a locally convex Lie algebra with respect to the Lie bracket

Œ.t; X/; .s; Y /� WD .!.X; Y /; ŒX; Y �/:

We call it the central extension defined by !. Identifying the element .t; X/ 2 Og
with the affine function ˛ 7! t C ˛.X/ on g0, we obtain with Theorem 2.8 (for
V D g0 and V� D g) an affine weak Poisson structure on g0, for which the
Hamiltonian functions HX.˛/ D ˛.X/, X 2 g, satisfy

fHX;HY g D HŒX;Y � C !.X; Y / for X; Y 2 g:

The assumptions of Theorem 2.8 are satisfied with � D !.
More generally, suppose that g� � g0 is subspace separating the points

of g and on which the adjoint maps ad�X , X 2 g, induce continuous
endomorphisms. Assume further that it contains all functionals iX!, X 2 g.
Then Theorem 2.8 yields an affine weak Poisson structure on g� with

fHX;HY g D HŒX;Y � C !.X; Y / for X; Y 2 g:

(e) To combine (c) and (d), we assume that, in addition to g and � as in (c),
we are given a �-skew symmetric continuous derivation DW g ! g, so that
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!.X; Y / D �.DX; Y / is a 2-cocycle. Then we obtain an affine weak Poisson
structure .A; f�; �g�;D/ on g with A Š S.g/. The Hamiltonian functions
X[.Y / WD �.X; Y / satisfy

fX[; Y [g�;D D ŒX; Y �[ C �.DX; Y / for X; Y 2 g:

An important concrete class of examples to which the preceding constructions
apply arise from loop algebras. We shall return to this example later, when we
connect with Hamiltonian actions of loop groups (cf. Definition 4.3).

Example 2.15. Let k be a Lie algebra which carries a non-degenerate invariant
symmetric bilinear form h�; �i. Then the loop algebra of k is the Lie algebra g WD
L.k/ WD C1.S1; k/, endowed with the pointwise bracket. We identify the circle
S
1 with R=Z and, accordingly, elements of g with 1-periodic functions on R. Then
�.�; �/ D R 1

0
h�.t/; �.t/i dt is a non-degenerate invariant symmetric bilinear form

on g and D� D � 0 is a skew-symmetric derivation. We thus obtain on g with
Example 2.14(e) an affine weak Poisson structure with

f�[; �[g D Œ�; ��[ C
Z 1

0

h� 0.t/; �.t/i dt:

Remark 2.16. Typical predual spaces g� � g0 arise from geometric situations as
follows (cf. [12]):

(a) If g D C1.M; k/, where k is finite dimensional with a non-degenerate invariant
symmetric bilinear form h�; �i and � is a measure on M which is equivalent
to Lebesgue measure in charts, then we have an invariant pairing g � g !
R; .�; �/ 7! R

M
h�; �i d� which leads to g� Š g.

(b) If M is a compact smooth manifold and g D V.M/, the Fréchet–Lie algebra
of smooth vector fields on M , then the space g� of density-valued 1-forms ˛
on M has a natural Diff.M/-invariant pairing given by .X; ˛/ 7! R

M
˛.X/.

Locally the elements of g� are represented by smooth 1-forms, so that g� is
much smaller than the dual space g0 whose elements are locally represented by
distributions.

In finite dimensions, symplectic manifolds provide the basic building blocks
of Poisson manifolds because every Poisson manifold is naturally foliated by
symplectic leaves. In the infinite dimensional context the situation becomes more
complicated because a symplectic form !WV � V ! R on a locally convex space
needs not represent every continuous linear functional on V . If it does, ! is called
strong, and weak otherwise. Accordingly, a 2-form ! on a smooth manifold M is
called strong if all forms !p , p 2 M , are strong, and weak otherwise.
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Definition 2.17. A weak symplectic manifold is a pair .M;!/ of a smooth manifold
M and a closed non-degenerate 2-form !. For a weak symplectic manifold we write

ham.M;!/ WD fX 2 V.M/W .9H 2 C1.M// iX! D dH g

for the Lie algebra of Hamiltonian vector fields on M and

sp.M;!/ WD fX 2 V.M/WLX! D d.iX!/ D 0g

for the larger Lie algebra of symplectic vector fields (cf. [22] for related
constructions).

Proposition 2.18 (Poisson Structure on Weak Symplectic Manifolds). Let
.M;!/ be a weak symplectic manifold. Then

A WD fH 2 C1.M/W .9XH 2 V.M// dH D iXH !g

is a unital subalgebra of C1.M/ and

fF;Gg WD !.XF ;XG/ D dF.XG/ D XGF

defines on A a Poisson bracket satisfying (P1) and (P3).
If, in addition, for v 2 Tm.M/, the condition !.X.m/; v/ D 0 for every X 2

ham.M;!/, implies v D 0, then (P2) is also satisfied.2

Proof. Since ! is non-degenerate, the vector fieldXH is uniquely determined byH .
For F;G 2 A we have

d.FG/ D FdG CGdF D iFXGCGXF !;

which implies that A is a unital subalgebra of C1.M/.
The closedness of the 1-forms iXH ! implies that LXH! D 0. Further, ŒLX; iY � D

iŒX;Y � leads to

iŒXF ;XG�! D ŒLXF ; iXG �! D LXF
�
iXG!

� D LXF dG

D d
�
iXF dG

�C iXF d.dG/ D d
�
iXF dG

� D dfG;F g:

Since ! is non-degenerate, this implies fA;Ag � A with

ŒXF ;XG� D XfG;F g for F;G 2 A: (4)

2This condition is satisfied for finite dimensional symplectic manifolds, for strongly symplectic
smoothly paracompact Banach manifolds (cf. [14]) and for symplectic vector spaces.
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It is clear that f�; �g is bilinear and skew-symmetric, and from d.FG/ D FdGC
GdF we conclude that it satisfies the Leibniz rule. So it remains to check the Jacobi
identity. This is an easy consequence of (4):

˚
F; fG;H g� D XfG;HgF D �ŒXG;XH �F

D �XG.XHF /CXH.XGF / D ˚
G; fF;H g�C ˚fF;Gg;H g:

We have thus verified (P1) and (P3). For (P2) we further need that, for every v 2
Tm.M/, the condition that !.X.m/; v/ D 0 for every X 2 ham.M;!/ implies
v D 0. ut
Example 2.19. If .V; !/ is a symplectic vector space, then a linear functional
˛WV ! R is contained in the Poisson algebra A if and only if there exists a vector
v 2 V with iv! D ˛. Then Hv D ˛ D iv! is the Hamiltonian function of the
constant vector field v. Accordingly, the Poisson structure on V is determined by

fHv;Hwg D dHv.w/ D !.v;w/ for v;w 2 V: (5)

Here (P2) follows from the non-degeneracy of !.

2.4 Poisson Maps

It is now clear how to define the notion of a Poisson map between two weak Poisson
manifolds. Here we take a closer look at Poisson maps arising from inclusions of
submanifolds and from submersions which correspond to regular Poisson reduction.
In the context of Hamiltonian actions, Poisson maps to weak affine Poisson space
arise as momentum maps.

Definition 2.20. Let .Mj ;Aj ; f�; �gj /, j D 1; 2, be weak Poisson manifolds.
A smooth map 'WM1 ! M2 is called a Poisson map, or morphism of Poisson
manifolds, if '�AM2 � AM1 and '�fF;Gg D f'�F; '�Gg for F;G 2 AM2 .

Proposition 2.21 (Poisson Submanifolds). Let .M;A; f�; �g/ be a weak Poisson
manifold and N � M be a submanifold with the property that, for every F 2 A,
the restriction of XF to N is tangential to N . Then IN WD fF 2 AWF jN D 0g is
an ideal with respect to the Poisson bracket, i.e., fIN ;Ag � IN , and the induced
bracket on AN WD A=IN � C1.N / defines a weak Poisson structure on N such
that the inclusion N ,! M is a morphism of weak Poisson manifolds.

Proof. First we show that IN is a Poisson ideal. So let F 2 IN and G 2 A.
Then, for n 2 N , fF;Gg.n/ D dF.n/XG.n/ D 0 because F vanishes on N and
XG.n/ 2 Tn.N /. This implies that AN inherits the structure of a Poisson algebra by

fF jN ;GjN g WD fF;GgjN ;
and that (P1) is satisfied.
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If v 2 Tn.N /, n 2 N , satisfies dF.n/v D 0 for every F 2 AN , then the same
holds for F 2 A, so that (P2) for A implies (P2) for AN .

To verify (P3), we simply observe that our assumption implies that

fF jN ;GjN g D fF;GgjN D .XGF /jN D .XG jN /F jN : ut
Remark 2.17. (a) Let g be a locally convex Lie algebra and endow g0 with the weak

Poisson structure from Corollary 2.11 above. Let C 2 z.g/ be a central element.
Then the hyperplane

N WD f˛ 2 g0W˛.C / D 1g
is a submanifold of g0, and for every F 2 Ag0 and ˛ 2 N , we have

0 D XF .˛/HC D hXF .˛/; C i;
so thatXF 2 V.N /. Therefore the assumptions of Proposition 2.21 are satisfied,
so that AN WD Ag0 jN yields a weak Poisson structure on the hyperplane N .

(b) The preceding restriction is of particular importance if we are dealing with a
central extension Qg D R ˚! g of the Lie algebra g with the bracket

.z; X/; .z0; X 0/ D .!.X;X 0/; ŒX;X 0�/;

where !W g � g ! R is a continuous 2-cocycle. Then C WD .1; 0/ is a central
element of Qg and

H�1C .1/ D f1g � g0 � Qg0

inherits a Poisson structure from AQg0 . Identifying the affine space g0 in the
canonical fashion with the affine space f1g � g0, we thus obtain a weak Poisson
structure on g0, where A � C1.g0/ is generated by the continuous affine
functions, i.e., A Š S.g/ as an associative algebra, and the Poisson bracket
on A is determined by

fHX;HY g D HŒX;Y � C !.X; Y / for HX.˛/ D ˛.X/;X 2 g; ˛ 2 g0

(cf. Example 2.14(d)).

Let qWM ! N be a smooth submersion, i.e., q is surjective and has smooth local
sections. This implies in particular that the subalgebra q�C1.N / consists of those
smooth functions on M which are constant along the fibers of q. The following
proposition discusses the most regular form of Poisson quotients.

Proposition 2.23 (Smooth Poisson Quotients). Let .M;AM ; f�; �g/ be a weak
Poisson manifold and qWM ! N be a submersion. Then a Poisson subalgebra
B � q�C1.N / \ AM is the image under q� of a weak Poisson structure on N for
which q is a Poisson map if and only if

kerTm.q/ D fv 2 Tm.M/W .8F 2 B/dF.m/v D 0g: (6)
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Proof. Suppose first that q is a Poisson map w.r.t. the weak Poisson structure
.AN ; f�; �g/ on N . Then B WD q�AN � AM is a Poisson subalgebra and property
(P2) of AN implies (6).

Suppose, conversely, that B � q�C1.N / \ AM is a Poisson subalgebra
satisfying (6). Let AN � C1.N / be the subalgebra with q�AN D B. Since
q� is injective, AN inherits a natural Poisson algebra structure from B. Hence
.N;AN ; f�; �g/ satisfies (P1), and (P2) follows from (6). To see that (P3) also holds,
let f 2 AN and F D q�f 2 B. Then the corresponding Hamiltonian vector field
XF 2 V.M/ satisfies for every G D q�g 2 B the relation

dg.q.m//Tm.q/XF .m/ D dG.m/XF .m/ D fG;F g.m/ D fg; f g.q.m//:
For m0 2 M with q.m/ D q.m0/, this leads to

dg.q.m//Tm.q/XF .m/ D dg.q.m//Tm0.q/XF .m
0/

for every g, so that (P2) implies Tm.q/XF .m/ D Tm0.q/XF .m
0/. Hence XF is

projectable to a vector field Y 2 V.N / which is q-related to XF . We then have for
every g 2 AN the relation fg; f g D Yg, so that (P3) is also satisfied. ut
Remark 2.24. If, in the context of Proposition 2.23, the subalgebra B is Poisson
commutative, then (i) implies that the vector fields XF , F 2 B, are tangential to the
fibers of q, hence projectable to 0. We thus obtain the trivial Poisson structure on N
for which all Poisson brackets vanish.

3 Momentum Maps

We now turn to momentum maps, which we consider as Poisson morphisms to affine
Poisson spaces which arise naturally as subspaces of the duals of Lie algebras g.
If g is the Lie algebra of a Lie group, we also have a global structure coming from
the corresponding coadjoint action, but unfortunately there need not be any locally
convex topology on g0 for which the coadjoint action is smooth.

3.1 Momentum Maps as Poisson Morphisms

Since momentum maps are Poisson maps ˚ WM ! V , where V carries an affine
weak Poisson structure (Theorem 2.8), we start with a characterization of such
maps.

Proposition 3.1. Let .V;AV / be an affine Poisson manifold corresponding to a Lie
algebra structure on the space OA� D A� C R1 of affine functions on V , .M;AM/

a weak Poisson manifold and ˚ WM ! V a smooth map such that '.˛/ WD ˚�˛ D
˛ ı ˚ 2 AM for every ˛ 2 OV�. Then the following are equivalent
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(i) ˚�WAM ! AV is a homomorphism of Lie algebras, i.e., ˚ is a Poisson map.
(ii) 'WV� ! AM satisfies '.f˛; ˇg/ D f'.˛/; '.ˇ/g for ˛; ˇ 2 V�.

(iii) ˚ WM ! V satisfies the equivariance condition

Tm.˚/X'.˛/.m/ D X˛.˚.m// for m 2 M;˛ 2 V�: (7)

Proof. (i) ) (ii) is trivial.
(ii) ) (i): Clearly, ˚�WAV ! AM is a homomorphism of commutative algebras

because ˚�.V�/ � AM and AV is generated by V�. Let F;G 2 AV . For p 2 M

we put ˛ WD dF˚.p/ and ˇ WD dG˚.p/, which are elements of V�. Then

d.F ı ˚/p D ˛ ı Tp.˚/ D d.˚�˛/p D .d'.˛//p;

and we thus obtain

f˚�F;˚�Gg.p/ D d'.˛/pX˚�G.p/ D f'.˛/; ˚�Gg.p/ D f'.˛/; '.ˇ/g.p/

and

'.Œ˛; ˇ�/.p/ D hŒ˛; ˇ�; ˚.p/i D fF;Gg.˚.p//:

This proves that (ii) implies (i).
(ii) , (iii): The equivariance relation (7) is an identity for elements of V . Hence

it is satisfied if and only if it holds as an identity of real numbers when we apply
elements of the separating subspace V�. This means that

d'.ˇ/mX'.˛/.m/ D fˇ; ˛g.˚.m// for m 2 M;˛; ˇ 2 V�:

Since the left hand side equals f'.ˇ/; '.˛/g.m/, this relation is equivalent to (ii).
ut

The classical case of the preceding proposition is the one where V D g0 is the
dual of locally convex Lie algebra, endowed with the weak-
-topology.

Corollary 3.2. Let g be a locally convex Lie algebra, endow g0 with the canonical
linear Poisson structure Ag0 , let .M;AM/ be a weak Poisson manifold and˚ WM !
g0 be a map such that all functions 'X.m/ WD ˚.m/.X/ are contained in AM . Then
the following are equivalent

(i) ˚�WAg0 ! AM is a homomorphism of Lie algebras, i.e., ˚ is a Poisson map.
(ii) 'W g ! AM satisfies '.ŒX; Y �/ D f'.X/; '.Y /g for X; Y 2 g.

(iii) ˚ WM ! g0 satisfies the equivariance condition

Tm.˚/X'.X/.m/ D �˚.m/ ı adX for m 2 M;X 2 g: (8)
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Remark 3.3. If we endow g0 with an affine Poisson structure corresponding to a Lie
algebra cocycle !, then the condition Corollary 3.2(ii) has to be modified to

f'.X/; '.Y /g D '.ŒX; Y �/C !.X; Y / for X; Y 2 g:

Definition 3.4. An infinitesimal action of the locally convex Lie algebra g on the
smooth manifold M is a Lie algebra homomorphism ˇW g ! V.M/ for which all
maps ˇmW g ! Tp.M/;X 7! ˇ.X/m are continuous.

If .M;AM ; f�; �g/ is a weak Poisson manifold, then an infinitesimal action
ˇW g ! V.M/ of a locally convex Lie algebra on M is said to be Hamiltonian
if there exists a homomorphism 'W g ! AM of Lie algebras satisfying X'.Y / D
�ˇ.Y / for every Y 2 g. Then the map

˚ WM ! g�; ˚.m/.Y / WD 'Y .m/

is called the corresponding momentum map. Note that ˚.M/ � g0 is equivalent to
the requirement that, for every m 2 M , the linear functional g ! R; Y 7! 'Y .m/

is continuous.

Corollary 3.5. If ˚ WM ! g0 is a momentum map for a Hamiltonian action of g on
the weak Poisson manifold .M;AM ; f�; �g/, then ˚ is a Poisson map.

Example 3.6. For a locally convex Lie algebra g, the infinitesimal coadjoint action
ˇW g ! V.g0/ is given by the vector fields ˇ.X/.˛/ WD ˛ ı adX D .adX/�˛. In
view of Corollary 3.2, this action is Hamiltonian with momentum map ˚ D idg0 .

Remark 3.7 (From Symplectic Actions to Hamiltonian Actions). Let .M;!/ be a
connected weak symplectic manifold and A be as in Proposition 2.18. Further,
let ˇW g ! sp.M;!/ be an infinitesimal action by symplectic vector fields
(cf. Definition 2.17). For ˇ to be a Hamiltonian action requires a lift of this
homomorphism to a Lie algebra homomorphism

'W g ! .A; f�; �g/:

A necessary condition for such a lift to exist is that ˇ.g/ � ham.M;!/. Even if
this is the case, such a lift does not always exist. To understand the obstructions, we
recall the short exact sequence

0 ! R ! A ! ham.M;!/ ! 0;

which exhibits the Lie algebra A as a central extension of the Lie algebra
ham.M;!/ (cf. [22] for an in depth discussion of related central extensions).

Assuming that ˇ.g/ � ham.M;!/, we consider the subspace

Og WD f.X; F / 2 g ˚ AWˇ.X/ D �XF g
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and observe that this is a Lie subalgebra of the direct sum g ˚ A. Moreover, the
projection p.X; F / WD X is a surjective homomorphism whose kernel consists of
all pairs .0; F /, where F is a constant function. We thus obtain the central extension

R Š R.0; 1/ ! Og p���!g:

The existence of a homomorphic lift 'W g ! A is equivalent to the existence of
a splitting � W g ! Og. Therefore the obstruction to the existence of ' is a central
R-extension of g, resp., a corresponding cohomology class in H2.g;R/ (cf. [20]).

3.2 Infinite Dimensional Lie Groups

Before we turn to momentum maps and Hamiltonian actions, we briefly recall the
basic concepts underlying the notion of an infinite dimensional Lie group. A (locally
convex) Lie group G is a group equipped with a smooth manifold structure modeled
on a locally convex space for which the group multiplication and the inversion are
smooth maps. We write 1 2 G for the identity element. Then each x 2 T1.G/

corresponds to a unique left invariant vector field xl with xl.1/ D x. The space
of left invariant vector fields is closed under the Lie bracket of vector fields, hence
inherits a Lie algebra structure. We thus obtain on g WD T1.G/ a continuous Lie
bracket which is uniquely determined by Œx; y� D Œxl ; yl �.1/ for x; y 2 g. We shall
also use the functorial notation L.G/ WD .g; Œ�; ��/ for the Lie algebra of G and,
accordingly, L.'/ D T1.'/W L.G1/ ! L.G2/ for the Lie algebra homomorphism
associated to a smooth homomorphism 'WG1 ! G2 of Lie groups. Then L defines
a functor from the category of locally convex Lie groups to the category of locally
convex Lie algebras. If g is a Fréchet, resp., a Banach space, then G is called a
Fréchet-, resp., a Banach–Lie group.

A smooth map expG W L.G/ ! G is called an exponential function if each curve
�x.t/ WD expG.tx/ is a one-parameter group with �x 0.0/ D x. Not every infinite
dimensional Lie group has an exponential function [21, Ex. II.5.5], but exponential
functions are unique whenever they exist.

With the left and right multiplications �g.h/ WD �h.g/ WD gh we write g:X D
T1.�g/X and X:g D T1.�g/X for g 2 G and X 2 g. Then the two maps

G � g ! TG; .g;X/ 7! g:X and G � g ! TG; .g;X/ 7! X:g (9)

trivialize the tangent bundle TG.

3.3 Coadjoint Actions and Affine Variants

To add some global aspects to the Poisson structures on the dual g0 of a Lie algebra
g, we assume that g D L.G/ for a Lie group G. Then the adjoint action of G on
g is defined by Ad.g/ WD L.cg/, where cg.x/ D gxg�1 is the conjugation map.
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The adjoint action is smooth in the sense that it defines a smooth map G � g ! g.
The coadjoint action on the topological dual space g0 is defined by

Ad�.g/˛ WD ˛ ı Ad.g/�1:

The maps Ad�.g/ are continuous with respect to the weak-
-topology on g0 and
all orbit maps for Ad� are smooth because, for every X 2 g and ˛ 2 g0, the map
g 7! ˛.Ad.g/�1X/ is smooth. IfG is a Banach–Lie group, then the coadjoint action
is smooth with respect to the norm topology on g0, but in general it is not continuous,
as the following example shows.3

Example 3.8. Let V be a locally convex space and ˛t .v/ WD etv. Then the
semidirect product

G WD V Ì˛ R; .v; t /.v0; t 0/ D .v C etv0; t C t 0/

is a Lie group. From c.v;t /.w; s/ D ..1 � es/v C etw; s/ we derive that

Ad.v; t /.w; s/ D .etw � sv; s/:

Accordingly, we obtain

Ad�.v; t /.˛; u/ D .e�t ˛; u C e�t ˛.v//:

If Ad� is continuous, restriction to t D 1 implies that the evaluation map

V 0 � V ! R; .˛; v/ 7! ˛.v/

is continuous, but w.r.t. the weak-
-topology on V 0, this happens if and only if V is
finite dimensional. Therefore Ad� is not continuous if dimV D 1.4

Remark 3.9. (a) If g0 is endowed with the affine Poisson structure corresponding to
a 2-cocycle !W g � g ! R, then the corresponding infinitesimal action ˇW g !
V.g0/ of the Lie algebra g by affine vector fields need not integrate to an action
of a connected Lie group G with L.G/ D g, but if G is simply connected, then
it does (cf. [20, Prop. 7.6]).

3By definition of the weak-�-topology on g0, which corresponds to the subspace topology with
respect to the embedding g0 ,! R

g, a map 'WM ! g0 is smooth with respect to this topology if
and only if all functions 'X.m/ WD '.m/.X/ are smooth on M .
4One can ask more generally, for which locally convex spaces V and which topologies on V 0 the
evaluation map V � V 0 ! R is continuous. This happens if and only if the topology on V can
be defined by a norm, and then the operator norm turns V 0 into a Banach space for which the
evaluation map is continuous.
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(b) The situation is much better for the Poisson structures on g discussed in
Example 2.14(e). Then the Hamiltonian vector field associated to Y 2 g is
the affine vector field given by

XHY .Z/ D ŒY;Z� �DY: (10)

Let G be a Lie group with Lie algebra g and �D WG ! g be a 1-cocycle for the
adjoint action with T1.�D/ D D. Here the cocycle condition is

�D.gh/ D �D.g/C Adg �D.h/ for g; h 2 G:
Since the adjoint action is smooth, such a cocycle exists if G is simply
connected. Then we obtain an affine action of G on g by

AdDg X WD Adg X � �D.g/
integrating the given infinitesimal action of g determined by (10).

Definition 3.10. Let .M;A/ be a weak Poisson manifold,G a connected Lie group,
and � WG � M ! M a smooth (left) action. We also write g:p WD �g.p/ WD
�p.g/ WD �.g; p/ and define the vector fields

X�.p/ WD T.1;p/.�/.X; 0/ for X 2 g:

Then we have a homomorphism

L.�/W g ! V.M/ with X 7! �X�
which defines an infinitesimal action of g on M .

The action � is called Hamiltonian if its derived action L.�/ is Hamiltonian, i.e.,
if there exists a homomorphism of Lie algebras 'W g ! A with X'.Y / D Y� for
Y 2 g such that, for every m 2 M , the linear map ˚.m/W g ! R; Y 7! '.Y /.m/

is continuous. Then ˚ WM ! g0 is called the corresponding momentum map (cf.
Definition 3.4).

Remark 3.11. For any smooth left action � WG � M ! M and p 2 M , the
right invariant vector field Xr.g/ D X:g on G and the corresponding vector field
X� 2 V.M/ are �p-related. This follows from the relation �p.hg/ D h:�p.g/ for
g; h 2 G. Combining this observation with the “Related Vector Field Lemma”, one
obtains a proof for L.�/W g ! V.M/ being a homomorphism of Lie algebras.

Example 3.12. Let .V; !/ be a locally convex symplectic vector space and G D
.V;C/ the translation group of V . Then the translation action �.v;w/ WD v C w of
V on itself is symplectic and every constant vector field v� .w/ D v is Hamiltonian
(cf. Example 2.19). The relation

fv;wg D !.v;w/

shows that there is no homomorphism 'W g ! A with X'.v/ D v� for every v 2 g.
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Remark 3.13. Of particular interest with respect to Poisson structures are Lie
groups G whose Lie algebras g can be approximated in a natural way by finite
dimensional ones. This can be done by direct or projective limits.

(a) If G D lim�! Gn is a Lie group whose Lie algebra g is a directed union of a

sequence of finite dimensional subalgebras gn D L.Gn/; n 2 N, then g carries
the finest locally convex topology which actually coincides with the direct
limit topology (see [6, 7] for direct limit manifolds and Lie groups). Then its
topological dual V WD g0, endowed with the topology of uniform convergence
of bounded or compact subsets is a Fréchet space (isomorphic to a product RN)
and all assumptions (a)–(d) from Example 2.13 are satisfied [8, Rem. 16.34],
so that we obtain a linear Poisson structure on V D g0c D g0b . In this case the
coadjoint orbits of G are unions of finite dimensional manifolds, which can be
used to obtain symplectic manifold structures on them (cf. [4, 6]).

(b) The opposite situation is obtained for Lie groups G D lim � Gn which are

projective limits of finite dimensional Lie groups Gn (see [11]). Typical
examples are groups of infinite jets of diffeomorphisms. Here g is a Fréchet
space (isomorphic to R

N) and the dual space g0 is the union of the dual spaces
g�n . Endowed with the topology of uniform convergence of bounded or compact
subsets the space V D g0 satisfies all assumptions (a)–(d) from Example 2.13
[8, Rem. 16.34]. In this case all coadjoint orbits are finite dimensional because
they can be identified with coadjoint orbits of some Gn.

In both cases we obtain weak Poisson structures on g0 for which A D C1.g0/
is the full algebra of smooth functions for a suitable topology which is the weak-
-
topology in the first case and the finest locally convex topology in the second.

Example 3.14. Let G be a Lie group and g D L.G/. Further, let g� � g0 be an
Ad�.G/-invariant separating subspace endowed with a locally convex topology for
which the coadjoint action Ad�.g/ WD Ad�.g/jg� on g� is smooth. Then g� carries
a natural linear weak Poisson structure with A Š S.g/ and

fF;H g.˛/ D h˛; ŒdF.˛/;dH.˛/�i for ˛ 2 g�; F;H 2 A

(Example 2.14(b); see also [26, Sect. 4.2] for similar requirements in the context of
Banach spaces).

For X; Y 2 g, we have fHX;HY g D HŒX;Y � and the corresponding Hamiltonian
vector fields are XHY .˛/ D �˛ ı adY . Therefore the coadjoint action Ad� on g� is
Hamiltonian and its momentum map is the inclusion g� ,! g0.

For the coadjoint action Ad� of G on g�, the “tangent space” to the orbit of
˛ 2 g� is the space fXAd�.˛/WX 2 gg D ˛ ı ad.g/. This is also the characteristic
subspace of the Poisson structure (cf. Remark 2.5) and the corresponding skew-
symmetric form is given by

!˛.XF .˛/;XH.˛// D fF;H g.˛/ D dF.˛/XH.˛/;
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resp.,

!˛.˛ ı adX; ˛ ı adY / D fHX;HY g.˛/ D HŒX;Y �.˛/ D ˛.ŒX; Y �/:

Fix ˛ 2 g�. Then we obtain on G a 2-form by

˝˛.X:g; Y:g/ WD !g:˛.XAd�.g:˛/; YAd�.g:˛// D !g:˛.Œg:˛ ı adX; g:ˇ ı adY �/

D .g:˛/.ŒX; Y �/ D ˛.ŒAd�1g X;Ad�1g Y �/:

This means that˝ is a left-invariant 2-form on G. Since .˝˛;1/.X; Y / D ˛.ŒX; Y �/

is a 2-cocycle, ˝ is closed, the radical of ˝1 coincides with the Lie algebra of the
stabilizer subgroup G˛ .

If O˛ WD Ad�.G/˛ carries a manifold structure for which the orbit mapG ! O˛

is a submersion, we thus obtain on O˛ the structure of a weak symplectic manifold.
However, if the Lie algebra g is not a Hilbert space, then it is not clear how to obtain
a manifold structure on O˛ , resp., the homogeneous space G=G˛ . In any case, we
may consider the pair .G;˝˛/ as a non-reduced variant of the symplectic structure
on the coadjoint orbit.

3.4 Cotangent Bundles of Lie Groups and Their Reduction

Let G be a Lie group, g D L.G/ and g� � g0 be as in Example 3.14, so that the
coadjoint action Ad� on g� is smooth. Then the “cotangent bundle”

T�.G/ WD
[
g2G

f˛ 2 T 0g.G/W˛ ı T1.�g/ 2 g�g

carries a natural Lie group structure for which it is isomorphic to the semidirect
product g�ÌAd�G. Here we identify .˛; g/with the element ˛ıT1.�g/

�1 2 Tg.G/0,
which leads to an injection T�.G/ ,! T 0.G/.

The lift of the left, resp., right multiplications to T�.G/ is given by

�lg.˛; h/ D .˛ ı Ad�1g ; gh/ and �rg.˛; h/ D .˛; hg/: (11)

The corresponding infinitesimal action is given by the vector fields

X�l .˛; h/ D .�˛ ı adX;X:h/ and X�r .˛; h/ D .0; h:X/:

The smooth 1-form defined by


.˛; g/.ˇ;X:g/ WD ˛.X/
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is an analog of the Liouville 1-form. It follows from (11) that it is invariant under
both actions �l and �r . Note that


.X�l /.˛; h/ D ˛.X/ and 
.X�r /.˛; h/ D ˛.Adh X/:

Now

˝ WD �d


is closed smooth 2-form on T�.G/. To see that it is non-degenerate, we observe that
its invariance under left and right translations and the Cartan formulas imply

.iX
�l
˝/.˛;g/.ˇ; Y:g/ D d.iX

�l

/.˛;g/.ˇ; Y:g/ D ˇ.X/ (12)

and, for the constant vertical vector field Z.˛; g/ D � 2 g�, the relation 
.Z/ D 0

leads to

.iZ˝/.˛;g/.ˇ; Y:g/ D �.LZ
/.˛;g/.ˇ; Y:g/ D �.Y /: (13)

We conclude that .T�.G/;˝/ is a weak symplectic manifold.
We thus obtain by Proposition 2.18 on T�.G/ a weak Poisson structure on the

subalgebra

A WD fH 2 C1.T�.G//W .9XH 2 V.T�.G// dH D iXH˝g � C1.T�.G//:

Let C1� .G/ � C1.G/ denote the subalgebra of smooth functions H whose
differential dH defines a smooth section G ! T�.G/, resp., a smooth function

ıH WG ! g�; .ıH/g.X/ WD .dH/g.X:g/:

Then (13) shows that, for H 2 C1� .G/, the vertical vector field on T�.G/ defined
by XH.˛; g/ WD .ıH.g/; 0/ satisfies

.iXH˝/.˛;g/.ˇ; Y:g/ D .ıH/g.Y / D .dH/g.Y:g/:

For the corresponding function QH on T�.G/, we therefore have d QH D iXH˝,
so that H 2 A. On the other hand, we have seen above that, for X 2 g, the
function HX.˛; g/ D ˛.X/ on T�.G/ satisfies dHX D iX

�l
˝. This shows that

A contains the subalgebra C1� .G/ and the algebra S.g/ of polynomial functions
on the first factor g� generated by the functions HX , X 2 g. We therefore have
S.g/˝ C1� .G/ � A.

The Poisson bracket vanishes on C1� .G/, and, for X 2 g and F 2 C1� .G/,
we have

f QF ;HXg.˛; g/ D dFg.X:g/ D .XrF /.g/ D eXrF .˛; g/:
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We also note that, for X; Y 2 g, we have by (12)

fHX;HY g.˛; g/ D ˝.X�l ; Y�l /.˛; g/ D .iX
�l
˝/.˛;g/.�˛ ı adY; Y:g/

D �.˛ ı adY /.X/ D ˛.ŒX; Y �/ D HŒX;Y �.˛; g/:

This implies that S.g/ and B WD S.g/˝ C1� .G/ are Poisson subalgebras of A. In
particular, B defines a weak Poisson structure on T�.G/.

Consider the submersion qWT�.G/ ! g�; .˛; g/ 7! ˛. Then B \ q�C1.g�/ Š
S.g/, and since HX.˛; g/ D hq.˛; g/; Xi, condition (6) in Proposition 2.23 is
satisfied. Therefore q is a Poisson map if we endow g� with the Poisson structure
determined on Ag� D S.g/ by fHX;HY g D HŒX;Y � for X; Y 2 g:

The fibers of q are the orbits of the right translation action �r which is a
Hamiltonian action ofG on T�.G/ and B�r .G/ Š S.g/ is the subalgebra of invariant
functions in B. On the other hand, q is a momentum map for the left action �l

of G on T�.G/. Therefore the passage to the orbit space g� Š T�.G/=�r.G/ is
an example of Poisson reduction from the Hamiltonian action �l to the coadjoint
action Ad� on g� (cf. [17, Thm. 13.1.1] for the finite dimensional case).

Remark 3.15 (Magnetic Cotangent Bundles). A natural variation of this construc-
tion is obtained by using a continuous 2-cocycle bW g � g ! R to get a closed right
invariant 2-form B 2 ˝2.G/. If � WT�G ! G is the bundle projection, then

˝b WD ˝ C ��B

is a closed right invariant 2-form on T�.G/. Since its values in vertical directions
are the same as for ˝, the form ˝b is also non-degenerate. We thus obtain an
infinite dimensional version of a magnetic cotangent bundle (cf. [17, Sect. 6.6], [18,
Sect. 7.2]).

The Poisson bracket on C1� .G/ still vanishes, and, for X 2 g and F 2 C1� .G/,
we still have f QF ;HXg D QXrF . But for X; Y 2 g we obtain

fHX;HY g D ˝.X�l ; Y�l /C B.Xr ; Yr / D HŒX;Y � C b.X; Y /:

Therefore the quotient Poisson structure on g� Š T�.G/=�r.G/ is the affine
Poisson structure from Example 2.14(b) (see [5] for applications of these
techniques).

4 Lie Algebra-Valued Momentum Maps

We have already seen in Example 2.14(e) how to obtain from an invariant symmetric
bilinear form � and a �-skew-symmetric derivation D a weak affine Poisson
structures on a Lie algebra g. This leads naturally to a concept of a Hamiltonian
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G-action with a g-valued momentum map. For the classical case where G is the
loop group L.K/ D C1.S1;K/ of a compact Lie group and the derivation is given
by the derivative, we thus obtain the affine action on g D L.k/ which corresponds
to the action of L.K/ on gauge potentials on the trivial K-bundle over S1.

4.1 Hamiltonian Actions for Affine Poisson Structures
on Lie Algebras

Let G be a Lie group with Lie algebra g, �W g � g ! R be a continuous Ad.G/-
invariant non-degenerate symmetric bilinear form and DW g ! g be a continuous
derivation for which we have a smooth Ad-cocycle �D WG ! g with �D 0.1/ D D.
In Remark 3.9(b) we have seen that this leads to a smooth affine action ofG on g by

AdDg � WD Adg � � �D.g/ for g 2 G; � 2 g:

We recall from Example 2.14(e) that g carries a weak Poisson structure f�; �g D
f�; �g�;D with A Š S.g/, generated by the functions �[ WD �.�; �/. It is determined by

f�[; �[g D Œ�; ��[ C �.D�; �/ for �; � 2 g:

For any F 2 A and � 2 g, the linear functional dF.�/ 2 g0 is represented by �,
hence can be identified with an element rF.�/ 2 g, the �-gradient of F in � . In
these terms, the Poisson structure on g is given by

fF;H g.�/ WD �.�; ŒrF.�/;rH.�/�/C�.DrF.�/;rH.�// for F;H 2 A; � 2 g:

The corresponding Hamiltonian vector fields are determined by

.XHF /.�/ D fF;H g.�/ D �.rF.�/; ŒrH.�/; ��/C �.DrF.�/;rH.�//
D dF.�/

�
ŒrH.�/; �� �DrH.�/�;

which leads to

XH.�/ D ŒrH.�/; �� �DrH.�/:

For H D �[, � 2 g, this specializes to

X�[ D ad � �D� D �AdD for � 2 g: (14)
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4.2 Loop Groups and the Affine Action on Gauge Potentials

An important example arises for S1 D R=Z and the loop group G D L.K/ WD
C1.S1;K/ where K is a Lie group for which k carries a non-degenerate Ad.K/-
invariant symmetric bilinear form h�; �i. We then put D� D � 0 and �.�; �/ DR 1
0

h�.t/; �.t/i dt as in Example 2.15. Then �D.g/ D ır .g/ WD g0g�1 is the right
logarithmic derivative, so that

AdDg � D Adg � � g0g�1 DW �g (15)

corresponds to the natural affine action on the space ˝1.S1; k/ Š C1.S1; k/ of
gauge potentials of the trivial K-bundle S

1 �K over S1.
For � 2 L.k/, let �� WR ! K denote the unique solution of the initial value

problem

�.0/ D 1 and ıl .�/ WD ��1� 0 D �: (16)

For each s 2 R we write

Hols WL.k/ ! K; � 7! ��.s/;

for the corresponding holonomy map. It satisfies the equivariance relation

Homs.�
g/ D g.0/Hols.�/g.s/

�1 for g 2 L.K/: (17)

In particular Hol WD Hol1 is equivariant with respect to the conjugation action of
K on itself. This formula also implies that ��g D g.0/��g

�1, so that the affine
L.K/-action on g corresponds on the level of curves to the multiplication with the
pointwise inverse on the right.

Proposition 4.1. For any Lie group K for which (16) is solvable,5 the action (15)
of the subgroup˝.K/ WD fg 2 L.K/Wg.0/ D 1g on g is free and its orbits coincide
with the fibers of Hol, so that Hol induces a bijection

HolWL.k/=˝.K/ ! K; Œ�� 7! Hol1.�/:

Proof. The relation �g D � implies ��g D �� , so that g.0/�� D ��g. For g.0/ D 1
this implies that g D 1 is constant. Therefore the action of the subgroup ˝.K/ on
g is free and Hol is constant on the ˝.K/-orbits.

Suppose, conversely, that Hol.�/ D Hol.�/, i.e., g1 WD ��.1/ D ��.1/. Since �
and � are periodic, ��.tC1/ D g1��.t/ and ��.tC1/ D g1��.t/ holds for all t 2 R.

5This is the case for so-called regular Lie groups (cf. [21]). Banach–Lie groups and in particular
finite dimensional Lie groups are regular.
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Therefore g.t/ WD ��.t/
�1��.t/ is a smooth periodic curve defining an element of

˝.K/ with �� D ��g
�1. This in turn leads to the relation

� D ıl .��/ D ıl .g�1/C Adg ı
l .��/ D Adg � � ır .g/ D �g:

ut
Remark 4.2 (An Attempt on Poisson Reduction from L.k/ to K). For every con-
nected Lie group K, the map HolWL.k/ ! K is surjective and it is easy to see that
it is a submersion. In view of Proposition 2.23, it makes sense to ask for a Poisson
subalgebra B � A Š S.L.k// that induces on K a Poisson structure for which q is
a Poisson map. A natural candidate for B is the invariant subalgebra

B WD A˝.K/

consisting of ˝K-invariant functions in A, i.e., functions that are constant on the
fibers of Hol.

IfK is compact, then the exponential function expW k ! K is surjective, and since
Hol jk D exp, it follows that Hol.k/ D K, which in turn means that every ˝.K/-
orbit meets the subspace k � L.k/ of constant functions. We conclude that the
restriction map RWB ! Pol.k/ is injective and that its image consists of polynomial
functions on L.k/ that are constant on the fibers of the exponential function. Let
T � K be a maximal torus and t D L.T / be its Lie algebra. Then every F 2 B
restricts to a polynomial F jt which is constant on the cosets of the lattice ker.exp jt/,
hence constant. Since every element X 2 k is contained in the Lie algebra of a
maximal torus, it follows that F is constant on k, and therefore F is constant on
L.k/. We conclude that B D R1 contains only constant functions.

This shows that the algebra A Š S.g/ of polynomial functions is too small to
lead to a sufficiently large algebra of ˝.K/-invariant functions. It is an interesting
question whether there exists a suitable larger Poisson algebra QA � A for which
QA˝.K/ satisfies the assumptions of Proposition 2.23.

Definition 4.3. A Hamiltonian L.K/-space6 is a smooth weak Poisson manifold
.M;A; f�; �g/, endowed with a smooth action � WL.K/ � M ! M which has a
smooth momentum map

˚ WM ! L.k/

which is a Poisson map with respect to .A; f�; �g/.7

6This concept depends on the choice of the invariant symmetric bilinear form h�; �i on the Lie
algebra k. Changing this form leads to a different Poisson structure on L.k/.
7In [1] one finds this concept for the special case where .M;!/ is a weak symplectic manifold. In
this case one requires the action � to be symplectic and the existence of a smooth L.K/-equivariant
map ˚ WM ! L.k/ such that the functions

'.�/.m/ WD �.˚.m/; �/ satisfy i�� ! D d.'.�//:
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Remark 4.4. Since the subgroup ˝.K/ � L.K/ acts freely on g and ˚ is
equivariant, it also acts freely on M , so that we can consider the holonomy space

Hol.M/ WD M=˝.K/;

and obtain a commutative diagram

M
˚����������! L.k/??y

??yHol

Hol.M/
˚����������! K

The geometric structure contained in the bottom row consists in an action of
the Lie group K Š L.K/=˝.K/ on the orbit space Hol.M/ and an equivariant
map ˚ W Hol.M/ ! K. If .M;!/ is weak symplectic, this is enriched by the data
contained in natural differential forms on Hol.M/ andK, which leads to the concept
of a quasihamiltonian K-space for which ˚ WM ! K plays the role of a group-
valued momentum map. If K is a compact Lie group and L.K/ denotes a suitable
Banach–Lie group of differentiable loops, such as H1-loops, then the Equivalence
Theorem in [1, Thm. 8.3] asserts that quasihamiltonian actions of K are in one-to-
one correspondence with Hamiltonian L.K/-actions on Banach manifolds M for
which the momentum map ˚ WM ! L.k/ is proper.

Since our setup for Hamiltonian L.K/-action uses only the invariant bilinear
form on k, it is also valid for non-compact Lie groups K and even for infinite-
dimensional ones, provided k carries an invariant non-degenerate symmetric bilinear
form.

In particular, the construction of a Lie group-valued momentum map � D
exp ı˚ from a Lie algebra-valued momentum map ˚ WM ! g with respect to a
Poisson structure f�; �g�;D on g (cf. [1, Prop. 3.4]) works quite generally for any pair
.�;D/ as in Sect. 4.1.

Acknowledgements We thank Helge Glöckner, Stefand Waldmann and Anton Alekseev for
discussions on the subject matter of this manuscript and for pointing out references.
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Bethe Vectors of gl(3)-Invariant Integrable
Models, Their Scalar Products
and Form Factors
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Abstract This short note corresponds to a talk given at Lie Theory and Its
Applications in Physics (Varna, Bulgaria, June 2013) and is based on joint works
with S. Belliard, S. Pakuliak and N. Slavnov, see arXiv:1206.4931, arXiv:1207.0956,
arXiv:1210.0768, arXiv:1211.3968 and arXiv:1312.1488.

1 General Background

We first expose the general algebraic framework that will be needed for our
calculation. This part is not new at all, it just recasts well-known facts from QISM
approach, see e.g. [1–3] and references therein. We also use it to fix our notations.

1.1 R-Matrix

As usual in integrable systems, the basic tool is the so-called R-matrix R.x; y/ 2
V ˝ V , where x; y 2 C are the spectral parameters and V D End.CN / is a vector
space. R.x; y/ obeys the Yang–Baxter equation, written in V ˝ V ˝ V :

R12.x1; x2/R
13.x1; x3/R

23.x2; x3/ D R23.x2; x3/R
13.x1; x3/R

12.x1; x2/:

Here and below, we will use the auxiliary space notation: the superscripts indicate
in which copies of V spaces R acts non trivially. For instance, in V ˝ V ˝ V , we
have:

R12.x; y/ D R.x; y/˝ I and R23.x; y/ D I ˝R.x; y/ ;
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while in V ˝N , we would have:

Rk;kC1.x; y/ D I
˝.k�1/ ˝R.x; y/˝ I

N�k�1:

1.2 Monodromy and Transfer Matrices

We define the monodromy matrix

T .x/ D
NX

i;jD1
eij ˝ Tij .x/ 2 End.CN /˝ AŒŒx�1�� ;

where eij is the elementary N �N matrix with 1 at position .i; j /. T .x/ obeys the
commutation relations (or FRT relations)

R12.x; y/ T 1.x/ T 2.y/ D T 2.y/ T 1.x/R12.x; y/: (1)

Through these exchange relations, the monodromy matrix generates an algebra A,
defined by the choice of the R-matrix. Typically, A is the Yangian Y.glN / or the
quantum affine group Uq.bglN /. The monodromy matrix leads to an integrable model
through the transfer matrix

t .x/ D t r0T
0.x/ D

NX
jD1

Tjj .x/ 2 AŒŒx�1��:

Integrability can be seen in the relation Œt .x/ ; t.y/� D 0, that is valid at the algebraic
level (i.e. in the A algebra), due to the relations (1).

In the following, we will deal with the Yangian Y.gl3/, based on the SU.3/-
invariant R-matrix

R.x; y/ D I C g.x; y/P 2 End.C3/˝End.C3/ and g.x; y/ D c

x � y ;

where I is the identity matrix, P is the permutation matrix between two spaces
End.C3/, and c is a constant. Note however that many properties will be also valid
for the trigonometric R-matrix associated to the quantum group Uq.bgl3/, and also
for Y.glN / or Uq.bglN / algebras, see below.

1.3 Choice of a Physical Model

The choice of a representation for the algebra A leads to a physical model. For
instance, taking for the monodromy and transfer matrices, the usual form

t .x/ D t r0T
0.x/ D t r0R

01.x; 0/R02.x; 0/ � � �R0L.x; 0/ 2 .End.CN //˝L ;



Bethe Vectors of gl(3)-Invariant Integrable Models 139

we get an Hamiltonian acting on L copies of the fundamental representation of A,
.CN /˝L: it is the generalized glN -XXX or glN -XXZ closed spin chain with L sites.

To summarize this algebraic part, we have a two step procedure for the
determination of a physical model:

• The choice of an R-matrix, that fixes the algebra we are dealing with, that is
to say the interaction in the bulk of the spin chain (leading to XXX, XXZ,
. . . models);

• The choice of the “spin content” of the chain, that is given by the choice of the
representations of the algebra, in our context the form of the monodromy matrix.

Here, as already stated, we will deal with A D Y.gl3/. However, to be as general
(and algebraic) as possible, we will not fix the representation we act on, and just
assume that it is highest weight:

Tjj .w/j0i D �j .w/j0i; j D 1; 2; 3 Tij .w/j0i D 0; 1 � i < j � 3

for some arbitrary series �j .w/, j D 1; 2; 3. Up to a rescaling T .w/ ! ��12 .w/
T .w/, we will only need the ratios

r1.w/ D �1.w/

�2.w/
; r3.w/ D �3.w/

�2.w/
:

where r1 and r3 are free functional parameters.

1.4 Aim

The purpose in integrable systems is twofold:

1. Compute the Bethe vectors (BVs), eigenvectors of t .x/

t.x/Ba;b.Nu; Nv/ D �.xjNu; Nv/Ba;b.Nu; Nv/:

This part is well-understood and is done using the algebraic Bethe Ansatz
method. It leads to the celebrated Bethe Ansatz eqs (BAE).

2. Compute correlation functions < O1 � � �On > for some local operators Oj . This
calculation can be decomposed in four steps:

(a) Express the operators Oj in terms of monodromy entries Tkl .x/;
(b) Action of Tij . Nx/ on B

a;b.Nu; Nv/;
(c) Scalar product of off-shell BVs (without BAE);
(d) Form factors Ca;b.Nt ; Ns/Tij . Nx/Ba;b.Nu; Nv/.
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In part 2, one needs to find simple (i.e. factorized) expressions in order to be
able to take the thermodynamical limit and extract the asymptotic behavior of the
correlation functions.

Here, we will present these two parts for the model based on Y.gl3/. The
calculations are rather technical, so that we will present here the results only, and
refer to the original papers for the complete calculations. The presentation follows
the plan explained above, and we will show how the techniques apply for other
models in the conclusion.

2 Notation

Apart from the functions g.x; y/ D c
x�y , r1.x/ and r3.x/ introduced above, we note

f .x; y/ D x � y C c

x � y ; h.x; y/ D f .x; y/

g.x; y/
; t.x; y/ D g.x; y/

h.x; y/
:

Clearly f .x; y/ D 1C g.x; y/ but this identification is not true for the q-analogues
of these functions, so we keep this distinction.

To make presentation lighter, we will use the following conventions:

• “bar” always denote sets of variables: Nw, Nu, Nv etc.
• j:j is the dimension of a set: Nw D fw1;w2g ) j Nwj D 2, etc.
• Individual elements of the sets have Latin subscripts: wj , uk , etc.
• Subsets of variables are denoted by roman indices: NuI, Nviv, NwII, etc.
• Special case: Nuj D Nu n fuj g, Nwk D Nw n fwkg, etc.

We will also use shorthand notations for products of scalar functions:

f .NuII; NuI/ D
Y

uj2NuII

Y
uk2NuI

f .uj ; uk/; r1.NuII/ D
Y

uj2NuII

r1.uj /;

g.vk; Nw/ D
Y

wj2Nw
g.vk;wj /; etc:

3 Bethe Vectors

The framework for the construction of Bethe vectors is the Nested Bethe Ansatz as
introduced in [4]. This technics is well-known, but the explicit expressions for these
BVs are rather recent, so we briefly remind them here.
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3.1 On-shell Bethe Vectors

The Bethe vectors Ba;b.NuI Nv/ depend on two sets of parameters Nu D fu1; : : : ; uag and
Nv D fv1; : : : ; vbg. The superscripts a and b in B indicate the cardinalities of the sets,
jNuj D a and jNvj D b. They are eigenvectors of the transfer matrix

t .x/Ba;b.NuI Nv/ D �.xjNuI Nv/Ba;b.NuI Nv/; (2)

�.xjNuI Nv/ D r1.w/f .Nu;w/C f .w; Nu/f .Nv;w/C r3.w/f .w; Nv/; (3)

provided Nu and Nv obey the Bethe equations (BAEs):

r1.NuI/ D f .NuI; NuII/

f .NuII; NuI/
f .Nv; NuI/; (4)

r3.NvI/ D f .NvII; NvI/

f .NvI; NvII/
f .NvI; Nu/: (5)

that hold for arbitrary partitions of the sets Nu and Nv into subsets fNuI; NuIIg and fNvI; NvIIg.
In that case, the BVs will be called “on-shell”, while they will be called “off-shell” is
the BAEs are not obeyed. Of course, in that latter case, the BVs are not eigenvector
of t .x/.

3.2 Dual Bethe Vectors Ca;b. NuI Nv/, j Nuj D a, jNvj D b

Dual BVs are constructed as left eigenvectors of the transfer matrix:

C
a;b.NuI Nv/ t.x/ D �.xjNuI Nv/Ca;b.NuI Nv/; (6)

where the Bethe parameters Nu; Nv obey the BAEs (4)–(5). Again, these dual BVs will
be called on-shell when Nu and Nv obey the BAEs, while they will be called off-shell
dual BVs when Nu; Nv are left free.

3.3 Trace Formula

This is a known and quite general formula, given in [5] for glN and Uq.glN /
algebras, and generalized in [6] for superalgebras. It expresses Ba;b.NuI Nv/ as a trace
in aC b auxiliary spaces of products of monodromy matrices:

B
a;b.NuI Nv/ D t r



T.NuI Nv/R.NuI Nv/ e˝a21 ˝ e˝b32

�
2 Y.gl3/; (7)

where T is some product of monodromy matrices T .x/ and R some product of
R-matrices. Their explicit expression can be found in [5, 6].
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3.4 Recursion Formulas

It can be shown that the Bethe vectors also obey the following recursion
relations [7]:

�2.uk/f .Nv; uk/BaC1;b.NuI Nv/ D T12.uk/B
a;b.Nuk I Nv/ (8)

C
bX
iD1

g.vi ; uk/f .Nvi ; vi /T13.uk/Ba;b�1.Nuk I Nvi /;

�2.vk/f .vk; Nu/Ba;bC1.NuI Nv/ D T23.vk/B
a;b.NuI Nvk/ (9)

C
aX

jD1
g.vk; uj /f .uj ; Nuj /T13.vk/Ba�1;b.Nuj I Nvk/:

Let us remark that (9) completely determines the Bethe vectors once B
0;b.;I Nv/

is known. In the same way, (10) completely determines the Bethe vectors once
B
a;0.NuI ;/ is fixed.

3.5 Explicit Formulas

There is a third series of expressions for Bethe vectors, using partitions of Nu
and Nv [7]:

B
a;b.NuI Nv/ D

X Kk.NvIjNuI/

�2.NvII/�2.Nu/
f .NvII; NvI/f .NuII; NuI/

f .NvII; Nu/f .NvI; NuI/
T12.NuII/T13.NuI/T23.NvII/ j0i; (10)

B
a;b.NuI Nv/ D

X Kk.NvIjNuI/

�2.NuII/�2.Nv/
f .NvI; NvII/f .NuI; NuII/

f .NvI; NuI/f .Nv; NuII/
T23.NvII/T13.NvI/T12.NuII/ j0i; (11)

B
a;b.NuI Nv/ D

X Kk.NvIjNuI/

�2.NvII/�2.Nu/
f .NvII; NvI/f .NuI; NuII/

f .Nv; Nu/ T13.NuI/T12.NuII/T23.NvII/ j0i; (12)

B
a;b.NuI Nv/ D

X Kk.NvIjNuI/

�2.NuII/�2.Nv/
f .NvII; NvI/f .NuI; NuII/

f .Nv; Nu/ T13.NvI/T23.NvII/T12.NuII/ j0i: (13)

The sums are taken over partitions of the sets Nu ) fNuI; NuIIg and Nv ) fNvI, NvIIg with
the condition 0 � jNuIj D jNvIj D k � min.a; b/.

Kk.NvIjNuI/ is the Izergin–Korepin determinant [8, 9]

Kk. Nxj Ny/ D
kY

`<m

g.x`; xm/g.ym; y`/ � h. Nx; Ny/ det
k

�
t .xi ; yj /

	
: (14)
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3.6 All These Formulas are Related

Let us stress that all the above formulas define the same Bethe vectors, should they
be on-shell or off-shell. For instance, one can show that

• The explicit expressions obey the recursion formulas;
• The trace formula obeys the recursion formulas too;
• Recursion formulas can be obtained starting from the trace formula.

Depending on the calculation, one can then freely choose any of these expression to
prove a formula or a property of BVs.

4 Correlation Functions

We now turn to the second step of our program, that is, for a local operator O, how
to compute its mean value? As a first step, we are led with the following question:

How to compute OC;B D hCjOjBi?
Assuming that fjBig forms a complete basis (of transfer matrix eigenspaces),

we have

OjBi D
X
B0

OBB0 jB0i; (15)

so that we “only” need hCjB0i and of course the decomposition (15).
Now, for a spin chain of length L and based on glN -fundamental representations,

local operators have a decomposition1

O D
LX
`D1

NX
i;jD1

O.`/
ij e

`
ij ; (16)

where e`ij is the elementary matrix eij at site `. Then, everything boils down to the

calculation of hCje`ij jBi.
A further simplification occurs because of QISM. Indeed, the expression of e`ij ,

i; j D 1; 2; : : : ; N and ` D 1; : : : L is known in terms of monodromy entries Tkl .x/,
k; l D 1; : : : ; N [10]:

e`ij D .t.0//`�1 Tji .0/ .t.0//�`: (17)

Then, from (16) and (17), if we can compute Tkl .x/Ba;b.NuI Nv/ and C
a;b. NwI Nz/Ba;b

.NuI Nv/, we are able to compute any correlation function. The following sections are
devoted to the calculation of these two fundamental quantities in the case N D 3.

1The same ideas can be applied for a general spin chain, using an adapted basis.
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5 Multiple Actions of Tij . Nx/ on B
a;b. NuI Nv/

Using the explicit expressions of Sect. 3.5, we were able in [7] to compute explicitly
the actions of Tij . Nx/ on B

a;b.NuI Nv/. Denoting fNu; Nxg D N�, fNv; Nxg D N� and the
cardinalities by j Nxj D n, j N�j D aC n and j N�j D b C n, we have

T13. Nx/Ba;b.NuI Nv/ D �2. Nx/BaCn;bCn. N�I N�/; (18)

T12. Nx/Ba;b.NuI Nv/ D .�1/n�2. Nx/
X

f . N�II; N�I/ Kn. N�Ij Nx C c/BaCn;b. N�I N�II/; (19)

T23. Nx/Ba;b.NuI Nv/ D .�1/n�2. Nx/
X

f . N�I; N�II/ Kn. Nxj N�I C c/Ba;bCn. N�III N�/: (20)

In (19), the sum is on partitions N� D fN�II N�IIg with j N�Ij D n, while in (20), the sum
is on partitions N� D fN�II N�IIg with j N�Ij D n. Similar expressions can be obtained for
any Tij . Nx/ and for dual BVs, see [7].

Remark that the relations (19) and (20) imply recursion relations of Sect. 3.4 as
a subcase (for n D 1).

Since the action of Tij . Nx/ operators on BVs gives back BVs (that are a priori
off-shell), it remains to compute scalar products of BVs to get the full form factor
expression.

6 Scalar Products of BVs

In this section, we provide expression for the scalar product

Sa;b � Sa;b.NuC ; NuB jNvC ; NvB/ D C
a;b.NuC I NvC /Ba;b.NuB I NvB/; (21)

where C
a;b.NuC I NvC / and B

a;b.NuB I NvB/ are general (dual) BVs. Let us stress that
the superscripts B and C are used to denote different sets of (Bethe) parameters,
completely independent one from each other.

6.1 Reshetikhin’s Formula

There is a well-known formula, due to Reshetikhin [11], and valid for glN :

Sa;b D
X

r1.NuBI /r1.NuCII /r3.NvBI /r3.NvCII /f .NuCI ; NuCII /f .NuBII ; NuBI /f .NvCII ; NvCI /f .NvBI ; NvBII /
� f .NvCI ; NuCI /f .NvBII ; NuBII /Za�k;n.NuCII I NuBII jNvCI I NvBI /Zk;b�n.NuBI I NuCI jNvBII I NvCII /; (22)

where the sum is on partitions NuB D fNuBI ; NuBII g, NuC D fNuCI ; NuCII g with jNuBI j D jNuCI j D k

for k D 0; : : : ; a NvB D fNvBI ; NvBII g, NvC D fNvCI ; NvCII g with jNvBI j D jNvCI j D n for n D
0; : : : ; b.
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Za;b are the so-called highest coefficients

Za;b.Nt I NxjNsI Ny/ D .�1/b
X

Kb.Ns � cj NwI/Ka. NwIIjNt/Kb. Nyj NwI/f . NwI; NwII/; (23)

where the sum is done over partitions of Nw D fNs; Nxg into subsets NwI and NwII with
j NwIj D b.

The formula is valid for a general scalar product, but as it stands, Sa;b is difficult
to handle. To compute e.g. the thermodynamical limit of such formula, and to use
it for the calculation of correlation functions, one needs to find a factorized form,
containing only one determinant. It was done for the gl2 case [12], but for gl3 (and
a fortiori for glN ) no such formula is known yet. However, in some particular cases,
there exists such a formula:

1. When computing the norm of a Bethe vector that is assumed to be on-shell, such
an expression was obtained by Reshetikhin [11];

2. A nice factorized expression was obtained in [13], when some of the Bethe
parameters tend to infinity;

3. When the BV is on-shell and the dual BV is “twisted on-shell” (see below), we
were able to get a simplified expression [14];

4. In [15], we provided different expressions for the highest coefficients (23);
5. An interesting multiple integral expression for the scalar product of an on-shell

and an off-shell BV was recently obtained in [16].

We present the points 3 and 4 in the two following sections.

6.2 Highest Coefficients

Highest coefficients were introduced by Reshetikhin [11] and play a central role in
the expression of the scalar product of Bethe vectors. In fact, they can be viewed as
partition functions of a statistical models with some particular boundary conditions.
It is thus important to get different forms for them. We give here some examples of
such formulas, a more complete list can be found in [15].

Sums on Partitions

There are different series of expressions for the highest coefficients. A first series
is given by sums over partitions. The expression (23) is a first example of such
formulas. Another example is given by

Za;b.Nt I NxjNsI Ny/ D .�1/af . Ny; Nx/f .Ns; Nt /
X

Ka.Nt � cj N�I/Ka. Nxj N�I/

� Kb. N�II � cjNs/f . N�I; N�II/; (24)

where N� D f Ny C c; Ntg. The sum is taken with respect to partitions of the set N� into
subsets N�I and N�II with # N�I D a.
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Recursion Formulas

The most important property of the highest coefficient Za;b is that its residues in its
poles can be expressed in terms ofZa�1;b orZa;b�1. SinceZa;b is a rational function
in all its variables, this property allows us to fix it unambiguously, provided we
know some initial condition. It is easy to see that for a D 0 or b D 0 Za;b coincides
with Kn:

Za;0.Nt I Nxj;I ;/ D Ka. NxjNt /; Z0;b.;I ;jNsI Ny/ D Kb. NyjNs/: (25)

ConsiderZa;b as a function of sb with all other variables fixed. Then it has simple
poles at sb D ym, m D 1; : : : ; b and sb D t`, ` D 1; : : : ; a. Due to the symmetry
of Za;b over Ny and over Nt it is enough to find the residues at sb D yb and sb D ta.
These residues are given by:

ResZa;b.Nt I NxjNsI Ny/
ˇ̌
ˇ
sbDyb

D �cf .yb; Nsb/f . Nyb; yb/f .yb; Nx/Za;b�1.Nt I NxjNsb I Nyb/; (26)

ResZa;b.Nt I NxjNsI Ny/
ˇ̌
ˇ
sbDta

D cf .Nsb; ta/f .ta; Nta/
aX

pD1
g.xp; ta/f . Nxp; xp/

� Za�1;b.NtaI Nxp jfNsb; xpgI Nyb/; (27)

where Nsb D Ns n sb , Nyb D Ny n yb , etc.

Contour Integral

There exists several representations for Za;b in terms of multiple contour integrals
of Cauchy type. Here, we give only one possible integral as example:

Za;b.Nt I NxjNsI Ny/ D 1

.2�ic/bbŠ

I

Nw

Kb.Ns � cjNz/Kb. NyjNz/KaCb. NwjNt ; Nz C c/f .Nz; Nw/Fb.Nz/ d Nz;

(28)
where we have a b-fold integral and

Fb.Nz/ D
bY

jD1
f �1.zj ; Nzj /:

Other expressions of the type (28), or implying a-fold integrals can be found in [15].
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6.3 Scalar Product for Twisted Bethe Vectors

Here we consider an on-shell Bethe vector, eigenvector of the transfer matrix

t .x/Ba;b.NuB I NvB/ D �.xjNuB; NvB/Ba;b.NuB I NvB/; (29)

where the Bethe parameters fNuB I NvBg obey the Bethe equations (4)–(5). We also
introduce, for any complex number �, a twisted transfer matrix

t�.x/ D T11.x/C �T22.x/C T33.x/ D t r
�
M T.x/

�
with M D

0
@1 0 00 � 0

0 0 1

1
A
(30)

and its twisted dual on-shell Bethe vector

C
a;b
� .NuC I NvC / t�.x/ D ��.xjNuC ; NvC /Ca;b� .NuC I NvC /: (31)

It is an eigenvector of t�.x/ when the Bethe parameters NuC , NvC obey the twisted
BAEs

r1.NuI/ D �
f .NuI; NuII/

f .NuII; NuI/
f .Nv; NuI/; (32)

r3.NvI/ D �
f .NvII; NvI/

f .NvI; NvII/
f .NvI; Nu/: (33)

Let us stress that the superscripts B and C are there to distinguish the Bethe
parameters of Bab from those of Cab . In other words, the Bethe parameters fNuB; NvBg
are a priori not related to fNuC ; NvC g.

In [14], we obtained an expression for the scalar product

Sa;b � Sa;b.NuC ; NuB jNvC ; NvB/ D C
a;b
� .NuC I NvC /Ba;b.NuB I NvB/: (34)

Indeed, the scalar product can be written as

Sa;b D f .NvC ; NuC /f .NvB; NuB/t.NvC ; NuB/�0a.NuC /�a.NuB/�0b.NvC /�b.NvB/ det
aCbN ; (35)

where

�0n. Nx/ D
nY
j>k

g.xj ; xk/; �n. Ny/ D
nY
j<k

g.yj ; yk/:
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and N is a block-matrix of the size .aC b/ � .aC b/,

N D
 
N .u/.uCj ; u

B

k / N .u/.uCj ; v
C

k /

N .v/.vBj ; u
B

k / N .v/.vBj ; v
C

k /

!
D
 
a � a a � b
b � a b � b

!
;

whose full expression is given in Appendix 1. We show below how this expression
can give rise to a factorized expression for form factors of the model.

Expression for a General Twist

A similar expression for Sa;b can be obtained when considering a general twist
N� D .�1; �2; �3/ of the transfer matrix

tN�.x/ D �1T11.x/C �2T22.x/C �3T33.x/:

However, in that case, the expression is valid only up to terms .�i � 1/.�j � 1/,
i; j D 1; 2; 3, that are irrelevant for our purpose, as we shall see below. For
further application it is useful to write the system of twisted Bethe equations in
the logarithmic form. Let us define

˚j D log r1.u
C

j / � log

 
f .uCj ; NuCj /
f .NuCj ; uCj /

!
� logf .NvC ; uCj /; j D 1; : : : ; a; (36)

and

˚jCa D log r3.v
C

j /� log

 
f .NvCj ; vCj /
f .vCj ; NvCj /

!
� log f .vCj ; NuC /; j D 1; : : : ; b: (37)

Then the system of twisted Bethe equations for general N� takes the form

˚j D log �2 � log �1 C 2�i`j ; j D 1; : : : ; a;

˚jCa D log �2 � log �3 C 2�imj ; j D 1; : : : ; b;
(38)

where `j and mj are some integers.

7 Form Factors

We present now the calculation [17] the form factor of the diagonal elements Tss.z/

F .s/

a;b.z/ � F .s/

a;b.zjNuC ; NvC I NuB; NvB/ D C
a;b.NuC I NvC /Tss.z/Ba;b.NuB I NvB/; (39)
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where both C
a;b.NuC I NvC / and B

a;b.NuB I NvB/ are on-shell Bethe vectors. Form factors
for off-diagonal elements Tj;jC1.z/ and TjC1;j .z/ have been given in [18]. The form
factors associated to T13.z/ and T31.z/ remain to be done. Of course, the ultimate
goal would be to find a simple expression for the form factor when the Bethe vector
B
a;b.NuB I NvB/ and/or the dual Bethe vector Ca;b.NuC I NvC / are off-shell. Up to now, such

an expression is still missing.
A priori, from the knowledge of the actions (18)–(20) and the scalar products

(22), we can deduce an expression of the form factor. However, the expression is
rather complicated and difficult to handle. Fortunately, one can get another simpler
form using the following trick.

Let us consider Ca;bN� .NuC I NvC / a twisted on-shell Bethe vector such that

C
a;b
N� .NuC I NvC /jN�D1 D C

a;b.NuC I NvC /: (40)

Then, the form factor (39) can be expressed as

F .s/.zjNuC ; NvC I NuB; NvB/ D dQN�.z/
d�s

ˇ̌
ˇN�D1 ; s D 1; 2; 3

where N� D 1 means �1 D �2 D �3 D 1 and

QN�.z/ D C
a;b
N� .NuC I NvC /�tN�.z/ � t .z/�Ba;b.NuB I NvB/

D �
��.zjNuC ; NvC / � �.zjNuB; NvB/�Ca;bN� .NuC I NvC /Ba;b.NuB I NvB/:

Then, it is clear that all depends on the expression of the scalar product
C
a;b
N� .NuC I NvC /Ba;b.NuB I NvB/, and that we need to know this scalar product only up

to terms .�i � 1/.�j � 1/, i; j D 1; 2; 3. Depending on whether C
a;b.NuC I NvC / is�

B
a;b.NuB I NvB/�	 or not, we get two different expressions:

When C
a;b.NuC I NvC / D �

B
a;b.NuB I NvB/�	

F .s/.zjNu; NvI Nu; Nv/ D kBa;b.NuI Nv/k2 d�N�.zjNu
C I NvC /

d�s

ˇ̌
ˇN�D1 (41)

D .�1/acaCbf .Nv; Nu/
aY

jD1
f .uj ; Nuj /

bY
kD1

f .vk; Nvk/ det
aCbC1


.s/.z/;

where 
.s/.z/ is an .aC b C 1/ � .aC b C 1/ matrix given in Appendix 2.
When C

a;b.NuC I NvC / ¤ �
B
a;b.NuB I NvB/�	

F .s/

a;b.zjNuC ; NvC I NuB; NvB/ D


�.zjNuC I NvC / � �.zjNuB I NvB

�

� d

d�s



C
a;b
N� .NuC I NvC /Ba;b.NuB I NvB/

� ˇ̌
ˇN�D1
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D �.zjNuC I NvC / � �.zjNuB I NvB/
˝p

t.NvC ; NuB/

� �0a.NuC /�a.NuB/�0b.NvC /�b.NvB/ det
aCbN

.s;p/;

The integer p is such that ˝p ¤ 0 where

˝k D
aY
`D1
.uCk � uB` /

aY
`D1
`¤k

.uCk � uC` /
�1; k D 1; : : : ; a;

˝aCk D
bY

mD1
.vBk � vCm/

bY
mD1
m¤k

.vBk � vBm/
�1; k D 1; : : : ; b:

(42)

The matrix N .s;p/ has a special pth row, but its determinant is independent of p.
The form of N .s;p/ is given in Appendix 3.

Conclusion
For models with a gl3 invariant R-matrix, we have presented several explicit
expressions for (off-shell) Bethe vectors and dual BVs. We have also
computed the multiple action of monodromy elements on these BVs. Both
results are presented in term of Izergin-Korepin determinants and sums over
partitions of sets of Bethe parameters.

In a second step, we calculated the scalar product of (twisted) on-shell BVs
and the form factors of Tss.x/, s D 1; 2; 3, of Tj;jC1.x/ and of TjC1;j .x/,
j D 1; 2. Both results were given in term of a single determinant (and product
of scalar functions).

The ultimate goal is to obtain a single determinant expression for the
correlation functions of the model, so as to study the thermodynamical limit
and their asymptotics. Of course, to get to that point a lot remains to be done.
For instance, it remains to compute the form factors of T13.x/ and T31.x/.
The calculation of the scalar product of generic off-shell BVs (as a single
determinant) is also lacking.

Certainly, a generalization to other integrable models is wanted. As a first
step, we started to investigate the case of gl3 XXZ spin chain (i.e. based on
the R-matrix of Uq.gl3/):
1. The multiple action of Tij .x/ generators on BVs was performed in [19];
2. The calculation of the highest coefficient was done in [20];
3. A Reshetikhin-like formula for scalar products of the Uq.gl3/ model is

given in [21].

(continued)
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Let us remark that to obtain these results, we used the current realization
of Uq.gl3/ and the construction of Khoroshkin, Pakuliak and collaborators
for BVs in this presentation [22]. This construction is valid for Uq.glN /: a
link between the current presentation of BVs and the explicit expression of
BVs using the monodromy matrix for Uq.glN / is done in [23]. The use of a
morphism between Uq.glN / and Uq�1 .glN / is essential in this construction.

Appendix 1: The Matrix N

Diagonal blocks

N .u/.uCj ; u
B

k / D h.NvC ; uBk /h.uBk ; NuC /
h
�t.uBk ; u

C

j /

C t .uCj ; u
B

k /
f .NvB; uBk /
f .NvC ; uBk /

h.NuC ; uBk /h.uBk ; NuB/
h.uBk ; NuC /h.NuB; uBk /

i
a � a block

N .v/.vBj ; v
C

k / D h.vCk ; NuB/h.NvB; vCk /
h
t .vBj ; v

C

k /

C �t.vCk ; v
B

j /
f .vCk ; NuC /
f .vCk ; NuB/

h.NvC ; vCk /h.vCk ; NvB/
h.vCk ; NvC /h.NvB; vCk /

i
b � b block

Off-diagonal blocks

N .u/.uCj ; v
C

k / D �t.vCk ; u
C

j /h.v
C

k ; NuC /h.NvC ; vCk / a � b block

N .v/.vBj ; u
B

k / D t .vBj ; u
B

k /h.NvB; uBk /h.uBk ; NuB/ b � a block

Appendix 2: The Matrix �.s/

First of all we define an .aC b/ � .aC b/ matrix 
 with the entries


j;k D @˚j

@uCk

ˇ̌
ˇ̌
NuCDNu
NvCDNv

; k D 1; : : : ; a;


j;kCa D @˚j

@vCk

ˇ̌
ˇ̌
NuCDNu
NvCDNv

; k D 1; : : : ; b; (43)

where the ˚j are given by (36) and (37).
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Then we extend the matrix 
 to an .a C b C 1/ � .a C b C 1/ matrix 
.s/ with
s D 1; 2; 3, by adding one row and one column



.s/

j;k D 
j;k; j; k D 1; : : : ; aC b;



.s/

aCbC1;k D @�.zjNu; Nv/
@uk

; k D 1; : : : ; a;



.s/

aCbC1;aCk D @�.zjNu; Nv/
@vk

; k D 1; : : : ; b;



.s/

j;aCbC1 D ıs1 � ıs2 j D 1; : : : ; a;



.s/

jCa;aCbC1 D ıs3 � ıs2 j D 1; : : : ; b;



.s/

aCbC1;aCbC1 D @�N�.zjNuC ; NvC /
@�s

ˇ̌
ˇ̌
NuCDNu
NvCDNv

:

Here the ısk are Kronecker deltas. Notice that 
.s/ depends on s only in its last
column.

Appendix 3: The Matrix N .s;p/

For j ¤ p we define the entries N .s;p/

j;k of the .aC b/ � .aC b/ matrix N .s;p/ as

N .s/

j;k D c g�1.wk; NuC / g�1.NvC ;wk/@�.wkjNu
C ; NvC /

@uCj
; (44)

j D 1; : : : ; a; j ¤ p;

N .s/

aCj;k D �c g�1.NvB;wk/ g�1.wk; NuB/@�.wkjNu
B; NvB/

@vBj
; (45)

j D 1; : : : ; b; j ¤ p:

In these formulas one should set wk D uBk for k D 1; : : : ; a and wkCa D vCk for
k D 1; : : : ; b.

The p-th row has the following elements

N .s/

p;k D h.NvC ;wk/h.wk; NuB/Y .s/k ; (46)
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where again wk D uBk for k D 1; : : : ; a and wkCa D vCk for k D 1; : : : ; b, and

Y
.s/

k D c .ıs1 � ıs2/C .ıs1 � ıs3/uBk
�
1 � f .NvB; uBk /

f .NvC ; uBk /
�
; k D 1; : : : ; a;

Y
.s/

aCk D c .ıs3 � ıs2/C .ıs1 � ıs3/.vCk C c/

�
1 � f .vCk ; NuC /

f .vCk ; NuB/
�
; (47)

k D 1; : : : ; b:
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Polylogarithms and Multizeta Values in Massless
Feynman Amplitudes

Ivan Todorov

Abstract The last two decades have seen a remarkable development of analytic
methods in the study of Feynman amplitudes in perturbative quantum field theory.
The present lecture offers a physicists’ oriented survey of Francis Brown’s work
on singlevalued multiple polylogarithms, the associated multizeta periods and their
application to Schnetz’s graphical functions and to x-space renormalization. To keep
the discussion concrete we restrict attention to explicit examples of primitively
divergent graphs in a massless scalar QFT.

1 Introduction

It is refreshing for mathematically minded theorists that computer calculations
in perturbative Quantum Field Theory (QFT) far from making analytic methods
obsolete go in effect hand in hand with their developments. It took 9 years
before an error in the first numerical calculation of the ˛2 contribution to the
anomalous magnetic moment .g � 2/ of the electron was corrected by Petermann
(and independently by Sommerfield) while computing the relevant seven Feynman
diagrams analytically. The answer involves a �.3/. (For a historical review—see
[31]; for the expressions of the ˛2 and ˛3 contributions to g � 2 in terms of zeta
values of weight three and five, respectively, and for references to the original
work of the late 1950s on the ˛2 term and the mid 1990s on the ˛3 graphs—see
[28].) It was in the course of a calculation of the electron form-factors that multiple
polylogarithms were used by Remiddi et al. and subsequently surveyed under the
name of harmonic polylogarithms in [27]. (Later computer aided higher order
calculations of g � 2 took over—see the entertaining review of the field up to 2010
by Kinoshita [22].)

I. Todorov (�)
Institut des Hautes Études Scientifiques, 35 route de Chartres, 91440 Bures-sur-Yvette, France

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,
Tsarigradsko Chaussee 72, 1784 Sofia, Bulgaria
e-mail: todorov@inrne.bas.bg; ivbortodorov@gmail.com

© Springer Japan 2014
V. Dobrev (ed.), Lie Theory and Its Applications in Physics, Springer Proceedings
in Mathematics & Statistics 111, DOI 10.1007/978-4-431-55285-7__10

155

mailto:todorov@inrne.bas.bg
mailto:ivbortodorov@gmail.com


156 I. Todorov

Mathematicians were attracted to the beauty of the dilogarithm and the enigma
of multiple zeta values (MZVs) since the work of Euler—see [10, 19, 34, 35] for
reviews. The singlevalued multiple polylogarithms (SVMP), introduced and studied
by Brown [4] were soon recognized to play a central role in Euclidean calculations
of scattering amplitudes—see the systematic elaboration and application to the study
of graphical functions in massless QFT in [30] as well as a choice of influential
recent papers [15, 17, 18, 20, 21] and references to earlier work cited there.

The notion of a Feynman period [28], identified as residue of a primitively
divergent graph, was used systematically in [25, 26] in the study of x-space
renormalization of massless Feynman amplitudes. Such residues/periods appear in
the perturbative expansion of the renormalization group beta function. They were
studied by Broadhurst and Kreimer [3] back in 1996 up to nine loops in the '4 theory
and found to be given in most cases by MZVs—i.e. by rational linear combinations
of multiple (convergent) series

�.n1; : : : ; nr / D
X

1	k1<:::<kr

1

k
n1
1 : : : k

nr
r

.ni 2 N ; nr > 1/ : (1)

The multiple polylogarithms were first encountered as multiple power series of a
similar type, convergent in the unit circle. They admit an analytic continuation to the
punctured projective plane .z 2/CP1nf0; 1;1g given by multiple iterated integrals
[5, 12] labeled by words in two letters f0; 1g. The MZVs appear as values of the
multipolylogarithms at the boundary point z D 1. It is remarkable that this family
of functions admits a double algebra structure: a shuffle and a stuffle algebra (both
commutative) which incorporate a wide family of identities among them. Moreover,
the SVMPs naturally form a shuffle subalgebra. Both algebraic structures pass to the
MZV and allow to speak about the algebra of singlevalued MZV [8].

In general, the residue of a primitively (ultra-violet) divergent Feynman ampli-
tude is defined by an integral over a compact projective space (see [25], Theorem
2.3). In many cases (for instance for amplitudes involving a conformally invariant
integration) the same residue can be computed using integration over a (non-
compact) unbounded domain. An example of this type, the wheel with n strokes
was considered in [2] (and later surveyed in Appendix D to [25] and in [30, 32]).
All '4 periods considered in [9,28,30] are of this type. This allows to compute such
periods using recursive relations that involve integration over R4. Furthermore, it
offers the possibility to treat graphs with internal vertices and thus to face the large
x (infrared) behaviour.

The paper is organized as follows. We start in Sect. 2 with a basic example:
integration over an internal vertex in the '4 theory yielding the Bloch–Wigner
dilogarithm. The details of the calculation (using Gegenbauer polynomial technics
[13]) are relegated to Appendix 1. Section 3 introduces the multipolylogarithms as
iterated integralsLw labeled by words w in two letters f0; 1g obeying shuffle algebra
relations. The (possibly regularized) value of Lw.z/ at z D 1 is identified with the
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Fig. 1 Four-point graph; the
open circles correspond to
external vertices

x1

x2

x3

x4

(generalized) MZV �w. The series MZV correspond to a passage from the two letter
alphabet to one with an infinite number of letters:

�.n1; : : : ; nr / D .�1/r �10n1�1:::10nr�1 ; ni D 1; 2; : : : ; i D 1; : : : ; r (2)

(nr D 1 corresponding to the generalized/regularized MZVs). It is for the MZVs
that we also define (in Sect. 3.2) the stuffle relations (which reduce to easily
derivable identities for the series (1)). The number of arguments r in the MZV
(1) corresponding to the number of 1’s in w is called length or depth while the
number of all letters f0; 1g of a word w is called its weight. We treat systematically
the identities among MZV of weight up to five in Appendix 2. The study of the
monodromy of multipolylogarithms (Sect. 3.3 and Appendix 3) is streamlined by
the introduction of the generating series L D Le0 e1.z/ and Z D Ze0 e1 (29). It is a
prerequisite for the study of the monodromy ofLw and hence for introducing SVMP
by Brown’s Theorem 3.1. Schnetz’s notion of a graphical function is reviewed in
Sect. 4. As an introduction to the generating series (46) for SVMP we work out in
Sect. 4.1 the graphical function and the period for the wheel with n spokes which
only involves the simpler SVMP of depth one. We return to our main example, the
four loop amplitude G4 (Fig. 1), in Sect. 4.2 (and Appendix 3). Its residue I.G4/ is
expressed as a sum of four pairs of SVMPs evaluated at z D 1: one of depth one,
which reproduces the period of the wheel with four spokes

I.W4/ D
�
6

3

�
�.5/ ; (3)

two of depth two with a negative contribution .�20 �.5// to I.G4/, and one of depth
three whose contribution .20 �.5// cancels that of the depth two terms. Thus we
confirm the expected result I.G4/ D I.W4/ (53) demonstrating that integration
over internal vertices in a primitively divergent '4 graph commutes with taking the
residue.

2 An Inspiring Example: The Bloch–Wigner
Singlevalued Dilogarithm

The main example, on which we shall test the basic concepts and tools, reviewed in
this lecture, is the massless four-point '4-amplitude in (Euclidean) position space
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a b

Fig. 2 Dual interpretation of the integral (5)

G4.x1; : : : ; x4/ D I.x1; : : : ; x4/

x212 x
2
23 x

2
34 x

2
14

; xij D xi � xj ; i; j D 1; : : : ; 4 ;

xi D .x˛i ; ˛ D 1; : : : ; 4/ ; x2ij D
4X

˛D1
.x˛ij /

2 ; (4)

where I.x1; : : : ; x4/ is the (conformally covariant) Feynman integral

I.x1; : : : ; x4/ D
Z 4Y

iD1

1

.xi � x/2
d4x

�2
D F.u; v/
x213 x

2
24

; (5)

u and v being the two independent cross ratios

u D x212 x
2
34

x213 x
2
24

; v D x214 x
2
23

x213 x
2
24

: (6)

The amplitude G4 corresponds to the four-loop Feynman graph displayed on Fig. 1
The integral (5) can be interpreted both as a '4 integral in position space and as

one corresponding to the box diagram of a '3 theory in momentum space (Fig. 2)
The second interpretation provides an elementary example of what came to

be called a dual conformal symmetry [16]. It was for the momentum space box
diagram (as the simplest example of a ladder graph) that the integral (5) was
first computed [33] (back in 1993) using Melin transform. A modern computation
using Gegenbauer polynomial technics [13] is sketched in Appendix 1. The result
is expressed in terms of a dilogarithm function of a complex variable z and its
conjugate Nz related to the conformal cross ratios (6) by

u D z Nz ; v D .1 � z/.1 � Nz/ : (7)

The derivation of Appendix 1 uses the fact that the four-dimensional hyperspherical
Gegenbauer polynomial C1

n is expressed in terms of the Tchebyshev polynomial of
the second kind:
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jzjn C 1
n

�
z C Nz
2 jzj

�
D znC1 � NznC1

z � Nz .jzj2 D z Nz/ : (8)

The result is a singlevalued real analytic function on CP
1nf0; 1;1g given by

F.u; v/ D x213 x
2
24 I.x1; : : : ; x4/ D 4i D.z/

z � Nz (9)

where D.z/ is the singlevalued dilogarithm of David Wigner and Spencer Bloch—
see [1, 35].

D.z/ D Im .Li2.z/C ln jzj ln.1 � z//

D 1

4i

�
2Li2.z/ � 2Li2.Nz/C ln z Nz ln

1 � z

1 � Nz
�
: (10)

Here Lin.z/ denotes the polylogarithm given for jzj < 1 by the power series

Lin.z/ D
1X
kD1

zk

kn
.Li1.z/ D � ln.1 � z// : (11)

While Li2.z/ has a multivalued analytic continuation to arbitrary complex z given
by the integral

Li2.z/ D �
Z z

0

ln.1 � t / dt
t
; (12)

that depends on the homotopy class of the path which joins 0 and z, the function
(10) is singlevalued (and continuous) on the entire projective plane.

The symmetries of D.z/ can be best described by introducing a (real valued)
function of four complex variables that behaves as a (scale invariant) local fermionic
four-point amplitude in a two-dimensional conformal field theory:

QD.z1; z2; z3; z4/ D D

�
z12 z34
z13 z24

�
where zij D zi � zj : (13)

It is invariant under even permutations and changes sign under odd permutations of
the variables .z1; : : : ; z4/. This implies

D.z/ D D
�

z � 1
z

�
D D

�
1

1 � z

�
D �D

�
1

z

�

D �D.1 � z/ D �D
�

z

z � 1
�
.D �D.Nz// : (14)

The function QD (13) gives the volume of the ideal (oriented) tetrahedron with
vertices z1; : : : ; z4 on the absolute (also called horosphere) of Lobachevsky space
and has already been studied by Lobachevsky himself (cf. [24]; for background on
the Beltrami model of Lobachevsky space—see [23]).
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The significance of this example stems from the fact that it displays properties
common to low loop calculations in more structured quantum field theory models
(such as the N D 4 super-Yang–Mills theory [17]) as well as in physically relevant
calculations in quantum chromodynamics [15]. In particular, the singlevaluedness of
Euclidean Feynman amplitudes is dictated by general considerations of the symbol
of iterated integrals [18, 20, 21].

3 The Shuffle Algebra of Multipolylogarithms
and of Multizeta Values

It is both fortunate and demanding for a newcomer in the field that the multipoly-
logarithms (as well as their values at z D 1—the MZV) appear with a rich algebraic
structure.

3.1 The Algebra of Words in Two Letters: Recursive
Definition of Polylogarithms

We start by introducing a family of iterated integrals.1 Denote by f0; 1g� the
set of words w in the two letters 0 and 1, including the empty word ;. The
multipolylogarithms of a single variable z are defined inductively by the differential
equations

d

d z
Lwa.z/ D Lw.z/

z � a ; a 2 f0; 1g ; L; D 1 ; (15)

and the initial condition

Lw.0/ D 0 for w ¤ 0n.D 0 : : : 0 � n times/; L0n.z/ D .ln z/n

nŠ
: (16)

In particular, for n; ni 	 1 we have

L1n.z/ D Œln.1 � z/�n

nŠ
I .�1/rL10n1�1:::10nr�1 .z/ D Lin1:::nr .z/

0
@D

X
1	k1<:::<kr

zkr

k
n1
1 : : : k

nr
r

for jzj < 1
1
A : (17)

1Iterated integrals were introduced in the mid 1950s and developed essentially single-handedly
for over 20 years by Chen (1923–1987) [12] before gaining recognition in both mathematics and
QFT—see [5].
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For any ring R of numbers (which includes the ring Z of rational integers), we
define the R-module R.fe0; e1g�/ of formal linear combination of words in the
alphabet fe0; e1g and introduce the shuffle algebra ShR.e0; e1/ equipping it with
the (commutative) shuffle product w 9 w0 defined recursively by

; 9 w D w.D w 9 ;/ ; au 9 bv D a.u 9 bv/C b.au 9 v/ (18)

where u; v;w are (arbitrary) words while a; b are letters (note that the empty word
is not a letter). Extending by (R-)linearity the correspondence w ! Lw.z/ one
proves that the resulting map ShR.e0; e1/ ! R.Lw/ is a homomorphism of shuffle
algebras:

Lu

9

v.z/ D Lu.z/ Lv.z/ : (19)

In particular, it is easy to verify that the dilogarithm (12) disappears from the shuffle
product:

L0 9 1.z/ WD L01.z/C L10.z/ D L0.z/ L1.z/ D ln z ln.1 � z/ :

From the uniqueness of the solution of (15) under the condition (16) it is straight-
forward to prove that for a general word

wn D 0n0 10n1�1 : : : 10nr�1 ; n0 D 0; 1; : : : ; ni D 1; 2; : : : ; (20)

we have

Lwn.z/ D
X

k0�0 ki�ni ;1�i�r

k0Ck1C:::CkrDn0C:::Cnr

.�1/k0Cn0Cr
rY
iD1

�
ki � 1
ni � 1

�
L0k0 .z/ Lk1�kr .z/ :

(21)

3.2 Multiple Zeta Values (MZV)

For nr > 1 in (17) (and in (21)) Ln1:::nr .z/ is convergent at z D 1 and we define the
MZVs as the values at 1 of the corresponding multipolylogarithms:

�.n1; : : : ; nr / D Lin1:::nr .1/ ;

�wn D .�1/n0Cr
X
ki�ni

rP
1
kiDn0C

rP
1
ni

rY
iD1

�
ki � 1
ni � 1

�
�.k1; : : : ; kr / : (22)

We extend this definition to all words by introducing the regularized MZV setting

�1 D ��.1/ D 0 .D �0/ (23)
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and postulating that �w satisfy the shuffle relation

�u

9

v D �u �v : (24)

There is a second stuffle product, �, defined on words in the infinite alphabet
of positive integers which is suggested by identities for the series expansions of
polylogs or MZV. Rather than reproducing the general definition (see [34]) we just
give two simple examples: the Nielsen reflection formula

�.m/ �.n/ D �.m; n/C �.n;m/C �.mC n/ DW �.m � n/ (25)

and the relation

�.`/ � �.m; n/ D �.`;m; n/C �.m; `; n/C �.m; n; `/

C�.mC `; n/C �.m; nC `/ DW �.` � .m; n// ; (26)

which suggests the general pattern. The stuffle identities that generalize (25), (26)
prove that the product of MZV can be expanded as a linear combination of MZV
with integer coefficients. They also allow to extend the notion of MZV to the case
when the last entry is 1. The “regularized MZV” cancel in the difference of the two
products yielding, in general, non-trivial identities as illustrated in the following
example: subtracting the stuffle from the shuffle equation below,

�.1/ �.2/ D �1%10 D 2�.1; 2/C �.2; 1/

�.1/ �.2/ D �.1 
 2/ D �.1; 2/C �.2; 1/C �.3/ ;

we obtain Euler’s identity

�.1; 2/ D �.3/ (27)

between two convergent series (see for a more systematic treatment of the resulting
relations Appendix 2).

The number r of arguments in �.k1; : : : ; kr / corresponding to the number of 1’s
in the word wn (20) is called length (as in [34]) or depth (in [7, 30]) of wn. The
number jwj of all letters of the word w in the alphabet f0; 1g is called the weight
of w.

For even n .D 2; 4; : : :/ the �.n/ is a rational multiple of �n (as established
by the 27-year-old Euler in 1734—see detailed historical references in [14]; for a
derivation à la Euler of the explicit formula (28) below in terms of the Bernoulli
numbers B2k—see [10]):

�.2k/ D 22k�1
jB2kj
.2k/Š

�2k ; B2 D 1

6
; B4 D � 1

30
; B6 D 1

42
; : : : : (28)
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Calculating (by hand!) �.3/ up to ten significant digits Euler verified that it is not
given by �3 times a rational number with a small denominator [14]. There is a
far going (widely believed but completely unproven) conjecture that the numbers
�; �.3/; �.5/; : : : are algebraically independent. All known relations among zeta
values of odd weight involve MZVs of the same weight (like in (27)). One may call
the relations coming from the shuffle and stuffle identities (see Appendix 2) motivic.
(More precisely, starting from an abstract definition involving the fundamental
group of CP

1nf0; 1;1g—see [6] and the review [14]—one proves that these
relations are indeed motivic—cf. also [34] and the explicit treatment of the special
case of double zeta values in [11].) It is conjectured that all motivic zeta values are of
this type. A further going conjecture (that would imply the above mentioned belief
about the algebraic independence of odd zeta values and �) says that all relations
among MZV are motivic.

3.3 Single Valued Multiple Polylogarithms (SVMP)

The monodromies M0 and M1 around the potential singularities 0 and 1 of the
polylogarithms (11) and of L0n (16) are given by the unipotent operators

M0 Lin.z/ D Lin.z/ ; M0 L0n.z/ D L0n.z/C 2�i L0n�1 .z/ ;

M1 Lin.z/ D Lin.z/ � 2�i L0n�1 .z/ :

More generally, introducing the generating functionL.z/.D Le0 e1.z/ D 1Cln z e0C
ln.1� z/ e1C : : :/ and its regularized limitZ.D Ze0 e1/ at z D 1 (called the Drinfeld
associator),

L.z/ D
X

w

Lw.z/w ; Z D
X

w

�w w

D 1C �.2/Œe0; e1�C �.3/ŒŒe0; e1�; e0 C e1�C : : : (29)

(cf. Appendix 2) we can write (see Appendix 3)

M0 L.z/ D e2�ie0 L.z/ ; M1 L.z/ D Z e2�ie1 Z�1 L.z/ : (30)

The first relation follows from the fact that L.z/ is the unique solution of the
Knizhnik–Zamolodchikov equation

d

d z
L.z/ D L.z/

�
e0

z
C e1

z � 1
�

(31)
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obeying the asymptotic condition

L.z/ D ee0 ln zh0.z/ ;

h0.z/ D 1C e1 ln.1 � z/C Œe0; e1� Li2.z/C e21
Œln.1 � z/�2

2
C : : : (32)

(i.e. h0.0/ D 1, h0.z/ being a formal power series in the words in fe0; e1g� that is
holomorphic in z in the neighbourhood of z D 0. The second relation (30) is implied
by the fact that there exists a counterpart h1.z/ of h0, holomorphic around z D 1 and
satisfying h1.1/ D 1 such that

L.z/ D Z ee1 ln.1�z/ h1.z/ (33)

(see Appendix 3). The knowledge of the monodromy allows to construct sin-
glevalued linear combinations of products of the type Lw0.Nz/ Lw.z/, the SVMP.
A practitioner of two-dimensional (2D) conformal field theory will notice the
analogy with constructing monodromy invariant 2D correlation functions out
of (multivalued) chiral conformal blocks. It turns out that SVMP have simple
characterization in terms of equations of type (15) (16) and form an interesting
subalgebra of the shuffle algebra of multiple polylogarithms. The following result is
due to Brown.

Theorem 3.1 ([4]). (See also Theorem 2.5 of [30].) There exists a unique family
of single valued functions fPw.z/ ; w 2 f0; 1g� ; z 2 Cnf0; 1gg each of which is a
linear combination of Lu.Nz/ Lv.z/ of the same total weight, juj C jvj D jwj, which
satisfy the differential equations

@Pwa.z/ D Pw.z/

z � a ; @ � @

@z
; (34)

such that

P; D 1 ; P0n.z/ D .ln z Nz/n
nŠ

; Pw.0/ D 0 for w ¤ 0n .w ¤ ;/ : (35)

The functions Pw satisfy the shuffle relations (19) and are linearly independent

over the ring of polynomials C

h
z; 1Nz ;

1
1�z I Nz; 1Nz ; 1

1�Nz
i
. Every singlevalued linear

combination of functions of the type Lw0.Nz/ Lw00.z/ can be written as a (unique)
linear combination of Pw.z/.

The functions Pw can be constructed explicitly in terms of the corresponding
generating function (see [30], the text after Theorem 2.5; a special case of interest
is reproduced in Sect. 4 below). The functions

P 0
w.z/ D

X
uvDw

LQu.Nz/ Lv.z/ (36)
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(where Qu D an : : : a1 for u D a1 : : : an, ai 2 f0; 1g) can serve as a first step in
the construction of Pw and actually coincide with Pw for words (of any weight but)
of length/depth one as well as for all words of weight at most three. We find, in
particular,

P01.z/ D L10.Nz/C L01.z/C L0.Nz/ L1.z/ D Li2.z/ � Li2.Nz/C ln z Nz ln.1 � z/

P10.z/ D L01.Nz/C L10.z/C L1.Nz/ L0.z/ D Li2.Nz/ � Li2.z/C ln z Nz ln.1 � Nz/ ;

so that

P01 C P10 D ln jzj2 ln j1 � zj2 D P0 P1 ;

in accord with the shuffle relation, while

P01.z/ � P10.z/ D 2.Li2.z/ � Li2.Nz//C ln z Nz ln
1 � z

1 � Nz D 4i D.z/ (37)

reproduces the Bloch–Wigner function (10)—the only new SVMP of weight two.
The words w for which the SVMP Pw coincide with P 0

w (33) include the wheel
with n-spokes reviewed in Sect. 4.1 below.

As it is precisely the SVMP that appear in the calculation of Feynman ampli-
tudes, it is natural to expect the Feynman periods (or residues) will also belong to
the corresponding restricted shuffle subalgebra of “singlevalued MZV”, generated
by the values of SVMP at z D 1 (see [8]). This set turns out to be generated by the
odd zeta values �.2nC 1/, n D 1; 2; : : :. In particular, the Bloch–Wigner function
(10) (34) vanishes for real z, hence so does the singlevalued counterpart of �.2/:

�SV.2/ D D.1/ D 0 : (38)

4 Graphical Functions and Periods

4.1 SVMP of Depth One and the Wheel: Generating Series
for the General SVMP

The computation of the integral (5) (or of its simplified version (56)) can be viewed
as a first step in a recurrence in which fn.z/ D F.z;Wn/ are defined by

@ N@ f2.z/ D 1

z.1 � Nz/ � 1

Nz.1 � z/
) f2.z/ D P01.z/ � P10.z/

@ N@ fnC1.z/ D �1
z Nz fn.z/ for n D 2; 3; : : : ; @ D @

@z
; N@ D @

@Nz ; (39)
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Fig. 3 Sequential graph for
the wheel WnC1

whose (unique) SVMP solution is

fnC1.z/ D .�1/n .P0n�1 10n.z/ � P0n 10n�1 .z// : (40)

Here F.z;Wn/ gives the Feynman amplitude corresponding to the sequential graph
presented in Fig. 3

To prove this identification one uses the four-dimensional Laplace equation

� 1

4
%Z F.z;WnC1/ D 1

z Nz F .z;Wn/ (41)

and the expression for %Z restricted on a function of z and Nz:

1

4
%Z F.z/ D 1

z � Nz @
N@ Œ.z � Nz/ F .z/� .Z2 D z Nz ; .Z � e/2 D jz � 1j2/ : (42)

The period I.WnC1/ of the wheel with nC 1 spokes is now obtained as the limit
of F.z;WnC1/ for z ! 1 (Z ! e). (To see this, one should redraw Fig. 3 with the
vertices .e; 1; : : : ; n/ on a circle and the vertex 0 in its centre.)

For a general word of weight n0 C n1 and depth one we can use (33) to write

P0n0 10n1�1 .z/ D
n0X
kD0
.�1/kC1

�
n1 � 1C k

n1 � 1
�
P0n0�k .z/ Lin1Ck.z/

C
n1�1X
kD0

.�1/kC1
�
n0 C k

n0

�
P0n1�1�k .z/ Lin0CkC1.Nz/ (43)

(where P0n is given in (32)). Inserting this expression in (40) we obtain

F.z;WnC1/ D fnC1.z/
z � Nz D

nX
kD0
.�1/n�k

�
nC k

n

�
P0n�k .z/

LinCk.z/ � LinCk.Nz/
z � Nz :

(44)

In the limit z ! 1 only the term with k D n contributes and we find

I.WnC1/ D F.1;WnC1/ D
�
2n

n

�
�.2n � 1/ : (45)
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This result was first derived using a similar recursion by Broadhurst [2]. The above
derivation follows Schnetz [30].

In general, the generating function of SVMP is given by (see [4, 30] and
Appendix 3 below):

Pe0 e1.z/ D QLe0 e01 .Nz/ Le0 e1.z/ (46)

where QL D ˙ Lw Qw (cf. (36)) and e01 is the unique solution of the equation

Z�e0;�e01 e
0
1 Z
�1
�e0�e01 D Ze0 e1 e1 Z

�1
e0 e1

(47)

(see Appendix 3).

4.2 Single Valued MZV and the Period of G4

The amplitude G4 (4) and its period I.G4/ corresponding to the graph on Fig. 1
is of interest as the first strongly connected (or “internally six connected” in the
terminology of [30]) '4-graph that involves integration over an internal vertex.
Albeit such an integral is known to be infrared convergent it may interfere with
the causal factorization condition for the ultraviolet renormalization (the amplitude
G4 being primitively logarithmically divergent). A related question: the period of the
amplitude belongs to the wheel series. If we can treat the vertex 0 (with four adjacent

lines) as an external one then we should expect to have I.G4/ D I.W4/ D
�
6

3

�
�.5/.

If we treat it as an internal vertex—see Fig. 4 then we end up with a different
graphical function. Indeed, the sequence of differential equations corresponding to
the graph in Fig. 4 is

g2.z/ D f2.z/ D P01.z/ � P10.z/

@ N@ g3.z/ D �g2.z/
z Nz.1 � z/.1 � Nz/ D

�
1

z � 1 � 1

z

��
1

Nz � 1

Nz � 1
�
g2.z/

@ N@ g4.z/ D �g3.z/
z Nz : (48)

Fig. 4 Graph for the
graphical function g4.z/
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The functions

g03.z/ D P0100.z/ � P0010.z/C P 0
1010.z/ � P 0

0101.z/C P 0
0011.z/

�P 0
1100.z/C P 0

1101.z/ � P 0
1011.z/ ;

g04.z/ D P03102.z/ � P02103.z/C P 0
021010

.z/ � P 0
010102

.z/C P 0
01203

.z/

�P 0
03120

.z/C P 0
010120

.z/ � P 0
012010

.z/ (49)

where P 0
w.z/ are given by (36) provide a multivalued solution of the partial

differential equations (48). The SVMP g3.z/ is obtained from g03 (49) by replacing
P 0

w.z/ by

Pw.z/ D P 0
w.z/C 2 �.3/ hw; ŒŒŒe0; e1� e1� e0 C e1�iL1.Nz/ (50)

(see Appendix 3). The inner product in Z.fe0; e1g�/ is defined by setting hu j vi D 0

if u ¤ v hu j ui D 1 for any two words u and v. The period I.G4/ is equal to the
derivative g04.z D 1/ given by the limit

I.G4/ D lim
z!1

g4.z/

z � z0
D P0310.1/ � P02102.1/C P02101.1/ � P01010.1/

CP01202.1/ � P0312.1/C P01012.1/ � P01201.1/ : (51)

According to (40) and (45) the period of the wheel with four strokes is given by just
the first two terms of (51):

I.W4/ D P0310.1/ � P02102.1/ D
�
6

3

�
�.5/ D 20 �.5/ : (52)

As verified in Appendix 3 the remaining six terms cancel against each other so that

I.G4/ D I.W4/ D 20 �.5/ (53)

which is a special case of the result of [9] concerning all zig-zag graphs. This
calculation confirms the general argument of Sect. 2 of [28] demonstrating that
periods in '4 theory are in fact associated to (completed by a “vertex at infinity”)
four-point graphs and do not depend on the choice of marked vertices .1; 0; 1; z/.
Thus different (logarithmically divergent) Feynman amplitudes, in our example
a four-point and a five-point one, may be renormalized by subtracting a pole
term with the same residue (multiplied by a 12- and a 16-dimensional ı-function,
respectively).
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4.3 Concluding Remarks

In the early days of the development of the “dual resonance model” theoretists were
joking about “physics of the red book”—meaning the volumes of the Bateman–
Erdelyi classic “Higher Transcendental Functions”. There is a marked difference
between that old fad and the present day development of analytic methods in
perturbative QFT calculations a basic ingredient of which is reviewed in this
lecture. Quantum field theory is the language of the standard model of particle
physics (which also gives room but is not reduced to speculative dreams that
may serve a future theory). The family of multiple polylogarithms, omnipresent in
perturbative calculations, far from being just another set of special functions, admits
an interesting algebraic structure that passes to the physically relevant subfamily of
SVMPs. Residues or periods typically expressed in terms of MZVs are central to
our current understanding of ultraviolet renormalization. These developments have
transformed QFT from a “reason for divorce between mathematics and physics”
[14] half a century ago into a common playing ground for mathematicians and
physicists, giving a new vigour to our field.

Acknowledgements It is a pleasure to thank Francis Brown, Pierre Cartier and Oliver Schnetz
for enlightening discussions and pertinent remarks. The author thanks IHES for hospitality and
support during the course of this work and Cécile Gourgues for her expert and efficient help.

Appendix 1: Computation of the Integral (5)

Using conformal invariance we can send the variable x1 to infinity, x4 to zero, x2—
to a unit 4-vector e and set

x3 D Z ; where Z2 D z Nz ; 2Ze D z C Nz (54)

so that the cross ratios (6) assume the form

u D Z2 D z Nz ; v D .Z � e/2 D .z � 1/.Nz � 1/ (55)

in accord with (7). Then we can write, introducing spherical coordinates x D r!,
Z D jzj!z,

F.u; v/ D F.z/ D 1

�2

Z
d4 x

x2.x � e/2.x �Z/2 (56)

D 1

�2

Z 1
r dr

Z
S3

d 3 !

.r2 � 2r e � ! C 1/.r2 C jzj2 � 2r jzj! !z/
:



170 I. Todorov

Assuming jzj < 1 we can split the radial integral F into three terms F D F1CF2C
F3 corresponding to the domains r < jzj, jzj < r < 1 and r > 1, respectively. In
the first one we can write

.r2 � 2r e � ! C 1/�1 D
1X
nD0

rn C 1
n .!e/ ; (57)

.r2 C jzj2 � 2r jzj! !z/
�1 D 1

jzj2
1X
mD0

�
r

jzj
�m
C1
m.! !z/ .for r < jzj < 1/

where the hyperspherical (Gegenbauer) polynomials C1
n can be written as

C1
n .cos 
/ D sin.nC 1/ 


sin 

: (58)

Using further the orthogonality relation
Z
S3

C 1
n .! � e/ C 1

m.! wz/
d3!

�2
D 2 ımn

nC 1
C 1
n .!z e/ (59)

where, according to (55)

!z � e D z C Nz
2 jzj : (60)

Inserting in F1 and using (58) (or (8)) and (11) we find

F1.z/ D
Z jzj
0

r dr

jzj2
1X
nD0

2

nC 1

r2n

jzjn C
1
n

�
z C Nz
2jzj

�
D Li2.z/ � Li2.Nz/

z � Nz : (61)

The same result is obtained for F3.z/:

F3.z/ D
Z 1
1

dr

r3

1X
nD0

2

nC 1

jzjn
r2n

C 1
n

�
z C Nz
2jzj

�
D Li2.z/ � Li2.Nz/

z � Nz D F1.z/ :

(62)
Finally,

F2.z/ D 2

Z 1

jzj
dr

r

Li1.z/ � Li1.Nz/
z � Nz D ln z Nz ln.1 � z/ � ln.1 � Nz/

z � Nz I (63)

this, together with (61), (62) completes the proof of (9) (10) for jzj < 1. The same
expression can be obtained in a similar fashion for jzj > 1; alternatively, it can be
deduced from the result for jzj < 1 using the symmetry of F.z/ implied by (14).
The result can also be established by verifying that it is single valued and satisfies
the first equation (39) (in view of the uniqueness of SVMP, Theorem 3.1; cf. [30]).
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Appendix 2: Identities Among MZV

Equation (22) which relates the MZV �w (labeled by words in the two letters
f0; 1g) with �.n1; : : : ; nr /, ni D 1; 2; : : : becomes particularly simple for words
of depth one,

�0n0 10n1�1 D .�1/n0C1
�
n0 C n1 � 1
n1 � 1

�
�.n0 C n1/ : (64)

This allows to write the depth one contribution to the generating function Z (29) in
terms of multiple commutators:

1X
nD1

�.nC 1/ Œ: : : Œ„ƒ‚…
n

e0; e1�; e0�; : : : ; e0� D
1X
nD1

�.nC 1/

nX
kD0
.�1/kC1

�
n

k

�
ek0 e1 e

n�k
0 ;

(65)

which is another way to write down (64). It is more interesting—and more
difficult— to deduce the relations among �w for words of higher depth. We shall
write down all such relations for depth two and weight jwj � 5. Note that the
number dn of linearly independent MZV of a given weight n can be read off the
generating function conjectured by Don Zagier

1

1 � t 2 � t 3 D
1X
nD0

dn t
n d2 D d3 D d4 D 1 d5 D d6 D 2; : : : (66)

(and proven for the motivic analog of MZV by Brown [6]; in general, dn provide an
upper bound of the independent MZV).

The Euler’s relation (27) is a special case of either of the following more general
relations which only involve proper (convergent) zeta series:

�.1; : : : ; 1„ ƒ‚ …
n�2

; 2/ D �.n/ ; (67a)

X
si�1Isk�2
˙siDn

�.s1; : : : ; sk/ D �.n/ : (67b)

The “improper” (regularized) zeta value �.n; 1/ is determined from the stuffle
relation:

0 D �.1/ �.n/ D �.1; n/C �.n; 1/C �.nC 1/ : (68)

In particular, for n D 2, we find

�.2; 1/ D ��.3/ � �.1; 2/ D �2 �.3/ : (69)
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From Euler’s formula

�.2/ D �2

6
(70)

(a special case of (28)) and from the shuffle and stuffle relations one deduces that
all zeta values of weight four are rational multiples of �4 (in accord with the Zagier
conjecture (66)). In particular, the relations for 10 9 10, 10� 10 and (67) for n D 4,

�.2/2 D �10 9 10 D 2 �1010 C 4 �1100 D 2 �.2; 2/C 4 �.1; 3/ ;

�.2/2 D �10�10 D 2 �.2; 2/C �.4/ I �.1; 3/C �.2; 2/ D �.4/ ;

allow to express all weight four words of length not exceeding two as integer
multiples of �.1; 3/:

�.4/ D 4 �.1; 3/.D �.1; 1; 2// ; �.2; 2/ D 3 �.1; 3/ ; �.2/2 D 10 �.1; 3/

) �.1; 3/ D �4

360
: (71)

Proceeding in a similar fashion with the two products of the words 10 and 100 we
find

�.2/ �.3/ D 3 �10100 C 6 �11000 C �10010 D 3 �.2; 3/C 6 �.1; 4/C �.3; 2/ ;

�.2/ �.3/ D �.2; 3/C �.3; 2/C �.5/ I �.1; 4/C �.2; 3/C �.3; 2/ D �.5/ :

These three equations determine a two-dimensional space of zeta values of weight
five (in accord with (66)). Selecting as a basis �.1; 4/ and �.2; 3/ we express the
remaining convergent �-values of weight 5 in terms of this basis with positive integer
coefficients

�.1; 1; 3/ D �.1; 4/ ; �.1; 2; 2/ D �.2; 3/ ;

�.5/ D 2 �.2; 3/C 6 �.1; 4/ ; �.3; 2/ D �.2; 1; 2/ D �.2; 3/C 5 �.1; 4/ ;

�.2/ �.3/ D 4 �.2; 3/C 11 �.1; 4/ (72)

(while �.4; 1/ D ��.1; 4/ � �.5/ D �7 �.1; 4/ � 2 �.2; 3/).
For the study of single valued MZV it is more natural to use the basis

.�.5/; �.2/ �.3// instead. Then we find

.�.1; 1; 3/ D/ �.1; 4/ D 2 �.5/ � �.2/ �.3/ ;
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.�.1; 2; 2/ D/ �.2; 3/ D 3 �.2/ �.3/ � 11

2
�.5/

.�.2; 1; 2/ D/ �.3; 2/ D 9

2
�.5/ � 2 �.2/ �.3/ I �.4; 1/ D �.2/ �.3/ � 3 �.5/ :

(73)

Brown [6] has demonstrated that a basis for “motivic” MZV for all weights is given
by �.s1; : : : ; sk/, with si 2 f2; 3g.

From the iterated integral representation of MZV it follows that the generating
function (29) satisfies:

Z�1e0e1 D Ze1e0 D QZ�e0;�e1 : (74)

(The first equation incorporates, in particular, (67a).)

Appendix 3: Monodromy at z D 1: Single Valued MZV

The representation (33) can be obtained from (32) by noticing that the substitution
z ! 1� z corresponds to the exchange e0 $ e1 and that the path from 0 to z can be
viewed as a composition of two paths: from 0 to 1 and from 1 to z. For 0 < z < 1

one should just set h1.z/ D h0.1� z/. Equation (30) follows from (32) (33) and the
relations

M0 ln z D ln z C 2�i ; M1 ln.1 � z/ D ln.1 � z/C 2�i : (75)

Applying (30) one should take into account the relation (74)

Z�1e0;e1 D Ze1;e0 D QZ�e0;�e1 (76)

where the tilde indicates that each word is replaced by its opposite. We leave it to
the reader to verify that the first few terms in the expansion of (30) reproduce (75)
and give

M1 L01.z/ D L01.z/.D ln z ln.1 � z/C Li2.z//

M1 L10.z/.D M1.�Li2.z/// D L10.z/C 2�i ln z : (77)

We now proceed to the evaluation of the element e01 defined by Eq. (47). To this
end we introduce the Lie algebra valued function

F.e0; e1/ D Ze0e1e1Z
�1
e0e1

� e1 D �.2/ŒŒe0; e1�; e1�C �.3/ŒŒŒe0; e1�; e1�; e0 C e1�C : : :

(78)



174 I. Todorov

Equation (47) can then be solved recursively, writing e01 D lim
k!1 e

.k/
1 with

e
.0/
1 D e1 ; e

.kC1/
1 D e1 C F.e0; e1/C F0.�e0;�e.k/1 / : (79)

The weight three term with �.2/ cancels out and one finds

e01 D e1 C 2 �.3/ ŒŒŒe0; e1�; e1�; e0 C e1�C �.5/.: : :/C : : : (80)

where, according to Schnetz [30], the �.5/ contribution consists of eight bracket
words of weight six. (The �.3/ contribution will be sufficient to the application that
follows.)

The SVMPs in the right hand side of (51) are obtained from those in g3.z/ by
adding a letter 0 in front and at the end of each labeling word. Evaluating the
regularized limit at z D 1 (and noting that for L11.z/ it is zero) while NL01.1/ D
� NL10.1/ D �.2/ we find that for each (5-letter) word-label w in (51) we obtain the
following counterpart of (50)

Pw.1/ D P 0
w.1/C 2 �.2/ �.3/ hw;w23i

w23 WD Œe0; ŒŒŒe0; e1�; e1�; e0 C e1�� : (81)

We shall see that the role of the second term in the right hand side of (81) is to cancel
the product �.2/ �.3/ in P 0

w.1/, in accord with the observation that �SV.2/ D 0.
Indeed the depth one contributions are proportional to �.5/:

P0310.1/.D P 0
0310

.1// D L0310.1/C L0103.1/ D 8 �.5/ ;

P02102.1/ D 2L02102.1/ D �12 �.5/

and their difference reproduces (52). For depth two we find (after cancelling the
products �.2/ �.3/) a negative multiple of �.5/:

P 0
02101

.1/ D �02101 C �10102 C �100 �01

D 3 �.4; 1/C 2 �.3; 2/C 2 �.2; 3/ � �.2/ �.3/ D 4 �.2/ �.3/ � 11 �.5/ ;

where in the last step we used (73), h02101;w23i D �2 so that P02101.1/ D P 0
02101

C
2 �.2/ �.3/h02101;w23i D �11 �.5/; similarly P01010.1/ D 4 �.5/ D P0312.1/,
P01202.1/ D ��.5/, so that

P02101.1/ � P01010.1/C P01202.1/ � P0312.1/ D �20 �.5/ : (82)
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Finally, the depth three contribution is equal to that of depth one. Indeed we find,
using [7],

P01012.1/ D �01012 C �12010 C �10 �012 C 6 �.2/ �.3/ D 11 �.5/ ; P01201.1/ D �9 �.5/

) P01012.1/ � P01201.1/ D 20 �.5/ : (83)

This completes the proof of (53). (The expressions (82) and (83) can be also
extracted from the polylog- and polyzeta-procedures of [29].)
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Abstract We apply the method of reduction of couplings in a Finite Unified
Theory and in the MSSM. The method consists on searching for renormalization
group invariant relations among couplings of a renormalizable theory holding to all
orders in perturbation theory. It has a remarkable predictive power, since it leads
to relations between gauge and Yukawa couplings in the dimensionless sectors and
relations involving the trilinear terms and the Yukawa couplings, as well as a sum
rule among scalar masses in the soft breaking sector, at the GUT scale. In both the
MSSM and the FUT model we predict the masses of the top and bottom quarks and
the light Higgs in remarkable agreement with the experiment. Furthermore we also
predict the masses of the other Higgses, as well as the supersymmetric spectrum, the
latter being in very comfortable agreement with the LHC bounds on supersymmetric
particles.
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1 Introduction

The discovery of the Higgs boson [1–4] at LHC completes the search for the
particles of the Standard Model (SM), and confirms the existence of a Higgs field
and the spontaneous electroweak symmetry breaking mechanism as the way to
explain the masses of the fundamental particles. The over twenty free parameters of
the SM, the hierarchy problem, the existence of Dark Matter, the very small masses
of the neutrinos, among others, point towards a more fundamental theory, whose
goal among others should be to explain at least some of these facts.

The main achievement expected from a unified description of interactions is to
understand the large number of free parameters of the Standard Model (SM) in
terms of a few fundamental ones. In other words, to achieve reduction of couplings
at a more fundamental level. To reduce the number of free parameters of a theory,
and thus render it more predictive, one is usually led to introduce more symmetry.
Supersymmetric Grand Unified Theories (GUTs) are very good examples of such a
procedure [5–11].

For instance, in the case of minimal SU.5/, because of (approximate) gauge
coupling unification, it was possible to reduce the gauge couplings by one and give
a prediction for one of them. LEP data [12] seem to suggest that a further symmetry,
namely N D 1 global supersymmetry [10, 11] should also be required to make the
prediction viable. GUTs can also relate the Yukawa couplings among themselves,
again SU.5/ provided an example of this by predicting the ratioM�=Mb [13] in the
SM. Unfortunately, requiring more gauge symmetry does not seem to help, since
additional complications are introduced due to new degrees of freedom and in the
ways and channels of breaking the symmetry.

A natural extension of the GUT idea is to find a way to relate the gauge and
Yukawa sectors of a theory, that is to achieve Gauge–Yukawa Unification (GYU)
[14–16]. A symmetry which naturally relates the two sectors is supersymmetry,
in particular N D 2 supersymmetry [17]. It turns out, however, that N D 2

supersymmetric theories have serious phenomenological problems due to light
mirror fermions. Also in superstring theories and in composite models there exist
relations among the gauge and Yukawa couplings, but both kind of theories have
phenomenological problems, which we are not going to address here.

A complementary strategy in searching for a more fundamental theory, consists
on looking for all-loop renormalization group invariant (RGI) relations holding
below the Planck scale, which in turn are preserved down to the GUT scale
[14, 15, 15, 16, 18–25]. Through the method of reduction of couplings it is possible
to achieve Gauge–Yukawa Unification [14–16]. Even more remarkable is the fact
that it is possible to find RGI relations among couplings that guarantee finiteness to
all-orders in perturbation theory [26–28].

Although supersymmetry seems to be an essential feature for a successful
realization of the above programme, its breaking has to be understood too, since it
has the ambition to supply the SM with predictions for several of its free parameters.
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Indeed, the search for RGI relations has been extended to the soft supersymmetry
breaking sector (SSB) of these theories [23, 29], which involves parameters of
dimension one and two.

2 The Method of Reduction of Couplings

In this section we will briefly outline the reduction of couplings method. Any RGI
relation among couplings (i.e. which does not depend on the renormalization scale
� explicitly) can be expressed, in the implicit form ˚.g1; � � � ; gA/ D const., which
has to satisfy the partial differential equation (PDE)

d˚

dt
D

AX
aD1

@˚

@ga

dga

dt
D

AX
aD1

@˚

@ga
ˇa D r˚ � ˇ D 0; (1)

where t D ln� and ˇa is the ˇ-function of ga. This PDE is equivalent to a set of
ordinary differential equations, the so-called reduction equations (REs) [24,25,30],

ˇg
dga

dg
D ˇa ; a D 1; � � � ; A ; (2)

where g and ˇg are the primary coupling and its ˇ-function, and the counting on
a does not include g. Since maximally (A � 1) independent RGI “constraints” in
the A-dimensional space of couplings can be imposed by the ˚a’s, one could in
principle express all the couplings in terms of a single coupling g. The strongest
requirement is to demand power series solutions to the REs,

ga D
X
nD0

�.n/a g2nC1 ; (3)

which formally preserve perturbative renormalizability. Remarkably, the uniqueness
of such power series solutions can be decided already at the one-loop level
[24, 25, 30].

Searching for a power series solution of the form (3) to the REs (2) is justified
since various couplings in supersymmetric theories have the same asymptotic
behaviour, thus one can rely that keeping only the first terms in the expansion is
a good approximation in realistic applications.

3 Reduction of Couplings in Soft Breaking Terms

The method of reducing the dimensionless couplings was extended [23, 29], to
the soft supersymmetry breaking (SSB) dimensionful parameters of N D 1

supersymmetric theories. In addition it was found [31, 32] that RGI SSB scalar
masses in Gauge–Yukawa unified models satisfy a universal sum rule.
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Consider the superpotential given by

W D 1

2
�ij ˚i ˚j C 1

6
C ijk ˚i ˚j ˚k ; (4)

where �ij (the mass terms) and C ijk (the Yukawa couplings) are gauge invariant
tensors and the matter field˚i transforms according to the irreducible representation
Ri of the gauge group G. The Lagrangian for SSB terms is

�LSSB D 1

6
hijk �i�j �k C 1

2
bij �i�j C 1

2
.m2/

j
i �
� i �j C 1

2
M ��C H.c.; (5)

where the �i are the scalar parts of the chiral superfields ˚i ; � are the gauginos
and M their unified mass, hijk and bij are the trilinear and bilinear dimensionful
couplings respectively, and .m2/

j
i the soft scalars masses.

Let us recall that the one-loop ˇ-function of the gauge coupling g is given by
[33–37]

ˇ.1/g D dg

dt
D g3

16�2

"X
i

T .Ri / � 3C2.G/
#
; (6)

where C2.G/ is the quadratic Casimir of the adjoint representation of the associated
gauge groupG. T .R/ is given by the relation TrŒT aT b� D T .R/ıab where T a is the
generators of the group in the appropriate representation. Similarly the ˇ-functions
of Cijk , by virtue of the non-renormalization theorem, are related to the anomalous
dimension matrix �ij of the chiral superfields as:

ˇ
ijk
C D dCijk

dt
D Cijl �

l
k C Cikl �

l
j C Cjkl �

l
i : (7)

At one-loop level the anomalous dimension, �.1/ ij of the chiral superfield is [33–37]

�.1/ ij D 1

32�2
Œ C ikl Cjkl � 2 g2 C2.Ri /ıij �; (8)

where C2.Ri / is the quadratic Casimir of the representation Ri , and C ijk D C �ijk .
Then, the N D 1 non-renormalization theorem [38–40] ensures there are no extra
mass and cubic-interaction-term renormalizations, implying that the ˇ-functions of
Cijk can be expressed as linear combinations of the anomalous dimensions �ij .

Here we assume that the reduction equations admit power series solutions of the
form

C ijk D g
X
nD0

�
ijk

.n/ g
2n : (9)
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In order to obtain higher-loop results instead of knowledge of explicit
ˇ-functions, which anyway are known only up to two-loops, relations among
ˇ-functions are required.

The progress made using the spurion technique [40–44], leads to all-loop
relations among SSB ˇ-functions [45–50]. The assumption, following [46], that the
relation among couplings

hijk D �M.C ijk/0 � �M dC ijk.g/

d lng
; (10)

is RGI and furthermore, the use the all-loop gauge ˇ-function of Novikov et al.
[51, 52]

ˇNSVZ
g D g3

16�2

�P
l T .Rl/.1 � �l=2/ � 3C2.G/

1 � g2C2.G/=8�2
�
; (11)

lead to the all-loop RGI sum rule [53] (assuming .m2/i j D m2
j ı
i
j ),

m2
i Cm2

j Cm2
k D jM j2

�
1

1 � g2C2.G/=.8�2/
d lnC ijk

d lng
C 1

2

d2 lnC ijk

d.lng/2




C
X
l

m2
l T .Rl/

C2.G/ � 8�2=g2
d lnC ijk

d lng
: (12)

The all-loop results on the SSB ˇ-functions lead to all-loop RGI relations (see
e.g. [54]). If we assume:

(a) the existence of a RGI surfaces on which C D C.g/, or equivalently that

dC ijk

dg
D ˇ

ijk
C

ˇg
(13)

holds, i.e. reduction of couplings is possible, and
(b) the existence of a RGI surface on which

hijk D �M dC.g/ijk

d lng
(14)

holds too in all-orders, then one can prove, [55,56], that the following relations
are RGI to all-loops (note that in both (a) and (b) assumptions above we do not
rely on specific solutions of these equations)

M D M0

ˇg

g
; (15)
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hijk D �M0 ˇ
ijk
C ; (16)

bij D �M0 ˇ
ij
� ; (17)

.m2/i j D 1

2
jM0j2 �d�

i
j

d�
; (18)

where M0 is an arbitrary reference mass scale to be specified shortly.

Finally we would like to emphasize that under the same assumptions (a) and (b)
the sum rule given in Eq. (12) has been proven [53] to be all-loop RGI, which gives
us a generalization of Eq. (18) to be applied in considerations of non-universal soft
scalar masses, which are necessary in many cases including the MSSM.

As it was emphasized in [55] the set of the all-loop RGI relations (15)–(18) is
the one obtained in the Anomaly Mediated SB Scenario [57, 58], by fixing the M0

to be m3=2, which is the natural scale in the supergravity framework. A final remark
concerns the resolution of the fatal problem of the anomaly induced scenario in the
supergravity framework, which is here solved thanks to the sum rule (12). Other
solutions have been provided by introducing Fayet–Iliopoulos terms [59].

4 Applications of the Reduction of Couplings Method

In this section we show how to apply the reduction of couplings method in two
scenarios, the MSSM and Finite Unified Theories. We will apply it only to the third
generation of fermions and in the soft supersymmetry breaking terms. After the
reduction of couplings takes place, we are left with relations at the unification scale
for the Yukawa couplings of the quarks in terms of the gauge coupling according
to Eq. (9), for the trilinear terms in terms of the Yukawa couplings and the unified
gaugino mass Eq. (14), and a sum rule for the soft scalar masses also proportional
to the unified gaugino mass Eq. (12), as applied in each model.

4.1 RE in the MSSM

We will examine here the reduction of couplings method applied to the MSSM,
which is defined by the superpotential,

W D YtH2Qt
c C YbH1Qb

c C Y�H1L�
c C �H1H2; (19)
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with soft breaking terms,

� LSSB D
X
�

m2
��
�� C

"
m2
3H1H2 C

3X
iD1

1

2
Mi�i�i C h.c

#

C ŒhtH2Qt
c C hbH1Qb

c C h�H1L�
c C h.c.� ; (20)

where the last line refers to the scalar components of the corresponding superfield.
In general Yt;b;� and ht;b;� are 3 � 3 matrices, but we work throughout in the
approximation that the matrices are diagonal, and neglect the couplings of the first
two generations.

Assuming perturbative expansion of all three Yukawa couplings in favour of g3
satisfying the reduction equations we find that the coefficients of the Y� coupling
turn imaginary. Therefore, we take Y� at the GUT scale to be an independent
variable. Thus, in the application of the reduction of couplings in the MSSM that
we examine here, in the first stage we neglect the Yukawa couplings of the first two
generations, while we keep Y� and the gauge couplings g2 and g1, which cannot
be reduced consistently, as corrections. This “reduced” system holds at all scales,
and thus serve as boundary conditions of the RGEs of the MSSM at the unification
scale, where we assume that the gauge couplings meet [54].

In that case, the coefficients of the expansions (again at the GUT scale)

Y 2t
4�

D c1
g23
4�

C c2

�
g23
4�

�2
I Y 2b

4�
D p1

g23
4�

C p2

�
g23
4�

�2
(21)

are given by

c1 D 157

175
C 1

35
K� D 0:897C 0:029K� ;

p1 D 143

175
� 6

35
K� D 0:817 � 0:171K� ;

c2 D 1

4�

1457:55 � 84:491K� � 9:66181K2
� � 0:174927K3

�

818:943 � 89:2143K� � 2:14286K2
�

;

p2 D 1

4�

1402:52 � 223:777K� � 13:9475K2
� � 0:174927K3

�

818:943 � 89:2143K� � 2:14286K2
�

;

(22)

where

K� D Y 2� =g
2
3: (23)

The couplings Yt ,Yb and g3 are not only reduced, but they provide predictions con-
sistent with the observed experimental values. According to the analysis presented
in Sect. 2 the RGI relations in the SSB sector hold, assuming the existence of RGI
surfaces where Eqs. (13) and (14) are valid.
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Since all gauge couplings in the MSSM meet at the unification point, we are led
to the following boundary conditions at the GUT scale:

Y 2t D c1g
2
U C c2g

4
U =.4�/ and Y 2b D p1g

2
U C p2g

4
U =.4�/; (24)

ht;b D �MUYt;b; (25)

m2
3 D �MU�; (26)

where MU is the unification scale, c1;2 and p1;2 are the solutions of the algebraic
system of the two reduction equations taken at the GUT scale (while keeping only
the first term1 of the perturbative expansion of the Yukawas in favour of g3 for
Eqs. (25) and (26)), and a set of equations resulting from the application of the
sum rule

m2
H2

Cm2
Q Cm2

tc D M2
U ; m2

H1
Cm2

Q Cm2
bc D M2

U ; (27)

noting that the sum rule introduces four free parameters.

4.2 Predictions of the Reduced MSSM

With these boundary conditions we run the MSSM RGEs down to the SUSY scale,
which we take to be the geometrical average of the stop masses, and then run
the SM RGEs down to the electroweak scale (MZ), where we compare with the
experimental values of the third generation quark masses. The RGEs are taken at
two-loops for the gauge and Yukawa couplings and at one-loop for the soft breaking
parameters. We let MU and j�j at the unification scale to vary between �1 and
�11 TeV, for the two possible signs of �. In evaluating the � and bottom masses we
have taken into account the one-loop radiative corrections that come from the SUSY
breaking [60, 61]; in particular for large tanˇ they can give sizeable contributions
to the bottom quark mass.

Recall that Y� is not reduced and is a free parameter in this analysis. The
parameter K� , related to Y� through Eq. (23) is further constrained by allowing
only the values that are also compatible with the top and bottom quark masses
simultaneously within 1 and 2� of their central experimental value. In the case
that sign.�/ D C, there is no value for K� where both the top and the bottom
quark masses agree simultaneously with their experimental value, therefore we only
consider the negative sign of � from now on. We use the experimental value of the
top quark pole mass as

m
exp
t D .173:2˙ 0:9/ GeV : (28)

1The second term can be determined once the first term is known.
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Fig. 1 The left plot shows the SUSY spectrum as function of the reduced MSSM. From left to
right are shown: the lightest Higgs, the pseudoscalar one MA, the heavy neutral one MH , the two
charged HiggsesMH˙; then come the two stops, two bottoms and two status, the four neutralinos,
and at the end the two charginos. The right plot shows the lightest Higgs boson mass as a function
of K� D Y 2� =g

2
3

The bottom mass is calculated at MZ to avoid uncertainties that come from running
down to the pole mass and, as previously mentioned, the SUSY radiative corrections
both to the tau and the bottom quark masses have been taken into account [62]

mb.MZ/ D .2:83˙ 0:10/ GeV: (29)

The variation of K� is in the range �0.33 to �0.5 if the agreement with both top
and bottom masses is at the 2� level.

Finally, assuming the validity of Eq. (14) for the corresponding couplings to those
that have been reduced before, we calculate the Higgs mass as well as the whole
Higgs and sparticle spectrum using Eqs. (24)–(27), and we present them in Fig. 1
The Higgs mass was calculated using a “mixed-scale” one-loop RG approach, which
is known to approximate the leading two-loop corrections as evaluated by the full
diagrammatic calculation [63, 64]. However, more refined Higgs mass calculations,
and in particular the results of [65] are not (yet) included.

In the left plot of Fig. 1 we show the full mass spectrum of the model. We find
that the masses of the heavier Higgses have relatively high values, above the TeV
scale. In addition we find a generally heavy supersymmetric spectrum starting with
a neutralino as LSP at �500 GeV and comfortable agreement with the LHC bounds
due to the non-observation of coloured supersymmetric particles [66–68]. Finally
note that although the � < 0 found in our analysis would disfavour the model
in connection with the anomalous magnetic moment of the muon, such a heavy
spectrum gives only a negligible correction to the SM prediction. We plan to extend
our analysis by examining the restrictions that will be imposed in the spectrum by
the B-physics and Cold Dark Matter (CDM) constraints.

In the right plot of Fig. 1 we show the results for the light Higgs boson mass as a
function ofK� . The results are in the range 123:7–126:3 GeV, where the uncertainty
is due to the variation of K� , the gaugino mass MU and the variation of the scalar
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soft masses, which are however constrained by the sum rules (27). The gaugino
mass MU is in the range �1.3 to �11 TeV, the lower values having been discarded
since they do not allow for radiative electroweak symmetry breaking. To the lightest
Higgs mass value one has to add at least ˙2 GeV coming from unknown higher
order corrections [69]. Therefore it is in excellent agreement with the experimental
results of ATLAS and CMS [1–4].

4.3 Finiteness

Finiteness can be understood by considering a chiral, anomaly free, N D 1

globally supersymmetric gauge theory based on a group G with gauge coupling
constant g. Consider the superpotential Eq. (4) together with the soft supersymmetry
breaking Lagrangian Eq. (5). All the one-loop ˇ-functions of the theory vanish if the
ˇ-function of the gauge coupling ˇ.1/g , and the anomalous dimensions of the Yukawa

couplings �j.1/i , vanish, i.e.

X
i

`.Ri / D 3C2.G/ ;
1

2
CipqC

jpq D 2ı
j
i g

2C2.Ri / ; (30)

where `.Ri / is the Dynkin index ofRi , and C2.G/ is the quadratic Casimir invariant
of the adjoint representation of G. These conditions are also enough to guarantee
two-loop finiteness [70]. A striking fact is the existence of a theorem [26–28], that
guarantees the vanishing of the ˇ-functions to all-orders in perturbation theory. This
requires that, in addition to the one-loop finiteness conditions (30), the Yukawa
couplings are reduced in favour of the gauge coupling to all-orders (see [71] for
details). Alternatively, similar results can be obtained [72–74] using an analysis of
the all-loop NSVZ gauge beta-function [51, 75].

Since we would like to consider only finite theories here, we assume that the
gauge group is a simple group and the one-loop ˇ-function of the gauge coupling g
vanishes. We also assume that the reduction equations admit power series solutions
of the form Eq. (9). According to the finiteness theorem of [26–28, 76], the theory
is then finite to all orders in perturbation theory, if, among others, the one-loop
anomalous dimensions �j.1/i vanish. The one- and two-loop finiteness for hijk can
be achieved through the relation [77]

hijk D �MCijk C � � � D �M�ijk.0/ g CO.g5/ ; (31)

where : : : stand for higher order terms.
In addition it was found that the RGI SSB scalar masses in Gauge–Yukawa

unified models satisfy a universal sum rule at one-loop [31]. This result was
generalized to two-loops for finite theories [32], and then to all-loops for general
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Gauge–Yukawa and finite unified theories [53]. From these latter results, the
following soft scalar-mass sum rule is found [32]

. m2
i Cm2

j Cm2
k /

MM	
D 1C g2

16�2
�.2/ CO.g4/ (32)

for i, j, k with �ijk.0/ ¤ 0, where m2
i;j;k are the scalar masses and �.2/ is the two-

loop correction which vanishes for the universal choice, i.e. when all the soft scalar
masses are the same at the unification point, as well as in the model considered here.

4.4 SU.5/ Finite Unified Theories

We examine an all-loop Finite Unified theory with SU.5/ as gauge group, where
the reduction of couplings has been applied to the third generation of quarks and
leptons. The particle content of the model we will study, which we denote FUT
consists of the following supermultiplets: three (5 C 10), needed for each of the
three generations of quarks and leptons, four (5C5) and one 24 considered as Higgs
supermultiplets. When the gauge group of the finite GUT is broken the theory is no
longer finite, and we will assume that we are left with the MSSM [15, 18–21].

A predictive Gauge–Yukawa unified SU.5/ model which is finite to all orders,
in addition to the requirements mentioned already, should also have the following
properties:

1. One-loop anomalous dimensions are diagonal, i.e., �.1/ ji / ı
j
i .

2. Three fermion generations, in the irreducible representations 5i ; 10i .i D 1; 2; 3/,
which obviously should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of
Higgs quintet and anti-quintet, which couple to the third generation.

After the reduction of couplings the symmetry is enhanced, leading to the
following superpotential [78]

W D
3X

iD1

Œ
1

2
gu
i 10i10iHi C gdi 10i5i H i �C gu

23 102103H4 (33)

Cgd23 10253 H4 C gd32 10352 H4 C g
f
2 H2 24H2 C g

f
3 H3 24H3 C g�

3
.24/3 :

The non-degenerate and isolated solutions to �.1/i D 0 give us:

.gu
1/
2 D 8

5
g2 ; .gd1 /

2 D 6

5
g2 ; .gu

2/
2 D .gu

3/
2 D 4

5
g2 ; (34)
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.gd2 /
2 D .gd3 /

2 D 3

5
g2 ; .gu

23/
2 D 4

5
g2 ; .gd23/

2 D .gd32/
2 D 3

5
g2 ;

.g�/2 D 15

7
g2 ; .g

f
2 /

2 D .g
f
3 /

2 D 1

2
g2 ; .g

f
1 /

2 D 0 ; .g
f
4 /

2 D 0 ;

and from the sum rule we obtain:

m2
Hu

C 2m2
10 D M2 ; m2

Hd
� 2m2

10 D �M
2

3
; m2

5
C 3m2

10 D 4M2

3
; (35)

i.e., in this case we have only two free parameters m10 and M for the dimensionful
sector.

As already mentioned, after the SU.5/ gauge symmetry breaking we assume we
have the MSSM, i.e. only two Higgs doublets. This can be achieved by introducing
appropriate mass terms that allow to perform a rotation of the Higgs sector
[18–22, 79–81], in such a way that only one pair of Higgs doublets, coupled
mostly to the third family, remains light and acquire vacuum expectation values.
To avoid fast proton decay the usual fine tuning to achieve doublet-triplet splitting
is performed, although the mechanism is not identical to minimal SU.5/, since we
have an extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken we are left with the
MSSM, with the boundary conditions for the third family given by the finiteness
conditions, while the other two families are not restricted.

4.5 Predictions of the Finite Model

Since the gauge symmetry is spontaneously broken below MGUT, the finiteness
conditions do not restrict the renormalization properties at low energies, and all
it remains are boundary conditions on the gauge and Yukawa couplings (34), the
h D �MC (31) relation, and the soft scalar-mass sum rule at MGUT. The analysis
follows along the same lines as in the MSSM case.

In Fig. 2 we show the FUT predictions for mt and mb.MZ/ as a function of the
unified gaugino mass M , for the two cases � < 0 and � > 0. The bounds on the
mb.MZ/ and the mt mass clearly single out � < 0, as the solution most compatible
with these experimental constraints.

We now analyze the impact of further low-energy observables on the model FUT
with � < 0. As additional constraints we consider the flavour observables BR.b !
s�/ and BR.Bs ! �C��/.

For the branching ratio BR.b ! s�/, we take the value given by the Heavy
Flavour Averaging Group (HFAG) is [82]

BR.b ! s�/ D .3:55˙ 0:24C0:09�0:10 ˙ 0:03/ � 10�4: (36)
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Fig. 2 The bottom quark mass at the Z boson scale (left) and top quark pole mass (right) are
shown as function of M , the unified gaugino mass

For the branching ratio BR.Bs ! �C��/, the SM prediction is at the level of 10�9,
while we employ an upper limit of

BR.Bs ! �C��/ <� 4:5 � 10�9 (37)

at the 95% [83]. This is in relatively good agreement with the recent direct
measurement of this quantity by CMS and LHCb Collaborations [84]. As we do
not expect a sizable impact of the new measurement on our results, we stick for our
analysis to the simple upper limit.
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Fig. 3 The lightest Higgs mass, Mh, as function of M for the model FUT with � < 0

For the lightest Higgs mass prediction we used the code FeynHiggs
[69,85–87]. The prediction forMh of FUT with � < 0 is shown in Fig. 3, where the
constraints from the two B physics observables are taken into account. The lightest
Higgs mass ranges in

Mh � 121 � 126 GeV ; (38)

where the uncertainty comes from variations of the soft scalar masses. To this
value one has to add at least ˙2 GeV coming from unknown higher order cor-
rections [69].2 We have also included a small variation, due to threshold corrections
at the GUT scale, of up to 5 % of the FUT boundary conditions. The masses of the
heavier Higgs bosons are found at higher values in comparison with our previous
analyses [65,89–91]. This is due to the more stringent bound on BR.Bs ! �C��/,
which pushes the heavy Higgs masses beyond �1 TeV, excluding their discovery at
the LHC.

We impose now a further constraint on our results, which is the value of the Higgs
mass

Mh � 126:0˙ 1˙ 2 GeV ; (39)

2We have not yet taken into account the improved Mh prediction presented in [88] (and
implemented into the most recent version of FeynHiggs), which will lead to an upward shift
in the Higgs boson mass prediction.
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Fig. 4 The left (right) plot shows the spectrum after imposing the constraint Mh D 126 ˙
3 .1/ GeV. The light (green) points are the various Higgs boson masses, the dark (blue) points
following are the two scalar top and bottom masses, the gray ones are the gluino masses, then
come the scalar tau masses in orange (light gray), the darker (red) points to the right are the two
chargino masses followed by the lighter shaded (pink) points indicating the neutralino masses

where ˙3 GeV corresponds to the current theory and experimental uncertainty, and
˙1 GeV to a reduced theory uncertainty in the future.3 We find that constraining the
allowed values of the Higgs mass puts a limit on the allowed values of the unified
gaugino mass, as can be seen from Fig. 3. The red lines correspond to the pure
experimental uncertainty and restrict 2 TeV <� M <� 5 TeV. The blue line includes
the additional theory uncertainty of ˙2 GeV. Taking this uncertainty into account
no bound on M can be placed.

The full particle spectrum of model FUT with � < 0, compliant with quark mass
constraints and the B-physics observables is shown in Fig. 4. It can be seen from the
figure that the lightest observable SUSY particle (LOSP) is the light scalar tau. In
the left (right) plot we impose Mh D 126˙ 3.1/ GeV. Without any Mh restrictions
the coloured SUSY particles have masses above �1.8 TeV in agreement with the
non-observation of those particles at the LHC [66–68]. Including the Higgs mass
constraints in general favours the lower part of the SUSY particle mass spectra,
but also cuts away the very low values. Going to the anticipated future theory
uncertainty ofMh (as shown in the lower plot of Fig. 4) permits SUSY masses which
would remain unobservable at the LHC, the ILC or CLIC. On the other hand, large
parts of the allowed spectrum of the lighter scalar tau or the lighter neutralinos might
be accessible at CLIC with

p
s D 3 TeV.

3In this analysis the new Mh evaluation [88] may have a relevant impact on the restrictions on the
allowed SUSY parameter space shown below.
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Conclusions
The serious problem of the appearance of many free parameters in the SM

of Elementary Particle Physics, takes dramatic dimensions in the MSSM,
where the free parameters are proliferated by at least hundred more, while
it is considered as the best candidate for Physics Beyond the SM. The idea
that the Theory of Particle Physics is more symmetric at high scales, which is
broken but has remnant predictions in the much lower scales of the SM, found
its best realisation in the framework of the MSSM assuming further a GUT
beyond the scale of the unification of couplings. However, the unification idea,
although successful, seems to have exhausted its potential to reduce further
the free parameters of the SM.

A new interesting possibility towards reducing the free parameters of a
theory has been put forward in [24, 25] which consists on a systematic search
on the RGI relations among couplings. This method might lead to further
symmetry, however its scope is much wider. After several trials it seems
that the basic idea found very nice realisations in Finite Unified Theories
and the MSSM. In the first case one is searching for RGI relations among
couplings holding beyond the unification scale, which moreover guarantee
finiteness to all-orders in perturbation theory. In the second, the search of
RGI relations among couplings is concentrated within the MSSM itself and
the assumption of GUT is not necessarily required. The results in both
cases are indeed impressive as we have discussed. Certainly one can add
some more comments on the Finite Unified Theories. These are related to
some fundamental developments in Theoretical Particle Physics based on
reconsiderations of the problem of divergencies and serious attempts to solve
it. They include the motivation and construction of string and noncommu-
tative theories, as well as N D 4 supersymmetric field theories [92, 93],
N D 8 supergravity [94–98] and the AdS/CFT correspondence [99]. It is
a thoroughly fascinating fact that many interesting ideas that have survived
various theoretical and phenomenological tests, as well as the solution to the
UV divergencies problem, find a common ground in the framework ofN D 1

Finite Unified Theories, which have been discussed here. From the theoretical
side they solve the problem of UV divergencies in a minimal way. On the
phenomenological side in both cases of reduction of couplings discussed here
the celebrated success of predicting the top-quark mass [18–20,22,23,100] is
now extended to the predictions of the Higgs masses and the supersymmetric
spectrum of the MSSM, which so far have been confronted very successfully
with the findings and bounds at the LHC.

The various scenarios will be refined/scrutinized in various ways in the
upcoming years. Important improvements in the analysis are expected from
progress on the theory side, in particular in an improved calculation of the

(continued)
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light Higgs boson mass. The corrections introduced in [88] not only introduce
a shift in Mh (which should to some extent be covered by the estimate of
theory uncertainties). They will also reduce the theory uncertainties, see [88,
101], and in this way refine the selected model points, leading to a sharper
prediction of the allowed spectrum. One can hope that with even more higher-
order corrections included in the Mh calculation an uncertainty below the
0:5 GeV level can be reached.

The other important improvements in the future will be the continuing
searches for SUSY particles at collider experiments. The LHC will re-
start in 2015 with an increased center-of-mass energy of

p
s <� 14 TeV,

largely extending its SUSY search reach. The lower parts of the currently
allowed/predicted colored SUSY spectra will be tested in this way. For the
electroweak particles, on the other hand, eCe� colliders might be the better
option. The ILC, operating at

p
s <� 1 TeV, has only a limited potential for

our model spectra. Going to higher energies,
p
s <� 3 TeV, that might be

realized at CLIC, large parts of the predicted electroweak model spectra can
be covered.

All spectra, however, (at least with the current calculation of Mh and its
corresponding uncertainty), contain parameter regions that will escape the
searches at the LHC, the ILC and CLIC. In this case we would remain with
a light Higgs boson in the decoupling limit, i.e. would be undistinguishable
from a SM Higgs boson. The only hope to overcome this situation is that an
improved Mh calculation would cut away such high spectra.
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A SUSY Double-Well Matrix Model as 2D
Type IIA Superstring

Fumihiko Sugino

Abstract We discuss correspondence between a simple supersymmetric matrix
model with a double-well potential and two-dimensional type IIA superstrings
on a nontrivial Ramond–Ramond background. In particular, we can see direct
correspondence between single trace operators in the matrix model and vertex
operators in the type IIA theory by computing scattering amplitudes and comparing
the results in both sides.

1 Introduction

Nonperturbative aspects of noncritical bosonic string theory were vigorously inves-
tigated around 1990 by using solvable matrix models (for a review, see [1]), while
little has been known for superstring theory, in particular which possesses target-
space supersymmetry (SUSY). We would like to consider (solvable) matrix models
describing superstring theory with target-space SUSY. We hope our analysis is
helpful to understand nonperturbative dynamics of matrix models of super Yang–
Mills type for critical superstring theory [2–4].

2 Double-Well SUSY Matrix Model

Kuroki and Sugino [5] discussed a following simple matrix model:

S D N tr

�
1

2
B2 C iB.�2 � �2/C N .� C  �/

�
; (1)
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where B and � areN �N hermitian matrices, and  and N areN �N Grassmann-
odd matrices. The action S is invariant under SUSY transformations generated by
Q and NQ:

Q� D  ; Q D 0; Q N D �iB; QB D 0; (2)

NQ� D � N ; NQ N D 0; NQ D �iB; NQB D 0; (3)

from which one can see that they are nilpotent: Q2 D NQ2 D fQ; NQg D 0. After
integrating out B , we have a scalar potential of a double-well shape: 1

2
.�2 � �2/2.

A large-N saddle point solution for the eigenvalue distribution of the matrix �:
�.x/ � 1

N
tr ı.x � �/ is given by

�.x/ D
(

�C
�
x
p
.x2 � a2/.b2 � x2/ .a < x < b/

��
�

jxjp.x2 � a2/.b2 � x2/ .�b < x < �a/; (4)

where a D p
�2 � 2 and b D p

�2 C 2. The filling fractions .�C; ��/ satisfying
�C C �� D 1 indicate that �CN (��N ) eigenvalues are around the right (left)
minimum of the double-well. The solution exists for �2 > 2. The large-N free
energy and the expectation values

˝
1
N

trBn
˛
.n D 1; 2; � � � / evaluated at the

solution turn out to all vanish [5]. This strongly suggests that the solution preserves
SUSY. Thus, we conclude that the SUSY minima are infinitely degenerate and
parameterized by .�C; ��/ at large N .

On the other hand, for �2 < 2, non SUSY saddle point solution is obtained [6].
The transition between the SUSY phase (�2 > 2) and the SUSY broken phase
(�2 < 2) is of the third order.

In the next section, we will compute various correlation functions at the saddle
point (4) and find new logarithmic critical behavior as �2 ! 2 C 0. Based on
the result, we will discuss correspondence between the matrix model and two-
dimensional type IIA superstring theory on a nontrivial Ramond–Ramond (RR)
background in Sects. 4 and 5.

Our matrix model is interpreted as the O.n/ model on a random surface [7]
with n D �2, whose critical behavior is described by the c D �2 topological
gravity [8]. The partition function after B ,  and N are integrated out is expressed
as a Gaussian one-matrix model by the Nicolai mapping H D �2, where the
H -integration is over the positive definite hermitian matrices, not over all the
hermitian matrices. References [9, 10] discuss that the difference of the integration
region has only effects which are nonperturbative in 1=N , and the model can be
regarded as the standard Gaussian matrix model at each order of genus expansion.

The Nicolai mapping changes the operators 1
N

tr�2n (n D 1; 2; � � � ) to regular
operators 1

N
trHn. Hence, the behavior of their correlators is expected to be

described by the Gaussian one-matrix (the c D �2 topological gravity) at least
perturbatively in 1=N . However, the operators 1

N
tr�2nC1 (n D 0; 1; 2; � � � ) are

mapped to ˙ 1
N

trHnC1=2 that are singular at the origin. They are not observables
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in the c D �2 topological gravity, while they are natural observables as well as
1
N

tr�2n in the original setting (1). In the next section, we will see that correlation
functions among operators

1

N
tr�2nC1;

1

N
tr 2nC1;

1

N
tr N 2nC1 .n D 0; 1; 2; � � � / (5)

exhibit logarithmic singular behavior of powers of ln.�2�2/ at the planar topology.

3 Correlation Functions

The planar one-point function
˝
1
N

tr�n
˛
0

(n D 1; 2; � � � ) are computed as

�
1

N
tr�n

�
0

D
Z
dx xn�.x/

D .�C C .�1/n��/.2C �2/n=2F

�
�n
2
;
3

2
; 3I 4

2C �2

�
; (6)

where the suffix “0” in the left hand side indicates the planar contribution. For n
even, the expression reduces to a polynomial of �2 giving nonsingular behavior as
expected from the c D �2 topological gravity. On the other hand, when �2 is odd,
it exhibits logarithmic singular behavior as �2 ! 2C 0:

�
1

N
tr�2kC1

�
0

� .�C � ��/2
kC2

�

.2k C 1/ŠŠ

.k C 2/Š
!kC2 ln! (7)

with ! � 1
4
.�2 � 2/. The symbol “�” denotes equality up to additive less singular

terms. Matrix models can be seen as a sort of “lattice models” for string theory.
In the hypergeometric function F

�� n
2
; 3
2
; 3I 1

1C!
�

for n being odd, the logarithmic
singular terms can be regarded as universal parts relevant to “continuum physics”,
whereas polynomials of ! as nonuniversal “lattice artifacts”.

In [11], planar higher-point functions are obtained by introducing source termsP1
pD1 jptr�p and considering a large-N saddle point equation in the presence of

the source terms. Two-point functions are expressed as

�
˚2kC1

1

N
tr�2`

�
C;0

� .�C � ��/.const./!kC1 ln!; (8)

h˚2kC1˚2`C1iC;0 � �.�C � ��/2 1

2�2
1

k C `C 1

.2k C 1/Š

.kŠ/2
.2`C 1/Š

.`Š/2

� !kC`C1.ln!/2: (9)
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Here, the suffix “C ” means taking connected parts. In order to subtract nonuniversal
contributions, we took a basis of the odd-power operators mixed with lower even-
power operators:

˚2kC1 D 1

N
tr�2kC1 C .�C � ��/

kX
iD1

˛2kC1;2i .!/
1

N
tr�2i (10)

with ˛2kC1;2i .!/ being a regular function at ! D 0. The form of n-point functions
of operators ˚2kC1 (k D 0; 1; 2; � � � ) is

*
nY
iD1

˚2kiC1

+

C;0

� .�C � ��/n .const./ !2��C
Pn
iD1.ki�1/ .ln!/n (11)

with � D �1. Besides the power of logarithm .ln!/n, it has the standard scaling
behavior with the string susceptibility � D �1 (the same as in the c D �2
topological gravity) and the gravitational scaling dimension k of ˚2kC1, if we
identify ! with “the cosmological constant” coupled to the lowest dimensional
operator on a random surface [12–14].

Similarly to (10), we consider fermionic operators:

�1 � 1
N

tr ; N�1 � 1

N
tr N ;

�3 � 1
N

tr 3 C .mixing/; N�3 � 1

N
tr N 3 C .mixing/;

� � � ; � � � ; (12)

where “(mixing)” means lower-power operators needed to subtract nonuniversal
contributions. In [11], two-point correlators of fermions are also computed as

˝
�2kC1 N�2`C1

˛
C;0

� ık;` vk .�C � ��/2kC1!2kC1 ln! (13)

with v0 D 1
�

and v1 D 6
�

. The result tells us that �2kC1 and N�2kC1 have the same
gravitational scaling dimension k as ˚2kC1 besides the logarithmic factor.

4 2D Type IIA Superstring

The two-dimensional type II superstring theory discussed in [15–18] has the target
space .'; x/ 2 (Liouville direction) � .S1 with self-dual radius). The holomorphic
energy-momentum tensor on the string world-sheet is

T D �1
2
.@x/2 � 1

2
 x@ x � 1

2
.@'/2 C @2' � 1

2
 `@ ` (14)
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excluding ghosts’ part.  x and  ` are superpartners of x and ', respectively. Target-
space supercurrents in the type IIA theory

qC.z/ D e�
1
2 �.z/� i

2H.z/�ix.z/; Nq�.Nz/ D e�
1
2
N�.Nz/C i

2
NH.Nz/Ci Nx.Nz/ (15)

exist only for the S1 target space of the self-dual radius. � ( N�) is the holomor-
phic (anti-holomorphic) bosonized superconformal ghost, and the fermions are
bosonized as  ` ˙ i x D p

2 e�iH , N ` ˙ i N x D p
2 e�i NH . In addition, we should

care about cocycle factors in order to realize the anticommuting nature between qC
and Nq�. Supercurrents with the cocycle factors are

OqC.z/ D e�ˇ.
1
2 p N��i 12 p Nh�ipNx/ qC.z/; ONq�. Nw/ D e��ˇ. 12 p�Ci 12 phCipx/ Nq�. Nw/;

(16)

where ˇ 2 Z C 1
2
, and p� , ph and px (p N� , p Nh and p Nx) are momentum

modes of holomorphic part (anti-holomorphic part) of free bosons [19]. Then the
supercharges

OQC D
I

d z

2�i
OqC.z/; ONQ� D

I
d Nz
2�i

ONq�.Nz/ (17)

are nilpotent OQ2C D ONQ2� D f OQC; ONQ�g D 0, which indeed matches the property of
the supercharges Q and NQ in the matrix model.

The spectrum except special massive states is represented by the NS “tachyon”1

vertex operator (in .�1/ picture):

Tk D e��CikxCp`'; NT Nk D e� N�Ci Nk NxCp` N'; (18)

and by the R vertex operator (in .� 1
2
/ picture):

Vk; � D e� 12 �C i
2 �HCikxCp`'; NV Nk; N� D e� 12 N�C i

2 N� NHCi Nk NxCp` N' (19)

with �; N� D ˙1. Cocycle factors for the vertex operators are introduced as

OTk.z/ D e�ˇ.p N�CikpNx/ Tk.z/; ONT Nk.Nz/ D e��ˇ.p�Ci Nkpx/ NT Nk.Nz/; (20)

OVk; �.z/ D e�ˇ.
1
2 p N�Ci �2 p NhCikpNx/ Vk; �.z/; ONV Nk; N�.Nz/ D e��ˇ. 12 p�Ci N�2 phCi Nkpx/ NV Nk; N�.Nz/:

Locality with the supercurrents, mutual locality, superconformal invariance (includ-
ing the Dirac equation constraint) and the level matching condition determine
physical vertex operators. As discussed in [17], there are two consistent sets of

1 In two dimensions, “tachyon” turns out to be not truly tachyonic but massless.
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physical vertex operators—“momentum background” and “winding background”.
Let us consider the “winding background”.2 The physical spectrum in the “winding
background” is given by

(NS, NS) W OTk ONT�k .k 2 Z C 1

2
/;

(RC, R�) W OVk;C1 ONV�k;�1 .k D 1

2
;
3

2
; � � � /;

(R�, RC) W OV�k;�1 ONVk;C1 .k D 0; 1; 2; � � � /;

(NS, R�) W OT�k ONV�k;�1 .k D 1

2
;
3

2
; � � � /;

(RC, NS) W OVk;C1 ONTk .k D 1

2
;
3

2
; � � � /; (21)

where we take a branch of p` D 1�jkj satisfying the locality bound p` � Q=2 D 1

[20]. We can see that the vertex operators

OV1
2 ;C1

ONV� 12 ;�1; OT� 12
ONV� 12 ;�1; OV1

2 ;C1
ONT1
2
; OT� 12

ONT1
2

(22)

form a quartet under OQC and ONQ�:

Œ OQC; OV1
2 ;C1

ONV� 12 ;�1� D OT� 12
ONV� 12 ;�1; f OQC; OT� 12

ONV� 12 ;�1g D 0;

f OQC; OV1
2 ;C1

ONT1
2
g D OT� 12

ONT1
2
; Œ OQC; OT� 12

ONT1
2
� D 0; (23)

Œ ONQ�; OV1
2 ;C1

ONV� 12 ;�1� D � OV1
2 ;C1

ONT1
2
; f ONQ�; OV1

2 ;C1
NT1
2
g D 0;

f ONQ�; OT� 12
ONV� 12 ;�1g D OT� 12

ONT1
2
; Œ ONQ�; OT� 12 NT1

2
� D 0: (24)

Notice that (23) and (24) are isomorphic to (2) and (3), respectively. It leads to
correspondence of single-trace operators in the matrix model to integrated vertex
operators in the type IIA theory:

˚1 D 1

N
tr� , V�.0/ � g2s

Z
d2z OV1

2 ;C1.z/
ONV� 12 ;�1.Nz/;

�1 D 1

N
tr , V .0/ � g2s

Z
d2z OT� 12 .z/

ONV� 12 ;�1.Nz/;

2 We can repeat the parallel argument for “momentum background” in the type IIB theory, which
is equivalent to the “winding background” in the type IIA theory through T-duality with respect to
the S1 direction.
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N�1 D 1

N
tr N , V N .0/ � g2s

Z
d2z OV1

2 ;C1.z/
ONT1
2
.Nz/;

1

N
tr .�iB/ , VB.0/ � g2s

Z
d2z OT� 12 .z/

ONT1
2
.Nz/; (25)

where the bare string coupling gs is put in the right hand sides to count the number
of external lines of amplitudes in the IIA theory. Furthermore, it can be naturally
extended as

˚2kC1 D 1

N
tr�2kC1 C (mixing) , V�.k/ � g2s

Z
d2z OVkC 1

2 ;C1.z/
ONV�k� 12 ;�1.Nz/;

�2kC1 D 1

N
tr 2kC1 C (mixing) , V .k/ � g2s

Z
d2z OT�k� 12 .z/

ONV�k� 12 ;�1.Nz/;

N�2kC1 D 1

N
tr N 2kC1 C (mixing) , V N .k/ � g2s

Z
d2z OVkC 1

2 ;C1.z/
ONTkC 1

2
.Nz/ (26)

for higher k.D 1; 2; � � � /. We see in (26) that the powers of matrices are interpreted
as windings or momenta in the S1 direction of the type IIA theory.

Note that (R�, RC) operators are singlets under the target-space SUSYs
OQC; ONQ�, and appear to have no counterpart in the matrix model side. Since the

expectation value of operators measuring an RR charge h˚2kC1i0 does not vanish as
seen in (7), the matrix model is considered to correspond to the type IIA theory on
a nontrivial background of the (R�, RC) fields. We may introduce the (R�, RC)
background in the form of vertex operators, when the strength of the background
.�C � ��/ is small.

5 Correspondence Between the Matrix Model
and the Type IIA Theory

Correlation functions among integrated vertex operators in the type IIA theory on
the trivial background are given by

*Y
i

Vi

+
D 1

Vol.(CKV)

Z
D.x; ';H; ghosts/ e�SCFTe�Sint

Y
i

Vi ; (27)

where

SCFT D 1

2�

Z
d2z

�
@x N@x C @' N@' C 1

2

p
Og OR' C @H N@H C .ghosts/

�
;

Sint D �1V .0;0/B .0/ � �1

Z
d2z OT .0/� 12 .z/

ONT .0/1
2

.Nz/: (28)
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The 0-picture (NS, NS) “tachyon” is given by

OT .0/� 12 .z/ D e�ˇ.ip Nh�i 12 pNx/
ip
2
eiH�i 12 xC 1

2 '.z/;

ONT .0/1
2

.Nz/ D e��ˇ.�iphCi 12 px/
ip
2
e�i NHCi 12 NxC 1

2 N'.Nz/: (29)

We consider correlation functions in the IIA theory on a nontrivial (R�, RC)
background as a form

**Y
i

Vi

++
�
* Y

i

Vi

!
eWRR

+
: (30)

The background WRR is invariant under the target-space SUSYs:

WRR D .�C � ��/
X
k2Z

ak �
kC1
1 VRR

k ;

VRR
k �

( R
d2z OVk;�1.z/ ONV�k;C1.Nz/ .p` D 1 � jkj; k � 0/R
d2z OV .nonlocal/

�k;�1 .z/ ONV .nonlocal/
k;C1 .Nz/ .p` D 1C jkj; k 	 1/

(31)

with ak being numerical constants. Although the nonlocal operators in (31) with
p` > 1 do not satisfy the Dirac equation constraint on the trivial background, these
operators are necessary to make correspondence with the matrix model as we see
later. Since the RR background possibly change the on-shell condition, it would be
acceptable. We treat the RR background for .�C � ��/ small as

**Y
i

Vi

++
�
* Y

i

Vi

!
eWRR

+
D
1X
nD0

1

nŠ

* Y
i

Vi

!
.WRR/

n

+
; (32)

and the picture is adjusted by hand so that the total picture is equal to �2.
In computation of amplitudes in the type IIA theory, we consider the so-called

s D 0 amplitude in the Liouville theory, which is interpreted as a bulk amplitude
insensitive to details of the Liouville wall [21]. Computation in the Liouville
theory [19] yields

˝
VB.0/V�.k/VRR

`

˛ D �g4s ık;` .2 ln�1/ e
i2�ˇ.�k2� 12 kC 1

4 /; (33)

˝
V�.k1/;V�.k2/VRR

`1
VRR
`2

˛ D g4s .ı`1;k1Ck2ı`2;�1 C .`1 $ `2// cL.2 ln�1/
2
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��
2

�
.k1 C k2/Š

k1Šk2Š

�2
e�i�ˇf

P2
iD1.kiC 1

2 /
2CP2

iD1 `
2
i g: (34)

Let us identify the coupling �1 of the Liouville interaction Sint in (28) with the
“cosmological constant” ! by an appropriate shift of the Liouville coordinate. Then,
it leads to the identification N tr.�iB/ Š 1

4
V .0;0/B .0/, which is consistent to the

last line in (25) (up to the choice of the picture) with 1
N

Š gs . Also, introducing
coefficients ck , dk , Ndk , we precisely express the correspondence in (25) and (26) as

˚2kC1 Š ckV�.k/; �2kC1 Š dkV .k/; N�2kC1 Š NdkV N .k/: (35)

We put the overall normalization factor N in identifying the amplitudes in the
matrix-model side and those in the IIA theory side:

hN tr.�iB/˚2kC1iC;0 Š Ng�2s
��
1

4
V .0;0/B .0/ ckV�.k/

��
: (36)

The left hand side is calculated by using (7):

.LHS/ D �1
4
@! h˚2kC1i0 � �.�C � ��/2

k

�

.2k C 1/ŠŠ

.k C 1/Š
!kC1 ln!: (37)

On the other hand, under a suitable choice of the picture, leading nontrivial
contribution for .�C � ��/ small to the right hand side is

1

4
Ng�2s ck

˝
VB.0/V�.k/WRR

˛

D 1

4
Ng�4s ck.�C � ��/

X
`2Z

a` !
`C1 ˝VB.0/V�.k/VRR

`

˛

D �1
2
.�C � ��/N ck ak !kC1.ln!/ ei2�ˇ.�k2� 12 kC 1

4 / (38)

where (33) was used. The identification (36) leads to

N Ock Oak ei�ˇ 34 D 2

�

.2k C 1/Š

kŠ.k C 1/Š
(39)

with Ock � ck e
�i�ˇ.kC 1

2 /
2

and Oak � ak e
�i�ˇk2 .

Next, let us consider the correspondence

h˚2k1C1˚2k2C1iC;0 Š Ng�2s
˝˝
ck1V�.k1/ ck2V�.k2/

˛˛
: (40)
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Leading nontrivial contribution to the right hand side is obtained from (34) as

Ng�2s ck1 ck2
�
V�.k1/V�.k2/

1

2Š
.WRR/

2

�
(41)

D 1

2
Ng�2s ck1 ck2 .�C � ��/2

X
`1;`22Z

a`1 a`2 !
`1C`2C2 ˝V�.k1/V�.k2/VRR

`1
VRR
`2

˛

D .�C � ��/2Ng2s cL Ock1 Ock2 Oak1Ck2 Oa�1 2�
�
.k1 C k2/Š

k1Šk2Š

�2
!k1Ck2C1 .ln!/2;

while the result of the left hand side is given by (9). Comparing these, we find the
same dependence on �˙ and ! for any k1 and k2. In addition, we have an equation:

� Ock1
.2k1 C 1/Š

�� Ock2
.2k2 C 1/Š

�
. Oak1Ck2.k1 C k2/Š.k1 C k2 C 1/Š/

D � 1

4�3
1

N cL Oa�1 ; (42)

which is solved as

Ock D Oc0 e�k .2k C 1/Š; Oak D Oa0 e��k
kŠ.k C 1/Š

.k D 0; 1; 2; � � � / (43)

with � being a numerical constant and Oc20 Oa0 D � 1
4�3

1
N cL Oa�1 . Remarkably, (39) is

consistent to (43). It serves a quite nontrivial check of the correspondence.
So far, the correspondence seems consistent at the level of planar or tree

amplitudes. Furthermore, the consistency is checked in amplitudes containing
fermions and the torus partition function [19].

6 Summary and Discussion

We computed planar correlation functions in the double-well SUSY matrix model,
and discussed its correspondence to two-dimensional type IIA superstring theory on
(R�,RC) background by comparing amplitudes in both sides. This is an interesting
example of matrix models for superstrings with target-space SUSY, in which various
amplitudes are explicitly calculable.

Furthermore, instanton effects in the matrix model are calculated in [22].
Although such effects are of the order e�N and vanish in the simple large N limit,
they are nonvanishing in a double scaling limit

N ! 1; ! ! 0 with t � N2=3! fixed: (44)
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The result shows that the supersymmetry is spontaneously broken by nonpertur-
bative effects due to instantons. In particular, the instanton effects survive in the
double scaling limit, which implies that supersymmetry breaking takes place by
nonperturbative dynamics in the target space of the type IIA superstring theory.
Corresponding Nambu-Goldstone fermions are identified with 1

N
tr N and 1

N
tr 

associated with the breaking ofQ and NQ, respectively. It is interesting to investigate
dynamics of D-branes in the type IIA theory and to reproduce the instanton
contributions from the type IIA theory side.
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f .R/-Gravity: “Einstein Frame” Lagrangian
Formulation, Non-standard Black Holes
and QCD-Like Confinement/Deconfinement

E. Guendelman, A. Kaganovich, E. Nissimov, and S. Pacheva

Abstract We consider f .R/ D R C R2 gravity interacting with a dilaton and
a special non-standard form of nonlinear electrodynamics containing a square-
root of ordinary Maxwell Lagrangian. In flat spacetime the latter arises due to
a spontaneous breakdown of scale symmetry and produces an effective charge-
confining potential. In theRCR2 gravity case, upon deriving the explicit form of the
equivalent local “Einstein frame” Lagrangian action, we find several physically rele-
vant features due to the combined effect of the gauge field and gravity nonlinearities
such as: appearance of dynamical effective gauge couplings and confinement-
deconfinement transition effect as functions of the dilaton vacuum expectation value;
new mechanism for dynamical generation of cosmological constant; deriving non-
standard black hole solutions carrying additional constant vacuum radial electric
field and with non-asymptotically flat “hedge-hog”-type spacetime asymptotics.

1 Introduction

f .R/-gravity models (where f .R/ is a nonlinear function of the scalar curvature
R and, possibly, of other higher-order invariants of the Riemann curvature tensor
R����) are attracting a lot of interest as possible candidates to cure problems in the
standard cosmological models related to dark matter and dark energy. For a recent
review of f .R/-gravity see e.g. [1] and references therein.1

1The first R2-model (within the second order formalism), which was proposed as the first
inflationary model, appeared in [2].
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In the present contribution we consider f .R/-gravity coupled to scalar dilaton
� and most notably—to a non-standard nonlinear gauge field system containingp�F 2 (square-root of standard Maxwell kinetic term; see [3–5]), which is known
to produce confining effective potential among quantized charged fermions in flat
spacetime [4].

We describe in some detail the explicit derivation of the effective Lagrangian
governing the f .R/-gravity dynamics in the so called “Einstein frame”. The latter
means that in terms of an appropriate conformal rescaling of the original spacetime
metric g�� ! h�� D f 0R g�� (where f 0R D df=dR) the pertinent gravity part of the
effective action assumes the standard form of Einstein–Hilbert action (� R.h/).

Our main goal is to derive a local “Einstein frame” effective Lagrangian for the
matter fields as well—this is explicitly done for “RCR2-gravity”.

Namely, in the special case of f .R/ D R C ˛R2 the passage to the “Einstein
frame” entails non-trivial modifications in the effective matter Lagrangian, which in
combination with the special “square-root” gauge field nonlinearity triggers various
physically interesting effects:

(i) appearance of dynamical effective gauge couplings and confinement-
deconfinement transition effect as functions of the dilaton vacuum expectation
value ( v.e.v.);

(ii) new mechanism for dynamical generation of cosmological constant;
(iii) non-standard black hole solutions carrying a constant vacuum radial electric

field (such electric fields do not exist in ordinary Maxwell electrodynamics)
and exhibiting non-asymptotically flat “hedgehog”-type [6] spacetime asymp-
totics;

(iv) the above non-standard black holes are shown to obey the first law of black
hole thermodynamics;

(v) obtaining new “tubelike universe” solutions of Levi–Civita–Bertotti–Robinson
type M2 � S2 [7].

In addition, as shown in [8] coupling of the gravity/nonlinear gauge field system
to lightlike branes produces “charge-”hiding” and charge-confining “thin-shell”
wormhole solutions displaying QCD-like confinement.

The main motivation for including the nonlinear gauge field term
p�F 2 comes

from the works [9] of ‘t Hooft, who has shown that in any effective quantum
gauge theory, which is able to describe linear confinement phenomena, the energy
density of electrostatic field configurations should be a linear function of the
electric displacement field in the infrared region (the latter appearing as an “infrared
counterterm”).

The simplest way to realize ‘t Hooft’s ideas in flat spacetime has been worked
out in [3–5] where the following nonlinear modification of Maxwell action has been
proposed:

S D
Z
d4x L.F 2/ ; L.F 2/ D �1

4
F 2 � f0

2

p
�F 2 ; (1)
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F 2 � F��F
�� ; F�� D @�A� � @�A� :

The square root of the Maxwell kinetic term naturally arises as a result of sponta-
neous breakdown of scale symmetry of the original scale-invariant Maxwell action
with f0 appearing as an integration constant responsible for the latter spontaneous
breakdown.

For static field configurations the model (1) yields an electric displacement field
D D E� f0p

2

E
jEj and the corresponding energy density turns out to be 1

2
E2 D 1

2
jDj2C

f0p
2
jDj C 1

4
f 2
0 , so that it indeed contains a term linear w.r.t. jDj as predicted by the

phenomenological theory of ‘t Hooft.
The non-standard nonlinear gauge field system (1) produces in flat spacetime

[4], when coupled to quantized fermions, a confining effective potential V.r/ D
�ˇ

r
C �r (Coulomb plus linear one with � � f0) which is of the form of the well-

known “Cornell” potential [10] in the phenomenological description of quarkonium
systems in QCD.

2 f .R/-Gravity in the “Einstein Frame”

Consider f .R/ D RC˛R2C: : : gravity (possibly with a bare cosmological constant
�0) coupled to a dilaton � and a nonlinear gauge field system containing

p�F 2:

S D
Z
d4x

p�g
h 1

16�



f
�
R.g; � /

� � 2�0

�
C L.F 2.g//C LD.�; g/

i
; (2)

L.F 2.g// D � 1

4e2
F 2.g/ � f0

2

p
�F 2.g/ ; (3)

F 2.g/ � F��F��g
��g�� ; F�� D @�A� � @�A� (4)

LD.�; g/ D �1
2
g��@��@�� � V.�/ : (5)

where R.g; � / D R��.� /g
�� and R��.� / is the Ricci curvature in the first order

(Palatini) formalism, i.e., the spacetime metric g�� and the affine connection � �

��

are a priori independent variables.
The equations of motion resulting from the action (2) read:

R��.� / D 1

f 0R

�
8�T�� C 1

2
f
�
R.g; � /

�
g��

�
; (6)

f 0R � df .R/

dR
; r�

�p�gf 0Rg��
� D 0 ; (7)

@�


p�g
h
1=e2 � f0p�F 2.g/

i
F��g

��g��
�

D 0 : (8)

The total energy-momentum tensor is given by:
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T�� D
h
L.F 2.g//C LD.�; g/ � 1

8�
�0

i
g�� (9)

C


1=e2 � f0p�F 2.g/

�
F��F��g

�� C @��@�� :

Equation (7) leads to the relation r�

�
f 0Rg��

� D 0 and thus it implies transition
to the physical “Einstein frame” metrics h�� via conformal rescaling of the original
metric g�� [11]:

g�� D 1

f 0R
h�� ; �

�

�� D 1

2
h�� .@�h�� C @�h�� � @�h��/ : (10)

Using (10) the f .R/-gravity equations of motion (6) can be rewritten in the form of
standard Einstein equations:

R�� D 8�

�
Teff�� � 1

2
g��Teff

�
(11)

where Teff D g��Teff�� and with effective energy-momentum tensor Teff�� of the
following form:

Teff�� D 1

f 0R

h
T�� � 1

4
g��T

i
� 1

32�
g��R.T / : (12)

Here T � g��T�� , R.T / is the original scalar curvature determined as function of
T from the trace of Eq. (6):

8�T D Rf 0R � 2f .R/ ; (13)

and everywhere in (11)–(13) g�� and �
�

�� are understood as functions of the
“Einstein frame” metric h�� (10).

3 Einstein-Frame Effective Action

We are now looking for an effective action Seff D R
d4x

p�h
h

1
16�
R.h/ C Leff

i
,

where R.h/ is the standard Ricci scalar of the “Einstein frame” metric h�� and
Leff � Leff.h��; A�; �/ is a local function of the corresponding (matter) fields and
of their derivatives, such that it produces in the standard way the original f .R/-
gravity equations of motion (6) (or equivalently (11)–(13)). Leff will also include
an effective cosmological constant term irrespective of the presence or absence of a
bare cosmological constant �0 in the original f .R/-gravity action (2).
Leff must obey the following relation to the “Einstein frame” effective energy-

momentum tensor (12):
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Teff�� D h��Leff � 2@Leff

@h��
: (14)

Henceforth we will explicitly consider the simplest nonlinear f .R/-gravity case:
f .R/ D RC ˛R2 (so that f 0R D 1C 2˛R).

The generic form of the matter Lagrangian reads:

Lm D L.0/ C L.1/.g/C L.2/.g/ ; (15)

where the superscripts indicate homogeneity degree w.r.t. g�� . Solving relation (14)
by taking into account the conformal rescaling of g�� (10) and the homogeneity rela-
tion (15) we find the following local effective “Einstein frame” matter Lagrangian:

Leff D 1

1 � 64�˛L.0/
h
L.0/ C L.1/.h/

�
1C 16�˛L.1/.h/

�iC L.2/.h/ ; (16)

where now the superscripts indicate homogeneity degree w.r.t. h�� .
Explicitly, in the case of R C R2-gravity/nonlinear-gauge-field/dilaton sys-

tem (2)–(5) we have (using shortcut notations F 2.h/ � F��F��h
��h�� and

X.�; h/ � � 1
2
h��@��@��):

Leff D � 1

4e2eff.�/
F 2.h/ � 1

2
feff.�/

p
�F 2.h/

CX.�; h/
�
1C 16�˛X.�; h/

� � V.�/ ��0=8�

1C 8˛ .8�V.�/C�0/
(17)

with the dynamically generated dilaton �-dependent couplings:

1

e2eff.�/
D 1

e2
C 16� f̨ 2

0

1C 8˛ .8�V.�/C�0/
; (18)

feff.�/ D f0
1C 32�˛X.�; h/

1C 8˛ .8�V.�/C�0/
: (19)

Here is an important observation about the effective action:

Seff D
Z
d4x

p
�h
hR.h/
16�

C Leff.h; A; �/
i
: (20)

Even if ordinary kinetic Maxwell term � 1
4
F 2 is absent in the original system (e2 !

1 in (3)), such term is nevertheless dynamically generated in the “Einstein frame”
action (17)–(20)—an explicit manifestation of the combined effect of gravitational
and gauge field nonlinearities (˛R2 and � f0

2

p�F 2):



216 E. Guendelman et al.

Smaxwell D �4� f̨ 2
0

Z
d4x

p
�h F��F��h

��h��

1C 8˛ .8�V.�/C�0/
: (21)

4 Confinement/Deconfinement Phases

In what follows we consider constant dilaton � extremizing the effective
Lagrangian (17) (i.e., the dilaton kinetic termX.�; h/ will be ignored in the sequel):

Leff D � 1

4e2eff.�/
F 2.h/ � 1

2
feff.�/

p
�F 2.h/ � Veff.�/ ; (22)

Veff.�/ D V.�/C �0
8�

1C 8˛ .8�V.�/C�0/
; (23)

feff.�/ D f0

1C 8˛ .8�V.�/C�0/
; (24)

1

e2eff.�/
D 1

e2
C 16� f̨ 2

0

1C 8˛ .8�V.�/C�0/
: (25)

Here we uncover the following important property: the dynamical couplings and
the effective potential are extremized simultaneously, which is an explicit realization
of the so called “least coupling principle” of Damour–Polyakov [12]:

@feff

@�
D �64� f̨0

@Veff

@�
;

@

@�

1

e2eff

D �.32� f̨0/
2 @Veff

@�
! @Leff

@�
� @Veff

@�
:

(26)

Therefore, at the extremum of Leff (22) � must satisfy:

@Veff

@�
D V 0.�/
Œ1C 8˛ .�2V .�/C�0/�

2
D 0 : (27)

There are two generic cases:

(A) Confining phase: Equation (27) is satisfied for some finite value �0 extremizing
the original potential V.�/: V 0.�0/ D 0.

(B) Deconfinement phase: For polynomial or exponentially growing original poten-
tial V.�/, so that V.�/ ! 1 when � ! 1, we have:

@Veff

@�
! 0 ; Veff.�/ ! 1

64�˛
D const when � ! 1 ; (28)
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i.e., for sufficiently large values of � we find a “flat region” in the effective
potential Veff. This “flat region” triggers a transition from confining to deconfinement
dynamics.

Namely, in the confining phase (A) (generic minimum �0 of the effective dilaton
potential) we have shown in [13] that the following confining potential (linear
w.r.t. r) acts on charged test point-particles:

p
2E jq0j
m2
0

eeff.�0/feff.�0/ r ; (29)

where E ; m0; q0 are energy, mass and charge of the test particle.
In the deconfinement phase (B) (“flat-region” of the effective dilaton potential)

we have:

feff ! 0 ; e2eff ! e2 (30)

and the effective gauge field Lagrangian (22) reduces to the ordinary non-confining
one (the “square-root” term

p�F 2 vanishes):

L
.0/
eff D � 1

4e2
F 2.h/ � 1

64�˛
(31)

with an induced cosmological constant �eff D 1=8˛, which is completely indepen-
dent of the bare cosmological constant �0.

5 Non-standard Black Holes and New “Tubelike” Solutions

From the effective Einstein-frame action (20) with Leff as in (22) we find non-
standard Reissner–Nordström-(anti-)de-Sitter-type black hole solutions in the con-
fining phase (�0—generic minimum of the effective dilaton potential (23); eeff.�//,
feff.�/ as in (24)–(25)):

ds2 D �A.r/dt2 C dr2

A.r/
C r2

�
d
2 C sin2 
d'2

�
; (32)

A.r/ D 1 � p
8�jQjfeff.�0/eeff.�0/ � 2m

r
C Q2

r2
� �eff.�0/

3
r2 ; (33)

with dynamically generated cosmological constant:

�eff.�0/ D �0 C 8�V.�0/C 2�e2f 2
0

1C 8˛
�
�0 C 8�V.�0/C 2�e2f 2

0

� : (34)
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The black hole’s static spherically symmetric electric field contains apart from
the Coulomb term an additional constant radial “vacuum” piece responsible for
confinement (let us stress again that constant vacuum radial electric fields do not
exist in ordinary Maxwell electrodynamics):

jF0r j D jEvacj C jQjp
4� r2


 1
e2

C 16� f̨ 2
0

1C 8˛ .8�V.�0/C�0/

�� 12
(35)

jEvacj �

 1
e2

C 16� f̨ 2
0

1C 8˛ .8�V.�0/C�0/

��1 f0=
p
2

1C 8˛ .8�V.�0/C�0/
: (36)

For the special value of �0 where �eff.�0/ D 0 we obtain Reissner–Nordström-
type black hole with a “hedgehog” [6] non-flat-spacetime asymptotics: A.r/ !
1 � p

8�jQjfeff.�0/eeff.�0/ ¤ 1 for r ! 1.
Further we obtain Levi–Civitta–Bertotti–Robinson (LCBR) [7] type “tubelike”

spacetime solutions with geometries M2 � S2 (M2—two-dimensional manifold)
with metric of the form:

ds2 D �A.�/dt2 C d�2

A.�/
C r20

�
d
2 C sin2 
d'2

�
; �1 < � < 1 ; (37)

and constant vacuum “radial” electric field jF0�j D jEvacj, where the size of the
S2-factor is given by (using short-hand �.�0/ � 8�V.�0/C�0):

1

r20
D 4�

1C 8˛�.�0/

h

1C 8˛

�
�.�0/C 2�f 2

0

��
E2vac C 1

4�
�.�0/

i
: (38)

There are three distinct solutions for LBCR (37) where M2 D AdS2;Rind2,
dS2 (two-dimensional anti-de Sitter, Rindler and de Sitter spaces, respectively):

(i) LBCR type solution AdS2 � S2 for strong jEvacj:
A.�/ D 4�K.Evac/�

2 ; K.Evac/ > 0 ; (39)

in the metric (37), � being the Poincare patch space-like coordinate of AdS2,
and

K.Evac/ �


1C8˛ ��.�0/C 2�f 2

0

��
E2vac�

p
2f0jEvacj� 1

4�
�.�0/ : (40)

(ii) LBCR type solution Rind2 � S2 when K.Evac/ D 0:

A.�/ D � for 0 < � < 1 or A.�/ D �� for � 1 < � < 0 (41)

(iii) LBCR type solution dS2 � S2 for weak jEvacj:

A.�/ D 1 � 4�jK.Evac/j �2 ; K.Evac/ < 0 : (42)
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6 Thermodynamics of Non-standard Black Holes

Consider static spherically symmetric metric ds2 D �A.r/dt2 C dr2

A.r/
C r2

�
d
2 C

sin2 
d'2
�

with Schwarzschild-type horizon r0, i.e., A.r0/ D 0 ; @rA
ˇ̌
r0
> 0 and

with A.r/ of the general “non-standard” form:

A.r/ D 1 � c.Qi/ � 2m=r C A1.r IQi/ ; (43)

where Qi are the rest of the black hole parameters apart from the mass m, and
c.Qi / is generically a non-zero constant (as in (33)) responsible for a “hedgehog”
[6] non-flat spacetime asymptotics.

The so called surface gravity � proportional to Hawking temperature Th is given
by � D 2�Th D 1

2
@rA

ˇ̌
r0

(cf., e.g., [14]).
One can straightforwardly derive the first law of black hole thermodynamics for

the non-standard black hole solutions with (43):

ım D 1

8�
�ıAH C Q̊

i ıQi ; AH D 4�r20 ;
Q̊
i D r0

2

@

@Qi



A1.r0IQi/ � c.Qi/

�
:

(44)

In the special case of non-standard Reissner–Nordström-(anti-)de-Sitter type black
holes (32)–(34) with parameters .m;Q/ the conjugate potential in (44):

Q̊ D Q

r0
� p

2�feff.�0/eeff.�0/r0 �
p
4�

e2eff.�0/
A0

ˇ̌
rDr0 (45)

(with eeff.�0/ and feff.�0/ as in (18)–(19)) is (up to a dilaton v.e.v.-dependent factor)
the electric field potential A0 (F0r D �@rA0) of the nonlinear gauge system on the
horizon.

Conclusions
In the present contribution we have uncovered a non-trivial interplay between
a special gauge field non-linearity and f .R/-gravity. On one hand, the
inclusion of the non-standard nonlinear “square-root” Maxwell term

p�F 2

is the explicit realization of the old “classic” idea of ‘t Hooft [9] about the
nature of low-energy confinement dynamics. On the other hand, coupling of
the nonlinear gauge theory containing

p�F 2 to f .R/ D R C ˛R2 gravity
plus scalar dilaton leads to a variety of remarkable effects:

• Dynamical effective gauge couplings and dynamical induced cosmological
constant—functions of dilaton v.e.v..

(continued)
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• New non-standard black hole solutions of Reissner–Nordström-(anti-)de-
Sitter type carrying an additional constant vacuum radial electric field,
in particular, non-standard Reissner–Nordström type black holes with
asymptotically non-flat “hedgehog” behaviour.

• “Cornell”-type confining effective potential in charged test particle dynam-
ics.

• Cumulative simultaneous effect of
p�F 2 and R2-terms—triggering tran-

sition from confining to deconfinement phase. Standard Maxwell kinetic
term for the gauge field �F 2 is dynamically generated even when absent
in the original “bare” theory.

Furthermore, as we have shown in [8]:

• Coupling to a charged lightlike brane produces a charge-“hiding” worm-
hole, where a genuinely charged matter source is detected as electrically
neutral by an external observer.

• Coupling to two oppositely charged lightlike brane sources produces a two-
“throat” wormhole displaying a genuine QCD-like charge confinement.
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The D-Brane Charges of C3/Z2

Elaine Beltaos

Abstract The charges of WZW D-branes form a finite abelian group called the
charge group. One approach to finding these groups is to use the conformal field
theory description of D-branes, i.e. the charge equation. Using this approach, we
work out the charge groups for the non-simply connected group C3=Z2, which
requires knowing the NIM-rep of the underlying conformal field theory.

1 Introduction

String theory remains a significant field of study in theoretical physics. Modern
string theories contain both open and closed strings, where an open string can be
topologically identified with the interval [0,1]. A major discovery by Polchinski
et al. was the requirement that a consistent string theory contain higher dimensional
objects (membranes), called Dirichlet-branes, or D-branes, where the endpoints of
open strings reside (see e.g. [15]). These branes have physical properties, such as
tension, and conserved quantities called charges. In this paper, we are interested in
these charges for the WZW models. In particular, we determine the charges for the
non-simply connected manifold corresponding to C3/Z2.

The charges of a given WZW model form a finite abelian group, hence have the
(unique) form

ZM1 ˚ ZM2 ˚ � � � ˚ ZMs (1)

for some positive integersMi such that eachMi jMi�1. The determination of these
groups for string theories on the simply connected Lie group SU(n) has been done in
[13,14,16], and the groups were found to be ZM whereM is given in (3). The charge
groups for the non-simply connected group SO.3/ D SU.2/=Z2 were determined in
[4, 9] to be Z2 ˚ Z2 if 4jk and Z4 if 4 − k, whereas [5] found different groups,
corresponding to a different supersymmetric CFT. More generally, many of the
charge groups for the non-simply connected quotients SU(n)/Zd , where d jn, were
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found in [9,10]. The comparison between the groups for SU(2) (ZkC2, where k is the
level of the underlying affine algebra) and the quotient SO.3/ D SU.2/=Z2 already
shows how differently behaved the non-simply connected cases are. It would be very
interesting to generalize the results of [9, 10] to all of the WZW models, and in this
paper, we begin this work by determining the charge groups forC3/Z2. There are two
main approaches to determining D-brane charges: the (twisted) K-theory approach,
and the conformal field theory approach; the latter involves solving Eq. (2) below,
which is our focus. To solve this equation in the non-simply connected case requires
knowing the NIM-reps (a NIM-rep is a nonnegative integer matrix representation of
the fusion ring) of the associated conformal field theories. For the example in this
paper, we use the NIM-reps for the C -series which appear in [2].

In a given model, the D-branes are indexed by boundary states (these will be
discussed in more detail in Sect. 2), and satisfy the charge equation

dim � qx D
X
y

N y

�;xqy; (2)

where dim � denotes the Weyl dimension of � in the algebra g, x, y are boundary
states, qa is the charge associated to the state a, N y

�;x are the NIM-rep coefficients,
and the sum is over all boundary states. Unlike classical charges, D-brane charges
are preserved only modulo some integer M , so Eq. (2) holds modulo M . In the
simply connected case, the integerM has been determined for all algebras and levels
[1, 3, 6]; it is given by the number

M.gI k/ WD k C hL
.k C hL; L/ ; (3)

where hL is the dual Coxeter number, and L depends on g. For example, for
SU(2), M.gI k/ D k C 2. By a charge assignment, we mean an assignment qx
to each boundary state x such that (2) is satisfied modulo M . The set of all charge
assignments for a given k forms a group called the charge group. The charge group
is a ZM.gIk/-module, and so in particular, the integer M divides M.gI k/.

In the case of a compact, simple, simply connected Lie group G, such as SU(n),
the boundary states are labelled by highest weight representations, and the charge
equation becomes

dim � q� D
X
�2Pk
C

N�
��q� ; (4)

where P kC.g/ WD ˚
.�0I : : : ; �r / 2 N

rC1 j Pr
`D0 a_̀�` D k

�
is the set of level k

integrable highest weights for g at level k, with horizontal subalgebra g of rank
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r , and where a_̀ are the dual Coxeter labels. Equation (4) has solutions q� = (dim
�) q01 modulo M.gI k/, yielding the aforementioned charge group ZM.gIk/.

In Sect. 2, we review the NIM-rep, and in Sect. 3, we solve the charge equation
for the case of C3/Z2.

2 The NIM-Rep

In this section, we describe the NIM-rep for the rational conformal field theory with
affine algebra g at level k. The primaries are in one-to-one correspondence with the
set P kC.g/. We denote the fundamental weights by �i and the vacuum by 0; this
corresponds to the weight �0.

2.1 The Fusion Ring

The S -matrix for the level k algebra g is indexed by P kC.g/ and is given by the
Kac–Peterson formula [12]

S�� D ��r=2s
X
w2W

.det w/ exp

"
�2�i w.�C �/ � .�C �/

�

#
; (5)

where W is the g Weyl group, � D .1; : : : ; 1/ is the g Weyl vector, � denotes the
weight .�1; : : : ; �r /, and � and s are constants depending on r and k. We define
fusion coefficients N�

�� by Verlinde’s formula

N�
�� D

X
�2Pk
C

S��S��S
�
��

S0�
; (6)

where � denotes complex conjugate transpose. The fusion coefficients are non-
negative integers, through which we define the fusion ring: that is, the unique
commutative associative ring with basis P kC and ring operation � 
 � D P

� N
�
���.

For example, the A.1/1 fusion coefficients are

N�
�� D

�
1 if � �2 �C � and j� � �j � � � minf�C �; 2k � � � �g
0 else

;

1We usually normalize this to q0 D 1.
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where �2 denotes congruence modulo 2. We also define fusion matrices N� by
.N�/�;� D N�

�� for each � 2 P kC. These give a matrix representation of the fusion
ring.

To develop the NIM-rep formulas that correspond to the non-simply connected
groups, we must consider the fixed points of simple-currents. A simple-current is a
weight � 2 P kC for which there exists a permutation J of P kC such thatN�

�;� D ı�;J�
with � D J0. This is equivalent to the set of � such that S0� D S00. We identify
the weight J0 with the permutation J and also call the latter a simple-current. The
set J of all simple-currents of the model with Lie group G forms an abelian group,
which in all cases except E.1/

8 level 2, is isomorphic to the centre of the universal
covering group of G and corresponds to a subset of automorphisms of the extended
Dynkin diagram of the affine algebra [7]. For example, the simple-current group
for SU(n) is isomorphic to Zn and is generated by the order n rotational symmetry
of the extended Dynkin diagram of the underlying affine algebra A.1/n�1. If J is a
simple-current, we denote by hJ i the subgroup of J generated by J . The fusion
coefficients of (6) obey the symmetry

NJaCb�
J a�J b�

D N�
�� (7)

with respect to the simple currents. If ' 2 ˚ , then we get the useful special case
N�
�' D NJ�

�' .

2.2 Description of the NIM-Rep

A NIM-rep is a nonnegative integer representation of the fusion ring. We assign to
each � 2 P kC a nonnegative integer matrix N� such that N�N� D P

�2Pk
C

N�
��N� ,

where N0 D I and NC� D N t
�, where I denotes the identity matrix, and t denotes

transpose. Note that in the case of the C -series, charge-conjugation is trivial, and
so the NIM-rep matrices are symmetric. Two NIM-reps N and N 0 are equivalent
if there exists a permutation matrix P such that for all � 2 P kC, N 0� D P�1N�P .
A NIM-rep is indexed by boundary states, which we will describe at the end of this
section. The fusion matrix representation is a NIM-rep; in this case, the boundary
states coincide with the set P kC.

As the matrices in a given NIM-rep are normal and commute, they are simul-
taneously diagonalized by a unitary matrix � . Thus, they satisfy the Verlinde-like
formula

N y

�x D
X
�

�x�S���
�
y�

S0�
; (8)

where the sum is over all exponents of the NIM-rep (these will be described below),
and x and y are boundary states. A NIM-rep is a homomorphic image of the fusion
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ring, which is itself a homomorphic image (i.e. quotient) of the representation ring
of the underlying simple finite dimensional algebra, and is therefore completely
determined by its values at the fundamental weights�i . Thus it suffices to know the
NIM-rep coefficients at the fundamental weights.

The S -matrix mentioned above, together with a diagonal matrix T , constitute
the modular data of the theory.2 They satisfy several properties. Among them: S
is unitary and symmetric; T is of finite order; S0� 	 S00 > 0 for all � 2 P kC,
and .ST /3 D S2 DW C , where C is an order two permutation matrix called
charge-conjugation. A modular invariant is a nonnegative integer matrixM indexed
by P kC such that M00 D 1 and M commutes with both S and T . For a given
RCFT, the coefficient matrix M�� of the modular invariant partition function
Z.�/ D P

�;�2Pk
C

M����.�/�
�
�.�/, where � is in the upper half plane and ��, ��

are the RCFT characters, specialized to � , is a modular invariant. For an introduction
to modular data and modular invariants, see e.g. [11].

To each simple-current J of an affine algebra is associated the modular invariant

MŒJ ��� WD
ord.J /X
iD1

ıJ i �;�ı
Z.QJ .�/C irJ / ; (9)

where ıZ.x/ D 1 if x 2 Z and 0 else, and QJ .�/ and rJ are rational numbers
that depend on g. This is a modular invariant partition function for a rational
conformal field theory precisely when TJ0;J 0T �00 is an nth root of unity (where n =
ord (J )), corresponding to the model with group G=hJ i. The number of maximally
symmetric, untwisted D-branes is equal to the trace of MŒJ �.

For example, the D-series modular invariant for A.1/1 , corresponding to the order-
2 simple current is

D4 D

0
BBBBB@

1 0 0 0 1

0 0 0 0 0

0 0 2 0 0

0 0 0 0 0

1 0 0 0 1

1
CCCCCA
:

Let J be a simple-current of order n. We denote by Œ�� the J -orbit fJ i� j i D
0; : : : ; n�1g, and by ord � the order of the stabilizer of � in hJ i. The boundary states
are then pairs .Œ��; i/, where 1 � i � ord �. This Lie-theoretic interpretation was
given by [8, 9]. The exponents of a modular invariant are members of the multi-set

2These matrices control the modularity of the RCFT characters and yield a representation of the
modular group SL2.Z/ via the assignment

�
0 �1
1 0

�
7! S I

�
1 1

0 1

�
7! T :
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E.M/ consisting of all � with M�� ¤ 0, appearing with multiplicity M��. We will
associate E.M/ with the set f.�; i/ j 1 � i � M��g.

3 C3 Charge Groups

In this section, we work out the charges of the maximally symmetric, untwisted
D-branes for the algebra C .1/

3 , with the order two simple-current. We first give the

C
.1/
3 data and NIM-rep.

3.1 The C
.1/

3
Data

The level k highest weights are labelled by the set P kC.C
.1/
3 / D f.�0I�1; �2; �3/ jP

�i D kg. There is one simple-current, of order two, which has fixed points when
k is even. These fixed points are in one-to-one correspondence with the set ˚ WD
f' D .'0I'1; '1; '0/ j '0 C '1 D k=2g, which has cardinality k=2C 1.

Thus, in the present case, ord � D 1 if � 62 ˚ and 2 if � 2 ˚ . If � 62 ˚ , then we
simply write Œ�� for the pair .Œ��; 1/. For example, when k D 2, there are two fixed
points, namely (1; 0, 0, 1) and (0; 1, 1, 0), and there are eight boundary states: [2; 0,
0, 0], [1; 1, 0, 0], [1; 0, 1, 0], [0; 2, 0, 0], ([1; 0, 0, 1], 1), ([1; 0, 0, 1], 2), ([0; 1, 1,
0], 1), ([0; 1, 1, 0], 2).

Let ' 2 ˚ . Then ' D .'0I'1; '1; '0/, where '0 C '1 D k=2. We define Q' to be
the truncated fixed point Q' D .'0I'1/, which lies in P k=2

C .C
.1/
1 /. The C .1/

3 NIM-rep
is then given by the equations

N Œ��

�Œ�� D N�
�� CNJ�

��

N Œ��

�.Œ'�;i/ D N�
�'

N .Œ �;j /

�i .Œ'�;i/
D 1

2
N
 
�i'

; i D 1; 3

N .Œ �;j /

�2.Œ'�;i/
D 1

2



N
 
�2'

C .�1/iCjC1 QN Q Q�1 Q'
�

where tildes denoteC .1/
1 level k=2 quantities, and Q', Q are the truncated fixed points.

The last two equations are given in [2].
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3.2 Charge Equation for C
.1/

3

In this subsection, we sketch the solution to Eq. (2) for C .1/
3 , where k is even. It

is sufficient that (2) is satisfied for the three fundamental weights, i.e., that the
following three equations are satisfied:

6qx D
X
y

N y
�1;x

qy (10)

14qx D
X
y

N y
�2;x

qy (11)

14qx D
X
y

N y
�3;x

qy : (12)

Throughout this section, we let Mk WD M.gI k/.
For each weight, define t .�/ D �1 C �3 (mod 2). The simple-current symme-

try (7) gives a grading

N�
�;� ¤ 0 H) t .�/C t .�/ D t .�/ (mod 2)

of the fusion coefficients.
Substituting x D Œ0� and � 62 ˚ into (2) yields qŒ�� D dim � qŒ0�. Letting qŒ0� ¤ 0

(the assignment qŒ0� D 0 leads to the trivial group), we normalize this to qŒ0� D 1,
and so we have the assignment

qŒ�� D dim � mod Mk8 � 62 ˚ : (13)

This gives us a copy of ZMk
in (1). Now substituting x D Œ0� and � D ' 2 ˚ , we

have

qŒ';1� C qŒ';2� D dim ' mod Mk : (14)

Finally, substituting x D Œ'; i � into Eqs. (10), (11), (12) gives a system of equations
whose solution depends on the parity of M . If Mk is odd, then q.Œ'�;i/ D 0 mod Mk ,
so the charge group is ZMk

, which agrees with the simply connected case. However,
if Mk is even, then q.Œ'�;1/, q.Œ'�;2/ are both Mk=2 or 0 (modMk). Therefore, the
charge group is ZM ˚ Z2 ˚ � � � ˚ Z2, where there are j˚ j D k=2C 1 copies of Z2.
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4 Concluding Remarks

In this paper, we found the charge groups for the non-simply connected groupC3/Z2,
via the conformal field theory description of D-branes, namely by solving Eq. (2)
modulo the smallestM that we could find, which uses the NIM-rep formulas of [2].
It should be noted that Cr for r > 3 involve more number-theoretical subtleties,
and a solution will be more challenging to obtain. As well, C3 is an example of
a non-pathological case (i.e. dim J0 D 1 (mod Mk)); already C2 is pathological,
and these pathological cases will require a different approach. In the case of the
simply connected groups, the charge groups found via the conformal field theory
description agreed with those found by the K-theory method. It would be interesting
to work out the K-theory calculation for the non-simply connected groups and
compare with the result in this paper.

Acknowledgements The author wishes to thank the organizers of the workshop for their kind
hospitality and stimulating work environment during the workshop.
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On Robertson Walker Solutions
in Noncommutative Gauge Gravity

Simona Babeti

Abstract Robertson–Walker solution is presented in terms of gauge fields in a
de Sitter gauge theory of gravity (Chamseddine and Mukhanov, J High Energy
Phys 3:033, 2010). For a vanishing torsion analogous (Zet et al., Int J Mod Phys
C15(7):1031, 2004) we present the field strength tensor and the scalar analogous
of the Ricci scalar. Following the noncommutative generalization (Chamseddine,
Phys Lett B504:33, 2001) for the de Sitter gauge theory of gravity we study how the
noncommutativity of space-time deform, through noncommutative parameters, the
homogeneous isotropic solution of the commutative gauge theory of gravity. The
study is realized with special conceived analytical procedures under GRTensorII
for Maple that we designed for the specific quantities of the gauge theory of
gravity (Babeti (Pretorian), Rom J Phys 57(5–6):785, 2012). Noncommutative
deformations are obtained using a star product deformation of space time and the
Seiberg–Witten map to express the deformed fields in terms of undeformed ones
and noncommutative parameter. We analyze a space-time (Fabi et al., Phys Rev
D78:065037, 2008) and a space-space noncommutativity. The gauge fields, the
field strength tensor and the noncommutative analogue of the metric tensor, the
noncommutative scalar analog to Ricci scalar are followed until second order in
noncommutative parameter.

1 Introduction

We work with the model of gauge theory of gravitation that has the de-Sitter
(DS) group SO(4,1) (10-dimensional) [3] as local symmetry and as base manifold,
the commutative 4-dimensional Minkowski space-time, endowed with spherical
symmetry:

ds2 D �dt2 C dr2 C r2
�
d
2 C sin2 
d'2

�
: (1)
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The 10 infinitesimal generators of DS group MAB D �MBA, A,B=0,1,2,3,5, can be
identified with the translationsPa D �Ma5 and the Lorentz rotationsMab D �Mba,
a, b D 0,1,2,3. Therefore, we have 10 corresponding (non-deformed) gauge fields
(or potentials) !AB� .x/ D �!BA� .x/. The gauge fields are identified with the four
tetrad fields (the gauge field of translational generator), !a5� .x/ D ea�.x/, and the six
antisymmetric spin connection !AB� .x/ D �!BA� .x/. The field strength tensor [5],
associated with the gauge fields !AB� .x/, which takes its values in the Lie algebra of
the DS group (Lie algebra-valued tensor) can be separated into a tensor equivalent
to the torsion and one equivalent to the curvature tensor:

F a
�� D @Œ�e

a
�� C !abŒ� e

c
���bc; (2)

F ab
�� D @Œ�!

ab
�� C !acŒ� !

db
�� �cd C 4�2eaŒ�e

b
��; (3)

with the brackets indicate antisymmetrization of indices and � a real parameter.
The SO(4,1) group as the symmetry underlying the Universe give the appearance

of a non-vanishing cosmological constant �, which is determined by the real
parameter � (4�2 D ��=3). When we consider the limit � ! 0 i.e. the group
contraction process, the de-Sitter group SO(4,1) reduces to the Poincar Ke group
ISO(3,1), obtaining the commutative Poincar Ke gauge theory of gravitation.

In the gauge theory of gravitation the gauge invariant action S D � 1
16�G

R
d4x e F

is expressed in terms of gauge fields. The scalar F D F ab
�� Ne�a Ne�b , with ea� Ne�b D ıab ,

is corresponding to the Ricci scalar and we have e D det.ea�/ . Corresponding to
the metric tensor it can be defined the tensor g�� D �abe

a
�e

b
� . Although the gauge

invariant action appears to depend on the non-diagonal !AB� it is a function on g��
only.

2 Robertson–Walker Solution in the Commutative Theory

In order to apply the gauge theory formalism for gravity we choose a particular
ansatz for gauge fields [6]:

e0� D .N.t/; 0; 0; 0/ ; e1� D


0; a.t/=

p
1 � kr2; 0; 0

�
;

e2� D .0; 0; ra.t/; 0/ ; e3� D .0; 0; 0; ra.t/ sin 
/ ; (4)

!01� D .0; U.t; r/; 0; 0/ ; !02� D .0; 0; V .t; r/; 0/ ;

!03� D .0; 0; 0;W.t; r/ sin 
/ ; !12� D .0; 0; Y.t; r/; 0/ ;

!13� D .0; 0; 0;Z.r/ sin 
/ ; !23� D .0; 0; 0;� cos 
/ ; (5)
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with the constant k and the functions U, V, W, Y, Z of time t and 3D radius r. These
gauge fields correspond to Robertson–Walker g�� and lead to the following non-null
components of F a

�� and F ab
�� :

F 1
01 D Pap

1 � kr2 � UN; F 2
02 D r Pa � VN; F 3

03 D .r Pa �WN/ sin 
;

F 2
12 D a

�
1C Yp

1 � kr2
�
; F 3

13 D a sin 


�
1C Zp

1 � kr2
�
; (6)

respectively

F 12
12 D

�
@Y

@r
C UV � 4�2ra2p

1 � kr2
�
; F 02

12 D @V

@r
C UY;

F 13
13 D

�
@Z

@r
C UW � 4�2ra2

�
sin 
; F 03

13 D
�
@W

@r
C UZ

�
sin 
;

F 01
01 D @U

@t
� 4�2Nap

1 � kr2 ; F 03
23 D .W � V / cos 
; (7)

F 23
23 D �

1 �ZY � 4�2r2a2 CW V
�

sin 
; F 13
23 D .Z � Y / cos 
;

F 12
02 D @Y

@t
; F 02

02 D @V

@t
� 4�2Nra;

F 03
03 D

�
@W

@t
� 4�2Nra

�
sin 
; F 13

03 D @Z

@t
sin 
;

where Pa is the derivative of a.t/ with respect to the variable t .
Following the case of null components F a

�� of the strength tensor we obtain some
constraints on the arbitrary functions introduced in the spin connection components:

U.t; r/ D Pa.t/
N.t/

p
1 � kr2 ; V .t; r/ D W.t; r/ D r Pa.t/

N.t/

Y.t; r/ D Z.t; r/ D �
p
1 � kr2: (8)

Therefore, the spin connection components !ab� are determined by the tetrads ea� in
the case of null torsion. The scalar F, that define the action, depends on field strength
tensor associated with the gauge fields and with the constraints (8) is

F D 6
a RaN � a Pa PN C kN 3 C Pa2N � 8�2a2N 3

a2N 3
: (9)

With the supplementary condition N(t) D 1, for the case of null equivalent torsion,
the spin connection components determined by the tetrads (4) are:
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!01� D


0; Pa.t/=

p
1 � kr2; 0; 0

�
; !02� D .0; 0; r Pa.t/; 0/ ;

!03� D .0; 0; 0; r Pa.t/ sin 
/ ; !12� D


0; 0;�

p
1 � kr2; 0

�
;

!13� D


0; 0; 0;�

p
1 � kr2 sin 


�
; !23� D .0; 0; 0;� cos 
/ ; (10)

and determine the following nonvanishing components F ab
�� of the field strength

tensor

F 12
12 D rp

1 � kr2
�
k � 4�2a2 C Pa2� ; F 13

13 D r sin 
p
1 � kr2

�
k � 4�2a2 C Pa2� ;

F 01
01 D Ra � 4�2ap

1 � kr2 ; F 23
23 D r2 sin 


�
k � 4�2a2 C Pa2� ; (11)

F 02
02 D r

� Ra � 4�2a� ; F 03
03 D r sin 


� Ra � 4�2a� :
The resulting scalar F:

F D 6

 
Ra
a

C k

a2
C
� Pa
a

�2
� 8�2

!
; (12)

for � ! 0 is the known Ricci scalar for the Robertson–Walker metric.

3 Deformed Gauge Fields and Noncommutative
Analogous Metric Tensor

In order to calculate the effect of the noncommutativity on the gauge fields we work
with the canonical deformation of the Minkowski space-time based on Œx�; x��� D
i
�� with real constant deformation parameter 
�� D �
��. As (star) 
 product
between the fields defined on this space-time we use the (associative) Moyal

product, 
 D e
i
2


��
 

@�
!

@� .
The noncommutative gauge theory (as the commutative one) is described

in terms of gauge fields (or potentials), denoted here by O!AB� .x;
/ and field

strengths, denoted here by OFAB
�� , that depend on deformation parameter of non-

commutative coordinate algebra. Using the Seiberg–Witten map one expand the
noncommutative gauge fields, that transform according to the noncommutative
algebra, in terms of commutative gauge fields, that transform according to the
commutative algebra. In powers of 
�� , [2], (the (n) subscript indicates the n-th
order in
��) the tetrad fields, the spin connections and the field strength tensor are:
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Oea�.x;
/ D ea�.x/C e a
.1/�.x/C e a

.2/�.x/C : : :

O!ab� .x;
/ D !ab� .x/C ! ab
.1/� .x/C ! ab

.2/� .x/C : : : (13)

OFAB
�� .x;
/ D FAB

� .x/C F AB
.1/�� .x/C F AB

.2/�� .x/C : : :

The first order in noncommutative parameter of gauge fields is expressed in terms of
zero order (from the commutative theory) gauge fields and zero order field strength
tensor. For the case of F a

�� D 0 in the zero order and using the usual brackets for
the anticommutator we have:

e a
.1/� D � i

4

��



!ab� @�e

c
� C .@�!

ab
� C F ab

��/e
c
�

�
�bc; (14)

! ab
.1/� D � i

4

��

˚
!�; @�!� C F��

�ab
: (15)

The first order of field strength tensors depend on zero and first order gauge fields as:

F a
.1/�� D @Œ�e

a
.1/�� C



! ab
.1/Œ�e

c
�� C !abŒ� e

c
.1/�� C !abŒ� 
.1/ ec��

�
�bc; (16)

F ab
.1/�� D @Œ�!

ab
.1/�� C �

!.1/�; !�
	ab C �

!�; !.1/�
	ab C �

!�; !�
	ab
�.1/ : (17)

Even we have a vanishing F a
�� in the zero order at order one (16) is nonvanishing.

In order to be applied for the particular tetrad fields (4) and spin connection (10),
all formulas are implemented in an analytical procedure conceived in GR Tensor II
for Maple. Instead to present the second order terms for the gauge fields and field
strength tensor as usually, they come in the particular form of analytical procedure
that contain suggestive notations.

>grdef(‘ev2{^a mu}:=-I/8*Tn{^rho^sig}*(om1{^a^c rho}*
ev{^d mu,sig}+om{^a^c rho}*(ev1{^d mu,sig}
+F1a{^d sig mu})+(I/2)*Tn{^lam^tau}*
om{^a^c rho,lam}*ev{^d mu,sig,tau}+
(om1{^a^c mu,sig}+F1ab{^a^c sig mu})*ev{^d rho}+
(om{^a^c mu,sig}+Fab{^a^c sig mu})*ev1{^d rho}+
(I/2)*Tn{^lam^tau}*((om{^a^c mu,sig,lam}+
Fab{^a^c sig mu,lam})*ev{^d rho,tau}))*eta1{c d}‘);

>grdef(‘om2{^a^b mu}:=(-I/8)*Tn{^rho^sig}*
(om1{^a^c rho}*(om{^b^d mu,sig}+Fab{^d^b sig mu})+
(om{^a^c mu,sig}+Fab{^a^c sig mu})*om1{^d^b rho}
+om{^a^c rho}*(om1{^d^b mu,sig}+F1ab{^d^b sig mu})
+(om1{^a^c mu,sig}+F1ab{^a^c sig mu})*om{^d^b rho}
+(I/2)*Tn{^lam^tau}*(om{^a^c rho,lam}*
(om{^d^b mu,sig,tau}+Fab{^d^b sig mu,tau})
+(om{^a^c mu,sig,lam}+Fab{^a^c sig mu,lam})*
omega{^d^b rho,tau}))*eta1{c d}‘);
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>grdef(‘F2a{^a mu nu}:= ev2{^a nu,mu}-ev2{^a mu,nu}+
(om{^a^c mu}*ev2{^d nu}-om{^a^c nu}*ev2{^d mu}+
om{^a^c mu}*ev{^d nu}-om2{^a^c nu}*ev{^d mu}+
om{^a^c mu}*ev1{^d nu}-om1{^a^c nu}*ev1{^d mu}+
(I/2)*Tn{^rho^sig}*(om{^a^c mu,rho}*ev1{^d nu,sig}
-om{^a^c nu,rho}*ev1{^d mu,sig}+om1{^a^c mu,rho}*
ev{^d nu,sig}-om1{^a^c nu,rho}*ev{^d mu,sig})+
(-1/8)*Tn{^rho^sig}*Tn{^lam^tau}*
(om{^a^c mu,rho,lam}*ev{^d nu,sig,tau}
-om{^a^c nu,rho,lam}*ev{^d mu,sig,tau}))*eta1{c d}‘);

>grdef(‘F2ab{^a^b mu nu}:=
om2{^a^b nu,mu}-om2{^a^b mu,nu}+
(om{^a^c mu}*om2{^d^b nu}-om2{^a^c nu}*om{^d^b mu}+
om2{^a^c mu}*om{^d^b nu}-om{^a^c nu}*om2{^d^b mu}+
om1{^a^c mu}*om1{^d^b nu}-om1{^a^c nu}*om1{^d^b mu}+
(I/2)*Tn{^rho^sig}*(om{^a^c mu,rho}*om1{^d^b nu,sig}
-om1{^a^c nu,rho}*om{^d^b mu,sig}+om1{^a^c mu,rho}*
om{^d^b nu,sig}-om{^a^c nu,rho}*om1{^d^b mu,sig})+
(-1/8)*Tn{^rho^sig}*Tnc{^lam^tau}*
(om{^a^c mu,rho,lam}*om{^d^b nu,sig,tau}
-om{^a^c nu,rho,lam}*om{^d^b mu,sig,tau}))*
eta1{c d}‘);

The noncommutative analogue of the metric tensor is defined using the hermitian

conjugate of tetrads: Og�� D 1
2
�ab



Oea� 
 Oeb�� C Oeb� 
 Oea��

�
. The noncommutative

scalar analog to F is OF D Oe�a 
 OF ab
�� 
 Oe�b , where Oe�a is the 
inverse of Oea�. The

part of analytical procedure for these quantities can be read in [1].
For arbitrary 
�� , the deformed metric is not diagonal even if the commutative

one has this property. We examine how the noncommutativity modifies the structure
of the gravitational field for the particular case (4) in the situation of (10) for an
time-space noncommutativity and an space-space noncommutativity.

For the time-space noncommutativity we choose the t-r noncommutativity
(
tr D �
rt D 
) and applying the above formalism for the tetrad fields (4), spin
connection (10) we obtain for the noncommutative analogue of the metric tensor

Og00 D� 1C
2 6 Ra2 C 5 Pa PRa
16.1� kr2/ C �

2
2 8�
2a2 C 3. Pa2 � 2a Ra/
4.1� kr2/ CO.
4/

Og11 D a2

1� kr2 �

2
.1� kr2/



Pa4 C 13a Pa2 RaC 12a2 Pa PRaC 16a2 Pa2

�
C �3kr2 C 4� k Pa2 C 4ka Ra.1C kr2/

16.1� kr2/3 �

� �2
2
a2
�
8�2a2 � 10 Pa2 � 12a Ra�

4.1� kr2/2 CO.
4/
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Og22 Dr2a2 C
2 1
16

 
4a RaC 5 Pa2 � ar2 8a Ra

2 C 9 Pa2 RaC 4k RaC 4a Pa PRa
1� kr2

!
�

� �2
2 a2r2

4.1� kr2/
�
8�2a2 � .2k C 7a RaC 7 Pa2/�CO.
4/

Og33 D Og22 sin2 
 (18)

Og01 D �
2 kr Pa Ra
2.1� kr2/2 C �

2
2
9kr Paa

8.1� kr2/2 CO.
4/:

We have one nonzero off diagonal component in (18) and when we treat the
analogue of the metric tensor as a standard metric tensor it is associated with an
inhomogeneous isotropic space-time with respect to the worldline at r D 0, even if
the parameter � is nonzero. When the scale factor is a constant the noncommutative
second order off diagonal components are null. For � ! 0 the noncommutative
analogue of the metric tensor

Og00 D �1C
2 6 Ra2C5 Pa PRa
16.1�kr2/ C O.
4/

Og11 D a2

1�kr2 �
2
.1�kr2/



Pa4C13a Pa2 RaC12a2 Pa PRaC16a2 Pa2

�
C.3kr2C4/k Pa2C4ka Ra.1Ckr2/

16.1�kr2/3

C O.
4/

Og22 D r2a2 C
2 1
16



4a RaC 5 Pa2 � ar2 8a Ra2C9 Pa2 RaC4k RaC4a Pa PRa

1�kr2
�

C O.
4/ (19)

Og33 D Og22 sin2 


Og01 D �
2 kr Pa Ra
2.1�kr2/2 C O.
4/:

has no second order corrections for a constant scale factor. In the case of linear
expansion for � ! 0 small t can be defined using second order analysis of singular
points of ordinary space time scalar curvature [4].

For the space-space noncommutativity we choose the r-
 noncommutativity
(
r
 D �

r D 
) and, up to second order in
, we find, for � ! 0, the following
noncommutative tetrad fields after substituting into (13):

Oe0� D


1 �
2 a Ra

32.1�kr2/ .3 � 7kr2 � 4r2 Pa2/; 0; i

2
ra Pa; 0

�
; (20)

Oe1� D



2 ra Pa Ra.3kr2�2/

16.1�kr2/3=2 ;
ap
1�kr2 �
2a

Pa2.5�kr2�k2r4/C.r2 Pa4C4k/.1�kr2/
32.1�kr2/3=2 ;

i

a.3kr2CPa2r2�1/

4
p
1�kr2 ; 0

�
;

Oe2� D


0; i
 ra Pa2

4.1�kr2/ ; ra �
2ra.k C Pa2/


5
8

C r2 Pa2
32.1�kr2/

�
; 0
�
;
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Oe3� D


0; 0; 0; ra sin 
 � i


4
a cos 
 C
2a sin 
 Pa

2.20kr2C4 Pa2r2�9/�8k.1�2kr2
32.1�kr2/

�
;

and the deformed spin connection components:

O!00� D
�
0; �
2 kr Pa

2.1� 3kr2 � r2 Pa2/
16.1� kr2/2 ;�i
 r Pa

2

2
; 0

�
; (21)

O!11� D
�
0; �
2 kr Pa

2.1� 3kr2 � r2 Pa2/
16.1� kr2/2 ; i
r.kC Pa

2

2
/; 0

�
;

O!22� D �
0; 0; i
r.kC Pa2/; 0� ;

O!01� D
�

2r Ra 4.k � Pa

2/.1� kr2/C kr2 Pa2
32.1� kr2/3=2 ;

Pap
1� kr2 �


2 Pa .5 Pa
2 C r2 Pa4 C 4k/.1� kr2/C 3k2r4 Pa2

32.1� kr2/5=2 ;

i

Pa.1� 3kr2 � r2 Pa2/

4
p
1� kr2 ; 0

�
;

O!02� D
�
i

Ra
4
; i


r Pa3
4.1� kr2/ ;

r PaC
2 r Pa.14k
2r2 � 18k � 16 Pa2 C 13kr2 Pa2 � r2 Pa4/

32.1� kr2/ ; 0

�
;

O!03� D
�
0; 0; 0; r Pa sin 
 C i
 Pa cos 


4
C


2
Pa.10k2r3 � 6kr � 7r Pa2 C 14kr3 Pa2 C 4r3 Pa4/

32.1� kr2/
�
;

O!12� D
�
0; i


kr2 Pa2
4.1� kr2/3=2 ; �

p
1� kr2 C
2

�
1

32

p
1� kr2.16kC 13 Pa2/

�r2 8k2 C 9 Pa4
32
p
1� kr2 C

r2 Pa2.20kr2 � 24k � 3 Pa2
32.1� kr2/5=2

�
; 0

�
;

O!13� D
�
0; 0; 0; �p1� kr2 sin 
 � i
 cos 


r Pa2
4
p
1� kr2

C
2 sin 


�
1

16

p
1� kr2.2k C Pa2/C r2 Pa2.3 Pa2 � 2k � 2kr2 Pa2/

32.1� kr2/3=2
��

;

O!23� D
�
0; 0; 0;� cos 
 C i
r sin 


kC Pa2
2

C 
2 sin 

r2.3 Pa2 C 4k/.k C Pa2/� Pa2

32.1� kr2/
�
:

Only one off diagonal component for the analogue of the metric tensor results in
these coordinates
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Og00 D �1C
2 a Ra
16.1�kr2/ .3 � 7kr2 � 4r2 Pa2/C O.
4/ ;

Og11 D a2

1�kr2 �
2 a
2. Pa2.5�kr2.1Ckr2//C4k.1�kr2//

16.1�kr2/3 C O.
4/ ;

Og22 D r2a2 C
2 r2a2

16



3kr2. Pa2Ck/C1

1�kr2 � 26. Pa2 C k/
�

C O.
4/ ; (22)

Og33 D r2a2 sin2 
 C
2 a2

16



7kr2C1
1�kr2 cos2 


C r2 Pa2.20kr2C4r2 Pa2�9/C4.4k2r4�3kr2C1/
1�kr2 sin2 


�
C O.
4/ ;

Og01 D 
2 a2 Pa Rar
16.1�kr2/2 .3kr

2 � 2/C O.
4/ :

Even in this simplest case of space-space noncommutativity the rotational invari-
ance is broken even for � ! 0 and worldline r D 0. We note that we receive second
order correction for a constant scale factor but zero off diagonal components.

Conclusions
The corresponding deformed metric reveals the modified structure of grav-
itational field in the case of isotropic homogeneous Robertson–Walker
space-time of the (commutative) gauge theory of gravitation. If we treat the
noncommutative analogue of the metric tensor as a standard metric tensor we
can examine the deformed space time for different scale factors in the case of
constant noncommutative parameter.
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Some Power-Law Cosmological Solutions
in Nonlocal Modified Gravity

Ivan Dimitrijevic, Branko Dragovich, Jelena Grujic, and Zoran Rakic

Abstract Modified gravity with nonlocal term R�1F.�/R; and without matter, is
considered from the cosmological point of view. Equations of motion are derived.
Cosmological solutions of the form a.t/ D a0jt � t0j˛; for the FLRW metric and
k D 0;˙1; are found.

1 Introduction

Although very successful, Einstein theory of gravity is not a final theory. There
are many its modifications, which are motivated by quantum gravity, string
theory, astrophysics and cosmology (for a review, see [1]). One of very promising
directions of research is nonlocal modified gravity and its applications to cosmology
(as a review, see [2] and [3], see also contribution [4] in these proceedings).
To solve cosmological Big Bang singularity, nonlocal gravity with replacement
R ! R C CRF.�/R in the Einstein–Hilbert action was proposed in [5]. This
nonlocal model is further elaborated is the series of papers [6–12].

In this brief paper we consider the action

S D
Z
d4x

p�g

 R

16�G
CR�1F.�/R

�
; (1)
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where R is scalar curvature, F.�/ D
1X
nD0

fn�n is an analytic function of the

d’Alembert–Beltrami operator � D 1p�g @�
p�gg��@�; g D det.g��/: The

action (1) was introduced in [13] as a new approach to nonlocal gravity. Its nonlocal
term R�1F.�/R D f0 C R�1

P1
nD1 fn�nR contains f0 which can be connected

with the cosmological constant as f0 D � �
8�G

: This term is also invariant under
transformation R ! CR; where C is a constant, i.e. this nonlocality does not
depend on magnitude of the scalar curvature R ¤ 0: Our intention is to present
some cosmological solutions in this paper as a part of a systematic investigation of
nonlocal gravity (1). In [13] similar power-law cosmological solution were obtained
using some ansätze.

Note that there have been some investigations with 1=R modification of gravity,
but they are not nonlocal and they have problems to be confirmed for the Solar
System [14]. Let us mention that there are some other approaches to nonlocal gravity
which contain ��1 instead of �, see, e.g. [3, 15–17]. Nonlocality also improves
renormalizability of gravity, see [18, 19] and references therein.

2 Equations of Motion

By variation of action (1) with respect to metric g�� one obtains the equations of
motion for g��

R��V�.r�r� � g���/V � 1

2
g��R

�1F.�/R

C1

2

1X
nD1

fn

n�1X
lD0

�
g��

�
@˛�l .R�1/@˛�n�1�lRC �l .R�1/�n�lR

�

�2@��l .R�1/@��n�1�lR
� D � G��

16�G
;

V DF.�/R�1 �R�2F.�/R:

(2)

In the case of the FLRW metric, Eq. (2) is equivalent to its trace and 00

component, respectively:

RV C 3�V C
1X
nD1

fn

n�1X
lD0

�
@˛�l .R�1/@˛�n�1�lRC 2�l .R�1/�n�lR

�

� 2R�1F.�/R D R

16�G
;

(3)
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R00V � .r0r0 � g00�/V � 1

2
g00R

�1F.�/R

C 1

2

1X
nD1

fn

n�1X
lD0

�
g00

�
@˛�l .R�1/@˛�n�1�lRC �l .R�1/�n�lR

�

� 2@0�l .R�1/@0�n�1�lR
� D � G00

16�G
:

(4)

Equations (3) and (4) are more suitable for further investigation than (2).
In the FLRW metric ds2 D �dt2Ca2.t/� dr2

1�kr2 Cr2d
2Cr2 sin2 
d�2
�

one has

R D 6


Ra
a

C Pa2
a2

C k
a2

�
and �h.t/ D � Rh.t/� 3H Ph.t/; where H D Pa

a
is the Hubble

parameter. In the sequel we solve equations of motions (3) and (4) for cosmological
scale factor a.t/ and the corresponding R:

a.t/ D a0jt � t0j˛; (5)

R.t/ D 6
�
˛.2˛ � 1/.t � t0/�2 C k

a20
.t � t0/�2˛

�
: (6)

3 Case k D 0; ˛ ¤ 0 and ˛ ¤ 1
2

In this case, there is the following dependence on parameter ˛:

a D a0jt � t0j˛; H D ˛.t � t0/�1;
R D r.t � t0/�2; r D 6˛.2˛ � 1/;

R00 D 3˛.1 � ˛/.t � t0/�2; G00 D 3˛2.t � t0/�2:
(7)

Now expressions �nR and �nR�1 become

�nR D B.n; 1/.t � t0/�2n�2; �nR�1 D B.n;�1/.t � t0/2�2n;

B.n; 1/ D r.�2/nnŠ
nY
lD1
.1 � 3˛ C 2l/; n 	 1; B.0; 1/ D r;

B.n;�1/ D .r/�12n
nY
lD1
.2 � l/.�3 � 3˛ C 2l/; n 	 1; B.0;�1/ D r�1:

(8)



244 I. Dimitrijevic et al.

Note that B.1;�1/ D �2.3˛ C 1/r�1 and B.n;�1/ D 0 if n 	 2: Also, we
obtain

F.�/R D
1X
nD0

fn B.n; 1/ .t � t0/�2n�2;

F.�/R�1 D f0 B.0;�1/ .t � t0/2 C f1 B.1;�1/:
(9)

Substituting these equations into trace and 00 component of the EOM one has

r�1
1X
nD0

fnB.n; 1/ .�3r C 6.1 � n/.1 � 2nC 3˛// .t � t0/�2n

C r

1X
nD0

fn .rB.n;�1/C 3B.nC 1;�1// .t � t0/�2n

C 2r

1X
nD1

fn�n.t � t0/�2n D r2

16�G
.t � t0/�2;

(10)

1X
nD0

fnr
�1B.n; 1/


 r
2

� An
�
.t � t0/�2n C

1X
nD0

fnrB.n;�1/An .t � t0/�2n

C r

2

1X
nD1

fnın.t � t0/�2n D �r2
32�G

˛

2˛ � 1.t � t0/�2;
(11)

where

�n D
n�1X
lD0

B.l;�1/.B.n � l; 1/C 2.1 � l/.n � l/B.n � l � 1; 1//; (12)

ın D
n�1X
lD0

B.l;�1/.�B.n � l; 1/C 4.1 � l/.n � l/B.n � l � 1; 1//; (13)

An D 6˛.1 � n/ � r ˛ � 1
2.2˛ � 1/ D r

2

3 � 2n � ˛
2˛ � 1 : (14)

Equations (10) and (11) can be split into system of pairs of equations with respect
to each coefficient fn. In the case n > 1; there are the following pairs:

fn
�
B.n; 1/ .�3r C 6.1 � n/.1 � 2nC 3˛//C 2r2�n

� D 0;

fn



B.n; 1/


 r
2

� An
�

C r2

2
ın

�
D 0:

(15)



Some Power-Law Cosmological Solutions in Nonlocal Modified Gravity 245

Taking 3˛�1
2

to be a natural number one obtains:

B.n; 1/ D r4nnŠ
. 3
2
.˛ � 1//Š

. 3
2
.˛ � 1/ � n/Š ; n <

3˛ � 1
2

; (16)

B.n; 1/ D 0; n 	 3˛ � 1
2

; (17)

�n D 2B.0;�1/B.n � 1; 1/.3n˛ � 2n2 � 3˛ � 1/; n � 3˛ � 1
2

; (18)

ın D 2B.0;�1/B.n � 1; 1/.2n2 C 3nC 3˛ � 3˛nC 1/; n � 3˛ � 1
2

;

(19)

�n D ın D 0; n >
3˛ � 1
2

: (20)

If n > 3˛�1
2
; then B.n; 1/ D �n D ın D 0 and hence the system is trivially

satisfied for arbitrary value of coefficients fn. On the other hand, for 2 � n � 3˛�1
2

the system has only trivial solution fn D 0. When n D 0 the pair becomes

f0
� � 2r C 6.1C 3˛/C 3rB.1;�1/� D 0; f0 D 0 (21)

and its solution is f0 D 0. The remaining case n D 1 reads

f1
� � 3r�1B.1; 1/C rB.1;�1/C 2�1

� D r

16�G
;

f1



A1.rB.1;�1/ � r�1B.1; 1//C 1

2
.B.1; 1/C rı1/

�
D �r2
32�G

˛

2˛ � 1 ;
(22)

and it gives f1 D � 3˛.2˛�1/
32�G.3˛�2/ .

Note that f1 ! 1 as ˛ ! 2
3

and thus this solution cannot imitate the (dark)
matter dominated universe.

4 Case k D 0; ˛ ! 0 (Minkowski Space)

Substituting (8) and (12) into trace Eq. (10) we obtain:
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f0. �18˛.2˛ � 1/C 6.1C 3˛//

C
1X
nD1

fn.�2/nnŠ
nY
lD1
.1 � 3˛ C 2l/ .6.1 � n/.1 � 2nC 3˛/

� 18˛.2˛ � 1// .t � t0/�2n

C6˛.2˛ � 1/


f0.1 � 6.3˛ C 1/.6˛.2˛ � 1//�1/C f1.�6˛ � 2/.t � t0/�2

�

C2f1.�12˛.2˛ � 1/.3 � 3˛/C 12˛.2˛ � 1//.t � t0/�2

C12˛.2˛ � 1/
1X
nD2

fn.�2/n.n � 1/Š
n�1Y
lD1
.1 � 3˛ C 2l/

� ��3n˛ C 2n2 C 1C 3˛
�
.t � t0/�2n D

D .6˛.2˛ � 1//2
16�G

.t � t0/�2: (23)

Now, if ˛ ! 0 from the last equation we get

1X
nD1

fn.�1/n.2nC 1/Š.1 � n/.1 � 2n/.t � t0/�2n D 0: (24)

From this we conclude

f0; f1 2 R; fi D 0; i 	 2: (25)

Substituting fi D 0; i 	 2 into Eq. (11) we obtain the following equation:

f0.3˛.3˛ � 4// � 6f1.1 � ˛/6˛.2˛ � 1/
2

.1 � 1 � ˛
2˛ � 1/.t � t0/�2

C f0
6˛.2˛ � 1/

2

3 � ˛
2˛ � 1 C 6f1˛.�1 � 3˛/.1 � ˛/.t � t0/�2

C f1.6˛.2˛ � 1/.3 � 3˛/C 12˛.2˛ � 1//.t � t0/�2

D �.6˛.2˛ � 1//2
32�G

˛

2˛ � 1.t � t0/�2:

(26)

When ˛ ! 0 we see that the last equation is also satisfied for any f0; f1 2 R. This
looks like Minkowski space solution, but this is not nonlocal gravity model (1),
because all fn D 0; n 	 2: It follows that the above power-law cosmological
solutions have not Minkowski space as their background, or in other words, they
cannot be obtained as perturbations on Minkowski space.

Remark. To get the Minkowski space (k D 0; a.t/ D a0 D const:) for nonlocal
gravity model (1) one can start from the de Sitter solution a.t/ D a0 exp .�t/ and
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to take limit � ! 0. Really, it is easy to see that equations of motion (3) and (4)
are satisfied for a.t/ D a0 exp .�t/ with R D 12�2 and f0 D � 3

8�G
�2: Then

a.t/ ! a0; R ! 0 and f0 ! 0 as � ! 0; and all fi ; i 	 1 are arbitrary
constants. This means that nonlocal gravity model (1) in its general form contains
the de Sitter universe, which has Minkowski space as its background. This case will
be further elaborated and presented elsewhere.

5 Case k D 0; ˛ ! 1
2

Let ˛ ! 1
2
. Similarly as in the previous case, from (23) we obtain the equation

1X
nD1

fn.�2/nnŠ
nY
lD1
.�1
2

C 2l/.1 � n/.5
2

� 2n/.t � t0/�2n D 0: (27)

From this, it follows

f0; f1 2 R; fi D 0; i 	 2: (28)

Using fi D 0; i 	 2, from Eq. (26) we get

3

2
f1.t � t0/�2 D 0: (29)

The corresponding solution is

f0 2 R; fi D 0; i 	 1: (30)

6 Case k ¤ 0; ˛ D 1

In order to simplify expression (6) there are three possibilities: ˛ D 0; ˛ D 1
2

and
˛ D 1: The first two of them do not yield solutions which satisfy the equations of
motion. In the case ˛ D 1 we obtain

a D a0jt � t0j; H D .t � t0/�1; R D s.t � t0/�2; s D 6

�
1C k

a20

�
;

R00 D 0; �R D 0; �nR�1 D D.n;�1/.t � t0/2�2n;
D.0;�1/ D s�1; D.1;�1/ D �8s�1; D.n;�1/ D 0; n 	 2; (31)
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where a0 D c D 1; because we work in natural system of units in which speed of
light c D 1:When k D �1; then s D R D 0 and cosmological solution a D jt � t0j
mimics the Milne universe, which is not a realistic cosmological model, but has
been interesting as a pure kinematical model.

Using the above expressions, trace and 00 equations become respectively

3f0 C
1X

nD0
fnsD.n;�1/.t � t0/�2n C 4f1.t � t0/�2 D s

16�G
.t � t0/�2;

� 6f0s�1 C 1

2
f0 C 6

1X
nD0

fnD.n;�1/.1 � n/.t � t0/�2n C 2f1.t � t0/�2

D � s

32�G
.t � t0/�2:

(32)

This system leads to conditions for f0 and f1 W

�2f0 � 4f1.t � t0/�2 D s

16�G
.t � t0/�2;

1

2
f0 C 2f1.t � t0/�2 D � s

32�G
.t � t0/�2:

(33)

The corresponding solution is

f0 D 0; f1 D �s
64�G

; fn 2 R; n 	 2: (34)

Example. As an example, let us take

F.�/ D � �

8�G
C Ce�ˇ� D � �

8�G
C C

1X
nD0

.�ˇ/n
nŠ

�n: (35)

Thus, the coefficients fn are given by

f0 D � �

8�G
C C; fn D C

.�ˇ/n
nŠ

; n 	 1: (36)

To have power-law solution of a.t/ (5), we have to set f0 D 0 and f1 D
� 3
32�G

.1C k/. Hence we have

C D �

8�G
; ˇ D 3

4�
.1C k/; (37)

F.�/ D �

8�G



e� 3

4� .1Ck/� � 1
�
; (38)
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where k D ˙1; 0. Note that (38) is valid also for k D 0: When k D �1; then
F.�/ D 0 and R D 0; and there is Milne’s expansion a D jt � t0j.

7 Concluding Remarks

To summarize, in this paper we have presented some power-law cosmological
solutions of the form a.t/ D a0jt � t0j˛; which are derived from modified
gravity with nonlocal term R�1F.�/R: These solutions do not have appropriate
Minkowski space background. However, in this nonlocal modified gravity model,
there is the de Sitter bounce solution a.t/ D a0 exp .�t/; which in the limit
� ! 0 leads to the Minkowski space. There is also nonsingular bounce solution
a.t/ D 1

�
cosh .�t/ for k D C1. Let us also mention solution a.t/ D 1

�
sinh .�t/;

related to k D �1: In all these three cases scalar curvature is R D 12�2 and there is

no restriction on coefficients fn in F.�/ D
1X
nD0

fn�n:

It is worth noting that there is solution a.t/ D jt � t0j which corresponds to
the Milne universe for k D �1: As an illustration we presented nonlocality by

F.�/ D �
8�G



e� 3

4� .1Ck/� � 1
�
:

Note also that all the above presented power-law solutions a.t/ D a0jt � t0j˛
have scalar curvature R.t/ D 6

�
˛.2˛ � 1/.t � t0/

�2 C k

a20
.t � t0/

�2˛� (6), which

satisfies relation �R D qR2; where parameter q depends on ˛: This quadratic
relation �R D qR2 was used in [13] as an Ansatz to solve equations of motion.

Finally, our nonlocality, having the form R�1F.�/R; does not depend on the
magnitude of R; but has influence on the evolution of the universe, because time
dependent operator � D �@2t �3H.t/@t acts on the time dependent scalar curvature

R.t/ D 6


Ra
a

C Pa2
a2

C k
a2

�
:
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On Nonlocal Modified Gravity and Cosmology

Branko Dragovich

Abstract Despite many nice properties and numerous achievements, general rela-
tivity is not a complete theory. One of actual approaches towards more complete
theory of gravity is its nonlocal modification. We present here a brief review
of nonlocal gravity with its cosmological solutions. In particular, we pay special
attention to two nonlocal models and their nonsingular bounce solutions for the
cosmic scale factor.

1 Introduction

Recall that General Relativity is the Einstein theory of gravity based on tensorial
equation of motion for gravitational (metric) field g�� W R�� � 1

2
Rg�� D

8�GT�� , where R�� is the Ricci curvature tensor, R—the Ricci scalar, T�� is the
energy-momentum tensor, and speed of light is c D 1. This Einstein equation fol-
lows from the Einstein–Hilbert action S D 1

16�G

R p�g R d4x C R p�gLm d4x,
where g D det.g��/ and Lm is Lagrangian of matter.

Motivations for modification of general relativity are usually related to some
problems in quantum gravity, string theory, astrophysics and cosmology (for a
review, see [15, 42, 44]). We are here mainly interested in cosmological reasons
to modify the Einstein theory of gravity. If general relativity is gravity theory for the
universe as a whole and the universe has Friedmann–Lemaître–Robertson–Walker
(FLRW) metric, then there is in the universe about 68% of dark energy, 27% of
dark matter, and only 5% of visible matter [1]. The visible matter is described by the
Standard model of particle physics. However, existence of this 95% of dark energy-
matter content of the universe is still hypothetical, because it has been not verified
in the laboratory ambient. Another cosmological problem is related to the Big
Bang singularity. Namely, under rather general conditions, general relativity yields
cosmological solutions with zero size of the universe at its beginning, what means
an infinite matter density. Note that when physical theory contains singularity, it is
not valid in the vicinity of singularity and must be appropriately modified.
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In this article, we briefly review nonlocal modification of general relativity in a
way to point out cosmological solutions without Big Bang singularity. We consider
two nonlocal models and present their nonsingular bounce cosmological solutions.
To have more complete view of these models we also write down other exact
solutions which are power-law singular ones of the form a.t/ D a0 jt j˛ .

In Sect. 2 we describe some general characteristics of nonlocal gravity which are
useful for understanding what follows in the sequel. Section 3 contains a review
of both nonsingular bounce and singular cosmological solutions for two nonlocal
gravity models without matter. Last section is related to the discussion with some
concluding remarks.

2 Nonlocal Gravity

The well founded modification of the Einstein theory of gravity has to contain
general relativity and to be verified on the dynamics of the Solar system. Math-
ematically, it should be formulated within the pseudo-Riemannian geometry in
terms of covariant quantities and equivalence of the inertial and gravitational mass.
Consequently, the Ricci scalar R in gravity Lagrangian Lg of the Einstein–Hilbert
action has to be replaced by a function which, in general, may contain not only R
but also any covariant construction which is possible in the Riemannian geometry.
Unfortunately, there are infinitely many such possibilities and so far without a
profound theoretical principle which could make definite choice. The Einstein–
Hilbert action can be viewed as a result of the principle of simplicity in construction
of Lg .

We consider here nonlocal modified gravity. In general, a nonlocal modified
gravity model corresponds to an infinite number of spacetime derivatives in the form
of some power expansions of the d’Alembert operator � D 1p�g @�

p�gg��@�
or of its inverse ��1, or some combination of both. We are mainly interested in
nonlocality expressed in the form of an analytic function F.�/ D P1

nD0 fn�n.
However, some models with ��1R, have been also considered (see, e.g. [19, 20,
28,29,31–33,41,45,46] and references therein). For nonlocal gravity with ��1 see
also [6,39]. Many aspects of nonlocal gravity models have been considered, see e.g.
[14, 17, 18, 25, 40] and references therein.

Motivation to modify gravity in a nonlocal way comes mainly from string
theory. Namely, strings are one-dimensional extended objects and their field theory
description contains spacetime nonlocality. We will discuss it in the framework of
p-adic string theory in Sect. 4.

In order to better understand nonlocal modified gravity itself, we investigate it
without matter. Models of nonlocal gravity which we mainly consider are given by
the action

S D
Z
d4x

p�g

R � 2�
16�G

CRqF.�/R
�
; q D C1;�1; (1)
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where� is cosmological constant, which is for the first time introduced by Einstein
in 1917. Thus this nonlocality is given by the term RqF.�/R, where q D ˙1 and
F.�/ D P1

nD0 fn�n, i.e. we investigate two nonlocal gravity models: the first one
with q D C1 and the second one with q D �1.

Before to proceed, it is worth mentioning that analytic function F.�/ DP1
nD0 fn�n, has to satisfy some conditions, in order to escape unphysical degrees

of freedom like ghosts and tachyons, and to be asymptotically free in the ultraviolet
region (see discussion in [10, 11]).

3 Models and Their Cosmological Solutions

In the sequel we shall consider the above mentioned two nonlocal models (1)
separately for q D C1 and q D �1.

We use the FLRW metric ds2 D �dt2 C a2.t/
�
dr2

1�kr2 C r2d
2 C r2 sin2 
d�2
�

and investigate all three possibilities for curvature parameter k D 0;˙1. In the

FLRW metric scalar curvature is R D 6


Ra
a

C Pa2
a2

C k
a2

�
and � D �@2t � 3H@t ,

where H D Pa
a

is the Hubble parameter. Note that we use natural system of units in
which speed of light c D 1.

3.1 Nonlocal Model Quadratic in R

Nonlocal gravity model which is quadratic in R is given by the action [7, 8]

S D
Z
d4x

p�g

R � 2�
16�G

CRF.�/R
�
: (2)

This model is attractive because it is ghost free and has some nonsingular bounce
solutions, which can solve the Big Bang cosmological singularity problem.

The corresponding equation of motion follows from the variation of the action (2)
with respect to metric g�� and it is

2R��F.�/R � 2.r�r� � g���/.F.�/R/ � 1

2
g��RF.�/R

C
1X
nD1

fn

2

n�1X
lD0

�
g��

�
g˛ˇ@˛�lR@ˇ�n�1�lRC �lR�n�lR

�

�2@��lR@��n�1�lR
� D �1

8�G
.G�� C�g��/: (3)

When metric is of the FLRW form in (3) then there are only two independent
equations. It is practical to use the trace and 00 component of (3), and respectively
they are:
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6�.F.�/R/CP1
nD1 fn

Pn�1
lD0

�
@��lR@��n�1�lRC 2�lR�n�lR

�
D 1

8�G
R � �

2�G
; (4)

2R00F.�/R � 2.r0r0 � g00�/.F.�/R/ � 1
2
g00RF.�/R

CP1
nD1

fn
2

Pn�1
lD0

�
g00

�
g˛ˇ@˛�lR@ˇ�n�1�lRC �lR�n�lR

�
�2@0�lR@0�n�1�lR

� D �1
8�G

.G00 C�g00/: (5)

We are interested in cosmological solutions for the universe with FLRW metric
and even in such simplified case it is rather difficult to find solutions of the above
equations. To evaluate the above equations, the following Ansätze were used:

• Linear Ansatz: �R D rRC s; where r and s are constants.
• Quadratic Ansatz: �R D qR2; where q is a constant.
• Qubic Ansatz: �R D qR3; where q is a constant.
• Ansatz �nR D cnR

nC1; n 	 1; where cn are constants.

In fact these Ansätze make some constraints on possible solutions, but on the other
hand they simplify formalism to find a particular solution.

Linear Ansatz and Nonsingular Bounce Cosmological Solutions

Using Ansatz �R D rRC s a few nonsingular bounce solutions for the scale factor

are found: a.t/ D a0 cosh

�q
�
3
t

�
(see [7, 8]), a.t/ D a0e

1
2

p
�
3 t
2

(see [37]) and

a.t/ D a0.�e
�t C �e��t / [22]. The first two consequences of this Ansatz are

�nR D rn.RC s

r
/; n 	 1; F.�/R D F.r/RC s

r
.F.r/ � f0/; (6)

which considerably simplify nonlocal term.
Now we can search for a solution of the scale factor a.t/ in the form of a linear

combination of e�t and e��t , i.e.

a.t/ D a0.�e
�t C �e��t /; 0 < a0; �; �; � 2 R: (7)

Then the corresponding expressions for the Hubble parameter H.t/ D Pa
a

, scalar
curvature R.t/ D 6

a2
.a RaC Pa2 C k/ and �R are:
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H.t/ D �.�e�t � �e��t /
�e�t C �e��t

;

R.t/ D 6
�
2a20�

2
�
�2e4t� C �2

�C ke2t�
�

a20
�
�e2t� C �

�2 ;

�R D �12�
2e2t�

�
4a20�

2�� � k�
a20
�
�e2t� C �

�2 :

(8)

We can rewrite �R as

�R D 2�2R � 24�4; r D 2�2; s D �24�4: (9)

Substituting parameters r and s from (9) into (6) one obtains

�nR D .2�2/n.R � 12�2/; n 	 1;

F.�/R D F.2�2/R � 12�2.F.2�2/ � f0/:
(10)

Using this in (4) and (5) we obtain

36�2F.2�2/.R � 12�2/C F 0.2�2/
�
4�2.R � 12�2/2 � PR2�

� 24�2f0.R � 12�2/ D R � 4�
8�G

; (11)

.2R00 C 1

2
R/
�
F.2�2/R � 12�2.F.2�2/ � f0/

�

� 1

2
F 0.2�2/

� PR2 C 2�2.R � 12�2/2� � 6�2.F.2�2/ � f0/.R � 12�2/

C 6HF.2�2/ PR D � 1

8�G
.G00 ��/: (12)

Substituting a.t/ from (7) into Eqs. (11) and (12) one obtains two equations as
polynomials in e2�t . Taking coefficients of these polynomials to be zero one obtains
a system of equations and their solution determines parameters a0; �; �; � and yields
some conditions for function F.2�2/. For details see [22].

Quadratic Ansatz and Power-Law Cosmological Solutions

New Ansätze �R D rR; �R D qR2 and �nR D cnR
nC1, were introduced in

[21] and they contain solution for R D 0 which satisfies also equations of motion.
When k D 0 there is only static solution a D constant, and for k D �1 solution is
a.t/ D jt j.



256 B. Dragovich

In particular, Ansatz �R D qR2 is very interesting. The corresponding
differential equation for the Hubble parameter, if k D 0, is

«H C 4 PH2 C 7H RH C 12H2 PH C 6q. PH2 C 4H2 PH C 4H4/ D 0 (13)

with solutions

H�.t/ D 2�C 1

3

1

t C C1
; q� D 6.� � 1/

.2�C 1/.4� � 1/ ; � 2 R (14)

andH D 1
2

1
tCC1 with arbitrary coefficient q, what is equivalent to the ansatz �R D

rR with R D 0.
The corresponding scalar curvature is given by

R� D 2

3

.2�C 1/.4� � 1/
.t C C1/2

; � 2 R: (15)

By straightforward calculation one can show that �nRn D 0 when n 2 N. This
simplifies the equations considerably. For this particular case of solutions operator
F and trace Eq. (4) effectively become

F.�/ D
n�1X
kD0

fk�k; (16)

nC1X
kD1

fk

k�1X
lD0
.@��lR@��k�1�lRC 2�lR�k�lR/C 6�F.�/R D R

8�G
: (17)

In particular case n D 2 the trace formula becomes

36

35
f0R

2 C f1.� PR2 C 12

35
R3/C f2.�24

35
R PR2 C 72

1225
R4/C f3.� 144

1225
R2 PR2/

D R

8�G
: (18)

Some details on all the above three Ansätze can be found in [21].

3.2 Nonlocal Model with Term R�1F.�/R

This model was introduced recently [23] and its action may be written in the form

S D
Z
d4x

p�g

 R

16�G
CR�1F.�/R

�
; (19)
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where F.�/ D P1
nD0 fn�n and when f0 D � �

8�G
it plays role of the cosmological

constant. For example, F.�/ can be of the form F.�/ D � �
8�G

e�ˇ�.
The nonlocal term R�1F.�/R in (19) is invariant under transformation R !

CR. It means that effect of nonlocality does not depend on the magnitude of scalar
curvature R, but on its spacetime dependence, and in the FLRW case is sensitive
only to dependence of R on time t . When R D constant there is no effect of
nonlocality, but only of f0 what corresponds to cosmological constant.

By variation of action (19) with respect to metric g�� one obtains the equations
of motion for g��

R��V � .r�r� � g���/V � 1
2
g��R

�1F.�/R

CP1
nD1

fn
2

Pn�1
lD0

�
g��

�
@˛�l .R�1/@˛�n�1�lRC �l .R�1/�n�lR

�

�2@��l .R�1/@��n�1�lR
� D � G��

16�G
; (20)

V D F.�/R�1 �R�2F.�/R:

Note that operator � acts not only on R but also on R�1. There are only two
independent equations when metric is of the FLRW type.

The trace of Eq. (20) is

RV C 3�V CP1
nD1 fn

Pn�1
lD0

�
@˛�l .R�1/@˛�n�1�lRC 2�l .R�1/�n�lR

�
�2R�1F.�/R D R

16�G
: (21)

The 00-component of (20) is

R00V � .r0r0 � g00�/V � 1
2
g00R

�1F.�/R

CP1
nD1

fn
2

Pn�1
lD0

�
g00

�
@˛�l .R�1/@˛�n�1�lRC �l .R�1/�n�lR

�
�2@0�l .R�1/@0�n�1�lR

� D � G00
16�G

: (22)

These trace and 00-component equations are equivalent for the FLRW universe in
the equation of motion (20), but they are more suitable for usage.

Some Cosmological Solutions for Constant R

We are interested in some exact nonsingular cosmological solutions for the scale
factor a.t/ in (20). The Ricci curvature R in the above equations of motion can be
calculated by expression

R D 6

� Ra
a

C Pa2
a2

C k

a2

�
:
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Case k D 0, a.t/ D a0e
�t .

We have a.t/ D a0e
�t ; Pa D �a; Ra D �2a; H D Pa

a
D � and R D

6


Ra
a

C Pa2
a2

�
D 12�2. Putting a.t/ D a0e

�t in the above Eqs. (21) and (22), they are

satisfied with � D ˙
q

�
3

, where � D �8�G f0 with f0 < 0.

Case k D C1, a.t/ D 1
�

cosh�t .

Starting with a.t/ D a0 cosh�t; we have Pa D �a0 sinh�t; H D Pa
a

D
� tanh�t and R D 6



Ra
a

C Pa2
a2

C 1
a2

�
D 12�2 if a0 D 1

�
. Hence Eqs. (21) and (22)

are satisfied for cosmic scale factor a.t/ D 1
�

cosh�t .
In a similar way, one can obtain another solution:

Case k D �1, a.t/ D 1
�
j sinh�t j.

Thus we have the following three cosmological solutions for R D 12�2:

1. k D 0, a.t/ D a0 e
�t , nonsingular bounce solution.

2. k D C1, a.t/ D 1
�

cosh�t , nonsingular bounce solution.
3. k D �1, a.t/ D 1

�
j sinh�t j, singular cosmic solution.

All of this solution have exponential behavior for large value of time t .
Note that in all the above three cases the following two tensors have also the

same expressions:

R�� D 1

4
Rg��; G�� D �1

4
Rg��: (23)

Minkowski background space follows from the de Sitter solution k D 0, a.t/ D
a0e

�t . Namely, when � ! 0 then a.t/ ! a0 and H D R D 0.
In all the above cases �R D 0 and thus coefficients fn; n 	 1 may be arbitrary.

As a consequence, in these cases nonlocality does not play a role.

Some Power-Law Cosmological Solutions

Power-law solutions in the form a.t/ D a0jt � t0j˛ , have been investigated by some
Ansätze in [23] and without Ansätze [24]. The corresponding Ricci scalar and the
Hubble parameter are:

R.t/ D 6

� Ra
a

C Pa2
a2

C 1

a2

�
D 6

�
˛.2˛ � 1/.t � t0/�2 C k

a20
.t � t0/�2˛

�

H.t/ D Pa
a

D ˛

jt � t0j :

Now � D �@2t � 3˛
jt�t0j@t . An analysis has been performed for ˛ ¤ 0; 1

2
, and also

˛ ! 0; ˛ ! 1
2

for k D C1;�1; 0. For details, the reader refers to [23, 24].
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4 Discussion and Concluding Remarks

To illustrate the form of the above nonlocality (2) it is worth to start from exact
effective Lagrangian at the tree level for p-adic closed and open scalar strings. This
Lagrangian is as follows (see, e.g. [13]):

Lp D � mD

2g2
p2

p � 1'p
� �

2m2 ' � mD

2h2
p4

p2 � 1�p
� �

4m2 � C mD

h2
p4

p4 � 1�
p2C1

� mD

g2
p2

p2 � 1�
p.p�1/

2 C mD

g2
p2

p2 � 1'
pC1�

p.p�1/
2 ; (24)

where ' denotes open strings, D is spacetime dimensionality (in the sequel we
shall take D D 4), and g and h are coupling constants for open and closed strings,
respectively. Scalar field �.x/ corresponds to closed p-adic strings and could be
related to gravity scalar curvature as � D f .R/, where f is an appropriate function.
The corresponding equations of motion are:

p
� �

2m2 ' D 'p�
p.p�1/

2 ; p
� �

4m2 � D �p
2 C h2

2g2
p � 1
p

�
p.p�1/

2 �1 �'pC1 � 1� :
(25)

There are the following constant vacuum solutions: (i) ' D � D 0, (ii) ' D � D 1

and (iii) ' D ��
p
2 D constant.

In the case that the open string field ' D 0, one obtains equation of motion only
for closed string �. One can now construct a toy nonlocal gravity model supposing
that closed scalar string is related to the Ricci scalar curvature as � D � 1

m2
R D

� 4
3g2
.16�G/R. Taking p D 2, we obtain the following Lagrangian for gravity

sector:

Lg D 1

16�G
R � 8

3

C 2

h2
R e
� ln 2�

4m2 R � 1024

405g6h2
.16�G/3R5: (26)

To compare third term to the first one in (26), let us note that .16�G/3R5 D
.16�GR/4 R

16�G
. It follows that .GR/4 has to be dimensionless after rewriting

it using constants c and „. As Ricci scalar R has dimension T ime�2 it means
that G has to be replaced by the Planck time as t 2P D „G

c5
� 10�88s2. Hence

.GR/4 ! .„G
c5
R/4 � 10�352R4 and third term in (26) can be neglected with respect

to the first one, except when R � t�2P . The nonlocal model with only first two terms
corresponds to case considered above in this article. We shall consider this model
including R5 term elsewhere.

It is worth noting that the above two models with nonlocal terms RF.�/R and
R�1F.�/R are equivalent in the case when R D constant, because their equations
of motion have the same solutions. These solutions do not depend on F.�/ � f0.
It would be useful to find cosmological solutions which have definite connection
with the explicit form of nonlocal operator F.�/.



260 B. Dragovich

Let us mention that many properties of (2) and its extended quadratic versions
have been considered, see [9–11, 34, 35].

Nonlocal model (19) is a new one and was not considered before [23], it seems
to be important and deserves further investigation. There are some gravity models
modified by term R�1, but they are neither nonlocal nor pass Solar system tests, see
e.g. [30].

Note that nonlocal cosmology is related also to cosmological models in which
matter sector contains nonlocality (see, e.g. [2–5,16,26,27,36]). String field theory
and p-adic string theory models have played significant role in motivation and
construction of such models.

Nonsingular bounce cosmological solutions are very important (as reviews on
bouncing cosmology, see e.g. [12, 43]) and their progress in nonlocal gravity may
be a further step towards cosmology of the cyclic universe [38].
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Vertex Operator Approach to Semi-infinite
Spin Chain: Recent Progress

Takeo Kojima

Abstract Vertex operator approach is a powerful method to study exactly solvable
models. We review recent progress of vertex operator approach to semi-infinite
spin chain. (1) The first progress is a generalization of boundary condition. We
study Uq.bsl.2// spin chain with a triangular boundary, which gives a generalization
of diagonal boundary (Baseilhac and Belliard, Nucl Phys B873:550–583, 2013;
Baseilhac and Kojima, Nucl Phys B880:378–413, 2014). We give a bosonization
of the boundary vacuum state. As an application, we derive a summation formulae
of boundary magnetization. (2) The second progress is a generalization of hidden
symmetry. We study supersymmetry Uq.bsl.M jN// spin chain with a diagonal
boundary (Kojima, J Math Phys 54(043507):40 pp., 2013). By now we have studied
spin chain with a boundary, associated with symmetry Uq.bsl.N //, Uq.A.2/2 / and

Uq;p.bsl.N // (Furutsu and Kojima, J Math Phys 41:4413–4436, 2000; Yang and
Zhang, Nucl Phys B596:495–512, 2001; Kojima, Int J Mod Phys A26:1973–1989,
2011; Miwa and Weston, Nucl Phys B486:517–545, 1997; Kojima, J Math Phys
52(01351):26 pp., 2011), where bosonizations of vertex operators are realized by
“monomial”. However the vertex operator for Uq.bsl.M jN// is realized by “sum”,
a bosonization of boundary vacuum state is realized by “monomial”.

1 Introduction

There have been many developments in exactly solvable lattice models. Various
models were found to be solvable and various methods were invented to solve these
models. Vertex operator approach is a powerful method to study exactly solvable
lattice models. Solvability of lattice models is understood by means of commuting
transfer matrix. The half transfer matrices are called “vertex operators” and are
identified with the intertwiners of the irreducible highest weight representations of
the quantum affine algebras Uq.g/. This identification is a basis of vertex operator
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approach. In [4], the vertex operator approach was extended to half-infinite XXZ
spin chain with a diagonal boundary. In this paper we review recent progress of
vertex operator approach to semi-infinite spin chain with a boundary. We start from
solutions of the boundary Yang–Baxter equation, and introduce the transfer matrices
in terms of a product of vertex operators. We diagonalize the transfer matrices by
using bosonizations of the vertex operators, and study correlation functions.

The plan of the paper is as follows. In Sect. 2 we study Uq.bsl.2// spin
chain with a triangular boundary, which is a generalization of diagonal boundary.
We give a bosonization of the boundary vacuum state, and calculate boundary
magnetization. In Sect. 3 we study supersymmetry Uq.bsl.MC1jN C1// spin chain
with a diagonal boundary. We give bosonizations of boundary vacuum states. In
section “Conclusion” we summarize a conclusion. Throughout this paper we use
the following abbreviations.

Œn�q D qn � q�n
q � q�1 ; .zIp/1 D

1Y
mD0

.1 � pmz/; 
m D
�
1 .m W even/;
0 .m W odd/:

(1)

2 XXZ Spin Chain with a Triangular Boundary

2.1 Transfer Matrix

The first progress is a generalization of boundary condition. We study XXZ spin
chain with a triangular boundary [1, 2]. The Hamiltonian H.˙/

B is given by

H
.˙/
B D�1

2

1X
kD1

.�xkC1�
x
k C �

y

kC1
�
y

k C�� z
kC1

� z
k/�

1 � q2
4q

1C r

1 � r �
z
1� s

1 � r �
˙

1 (2)

where �x; �y; � z; �˙ are the standard Pauli matrices. In what follows we set
V D CvC ˚ Cv�. Consider the infinite dimensional vector space � � �˝V3˝V2˝V1,
where Vj are copies of V . Let us introduce the subspace H.i/ .i D 0; 1/ by

H.i/ D Spanf� � � ˝ vp.N/ ˝ � � � ˝ vp.2/ ˝ vp.1/j p.N/ D .�1/NCi .N � 1/g (3)

where p W N ! f˙g. The Hamiltonian H.˙/
B acts on the subspace H.i/. Here

we consider the model in the massive regime where � D qCq�1
2

, �1 < q < 0,

�1 � r � 1, s 2 R. In Sklyanin’s framework [8], the transfer matrix OT .˙;i/B .�I r; s/
that was a generating function of the Hamiltonian H.˙/

B was introduced. It is built
from two objects: the R-matrix and the K�matrix. We introduces the R-matrix
R.�/ by
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R.�/ D 1

�.�/

0
BBBBBBB@

1

.1 � �2/q
1 � q2�2

.1 � q2/�
1 � q2�2

.1 � q2/�
1 � q2�2

.1 � �2/q
1 � q2�2

1

1
CCCCCCCA
: (4)

Here we have set �.�/ D �
.q4�2Iq4/1.q2=�2Iq4/1
.q4=�2Iq4/1.q2�2Iq4/1 . The matrix elements of

R.�/ 2 End.V ˝ V / are given by R.�/v�1 ˝ v�2 D P
�01;�
0

2D˙ v�01 ˝ v�02R.�/
�1�2
�01�
0

2
,

where the ordering of the index is given by vC ˝ vC; vC ˝ v�; v� ˝ vC; v� ˝ v�.
Rij .�/ acts as R.�/ on the i -th and j -th components and as identity elsewhere. The
R-matrix R.�/ satisfies the Yang–Baxter equation.

R12.�1=�2/R13.�1=�3/R23.�2=�3/ D R23.�2=�3/R13.�1=�3/R12.�1=�2/: (5)

The normalization factor �.�/ is determined by the following unitarity and crossing

symmetry conditions: R12.�/R21.��1/ D 1; R.�/
�02�1

�2�
0

1
D R.�q�1��1/��01�02��1�2 . Also,

we introduce the triangular K-matrix K.˙/.�/ D K.˙/.�I r; s/ by

K.C/.�I r; s/ D '.�2I r/
'.��2I r/

0
@ 1 � r�2
�2 � r

s�.�2 � ��2/
�2 � r

0 1

1
A ; (6)

K.�/.�I r; s/ D '.�2I r/
'.��2I r/

0
BB@

1 � r�2
�2 � r 0

s�.�2 � ��2/
�2 � r 1

1
CCA ; (7)

where we have set '.zI r/ D .q4rzIq4/1.q6z2Iq8/1
.q2rzIq4/1.q8z2Iq8/1 . The matrix elements ofK.˙/ .�/ 2

End.V / are given by K.˙/.�/v� D P
�0D˙ v�0K.˙/.�/�

�0
, where the ordering of the

index is given by vC; v�. TheK-matrixK.˙/.�/ satisfies the boundary Yang–Baxter
equation:

K
.˙/
2 .�2/R21.�1�2/K

.˙/
1 .�1/R12.�1=�2/ D

D R21.�1=�2/K
.˙/
1 .�1/R12.�1�2/K

.˙/
2 .�2/: (8)

The normalization factor '.zI r/ is determined by the following boundary
unitarity and boundary crossing symmetry : K.˙/.�/K.˙/.��1/ D 1; K.˙/

.�q�1��1/�2�1 D P
�01;�
0

2D˙R.�q�2/
��1�2
�01��02K

.˙/.�/�
0

1

�02
. We introduce the vertex

operators O̊ .1�i;i/
� .�/ .� D ˙/ which act on the space H.i/ .i D 0; 1/. Matrix

elements are given by products of the R-matrix as follows:
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. O̊ .1�i;i/
� .�//

���p.N/0���p.2/0p.1/0

���p.N/���p.2/ p.1/ D lim
N!1

X
�.1/;�.2/;��� ;�.N /D˙

NY
jD1

R.�/
�.j / p.j /0

�.j�1/ p.j / (9)

where �.0/ D � and �.N/ D .�1/NC1�i . We expect that the vertex
operators O̊ .1�i;i/

� .�/ give rise to well-defined operators. We set O̊ �.1�i;i/
�

.�/ D O̊ .1�i;i/�� .�q�1�/. Following the strategy proposed in [4], we introduce
the transfer matrix OT .˙;i/B .�I r; s/ using the vertex operators.

OT .˙;i/B .�I r; s/ D
X

�1;�2D˙
O̊ �.i;1�i/
�1

.��1/K.˙/.�I r; s/�2�1 O̊ .1�i;i/
�2

.�/: (10)

Heuristic arguments suggest that the transfer matrix commutes:

Œ OT .˙;i/B .�1I r; s/; OT .˙;i/B .�2I r; s/� D 0 for any �1; �2: (11)

The Hamiltonian H.˙/
B (2) is obtained as

d

d�
OT .˙;i/B .�I r; s/

ˇ̌
ˇ̌
�D1

D 4q

1 � q2H
.˙/
B C const: (12)

We are interested in diagonalization of the transfer matrix OT .˙;i/B .�I r; s/.

2.2 Vertex Operator Approach

We formulate the vertex operator approach to the half-infinite XXZ spin chain
with a triangular boundary. Let V� the evaluation representation of Uq.bsl.2//. Let

V.�i / the irreducible highest weight Uq.bsl.2// representation with the fundamental

weights �i .i D 0; 1/. We introduce the vertex operators ˚.1�i;i/
� .�/ as the

intertwiner of Uq.bsl.2//:
˚.1�i;i/.�/ W V.�i / �! V.�1�i /˝ V�; ˚

.1�i;i/.�/ � x D
D �.x/ � ˚.1�i;i/.�/; (13)

for x 2 Uq.bsl.2//. We set the elements of the vertex operators : ˚.1�i;i/.�/ D P
�

˚
.1�i;i/
� .�/ ˝ v� . We set ˚�.1�i;i/� .�/ D ˚

.1�i;i/�� .�q�1�/. Following the strategy
of [4], as the generating function of the Hamiltonian H

.˙/
B we introduce the

“renormalized” transfer matrix T .˙;i/B .�I r; s/ :
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T
.˙;i/
B .�I r; s/Dg

X
�1;�2D˙

˚�.i;1�i/�1
.��1/K.˙/.�I r; s/�2�1˚.1�i;i/

�2
.�/; g D .q2I q4/1

.q4I q4/1

Following strategy [4], we study our problem upon the following identification:

T
.˙;i/
B .�I r; s/ D OT .˙;i/B .�I r; s/; ˚.1�i;i/

� .�/ D O̊ .1�i;i/
� .�/; ˚�.1�i;i/� .�/ D

D O̊ �.1�i;i/
� .�/: (14)

The point of using the vertex operators ˚.1�i;i/
� .�/ associated with Uq.bsl.2// is

that they are well-defined objects, free from the difficulty of divergence. It is
convenient to diagonalize the “renormalized” transfer matrix T .˙;i/B .�I r; s/ instead

of the Hamiltonian H.˙/
B .

2.3 Boundary Vacuum State

We are interested in bosonizations of the boundary vacuum states Bhi I ˙j given by

Bhi I ˙jT .˙;i/B .�I r; 0/ D �.i/.�I r/Bhi I ˙j; (15)

for i D 0; 1. Here we have set �.0/.�I r/ D 1 and �.1/.�I r/ D 1
�2


q4 .r�
2/
q4 .q

2r��2/


q4 .r�
�2/
q4 .q

2r�2/
,

where 
p.z/ D .pIp/1.zIp/1.p=zIp/1. We introduce bosons am .m ¤ 0/ and
the zero-mode operator @; ˛ by

Œam; an� D ımCn;0
Œ2m�qŒm�q

m
.m; n ¤ 0/; Œ@; ˛� D 2: (16)

The relation between the zero-mode and the fundamental weights are given by
Œ@;�0� D 0 and �1 D �0 C ˛

2
. Using the bosonization of the vertex operators

˚
.1�i;i/
� .�/ we have a bosonization of the boundary vacuum state. The boundary

vacuum states Bhi I ˙j are realized by

Bh0I Cj D Bh0j expq .�sf0/ ; Bh1I Cj D Bh1j expq�1

�
� s

rq
e1q
�h1
�

(17)

Bh0I �j D Bh0j expq�1

�
s

q
e0q
�h0
�
; Bh1I �j D Bh1j expq


 s
r
f1

�
(18)

where we have used q-exponential expq.x/ D P1
nD0

q
n.n�1/
2

Œn�q Š
xn. Here Bhi j are given

by
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Bhi j D hi j exp .Gi / ; Gi D �1
2

1X
nD1

nq�2n

Œ2n�qŒn�q
a2n C

1X
nD1

ı.i/n an;

hi j D 1˝ e��i : (19)

where we have set

ı.i/n D 
n
q�3n=2.1 � qn/

Œ2n�q
C

8̂
<̂
ˆ̂:

�q
�5n=2rn
Œ2n�q

.i D 0/;

Cq�n=2r�n
Œ2n�q

.i D 1/:

(20)

The boundary vacuum states j˙I iiB are realized similarly.

2.4 Boundary Magnetization

We study the boundary magnetization. Let E�;�0 be the matrix E�;�0 at the first site of
the space H.i/. We have a realization of this local operator

E�;�0 D g ˚�.i;1�i/� .�q�1�/˚.1�i;i/
�0

.�/
ˇ̌
ˇ
�D1 ; g D .q2I q4/1

.q4I q4/1 : (21)

Hence, using the bosonizations of the vertex operators, the Chevalley generators
ej ; fj ; hj .j D 0; 1/, and the boundary vacuum states, we calculate the following
vacuum expectation values.

Bhi I ˙jE�;�0 j˙I iiB
Bhi I ˙j˙I iiB : (22)

For instance, the boundary magnetizations are derived:

Bh0I �j� z
1j�I 0iB

Bh0I �j�I 0iB D �1 � 2.1 � r/2
1X
nD1

.�q2/n
.1 � rq2n/2 ; (23)

Bh0I �j�C1 j�I 0iB
Bh0I �j�I 0iB D s

 
2C .1 � r/

1X
nD1
.�q2/n 2q

2n � r.1C q4n/

.1 � rq2n/2
!
; (24)

Bh0I �j��1 j�I 0iB
Bh0I �j�I 0iB D 0: (25)

This is main result of the paper [2].
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3 Uq.bsl.M C 1jN C 1// Spin Chain
with a Diagonal Boundary

3.1 Transfer Matrix

The second progress is a generalization of hidden symmetry [3,6,7,9]. We study Uq
.bsl.M C1jN C1// spin chain with a diagonal boundary [6]. Let us set �1 < q < 0
and r 2 R. Let us setM;N D 0; 1; 2; � � � .M ¤ N/ andL;K D 1; 2; � � � ;MCNC
2. For simplicity we assume the condition L C K � M C 1. (More general cases
are studied in [6].) Let us introduce the signatures �i .i D 1; 2; � � � ;M CN C2/ by
�1 D � � � D �MC1 D C, �MC2 D � � � D �MCNC2 D �. Let us set the vector spaces
V1 D ˚MC1

jD1 Cvj and V0 D ˚NC1
jD1 CvMC1Cj . In this section we set V D V1 ˚ V0.

The Z2-grading of the basis fvj g1	j	MCNC2 of V is chosen to be
�
vj
	 D �jC1

2

.j D 1; 2; � � � ;M C N C 2/. A linear operator S 2 End.V / is represented in the
form of a .M C N C 2/ � .M C N C 2/ matrix : Svj D PMCNC2

iD1 viSi;j . The
Z2-grading of .MCN C2/�.MCN C2/matrix .Si;j /1	i;j	MCNC2 is defined by
ŒS� D Œvi �C Œvj � .mod:2/ if RHS of the equation does not depend on i and j such
that Si;j ¤ 0. We define the action of the operator S1˝� � �˝Sn where Sj 2 End.V /
have Z2-grading.

S1 ˝ S2 ˝ � � � ˝ Sn � vj1 ˝ vj2 ˝ � � � ˝ vjn

D exp

 
�

p�1
nX

kD1
ŒSk�

k�1X
lD1
Œvjl �

!
S1vj1 ˝ S2vj2 ˝ � � � ˝ Snvjn : (26)

We set the R-matrix R.z/ 2 End.V ˝ V / for Uq.bsl.M C 1jN C 1// as follows.

R.z/ D r.z/ NR.z/; NR.z/vj1 ˝ vj2 D
MCNC2X
k1;k2D1

vk1 ˝ vk2 NR.z/j1;j2k1;k2
: (27)

Here we have set

NR.z/j;jj;j D

8̂
<
:̂

�1 .1 � j � M C 1/;

� .q2 � z/
.1 � q2z/ .M C 2 � j � M CN C 2/;

(28)

NR.z/i;ji;j D .1 � z/q

.1 � q2z/ .1 � i ¤ j � M CN C 2/; (29)
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NR.z/j;ii;j D

8̂
ˆ̂<
ˆ̂̂:

.�1/Œvi �Œvj � .1 � q2/
.1 � q2z/ .1 � i < j � M CN C 2/;

.�1/Œvi �Œvj � .1 � q2/z
.1 � q2z/ .1 � j < i � M CN C 2/;

(30)

NR.z/i;ji;j D 0 otherwise: (31)

Here we have set

r.z/ D z
1�MCN
M�N exp

 
�
1X
mD1

Œ.M �N � 1/m�q
mŒ.M �N/m�q q

m.zm � z�m/
!
: (32)

The R-matrix R.z/ satisfies the graded Yang–Baxter equation.

R12.z1=z2/R13.z1=z3/R23.z2=z3/ D R23.z2=z3/R13.z1=z3/R12.z1=z2/: (33)

We set the diagonalK-matrixK.z/ 2 End.V / for Uq.bsl.M C1jN C1// as follows.

K.z/ D z�
2M
M�N

'.z/

'.z�1/
NK.z/; NK.z/vj D

MCNC2X
kD1

vkıj;k NK.z/jj ; (34)

where we have set

NK.z/jj D

8̂
<
:̂

1 .1 � j � L/;
1 � r=z
1 � rz .LC 1 � j � LCK/;

z�2 .LCK C 1 � j � M CN C 2/:

(35)

Here we have set

'.z/ D exp

 1X
mD1

Œ2.N C 1/m�q

mŒ2.M �N/m�q z2m C

C
MX
jD1

1X
mD1

Œ2.M �N � j /m�q
2mŒ2.M �N/m�q .1 � q2m/z2m C (36)

C
MCNC1X
jDMC2

1X
mD1

Œ2.�M �N � 2 � j /m�q
2mŒ2.M �N/m�q .1C q2m/z2m �

�
1X
mD1

Œ.M �N � 1/m�q
2mŒ.M �N/m�q q

mz2m C
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C
1X
mD1

�
Œ.�M CN C L/m�q

mŒ.N �M/m�q
.rq�Lz/m C

C Œ.�M CN C LCK/m�q

mŒ.M �N/m�q .qL�Kz=r/m

�

:

The K-matrix K.z/ 2 End.V / satisfies the graded boundary Yang–Baxter equation

K2.z2/R21.z1z2/K1.z1/R12.z1=z2/ D R21.z1=z2/K1.z1/R12.z1z2/K2.z2/ (37)

We introduce the vertex operators O̊
j .z/ and the dual vertex operators O̊ �

j .z/ for
j D 1; 2; � � � ;M CN C 2. Matrix elements are given by products of the R-matrix

. O̊
j .z//

���p.N/0���p.2/0p.1/0
���p.N/���p.2/ p.1/ D lim

n!1

MCNC2X
�.1/;�.2/;��� ;�.n/D1

nY
jD1

R.z/�.j / p.j /
0

�.j�1/ p.j /; (38)

. O̊ �
j .z//

���p.N/0���p.2/0p.1/0
���p.N/���p.2/ p.1/ D lim

n!1

MCNC2X
�.1/;�.2/;��� ;�.n/D1

nY
jD1

R.z/p.j /
0�.j�1/

p.j / �.j / ; (39)

where �.0/ D j . We expect that the vertex operators O̊
j .z/ and O̊ �

j .z/ give rise to

well-defined operators. Let us set the transfer matrix OTB.z/ by

OTB.z/ D
MCNC2X
jD1

O̊ �
j .z
�1/K.z/jj O̊

j .z/.�1/Œvj �: (40)

Heuristic arguments suggest that the transfer matrix commutes:

Œ OTB.z1/; OTB.z2/� D 0 for any z1; z2: (41)

The Hamiltonian of this model HB is given by

HB D d

d z
TB.z/jzD1 D

1X
jD1

hj;jC1 C 1

2

d

d z
K1.z/jzD1; (42)

where hj;jC1 D Pj;jC1 dd zRj;jC1.z/jzD1.
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3.2 Vertex Operator Approach

We formulate the vertex operator approach to Uq.bsl.M C 1jN C 1// spin chain

with a diagonal boundary [6]. Let Vz the evaluation representation of Uq.bsl
.M C 1jN C 1// and V �Sz its dual. Let L.�/ the irreducible highest representation
with level-1 highest weight �. We introduce the vertex operators ˚.z/ and ˚�.z/ as
the intertwiners of Uq.bsl.M C 1jN C 1// :

˚.z/ W L.�/ ! L.�/˝ Vz; ˚.z/ � x D �.x/ � ˚.z/; (43)

˚�.z/ W L.�/ ! L.�/˝ V �Sz ; ˚�.z/ � x D �.x/ � ˚�.z/; (44)

for x 2 Uq.bsl.M C 1jN C 1//. We expand the vertex operators ˚.z/ D PMCNC2
jD1

˚j .z/˝vj ,˚�.z/ D PMCNC2
jD1 ˚�j .z/˝v�j . We set the “normalized” transfer matrix

TB.z/ by

TB.z/ D g

MCNC2X
jD1

˚�j .z�1/K.z/
j
j˚j .z/.�1/Œvj �; (45)

where we have used g D e
�
p

�1M
2.M�N/ exp



�P1mD1 Œ.M�N�1/m�qmŒ.M�N/m�q q

m
�

. Following the

strategy proposed in [4], we consider our problem upon the following identification.

TB.z/ D OTB.z/; ˚j .z/ D O̊
j .z/; ˚�j .z/ D O̊ �

j .z/: (46)

The point of using the vertex operators ˚j .z/; ˚�j .z/ is that they are well-defined
objects, free from the difficulty of divergence. It is convenient to diagonalize the
“renormalized” transfer matrix TB.z/ instead of the Hamiltonian HB .

3.3 Boundary Vacuum State

In this section we give a bosonization of the boundary vacuum state hBj given by

hBjTB.z/ D hBj: (47)

Let us introduce the bosons and the zero-mode operator [5] by

akn; b
l
n; c

l
n;Qak ;Qbl ;Qcl ;

.n 2 Z; k D 1; 2; � � � ;M C 1; l D 1; 2; � � � ; N C 1/; (48)
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satisfying the following commutation relations.

Œaim; a
j
n � D ıi;j ımCn;0

Œm�2q

m
; Œai0;Qaj � D ıi;j ; Œa

i
0; a

j
0 � D 0; (49)

Œbim; b
j
n � D �ıi;j ımCn;0

Œm�2q

m
; Œbi0;Qbj � D �ıi;j ; Œbi0; bj0 � D 0; (50)

Œcim; c
j
n � D ıi;j ımCn;0

Œm�2q

m
; Œci0;Qcj � D ıi;j ; Œc

i
0; c

j
0 � D 0: (51)

Let us introduce the generating function ci .z/ D �Pn¤0
cin
Œn�q

z�n C Qci C ci0logz.

We introduce the projection operators �0 D QNC1
jD1 �

j
0 and �0 D QNC1

jD1 �
j
0 ,

where we have set �j .z/ D P
m2Z �

j
mz�m DW e�cj .z/ W and �j .z/ D P

m2Z

�
j
mz�m�1 DW ecj .z/ W. Using the bosonizations of the vertex operators, we have

a bosonization of the boundary vacuum state hBj. However the vertex operator
for Uq.bsl.M C 1jN C 1// is realized by “sum”, a bosonization of boundary
vacuum state is realized by “monomial”. Let us set the highest weight vector

v��MC1 D h0je�ˇ
PMC1
iD1 QaiC.1�ˇ/

PNC1
jD1 Qbj

CPNC1
jD1 Qcj , where h0j satisfying

h0jain D h0jbjn D h0jcjn D 0 for n 	 0 and 1 � i � M C 1, 1 � j � N C 1. Let us
set

h�i;m D
MCNC1X
jD1

Œ˛i;jm�qŒˇi;jm�q

Œ.M �N/m�qŒm�q hj;m; (52)

where we have used hi;m D aimq
�jmj=2 � aiC1m qjmj=2, hMC1;m D aMC1m

q�jmj=2 C b1mq
�jmj=2, and hMC1Cj;m D �bjmqjmj=2 C b

jC1
m q�jmj=2. Here we have set

˛i;j D
�

Min.i; j / .Min.i; j / � M C 1/;

2.M C 1/ � Min.i; j / .Min.i; j / > M C 1/;
(53)

ˇi;j D
�

M �N � Max.i; j / .Max.i; j / � M C 1/;

�M �N � 2C Max.i; j / .Max.i; j / > M C 1/:
(54)

A bosonization of the boundary vacuum state hBj is given by

hBj D v��MC1 exp .G/ � �0�0: (55)
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Here we have set the bosonic operator G by

G D �1
2

MCNC1X
jD1

1X
mD1

mq�2m

Œm�2q
hj;mh

�
j;m � 1

2

NC1X
jD1

1X
mD1

mq�2m

Œm�2q
cjmc

j
m

C
MCNC1X
jD1

1X
mD1

ˇ
.3/
j;mh

�
j;m C

NC1X
jD1

1X
mD1

�j;mc
j
m; (56)

where we have used

�j;m D � q
�m

Œm�q

m; (57)

ˇ
.3/
j;m D ˇ

.1/
j;m � rmq.�L�3=2/m

Œm�q
ıj;L � q.L�K�3=2/m=rm

Œm�q
ıj;LCK; (58)

ˇ
.1/
j;m D

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂
:

q�3m=2 � q�m=2
Œm�q


m .1 � j � M/;

�2q�3m=2
Œm�q


m .j D M C 1/;

q�3m=2 C q�m=2
Œm�q


m .M C 2 � j � M CN C 1/:

(59)

This is main result of the paper [6].

Conclusion
From the above progress, we suppose that the boundary vacuum state hBj
of semi-infinite Uq.g/ spin chain with a triangular boundary is realized as
follows.

hBj D hvacj exp .B/ expq .C/ : (60)

where B is a quadratic expression in the bosons and C is a simple expression
in the Chevalley generators. We would like to check this conjecture in the
future.
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Thermopower in the Coulomb Blockade
Regime for Laughlin Quantum Dots

Lachezar S. Georgiev

Abstract Using the conformal field theory partition function of a Coulomb-
blockaded quantum dot, constructed by two quantum point contacts in a Laughlin
quantum Hall bar, we derive the finite-temperature thermodynamic expression for
the thermopower in the linear-response regime. The low-temperature results for the
thermopower are compared to those for the conductance and their capability to
reveal the structure of the single-electron spectrum in the quantum dot is analyzed.

1 What are Quantum Dots and Why Study Them?

Quantum dots (QD) are mesoscopic conducting islands of two-dimensional (incom-
pressible) electron gas constructed on the metal-oxide-semiconductor interface in a
typical field-effect transistor [1, 2]. The semiconductor bar contains a small number
of bulk charge carriers (electrons or holes) which are pushed out to an overlaying
oxide insulator layer by means of electric field perpendicular to the interface surface,
creating in this way a two-dimensional film of strongly correlated electrons with a
finite geometry realized by a confining potential. Under appropriate conditions (low
temperature, high perpendicular magnetic fields in a high-mobility semiconductor
samples) the strongly correlated electron gas can be found to be in the quantum
Hall regime (integer or fractional) and for simplicity we will think of it as a two-
dimensional droplet of quantum Hall liquid with disk shape whose dynamics is
concentrated on the one-dimensional edge which is a circle.

The QDs have a number of interesting properties and are essential part of the
so called single-electron transistors (SET) which explains why they have been the
subject of intense research in recent years. Because of the small size of the QDs
(typical circumference of several &m) and its isolation form the rest of the system
(only small tunneling is considered), QDs are almost closed quantum systems with a
discrete energy spectrum at very low temperatures, which make them similar to large
artificial atoms in which one can investigate both fundamental concepts of quantum
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theory and important application aspects of nanoelectronics as well as transcend
the cutting-edge research-and-development perspectives for the implementation of
quantum computers and quantum information processing.

The incompressible fractional quantum Hall liquids have been successfully
described by two-dimensional rational conformal field theories [3] (CFT) governing
the dynamics of their edge excitations [4]. In this contribution we will show how one
can use the CFT for QDs, realized inside of quantum Hall bar corresponding to the
�H D 1=m Laughlin state, to calculate observable thermodynamic characteristics
of the QDs, such as the tunneling conductance and thermopower.

2 Quantum Dots and Single-Electron Transistors

When a QD is equipped with drain and source gates, as shown on Fig. 1, by applying
a drain-source voltage one could in principle transfer electrons from the left FQH
liquid to the QD and then to the right FQH liquid. However, a tunneling electron
from left to the QD must overcome the Coulomb charging energy e2=2C , associated
with adding one extra electron to the QD, where C is the total capacitance of the
QD. When the QD is small so is C and this Coulomb charging energy could be
large, so that at low temperature kBT � e2=C and small bias the electron transfer
is blocked. This is called the Coulomb blockade [1, 2, 5]. Because we are interested
in the small-bias regime, which can be treated by linear response, one way to lift
the Coulomb blockade at small bias is to add a third electrode called the Side gate,
see Fig. 1. Then, by changing the gate voltage Vg one can shift the discrete energy
levels of the QD, still in the linear response regime, to align them with the Fermi
levels of the left and right FQH liquids and when this happens one electron can
tunnel from left to the right through the QD. Since the electrons tunnel one-by-one
with the variation of Vg this three-gate QD construction is called a Single-electron
transistor, see Fig. 1 for its scheme.

Fig. 1 Single-electron transistor realized by two quantum-point contacts (QPC1 and QPC2) inside
of �H D 1=m Laughlin FQH state. The arrows show the direction of the propagation of the
edge modes. Only electrons can tunnel between the left and right FQH liquids and the QD under
appropriate conditions
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The QD in the SET is an almost closed quantum system of size from 0.1 to 1&
m with discrete single-electron energy levels of typical spacing �" D „2�vF =L,
where vF is the Fermi velocity of the edge mode and L is the circumference of
the edge circle. Only small tunneling is allowed between the leads and the QD,
i.e., the tunneling conductances for QPC1 and QPC2 are much smaller than the
conductance quantum: GL=R � e2=h, which guarantees that the single-particle
energy levels in the QD remain discrete. At low temperature the number of electrons
on the QD is quantized to be integer and can be computed as a derivative of the
thermodynamic density of states with respect to the chemical potential—here we
can use the RCFT partition function as a thermodynamical Grand potential. Thus
the QDs are very similar to large artificial atoms—almost 1,000 times bigger than
the average atoms, they are highly tunable, yet still purely quantum systems! For
example, one magnetic flux quantum in an atom requires magnetic field of the order
of 106 T, while for QDs the corresponding field is of order of 1 T [1]. This makes
QDs very convenient for verification of fundamental concepts of quantum theory as
well as for quantum computation and information processing.

For small QD and small bias the charging effects leading to the Coulomb
blockade become important at low T such that kBT � e2=C . The variation of
the side gate voltage Vg induces external electric charge on the QD and creates
charge imbalance between the QD and the side gate which changes continuously
the single-particle energies of the QD lifting in this way the CB [1, 5].

Changing adiabatically the side gate voltage Vg at small-bias tunneling, between
the left- and right- FQH liquids and the QD, results in a precise QD level
spectroscopy which can be treated analytically in the linear response regime under
the following conditions:

• low temperature kBT � e2=C

• low bias V � e=C

• low QPC conductances GL;R � e2=h

Under these conditions the sequential tunneling of electrons one-by-one is dom-
inating the cotunneling, which is a higher-order process associated with almost
simultaneous virtual tunneling of pairs of electrons [2], that will not be considered
here.

3 QD Conductance–CFT Spectroscopy

The tunneling conductance of the QD in the linear response regime can be computed
at low temperature from the Grand canonical partition function [6]

Zdisk.�; �/ D trHedge e�ˇ.HCFT��Nel/ D trHedge e2�i�.L0�c=24/e2�i�J0 ; (1)
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which describes the dynamics of the edge in terms of CFT assuming that the bulk
of the QD is inert. In Eq. (1) we have denoted byHCFT D „ 2�vF

L

�
L0 � c

24

�
the edge

states’ Hamiltonian, by Nel D �p
�HJ0 the electron number operator on the edge,

L0 is the zero mode of the Virasoro stress-tensor [3], J0 is the normalized zero mode
of the bu.1/ current algebra [3, 7] and �H denotes the FQH filling factor. The trace
in Eq. (1) is taken over the edge-states’ Hilbert space Hedge whose structure might
depend on the presence of quasiparticles in the bulk of the QD [7].

The modular parameters [3] of the rational CFT are related to the temperature T
and chemical potential � of the QD

� D i�
T0

T
; T0 D „vF

�kBL
; � D i

1

2�kBT
�: (2)

The disk CFT partition function for the Grand canonical ensemble in presence of
AB flux � can be expressed in a compact way by shifting the chemical potential [8]

� ! �C��; Z
�
disk.�; �/

defD trHedge e�ˇ.HCFT.�/��Nimb.�// � Zdisk.�; �C��/; (3)

where Nimb.�/ D Nel � �H� is the particle imbalance due to the gate voltage, see
the explanations after Eq. (12) below; what we will need here is the last expression
in Eq. (3). The thermodynamic Grand potential on the edge is expressed in terms of
the partition function as usual

˝�.T; �/ D �kBT lnZ�
disk.�; �/: (4)

The edge conductance has been shown to be proportional to the derivative of the
thermodynamic density of states with respect to the chemical potential [6], i.e.

Gis.�/ D e2

h

�
�H C 1

2�2

�
T

T0

�
@2

@�2
lnZ�.T; 0/

�
: (5)

The conductance for the � D 1=3 Laughlin QD, computed by Eq. (5) from the
partition function (6) given in the next section with l D 0 at temperature T D T0,
shows vast regions in which it is zero (CB valleys) and sharp peaks at values �i D
3=2C 3i , i D 0;˙1;˙2; : : : as shown in Fig. 2.

4 The Laughlin QD Partition Function

The grand partition function for the edge of a QD in the �H D 1=m Laughlin FQH
state can be written as

Kl.�; �Im/ D CZ

�.�/

1X
nD�1

q
m
2 .nC l

m /
2

e2�i�.nC l
m /; (6)
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Fig. 2 Electron number average Nel on the edge and Coulomb blockade conductance Gis for
the �H D 1=3 Laughlin island without bulk quasiparticles as a function of the gate voltage at
temperature T D T0

where q D e�ˇ�" D e2�i� with ˇ D .kBT /
�1 and �" D „ 2�vF

L
. The index of the

K-function l D �.m�1/=2; : : : ; .m�1/=2 (mmust be an odd integer) corresponds
to a Hilbert space Hl with quasiparticles in the bulk [7] with electric charge l=m.
The Dedekind function � and the Cappelli–Zemba factor [4] are

�.�/ D q1=24
1Y
nD1
.1 � qn/; CZ D e���H

.Im �/2

Im � ;

however, for our purposes they would be unimportant since we would set � D 0 at
the end [6, 8].

5 Thermopower: A Finer Spectroscopic Tool

The thermopower S , known also as the Seebeck coefficient, is the potential
difference V between the leads of the SET when the two leads are at different
temperature TR and TL, assuming that the difference is small�T D TR�TL � TL,
under the condition that the current I between the leads is zero [2]. Usually
thermopower is expressed as the ratio of the thermal conductance GT and electric
conductance G, i.e., S D GT =G, however, this expression is not appropriate for
SETs because G D 0 D GT , while their ratio is finite, in vast intervals of flux (in
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the CB valleys), see Fig. 2. Fortunately, there is an alternative expression in terms
of the average energy h"i of the electrons tunneling through the QD [2]

S � � lim
�T!0

V

�T

ˇ̌
ˇ̌
ID0

D � h"i
eT
:

where T D TL C�T=2 is the temperature of the QD.
The average tunneling energy could be computed thermodynamically using as

thermodynamical potential the rational CFT partition function for the FQH edge of
the QD. To this end we notice that due to energy conservation in single-electron
tunneling the average tunneling energy is simply the difference between the total
thermodynamic average energy of the QD with N C 1 and N electrons at the
same temperature T and AB flux � (respectively, gate voltage Vg) divided by the
difference in the electron numbers of the QD as a function of �

h"i�ˇ;�N D E
ˇ;�NC1
QD .�/ �Eˇ;�N

QD .�/

N
ˇ;�NC1
QD .�/ �Nˇ;�N

QD .�/
: (7)

Because we are working within the Grand canonical ensemble, the total energy
of the QD with N electrons requires the chemical potential �N to be determined.
It is defined as the chemical potential for which the average of the particle number
operator is equal to the number N at zero gate voltage (AB flux)

�H


�N
��

C �
�

� @˝�.ˇ; �N /

@�
D N: (8)

The total energy of an N -electron QD within the Constant Interaction model [1] is

E
ˇ;�N
QD .�/ D

N0X
iD1

Ei .B/C hHCFT.�/iˇ;�N C U.N/; (9)

where N0 is the number of electrons in the bulk of the QD and N � N0 D Nel is
the number of electrons on the edge, Ei.B/, i D 1; : : : ; N0, are the energies of the
occupied single-electron states in the bulk of the QD, the expectation value h� � � iˇ;�
is the Grand canonical average of the Hamiltonian HCFT on the edge, and U.N/ is
the (B-independent) electrostatic energy of the QD, including the contribution due
to the gate voltage Vg is (see Eq. (1) in [1])

U.N/ D
�
e.N �N0/ � CgVg

	2
2C

; (10)

where N D N0 for Vg D 0. The total capacitance C D Cg C C1 C C2, where Cg
is the capacitance of the side gate, C1 and C2 are the capacitances of the two QPCs,
is assumed independent of N and this assumption a characteristic for the Constant
Interaction model [1]. Within this model the energies Ei depend on the magnetic
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field B and on the gate voltage Vg, but not on N [5]. In the case of a FQH island
we know that the variation of Vg modifies also the single-electron energies on the
edge [6, 9–11] due to a variation of the CB island’s area A, producing a variation of
the AB flux �. Because the variation of the gate voltage Vg induces (continuously
varying) “external charge” eNg D CgVg on the edge, it is equivalent to the AB
flux-induced variation of the particle number N� D �H�, so that we can take into
account the subtler effects of the gate voltage on the edge energies hHCFT.�/iˇ;�N
by introducing AB flux � determined from1

CgVg

e
� �H�; � D e

h
.A � A0/B; (11)

where A0 is the area of the CB island at Vg D 0. Therefore, when we speak about
Coulomb blockade caused by a variation of the AB flux � we actually mean a
variation of the gate voltage Vg determined from (11). It is worth stressing that the
electron number Nel on the QD is quantized to be integer, while “particle number
imbalance” Nimb D .N � N0/ � CgVg=e, between the QD and the side gate,
changes continuously when the gate voltage Vg is varied [1, 5]. It is also interesting
to mention that according to (11) the AB flux distance between two neighboring CB
peaks is �� D ��1H because then �N� D 1 so that an entire additional electron can
be transferred through the QD. It corresponds to gate voltage periodicity between
CB peaks equal to e�Vg D .1=˛g/.e

2=C /, where ˛g D Cg=C is called the gate’s
lever arm [1].

Using the AB flux instead of the gate voltage like in Eq. (11) is convenient
because the flux can be interpreted mathematically as a continuous twisting of the
bu.1/ charge of the underlying chiral algebra [3,8], which is technically similar to the
rational (orbifold) twisting of bu.1/ current [12], i.e., its zero mode is modified by

J0 ! �ˇ.J0/ D J0 � ˇ with ˇ D �p
�H�: (12)

Then the average of the twisted electric bu.1/ current �ˇ.J el
0 / � p

�H�ˇ.J0/ is
proportional to the thermodynamic derivative of the Grand potential @˝�=@� D
h��.J el

0 /i whose physical meaning is the electrostatic charge imbalance between the

CB island and the gate arising due to the gate voltage. The untwisted bu.1/ charge,
which is proportional to the electron number on the edge J el

0 D p
�HJ0 D �Nel, is

according to (12) hJ el
0 i D h��.J el

0 /i � �H� and this is equivalent to the following
Grand canonical thermal average of the electron particle number on the edge, which
is illustrated in Fig. 2 for the �H D 1=3 Laughlin state without quasiparticles in
the bulk

1For a one-dimensional circular edge all thermodynamic quantities depend on the magnetic flux
not on the magnetic filed itself. Thus, the flux of the constant B has the same effect on the partition
function as the singular AB flux, which is however, easier to take into account analytically [8].
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hNel.�/iˇ;�N D �@˝�.ˇ; �N /

@�
C �H� C �H


�N
�"

�

D �H



� C �N

�"

�
C 1

2�2

�
T

T0

�
@

@�
lnZ�.T; �N / (13)

6 Average Tunneling Energy

Taking into account Eqs. (7) and (9), and neglecting the electrostatic energy U.N/
for large CB islands as in [13], we can compute the thermodynamic average energy
of a single electron tunneling to the QD with N electrons by

h"i�ˇ;�N D hHCFT.�/iˇ;�NC1 � hHCFT.�/iˇ;�N
hNel.�/iˇ;�NC1 � hNel.�/iˇ;�N

: (14)

Notice that the first term in the r.h.s of Eq. (9) cancels, while the electrostatic energy
U.N/ is subleading for large CB islands, which are of experimental interest [13,14],
and is omitted.

The average of the edge Hamiltonian is computed according to the standard
formula for the Grand canonical ensemble [15]

hHCFT.�/iˇ;�N D ˝�.T; �N / � T @˝�.T; �N /

@T
� �N @˝�.T; �N /

@�
(15)

where ˝�.T; �N / is the Grand potential in presence of AB flux � defined in (4).
Introducing the AB flux � and chemical potential � into the partition function (6)
according to (3) and moving the � and � dependence into the index l of (6), see
[6, 8], we obtain (a factor independent of � and � is omitted)

Z�.T; �/ D K �
�"C�.�; 0Im/ /

1X
nD�1

q
m
2



nC �=�"C�

m

�2
: (16)

The partition function (16) has a remarkable symmetry—adding one electron to
the ground state, which is equivalent to increasing the flux by m, does not change
it, i.e., Z�.T; �GS

NC1/ D Z�Cm.T; �GS
N / D Z�.T; �

GS
N /, implying ˝�.T; �

GS
NC1/ D

˝�.T; �
GS
N / and

@˝�.T; �
GS
NC1/

@T
D @˝�.T; �

GS
N /

@T
;

@˝�.T; �
GS
NC1/

@�
D @˝�.T; �

GS
N /

@�
: (17)

Using the symmetry (17) we can find the difference between the ground-states
chemical potentials of the QD with N and N C 1 electrons. Indeed, writing Eq. (8)
for N and N C 1 electrons
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�H

�
�GS
N

�"
C �

�
� @˝�.ˇ; �

GS
N /

@�
D N

�H

 
�GS
NC1
�"

C �

!
� @˝�.ˇ; �

GS
NC1/

@�
D N C 1

and subtracting them we obtain �GS
NC1 ��GS

N D m�". This means that the chemical
potentials �GS

N and �GS
NC1 cannot be both set to 0. Adjusting the chemical potential

for � D 0 to be in the middle between �GS
N and �GS

NC1 (center of the CB valley), i.e.,
assuming we obtain

�GS
N D �m

2
�"; �GS

NC1 D m

2
�":

These values of the chemical potentials determine the ground-state energies of the
CB island with N and N C 1 electrons and their difference gives the addition
energy characterizing the energy spacing of the CB conductance peaks. However,
for the calculation of the average tunneling energy (14) we need to find the
difference between the energies of theN -th occupied single-particle state in the QD
and the next available one, which is not the ground state with N C 1 electrons.
Instead, the next available single-particle state can be obtained from the last
occupied state by increasing adiabatically the AB flux threading the edge by exactly
one flux quantum. This is equivalent to increasing �=�" by 1 so that the difference
between the two chemical potentials is �NC1 � �N D �". Therefore, choosing
again a symmetric setup so that �N C �NC1 D 0, we obtain

�N D ��"
2
; �NC1 D �"

2
: (18)

Next, we can compute numerically the two edge energy averages (15) for a �H D
1=3 QD with N and N C 1 electrons with chemical potentials (18). The plot of the
thermopower for T=T0 D 1 and T=T0 D 1:5 and the conductance at T=T0 D 1

are given in Fig. 3. The plot of the thermopower has a sawtooth shape like that in
metallic CB islands [2]. Also it is interesting to note that thermopower vanishes
at the conductance peaks position in the same way as it does for metallic islands,
expressing the fact that the energy difference between the QD with N and N C 1

electrons is zero at the maximum of the conductance peak. In the middle of the CB
valleys the thermopower has sharp jumps (discontinuous at T D 0), expressing the
particle-hole symmetry in the centers of the valleys [2].
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Fig. 3 Thermopower of the �H D 1=m Laughlin state with m D 3 at temperatures T D T0 and
T D 1:5T0. The conductance at T D T0 is also shown on the right vertical scale

7 Conclusion and Perspectives

We have shown that the Constant Interaction model works fine for the Laughlin CB
islands. Thermopower is non-zero in the CB valleys while the electric and thermal
conductances are both zero. The period of the thermopower is�� D m and its zeros
correspond to the conductance peaks. Thermopower appears to be more sensitive to
the neutral modes in the FQH liquid than the tunneling conductance which explains
why it is considered a finer spectroscopic tool. This could make thermopower an
appropriate observable, which could distinguish between different FQH states with
similar CB conductance patterns [16], and therefore it would be interesting to apply
this approach to FQH QDs with filling factors �H D nH=dH for nH 	 2, especially
for non-Abelian FQH states. The sensitivity of the thermopower depends, however,
on the relative sizes of the Coulomb charging energy and single-particle energies of
the QD, which depend on the size and quality of the CB island. The experimental
realization of CB islands in the fractional quantum Hall regime is challenging,
however efforts have been made to measure the thermoelectric properties of such
systems [13]. For example, in a recent experiment these properties have been
investigated for the �H D 2=3 FQH state [13, 14] which is similar to the �H D 1=3

Laughlin state but is expected to have a more complicated structure related to neutral
modes.



Thermopower in Coulomb Blockade Regime for Quantum Dots 289

Acknowledgements I thank Andrea Cappelli, Guillermo Zemba and Bojko Bakalov for many
helpful discussions. This work has been partially supported by the Alexander von Humboldt
Foundation under the Return Fellowship and Equipment Subsidies Programs and by the Bulgarian
Science Fund under Contract No. DFNI-E 01/2.

References

1. Kouwenhoven, L.P., Austing, D.G., Tarucha, S.: Few-electron quantum dots. Rep. Prog. Phys.
64, 701–736 (2001)

2. Matveev, K.: Thermopower in quantum dots. In: Lecture Notes in Physics, vol. 547, pp. 3–15.
Springer, Berlin/Heidelberg (1999)

3. Di Francesco, P., Mathieu, P., Sénéchal, D.: Conformal Field Theory. Springer, New York
(1997)

4. Cappelli, A., Zemba, G.R.: Modular invariant partition functions in the quantum Hall effect.
Nucl. Phys. B490, 595 (1997). hep-th/9605127

5. van Houten, H., Beenakker, C.W.J., Staring, A.A.M.: Coulomb-Blockade Oscillations in Semi-
conductor Nanostructures. In: Single Charge Tunneling. NATO ASI Series B294, pp. 167–216.
Plenum, New York (1992). cond-mat/0508454

6. Georgiev, L.S.: Thermal broadening of the Coulomb blockade peaks in quantum Hall
interferometers. Europhys. Lett. 91, 41001 (2010). arXiv:1003.4871

7. Georgiev, L.S.: Hilbert space decomposition for Coulomb blockade in Fabry–Pérot interfer-
ometers. In: Proceedings of the 9. International Workshop Lie Theory and Its Applications
in Physics (Varna, Bulgaria, June 2011). Springer Proceedings in Mathematics and Statistics,
vol. 36, pp. 439–450. Springer, Tokyo/Heidelberg (2013). arXiv:1112.5946

8. Georgiev, L.S.: A universal conformal field theory approach to the chiral persistent currents
in the mesoscopic fractional quantum Hall states. Nucl. Phys. B707, 347–380 (2005). hep-th/
0408052

9. Ilan, R., Grosfeld, E., Stern, A.: Coulomb blockade as a probe for non-Abelian statistics in
Read–Rezayi states. Phys. Rev. Lett. 100, 086803 (2008). arXiv:0705.2187

10. Cappelli, A., Georgiev, L.S., Zemba, G.R.: Coulomb blockade in hierarchical quantum Hall
droplets. J. Phys. A 42, 222001 (2009). arXiv:0902.1445

11. Ilan, R., Grosfeld, E., Schoutens, K., Stern, A.: Experimental signatures of non-abelian
statistics in clustered quantum Hall states. Phys. Rev. B79, 245305 (2009). arXiv:0803.1542

12. Kac, V., Todorov, I.: Affine orbifolds and rational conformal field theory extensions ofW1C1.
Commun. Math Phys. 190, 57–111 (1997)

13. Viola, G., Das, S., Grosfeld, E., Stern, A.: Thermoelectric probe for neutral edge modes in the
fractional quantum hall regime. Phys. Rev. Lett. 109, 146801 (2012)

14. Gurman, I., Sabo, R., Heiblum, M., Umansky, V., Mahalu, D.: Extracting net current from an
upstream neutral mode in the fractional quantum Hall regime. Nat. Commun. 3, 1289 (2012).
arXiv:1205.2945

15. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II. Springer, Berlin (1985)
16. Bonderson, P., Nayak, C., Shtengel, K.: Coulomb blockade doppelgangers in quantum Hall

states. Phys. Rev. B81, 165308 (2010). arXiv:0909.1056

http://xxx.lanl.gov/abs/hep-th/9605127
http://xxx.lanl.gov/abs/cond-mat/0508454
http://xxx.lanl.gov/abs/arXiv:1003.4871
http://xxx.lanl.gov/abs/arXiv:1112.5946
http://xxx.lanl.gov/abs/hep-th/0408052
http://xxx.lanl.gov/abs/hep-th/0408052
http://xxx.lanl.gov/abs/arXiv:0705.2187v2
http://xxx.lanl.gov/abs/arXiv:0902.1445
http://xxx.lanl.gov/abs/arXiv:0803.1542
http://xxx.lanl.gov/abs/arXiv:1205.2945
http://xxx.lanl.gov/abs/arXiv:0909.1056


On a Pair of Difference Equations for the 4F3

Type Orthogonal Polynomials and Related
Exactly-Solvable Quantum Systems

E.I. Jafarov, N.I. Stoilova, and J. Van der Jeugt

Abstract We introduce a pair of novel difference equations, whose solutions are
expressed in terms of Racah or Wilson polynomials depending on the nature of
the finite-difference step. A number of special cases and limit relations are also
examined, which allow to introduce similar difference equations for the orthogonal
polynomials of the 3F2 and 2F1 types. It is shown that the introduced equations allow
to construct new models of exactly-solvable quantum dynamical systems, such as
spin chains with a nearest-neighbour interaction and fermionic quantum oscillator
models.

1 Introduction

The importance of orthogonal polynomials in the study of quantum dynamical
systems is undisputable. Without the knowledge of basic properties of orthogonal
polynomials, it is impossible to comprehend the existence of explicit solutions of
quantum systems such as the quantum harmonic oscillator, the Coulomb problem or
Heisenberg spin chains. A long time ago, different types of orthogonal polynomials
were studied separately. Then the idea grew that some of them are special case of
others, and that they can be generalized. Thus the discovered polynomials could be
unified in a table, each having its own level and cell in that table. This table is called
the Askey scheme of hypergeometric orthogonal polynomials. The importance of
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this table is that it gathers all polynomials, some of them satisfying an orthogonality
relation in the continuous space and others in a discrete space, some with a finite
support and others with an infinite support [1].

Hermite polynomials are the most attractive ones from the Askey scheme,
because they have no free parameters and occupy the lowest level of the table, that is
the level where there is no sign of the discreteness of the space. They are well known
as the explicit solution of the 1D non-relativistic quantum harmonic oscillator in a
canonical approach [2]. The dynamical symmetry of this quantum system is also
well known and it is the Heisenberg–Weyl algebra. This algebra can be easily
constructed by using the three-term recurrence relations of Hermite polynomials.
If, as a next step, one drops the canonical commutation relation between position
and momentum operator Œ Op; Ox� D �i [3], then one observes the very interesting
behaviour of the solution of the 1D non-relativistic quantum harmonic oscillator.
Now the solution is expressed in terms of the generalized Laguerre polynomials,
and the dynamical symmetry of the system is the Lie superalgebra osp .1j2/. It is
constructed by using two kind of three-term recurrence relations of the generalized
Laguerre polynomials, which are intertwined. The existence of more than one
recurrence relations for these polynomials has the following explanation. Laguerre
polynomials occupy the next level in the Askey scheme: they generalize Hermite
polynomials and have one free parameter. This parameter allows to separate the
recurrence relations for even and odd polynomials, and thus obtain the new form
of the recurrence relations for generalized Laguerre polynomials, which leads to
the quite interesting so called non-canonical solution of the 1D non-relativistic
quantum harmonic oscillator [4]. It is known that such a method can also be
applied to polynomials from the next levels of the Askey scheme, and similar
recurrence relations exist for continuous dual Hahn polynomials [5], generalizing
both Meixner–Pollaczek and Laguerre polynomials. Their application allows to
construct a new model of the quantum harmonic oscillator, whose algebra is the Lie
algebra su.1; 1/ deformed by a reflection operator [6]. A similar approach in finite-
discrete configuration space leads to the new difference equations (or recurrence
relations) for the Hahn or dual Hahn polynomials and they generalize the difference
equation for Krawtchouk polynomials (due to duality of Krawtchouk polynomials,
the difference equation can be transformed to the three-term recurrence relation).
Application of such recurrence relations leads to two very interesting quantum
mechanical solutions, one of which is a finite-discrete quantum oscillator model
based on the Lie algebra u.2/ extended by a parity operator [7] and other one is
the case of perfect state transfer over the spin chain of fermions with a nearest-
neighbour interaction under absence of the external magnetic field [8].

In current work, we continue this procedure and report on the pairs of three-term
difference equations and recurrence relations for the Racah and Wilson polynomials,
which occupy the top level of the Askey scheme and generalize all discrete and
continuous orthogonal polynomials from this table. We also discuss some special
cases, when new three-term difference equations exist also for Hahn polynomials
and they lead to a pair of difference equations for the continuous Hahn polynomials.
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2 Racah Polynomials and New Three-Term
Recurrence Relations

The Racah polynomial Rn .� .x/ I˛; ˇ; �; ı/ of degree n (n D 0; 1; : : : ; m) in the
variable x is defined by:

Rn .� .x/ I˛; ˇ; �; ı/ D 4F3

� �n; nC ˛ C ˇ C 1;�x; x C � C ı C 1

˛ C 1; ˇ C ı C 1; � C 1
I 1
�
;

(1)

where � .x/ D x .x C � C ı C 1/ and ˛ C 1 D �m or ˇ C ı C 1 D �m or
� C 1 D �m, with m being a nonnegative integer.

They satisfy a finite-discrete orthogonality relation of the following form:

mX
xD0

w .x/Rl .� .x/ I˛; ˇ; �; ı/Rn .� .x/ I˛; ˇ; �; ı/ D hnıln; (2)

where

w .x/ D .˛ C 1/x .ˇ C ı C 1/x .� C 1/x .� C ı C 1/x ..� C ı C 3/ =2/x
.�˛ C � C ı C 1/x .�ˇ C � C 1/x ..� C ı C 1/ =2/x .ı C 1/x xŠ

;

(3)

hn D M � .nC ˛ C ˇ C 1/n .˛ C ˇ � � C 1/n .ˇ C 1/n nŠ

.˛ C ˇ C 2/2n .˛ C 1/n .ˇ C ı C 1/n .� C 1/n
; (4)

and with multiplier M being defined as

M D

8̂
ˆ̂<
ˆ̂̂:

.�ˇ/m.�CıC2/m
.�ˇC�C1/m.ıC1/m if ˛ C 1 D �m
.�˛Cı/m.�CıC2/m
.�˛C�CıC1/m.ıC1/m if ˇ C ı C 1 D �m
.˛CˇC2/m.�ı/m
.˛�ıC1/m.ˇC1/m if � C 1 D �m:

Then, one can introduce a pair of new difference equations for these polynomials
in which Racah polynomials of the same degree n in variables x or x C 1, and with
parameters of type .˛ C 1; ˇ � 1; ı/ and .˛; ˇ; ı � 1/ are intertwined.

Proposition 1. The Racah polynomials satisfy the following difference equations:

.x C � C 1/ .x C ˇ C ı/

2x C � C ı C 1
Rn .� .x C 1/ I˛; ˇ; �; ı � 1/

� .x � ˇ C � C 1/ .x C ı/

2x C � C ı C 1
Rn .� .x/ I˛; ˇ; �; ı � 1/

D .nC ˛ C 1/ .nC ˇ/

˛ C 1
Rn .� .x/ I˛ C 1; ˇ � 1; �; ı/ ; (5)
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.x C ˛ C 2/ .x C � C ı C 1/

2x C � C ı C 2
Rn .� .x C 1/ I˛ C 1; ˇ � 1; �; ı/

� .x C 1/ .x � ˛ C � C ı/

2x C � C ı C 2
Rn .� .x/ I˛ C 1; ˇ � 1; �; ı/

D .˛ C 1/Rn .� .x C 1/ I˛; ˇ; �; ı � 1/ : (6)

Proof. We prove both equations by performing straightforward computations using
known properties of hypergeometric functions and Pochhammer symbols. In the
case of (5), one can rewrite the left-hand side in the following form:

.x C � C 1/Rn .� .x C 1/ I˛; ˇ; �; ı � 1/ � .x � ˇ C � C 1/

� Rn .� .x/ I˛; ˇ; �; ı � 1/ C

C .x C � C 1/ .x � ˇ C � C 1/

2x C � C ı C 1
ŒRn .� .x/ I˛; ˇ; �; ı � 1/

� Rn .� .x C 1/ I˛; ˇ; �; ı � 1/�: (7)

Then, a simple computations show that

.x C � C 1/Rn .� .x C 1/ I˛; ˇ; �; ı � 1/ � .x � ˇ C � C 1/

� Rn .� .x/ I˛; ˇ; �; ı � 1/

D �
nX

kD0

.�n/k .nC ˛ C ˇ C 1/k .�x/k�1 .x C � C ı C 1/k�1
.˛ C 1/k .ˇ C ı/k .� C 1/k kŠ

(8)

� Œ.x C � C 1/ .x C 1/ .x C � C ı C k/ C
C .x � ˇ C � C 1/ .k � x � 1/ .x C � C ı/�

and

Rn .� .x/ I˛; ˇ; �; ı � 1/ �Rn .� .x C 1/ I˛; ˇ; �; ı � 1/ (9)

D
nX

kD0

.�n/k .nC ˛ C ˇ C 1/k .�x/k�1 .x C � C ı C 1/k�1
.˛ C 1/k .ˇ C ı/k .� C 1/k kŠ

k .2x C � C ı C 1/:

Therefore, combining (8) and (9), we have the following expression for the left hand
side of (5):

nX
kD0

.�n/k .nC ˛ C ˇ C 1/k .�x/k�1 .x C � C ı C 1/k�1
.˛ C 1/k .ˇ C ı/k .� C 1/k kŠ

� Œˇ .k � x � 1/ .x C � C ı/ � k .x C � C 1/ .x C ˇ C ı/� : (10)
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Then, one can rewrite the right hand side of (5) as follows:

.nC ˛ C 1/ .nC ˇ/

˛ C 1
Rn .� .x/ I˛ C 1; ˇ � 1; �; ı/ (11)

D .nC ˛ C 1/ .nC ˇ/

˛ C 1

nX
kD0

.�n/k .nC ˛ C ˇ C 1/k .�x/k .x C � C ı C 1/k
.˛ C 2/k .ˇ C ı/k .� C 1/k kŠ

D
nX

kD0

.�n/k .nC ˛ C ˇ C 1/k .�x/k .x C � C ı C 1/k
.˛ C 1/k .ˇ C ı/k .� C 1/k kŠ

.nC ˛ C 1/ .nC ˇ/

˛ C k C 1

D
nX

kD0

.�n/k .nC ˛ C ˇ C 1/k .�x/k .x C � C ı C 1/k
.˛ C 1/k .ˇ C ı/k .� C 1/k kŠ

�
�
.nC ˛ C ˇ C k C 1/ .n � k/

˛ C k C 1
C .ˇ C k/

�

D
nX

kD0

.�n/k .nC ˛ C ˇ C 1/k .�x/k�1 .x C � C ı C 1/k�1
.˛ C 1/k .ˇ C ı/k .� C 1/k kŠ

� Œ.ˇ C k/ .k � x � 1/ .x C � C ı C k/ � k .� C k/ .ˇ C ı C k � 1/� :

Now, to prove (5), we just need to check that the following equality is correct:

ˇ .k � x � 1/ .x C � C ı/ � k .x C � C 1/ .x C ˇ C ı/ D
D .ˇ C k/ .k � x � 1/ .x C � C ı C k/ � k .� C k/ .ˇ C ı C k � 1/ ; (12)

which is obvious.
The proof of Eq. (6) is even simpler than that of Eq. (5). It is possible to

rewrite (6) it as follows:

nX
kD0

.�n/k .nC ˛ C ˇ C 1/k .�x/k .x C � C ı C 2/k
.˛ C 1/k .ˇ C ı/k .� C 1/k kŠ

� (13)

� Œ.x � ˛ C � C ı/ .k � x � 1/ C
C .x C ˛ C 2/ .x C � C ı C k C 1/ � .2x C � C ı C 2/ .˛ C k C 1/� D 0:

Then (6) follows from the simple observation that

.x � ˛ C � C ı/ .k � x � 1/C .x C ˛ C 2/ .x C � C ı C k C 1/ D
D .2x C � C ı C 2/ .˛ C k C 1/ : (14)

ut
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There are three known cases, when the Racah polynomials Rn .� .x/ I˛; ˇ; �; ı/
reduce to Hahn polynomials Qn .xI˛; ˇ;m/ [1, (9.2.15)–(9.2.17)], defined as

Qn .xI˛; ˇ;m/ D 3F2

� �n; nC ˛ C ˇ C 1;�x
˛ C 1;�m I 1

�
: (15)

For the first two cases, .� C 1 D �mI ı ! 1/ and .ı D �ˇ �m � 1I � ! 1/,
one recovers a pair of known difference equations for the Hahn polynomials
Qn .xI˛ C 1; ˇ � 1;m/ and Qn .xI˛; ˇ;m/ [8, (10)–(11)]. For the third case,
(˛ C 1 D �mI ˇ ! ˇ C � C m C 1I ı ! 1) leads to a pair of new difference
equations for Hahn polynomials, with a shift in m:

.x C 1/Qn .xI˛; ˇ;m � 1/ � .x �mC 1/Qn .x C 1I˛; ˇ;m � 1/ D
D m �Qn .x C 1I˛; ˇ;m/ ; (16)

m.x � ˇ �m/Qn .xI˛; ˇ;m/ �m.x C ˛ C 1/Qn .x C 1I˛; ˇ;m/ D
D .n �m/ .nC ˛ C ˇ CmC 1/Qn .xI˛; ˇ;m � 1/ : (17)

Under the limit (˛ D pt ;ˇ D .1� p/t ;t ! 1), these equations further reduce to a
pair of difference equations for the Krawtchouk polynomials Kn .xIp;m/:

.x C 1/Kn .xIp;m � 1/C .m � x C 1/Kn .x C 1Ip;m � 1/ D
D m Kn .x C 1Ip;m/ ; (18)

m.1 � p/Kn .xIp;m/Cm � p �Kn .x C 1Ip;m/ D .m � n/Kn .xIp;m � 1/ :

Equations (5) and (6) can be useful for the construction of finite-discrete quantum
oscillator models as well as exactly-solvable spin chains with nearest-neighbour
interaction of mC 1 fermions subject to a zero external magnetic field:

OH D
m�1X
kD0

Jk
�
aCk akC1 C aCkC1ak

�
; (19)

where, Jk expresses the coupling strength between two neighbour fermions k and
k C 1 and has the following expression:

Jk D
( p

.k C 1/ .m � k/ f .˛; ˇ; ı/I k - oddp

.k C 2˛ C 2/ .m � k C 2ˇ/ g .ı/I k - even
(20)

with f .˛; ˇ; ı/ and g .ı/ defined as follows:

f .˛; ˇ; ı/ D .k � 2˛ C 2ı �m/ .k C 2ˇ C 2ı � 1/
.2k C 2ı �m � 1/ .2k C 2ı �mC 1/

; (21)
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g .ı/ D .k �mC 2ı � 1/ .k C 2ı/

.2k C 2ı �m � 1/ .2k C 2ı �mC 1/
: (22)

3 Wilson Polynomials as Analytical Solutions of New
Difference Equations

The Wilson polynomialWn

�
x2I a; b; c; d� of degree n (n D 0; 1; : : :) in the variable

x is defined by:

Wn

�
x2I a; b; c; d�

.aC b/n .aC c/n .aC d/n

D 4F3

��n; nC aC b C c C d � 1; aC ix; a � ix
aC b; aC c; aC d

I 1
�

(23)

The polynomial satisfies an orthogonality relation in the continuous space Œ0; C1/

under the condition Re .a; b; c; d/ > 0 [1, (9.1.2)].
By putting ˛ D a C b � 1, ˇ D c C d � 1, � D a C d � 1, ı D a � d and

x ! �aC ix in Eqs. (5) and (6) as well as taking into account the duality of Racah
polynomials (1) in n and x, one can transfer them to Wilson polynomials and obtain
the following three-term recurrence relations

Wn

�
x2I a; b; c; d � D nC aC b C c C d � 1

2nC aC b C c C d � 1Wn

�
x2I a; b; c; d C 1

� � (24)

� n.nC aC b � 1/.nC aC c � 1/.nC b C c � 1/
2nC aC b C c C d � 1 Wn�1

�
x2I a; b; c; d C 1

�
;

�
x2 C d2

�
Wn

�
x2I a; b; c; d C 1

� D (25)

D .nC aC d/.nC b C d/.nC c C d/

2nC aC b C c C d
Wn

�
x2I a; b; c; d� �

� 1

2nC aC b C c C d
WnC1

�
x2I a; b; c; d� ;

and the difference equations:

�
.aC ix/ .b C ix/

2ix
e
� i
2
@x � .a � ix/ .b � ix/

2ix
e
i
2
@x

�
Wn

�
x2I aC 1

2
; b C 1

2
; c; d

�

D .nC aC b/Wn

�
x2I a; b; c C 1

2
; d C 1

2

�
; (26)



298 E.I. Jafarov et al.

�
.c C ix/ .d C ix/

2ix
e
� i
2
@x � .c � ix/ .d � ix/

2ix
e
i
2
@x

�
Wn

�
x2I a; b; c C 1

2
; d C 1

2

�

D .nC c C d/Wn

�
x2I aC 1

2
; b C 1

2
; c; d

�
: (27)

Introducing orthonormalized Wilson polynomials, one can reformulate (26)
and (27) in a more compact form:

�
e
� i
2
@x � .a � ix/ .b � ix/

2ix
e
i
2
@x
.c C ix/ .d C ix/

2ix

�
QWn

�
x2I 1

2
; 0
� D

D
p
.nC aC b/ .nC c C d/ QWn

�
x2I 0; 1

2

�
;�

e
� i
2
@x � .c � ix/ .d � ix/

2ix
e
i
2
@x
.aC ix/ .b C ix/

2ix

�
QWn

�
x2I 0; 1

2

� D

D
p
.nC aC b/ .nC c C d/ QWn

�
x2I 1

2
; 0
�
; (28)

where QWn

�
x2I 1

2
; 0
� � QWn

�
x2I aC 1

2
; b C 1

2
; c; d

�
and QWn

�
x2I 0; 1

2

� �
QWn

�
x2I a; b; c C 1

2
; d C 1

2

�
. As a special case, when a D c and b D d ,

both (26) and (27) reduce to difference equations for the continuous dual Hahn
polynomials Sn

�
4x2I 2a; 2b; 1

2

�
[1, (9.3.6)]. Then, they can be considered as a

fermionic extension of the quantum harmonic oscillator model, whose algebra is
Lie algebra su.1; 1/ deformed by a reflection operator [6]. Under another limit,
reducing Wilson polynomials to continuous Hahn polynomials [1, (9.1.17)], one
obtains from Eqs. (26) and (27) a pair of difference equations for continuous Hahn
polynomials

�
.ix C b/ e

� i
2
@x � .ix � d/ e i2 @x

�
pn
�
xI 0; 1

2

� D .nC b C d/ pn
�
xI 1

2
; 0
�
; (29)

�
.ix C a/ e

� i
2
@x � .ix � c/ e i2 @x

�
pn
�
xI 1

2
; 0
� D .nC aC c/ pn

�
xI 0; 1

2

�
; (30)

where, pn
�
xI 0; 1

2

� � pn
�
xI a; b C 1

2
; c; d C 1

2

�
and pn

�
xI 1

2
; 0
� � pn.xI aC 1

2
; b;

c C 1
2
; d/.

Surprisingly, both Eqs. (29) and (30) generalize a difference equation, whose
solution is the Meixner–Pollaczek polynomial [1, (9.7.5)]. Therefore, they can be
considered as a fermionic extension of the su.1; 1/ Meixner–Pollaczek oscilla-
tor [9].
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Conclusion
Racah and Wilson polynomials, which occupy the top level in the Askey

scheme of hypergeometric orthogonal polynomials, are defined through the
4F3 type hypergeometric series. Under certain conditions, there is a well-
known orthogonality relation for the Racah polynomials with respect to a
discrete measure as well as for the Wilson polynomials with respect to a
continuous measure. These polynomials are explicit analytical solutions of
known difference equations with quadratic-like eigenvalues. In current work,
we introduce a pair of novel difference equations or three-term recurrence
relations, whose solutions are also expressed in terms of the Racah or Wilson
polynomials depending on nature of the finite-difference step. The proof of
these equations is presented for case of Racah polynomials. These equations
may turn out to be good candidates for building some new fermionic oscillator
models as well as exactly-solvable spin chains with a nearest-neighbour
interaction. A number of special cases and limit relations are also examined,
which allow to introduce similar difference equations for the orthogonal
polynomials of the 3F2 and 2F1 types.
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Spin Chain Models of Free Fermions

Č. Burdík, A.P. Isaev, S.O. Krivonos, and O. Navrátil

Abstract We consider the integrable open spin chain models formulated through
the generators of the Hecke algebras which are realized in terms of free fermions.

1 R-Matrix of the Hecke Type

Let VN be an N -dimensional complex vector space. Consider a linear invertible
operator OR which acts in VN ˝ VN . Using the operator OR one can define the set of
operators ORk;kC1

ORk;kC1 D IN ˝ � � � ˝ IN„ ƒ‚ …
k�1

˝ OR˝ IN ˝ � � � ˝ IN„ ƒ‚ …
L�k�1

; 1 � k � L � 1 ; (1)

which act in the vector space V ˝LN . The invertible operator OR is called the R-matrix
if it satisfies the Yang–Baxter equation

ORk;kC1 ORkC1;kC2 ORk;kC1 D ORkC1;kC2 ORk;kC1 ORkC1;kC2 : (2)

We say that the R-matrix is of the Hecke type if it satisfies the Hecke condition

OR2 D .q � q�1/ ORC IN ˝ IN ; (3)

where q is a parameter.
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The Hamiltonian for the open Hecke chain is defined as HL D PL�1
kD1 ORk;kC1.

Now we are going to describe a rather general construction for the Hecke type R
matrices.

Consider the R-matrix of the form

OR D PN
iD1ai ei i ˝ ei i CP

i¤j .aij eij ˝ eji C bij ei i ˝ ejj / ; (4)

where eij are the matrix units, i.e. eij ers D ıjreis and aij , bij are the parameters.
It is shown in [1, 2] that the general expression (4) for the Hecke R-matrix is

OR D PN
iD1ai ei i ˝ ei i CP

i¤j aij eij ˝ eji C .q � q�1/Pi<j ei i ˝ ejj ; (5)

where for i; j D f1; 2; : : : ; N g

a2i � .q � q�1/ai � 1 D 0 ; aij aj i D 1

and i < j in the last term of (5) means that we choose any ordering on the set
i; j D f1; : : : ; N g. For more details see, e.g., [1, 3, 4] and references therein.

2 Free Fermionic Realizations

The free fermionic integrable model were considered in several papers (see [5] and
refs, therein). Here we propose another approach.

The aim of this section is to rewrite operators (1), where the R-matrix OR is given
by (5), in terms of free fermions.

Let A and B be two associative algebras over complex numbers and ai .i D
1; 2; 3; : : :/ and b˛ .˛ D 1; 2; 3; : : :/ be the basis elements of A and B, respectively.
The standard direct product A˝B of algebras A and B is defined as a vector space
with the basis elements ai ˝ b˛ and multiplication rule

.ai ˝ b˛/ � .ak ˝ bˇ/ D .ai � ak ˝ b˛ � bˇ/ : (6)

Let A and B be two Z2-graded algebras. We denote the grading � of the basis
elements by �.ai / D 0; 1mod.2/ and �.b˛/ D 0; 1mod.2/. In this case, in addition
to the usual direct product A ˝ B, one can define a new type algebra which is a
graded direct product A�B of the algebras A and B. As vector spaces the algebras
A�B and A˝B coincide with each other, but instead of the rule (6) for the algebra
A � B we have the new graded multiplication

.ai � b˛/ � .ak � bˇ/ D .�1/�.ak/�.b˛/ .ai � ak � b˛ � bˇ/ : (7)
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The algebra A � B has the natural Z2-grading when the parity of the basis
elements .ai �b˛/ is postulated as �.ai �b˛/ D �.ai /C�.b˛/. In physical literature
Z2-graded algebras are called super-algebras.

Let A be an associative algebra MatN of the N �N matrices, and we choose the
matrix units eik 2 MatN , .i; k D 1; : : : ; N / subject to the standard multiplication

eij � ek` D ıjkei` ; (8)

as the basis elements in MatN . Note that the unit element in MatN is IN D PN
iD1ei i .

Let B be another associative algebra MatM with the basis elements e˛ˇ .˛; ˇ D
1; 2; : : : ; M/ and the standard multiplication.

By definition, the algebra Mat.0/NM D MatN ˝ MatM is the associative algebra
with the NM � NM matrix units e.i˛/;.jˇ/ D eij ˝ e˛ˇ , which obey the standard
multiplication rules (cf. (8))

e.i˛/;.jˇ/ � e.k�/;.`�/ D ı.jˇ/;.k�/ e.i˛/;.`�/ ; (9)

where ı.jˇ/;.k�/ � ıjkıˇ�.
Now we suppose that MatN and MatM are associative Z2-graded algebras. In

this case, it is convenient to denote the matrix units eij by Eij and choose the
so-called “along diagonal grading”: �

�
Eik

� D �.i Ck/, �
�
E˛ˇ

� D �.˛Cˇ/, where

�.i/ D i mod 2. Next we consider the associative algebra Mat.1/NM D MatN � MatM
generated by the elements Eik � E˛ˇ and multiplication, which is defined by the
relation (cf. (7))

�
Eik �E˛ˇ

� �
Ejm �E��

� D .�1/�.jCm/�.˛Cˇ/ �Eik Ejm���E˛ˇ E��� D
D .�1/�.jCm/�.˛Cˇ/ ıkj ıˇ�

�
Eim �E˛�

�
:

Here and below we use the concise notation and omit the symbol � in formulas,
i.e., we write Eik �E˛ˇ instead of Eik �E˛ˇ .

Our aim is to find the elements E.i˛/;.kˇ/ 2 Mat.1/NM , which form the algebra (9)
of the NM �NM matrix units. The answer is given by the following proposition.

Proposition 1. The elements

E.i˛/;.kˇ/ D .�1/�.k/ �.˛Cˇ/Eik �E˛ˇ 2 Mat.1/NM (10)

form the algebra of the NM � NM matrix units with multiplication rules (9). The
parity of the elementsE.i˛/;.kˇ/ is defined by means of the function �.iCkC˛Cˇ/.
Proof. We search the elements E.i˛/;.kˇ/ in the form

E.i˛/;.kˇ/ D Sik;˛ˇ Eik �E˛ˇ ; (11)
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where Sik;˛ˇ are the numbers such that elements (11) should satisfy (9). The
conditions (9) lead to the relations

S.ik/;.˛ˇ/ D .�1/.�.j /C�.k//.�.˛/C�.�//S.ij /;.˛�/S.jk/;.�ˇ/ :
It is easy to verify by direct calculation that one solution of these equations1 is

S.ik/;.˛ˇ/ D .�1/�.k/.�.˛/C�.ˇ// ;
which gives (10). The parity of the element E.i˛/;.kˇ/ is defined by the parity of the
product Eik �E˛ˇ and, therefore, is equal to �.i C k C ˛ C ˇ/. ut
Proposition 2. There is a linear isomorphic map ˚ W MatN ˝ MatM !
MatN � MatM of the associative algebras given by the formulae

˚
�
eik ˝ e˛ˇ

� D .�1/�.k/.�.˛/C�.ˇ// Eik �E˛ˇ D E.i˛/;.kˇ/ : (12)

Proof. Since the elements eik ˝ e˛ˇ form the basis in MatN ˝ MatM and

E.i˛/;.kˇ/ (10) form the basis in MatN � MatM , the linear mapping ˚ : Mat.0/NM !
Mat.1/NM is defined uniquely by formula (12). Proposition 1 then leads to the relation

˚
�
.eik ˝ e˛ˇ/.ejm ˝ e�� /

� D ˚
�
eik ˝ e˛ˇ

� � ˚ �ejm ˝ e��
�
;

which means that the mapping (12) is a homomorphism. It is obvious that the
mapping ˚ defined in (12) is invertible and, therefore, an isomorphism. ut
Remark. Let MatN , MatM and MatK be Z2-graded algebras of the N �N ,M �M
and K �K matrices, respectively. Then one can check directly the associativity of
the rule of the definition of the matrix units (10):

.�1/�.kCˇ/�.aCb/E.i;˛/;.k;ˇ/ �Eab D .�1/�.k/�.˛Cˇ/Eik �E.˛;a/;.ˇ;b/ � E.i;˛;a/;.k;ˇ;b/ :

Corollary. The mapping (12) can be extended to the isomorphism

˚ W MatN1 ˝ � � � ˝ MatNr ! MatN1 � � � � � MatNr ;

by means of the recurrence relation

˚
�
ei1k1 ˝ ei2k2 ˝ � � � ˝ eir kr

� D .�1/�.k1/�.i2Ck2C���CirCkr / Ei1k1 � (13)

� ˚�ei2k2 ˝ � � � ˝ eir kr
�
;

where im; km D f1; : : : ; Nmg, and the initial relation is ˚
�
eik
� D Eik .

1The other solution of the equations is, e.g., S.ik/;.˛ˇ/ D .�1/�.˛/.�.i/C�.k// and the general solution

is S.ik/;.˛ˇ/ D .�1/�.k/.�.˛/C�.ˇ// OS.ik/;.rs/, where OS.ik/;.˛ˇ/ is a solution of the equations OS.ik/;.˛ˇ/ D
OS.ij /;.˛�/ OS.jk/;.�ˇ/.
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Example. As an example of the above construction we deduce the matrix units for
Mat4 in terms of the algebra of two free fermions. Let us introduce the associative
algebra F which is generated by two fermionic operators f ; N g with the standard
commutation relations. The algebra F is called the algebra of one complex free
fermion. For the 2 � 2 case we have the following free fermionic realization of the
matrix units eik D Eik :

E2 D
�
E11 E12
E21 E22

�
D
� N  N 
  N 

�
: (14)

One can check directly that the elements eij of the matrix E2 given in (14) satisfy
relations (8). Thus, the elements eij (14) generate the Z2-graded algebra Mat2.

Consider two Z2-graded algebras Mat2, where the first algebra is generated by
the free fermion f ; N g while the second one is generated by the free fermion f�; N�g.

For the direct product Mat2 ˝ Mat2 of two such algebras with the standard
multiplication rule (6) it is easy to see that the elements e.i˛/;.kˇ/ D eik ˝ e˛ˇ ,
where eik and e˛ˇ are the matrix units (14), are the matrix units in Mat2 ˝ Mat2.
Here the fermionic generators f ; N g of the first factor in Mat2 ˝ Mat2 commute
with the generators f�; N�g of the second factor in Mat2 ˝ Mat2. It means that the
Z2-grading is not defined correctly for the algebra Mat2 ˝ Mat2.

On the other hand, one can consider the associative algebra Mat2 � Mat2, where
the algebras Mat2 are generated by two independent free fermions f ; N g and f�; N�g,
which satisfy the anti-commutation relations Œ ; N��C D Œ�; N �C D Œ ; ��C D
Œ N�; N �C D 0, i.e., the pairs of the fermions f ; N g and f�; N�g anti-commute with
each other and form the algebra of two free fermions F2.

In this case the elements E. /

ik � E.�/
rs 2 Mat2 � Mat2 do not represent the matrix

units in Mat2 � Mat2. Therefore, to construct such matrix units we need to use the
linear isomorphism (12) of the associative algebras Mat2 ˝ Mat2 and Mat2 � Mat2.

According to our choice of the parity �.i/ D i mod 2and using (14) we obtain
the following matrix units:

E4 D kEabka;bD1;:::;4 D

0
BB@

N  N�� � N  N� N N� N N��
� N  � N  � N� N � N� N �
� �  � N�  N � N�  N �
 N�� � N�  N N�  N N��

1
CCA : (15)

Here we represent the matrix E.ij /;.km/ as the 4 � 4 matrix (15) by ordering the
pairs of indices .i; j / in (10) as follows: .1; 1/ $ 1, .1; 2/ $ 2, .2; 1/ $ 4 and
.2; 2/ $ 3. Such ordering leads to the along diagonal grading �.Eab/ D �.a C b/

for the elements of the matrix kEabk.
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3 Hecke R-Matrices in Terms of Free Fermions

The R-matrix (1), where OR is given by (5), is the element of Mat˝Ln , where Matn is
the associative algebra of the n�nmatrix units eij . Using the relation In D Pn

rD1err
and the rule (13), it is easy to find that

˚


In ˝ : : :˝ In„ ƒ‚ …
.k�1/ times

˝ ei i ˝ ejj ˝ In ˝ : : :˝ In„ ƒ‚ …
.L�k�1/ times

�
D E

.k/
i i �E.kC1/

jj ;

˚


In ˝ : : :˝ In„ ƒ‚ …
.k�1/ times

˝ eij ˝ ej i ˝ In ˝ : : :˝ In„ ƒ‚ …
.L�k�1/ times

�
D .�1/�.j /.�.i/C�.j // E.k/

ij �E.kC1/
j i :

Here index k for the matrix units E.k/
ij indicates that they are constructed via free

fermions, which are different for different indices k (sites of the chain). So, the
image of the R-matrix in the associative Z2-graded algebra Mat�L

n is

Rk;kC1 D ˚
� ORk;kC1

� D Pn
i;jD1

� Oaij E.k/
ij �E.kC1/

j i C bij E
.k/
i i �E.kC1/

jj

�
; (16)

where Oaij D .�1/�.j /.�.i/C�.j //aij and aii D ai .
We would like to realize thisR-matrix in terms of free fermions. First, we realize

the matrix units in the associative algebra Matn D Mat2N by means of N free
fermions, i.e. by the elements of the associative algebra FN .

For this aim it is more convenient to describe the elements of Mat2N by the multi-
index. We introduce multi-indices i D .i1; i2; : : : ; iN /, where ir D 1; 2. Parity of the
element Ei;j will be given by .�1/�.i/C�.j/, where �.i/ D jij mod 2 and ij � Pn

rD1ir .
The matrix units Ei;j are the elements of the associative algebra FN

Ei;j D ˚
�
ei1;j1 ˝ ei2;j2 ˝ : : :˝ eiN ;jN

� D .�1/
P
k<m

jk .imCjm/
E
. 1/
i1;j1

� : : : �E. N /
iN ;jN

;

whereE. m/
im;jm

.m D 1; : : : ; N / are the 2�2matrices given in (14). According to (16),
the image of the R-matrix, as an element of the associative algebra FNL, is

Rk;kC1 D ˚
� ORk;kC1

� D P
iaiE

.k/

i;i E
.kC1/
i;i CP

i¤jai;jE
.k/

i;j E
.kC1/
j;i C

C .q � q�1/Pi<jE
.k/

i;i E
.kC1/
j;j ; (17)

where E.k/

i;j 2 FN are the matrix units for Mat.k/
2N

constructed by means of the free

fermions  .k/
˛ .k D 1; : : : ; LI ˛ D 1; : : : ; N /. For the parameters ai and ai;j we

have

a2i � .q � q�1/ai � 1 D 0 ; ai;jaj;i D .�1/jijCjjj;
and the relation i < j is defined by any ordering of the set of multi-indices i which
does not necessarily conserve “along diagonal grading”.
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4 Examples

The fundamental R-matrix for the GLq.n/ quantum group is

OR D q
Pn

iD1ei i ˝ ei i CP
i¤j eij ˝ eji C .q � q�1/Pi<j ei i ˝ ejj ; (18)

where eij are the n � n matrix units. In particular, for the case of GLq.2/, the
Hamiltonian �R.HL/ describes the XXZ open 1

2
-spin chain model.

Using our general construction we rewrite this model in terms of the free
fermions. For n D 2 and ordering 1 < 2, the R-matrix in the associative algebra
generated by L free fermions is, according to (17),

Rk;kC1 D q
�
E
.k/
11 E

.kC1/
11 CE

.k/
22 E

.kC1/
22

�CE
.k/
12 E

.kC1/
21 �E.k/

21 E
.kC1/
12 C

C.q � q�1/E.k/
11 E

.kC1/
22 :

Using (14), we will get

Rk;kC1 D N kC1  k C N k  kC1 � q�1 N k k � q N kC1  kC1 C
C.q C q�1/ N k  k N kC1  kC1 C q :

The generalization of the Hecke type R matrix (18) for GLq.njm/ has the form

OR D P
i .�1/Œi � q1�2Œi � ei i ˝ ei i CP

i¤j .�1/Œi �Œj � eij ˝ ej i C .q�q�1/Pi<j ei i ˝ ejj ;

(19)

where i; j D 1; : : : ; n C m, Œi � D 0 for i D 1; : : : ; n and Œi � D 1 for i D
n C 1; : : : ; n C m. In the case of GLq.1j1/ (n D m D 1) for (19), by using our
construction, we have the fermionic image

Rk;kC1 D q�1
�
. N kC1 C q N k/. kC1 C q k/ � 1� :

Now we consider the R-matrix (18) for the GLq.4/ quantum group, where eij
are the 4 � 4 matrix units. Our general construction gives the matrix units (15). In
the last term of (18) we have to choose any ordering. We will consider the ordering

.11/ $ 1 < .22/ $ 2 < .12/ $ 3 < .21/ $ 4 :

In this ordering our construction for the fermionic image of the R-matrix (18) gives

Rk;kC1 D q
X

i

E
.k/

i;i E
.kC1/
i;i C

X
i¤j

.�1/jjj.jijCjjj/E.k/

i;j E
.kC1/
j;i C

C .q � q�1/
X
i<j

E
.k/

i;i E
.kC1/
j;j :
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If we substitute (15) into this formula we obtain the R-matrix for the two-fermionic
model

Rk;kC1 D q � q. N k k C N�k�k/ � q�1. N kC1 kC1 C N�kC1�kC1/C
C .q C q�1/. N kC1 kC1 N k k C N�kC1�kC1 N�k�k/C
C .q � q�1/. N k k N�k�k � N kC1 kC1 N�kC1�kC1/C
C .q N k k C q�1 N kC1 kC1/. N�k�k C N�kC1�kC1/C
C . N k kC1 � N kC1 k/. N�k�kC1 � N�kC1�k/ �
� . N k k C N kC1 kC1 � 1/. N�k�kC1 C N�kC1�k/ �
� . N k kC1 C N kC1 k/. N�k�k C N�kC1�kC1 � 1/ �
� .q C q�1/ N k k N kC1 kC1. N�k�k C N�kC1�kC1/ �
� 2 N�k�k N�kC1�kC1.q N k k C q�1 N kC1 kC1/C
C 2.q C q�1/ N k k N kC1 kC1 N�k�k N�kC1�kC1 :

Now we construct the two-fermionic model which, corresponds to the R-matrix
(19) forGLq.2j2/. We consider the ordering as above, we obtain theR-matrix which
does not involve a term of an order 8 in fermions.

We obtain an interestingR-matrix for the two-fermionic system, when we choose
a.11/ D a.22/ D q, a.12/ D a.21/ D �q�1 and ordering .12/ < .11/ < .21/ < .22/.
In this case our construction gives the R-matrix

Rk;kC1 D q � q�1 N k k � q�1 N�k�k � q N kC1 kC1 � q N�kC1�kC1C
C .q N�kC1�kC1 C q�1 N�k�k/. N kC1 kC1 C N k k/C
C . N k kC1 C N kC1 k/. N�k�kC1 C N�kC1�k/�
� . N k k C N kC1 kC1 � 1/. N�k�kC1 C N�kC1�k/�
� . N k kC1 C N kC1 k/. N�k�k C N�kC1�kC1 � 1/ ;

which does not contain terms of an order of 6 and 8 in the fermions.
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Group Analysis of Generalized Fifth-Order
Korteweg–de Vries Equations
with Time-Dependent Coefficients

Oksana Kuriksha, Severin Pošta, and Olena Vaneeva

Abstract We perform enhanced Lie symmetry analysis of generalized fifth-order
Korteweg–de Vries equations with time-dependent coefficients. The corresponding
similarity reductions are classified and some exact solutions are constructed.

1 Introduction

In this paper the class of generalized variable-coefficient fifth-order Korteweg–de
Vries (fKdV) equations

ut C unux C ˛.t/u C ˇ.t/uxxxxx D 0 (1)

is investigated from the Lie symmetry point of view. Here ˛ and ˇ are smooth
nonvanishing functions of the variable t and n is a positive integer, n > 2. This
work is a natural continuation of the study undertaken by ourselves in [7], where
the group classification of Eq. (1) with n D 1 was carried out exhaustively. Lie
symmetry analysis of the class (1) was initiated in [18]. We show that the results
presented therein are incorrect. The case n D 2 was considered also in [17] but the
complete group classification was not achieved.

Various generalizations of the Korteweg–de Vries equation appear in many
physical models, including ones describing gravity waves, plasma waves and waves
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in lattices [3]. Equation (1) with n D 1, ˛ D 0 and ˇ D const models, for example,
one-dimensional hydromagnetic waves in a cold quasi-neutral collision-free plasma
propagating along the x-direction under the presence of a uniform magnetic field
under some conditions, namely, when the propagation angle of the wave relative to
the external magnetic field becomes special, critical angle [4]. More references on
studies concerned with these equations can be found in [7].

The presence of variable coefficients in a differential equation that model
certain real-world phenomenon often allows one to get better description of the
phenomenon but, at the same time, makes the related studies of this equation,
including group classification problems, more difficult. In recent works on Lie
symmetry analysis it was shown that the usage of admissible transformations in
many cases is a cornerstone that leads to exhaustive solution of group classification
problems [1, 6, 12, 13]. That’s why we firstly investigate admissible transformations
in the class (1) in the next section and then proceed with the classification of Lie
symmetries in Sect. 3. The corresponding reductions of Eq. (1) admitting extensions
of Lie symmetry algebras are performed in Sect. 4, some exact solutions are
constructed therein. We discuss the incorrectnesses of the results obtained in [17,18]
in the conclusion.

2 Admissible Transformations

An admissible transformation (called also form-preserving [5] or allowed [19] one)
can be regarded as a triple consisting of two fixed equations from a class and a point
transformation linking these equations [13]. The set of admissible transformations
of a class of differential equations naturally possesses the groupoid structure with
respect to the standard operation of transformations composition [12]. More details
and examples on finding and usage of admissible transformations for generalized
fKdV equations as well as definitions of different kinds of equivalence groups can
be found in [6, 15].

We search for admissible transformations in class (1) using the direct method [5],
i.e., we suppose that Eq. (1) is linked with an equation from the same class,

QuQt C Qu Qn QuQx C Q̨ .Qt /Qu C Q̌.Qt/QuQx Qx Qx Qx Qx D 0; (2)

by a nondegenerate point transformation of the form

Qt D T .t/; Qx D X1.t/x CX0.t/; Qu D U 1.t; x/u C U 0.t; x/; (3)

where T , X1, X0, U 1 and U 0 are arbitrary smooth functions of their variables with
TtX

1U 1 ¤ 0. We can restrict ourselves by consideration of point transformations
of such a form instead of the most general form Qt D T .t; x; u/; Qx D X.t; x; u/, and
Qu D U.t; x; u/, since the class (1) is a subclass (for m D 5) of the more general
class of evolution equations,

ut D F.t/um CG.t; x; u; u1; : : : ; um�1/;
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where F ¤ 0; Gui um�1 D 0; i D 1; : : : ; m � 1; and m > 2, um D @mu
@xm
; F and

G are arbitrary smooth functions of their variables. It was proved in [15] that the
latter class is normalized with respect to its equivalence group, where transformation
components for independent and dependent variables are of the form (3).

Now we perform the change of variables (3) in Eq. (2). The partial derivatives
involved in (1) are transformed as follows:

QuQt D 1

Tt

�
U 1
t u C U 1ut C U 0

t

� � X1
t x CX0

t

TtX1

�
U 1
x u C U 1ux C U 0

x

�
;

QuQx D 1

X1

�
U 1
x u C U 1ux C U 0

x

�
;

QuQx Qx Qx Qx Qx D 1

.X1/5

�
U 1
xxxxxu C 5U 1

xxxxux C 10U 1
xxxuxx C 10U 1

xxuxxx

C5U 1
x uxxxx C U 1uxxxxx C U 0

xxxxx

�
:

We further substitute ut D �unux � ˛.t/u � ˇ.t/uxxxxx to the obtained equation
in order to confine it to the manifold defined by (1) in the fifth-order jet space with
the independent variables .t; x/ and the dependent variable u. Splitting the obtained
identity with respect to the derivatives of u leads to the determining equations on the
functions T , X1, X0, U 1 and U 0. Solving them we get, in particular, the conditions

Qn D n; U 0 D U 1
x D 0; Q̌Tt � ˇ.X1/5 D 0:

Then the rest of the determining equations result in

X1
t D X0

t D 0; .U 1/nTt D X1; Q̨U 1Tt D ˛U 1 � U 1
t :

We solve these equations and get the following assertion.

Theorem 1. The generalized equivalence group G� of the class (1) consists of the
transformations

Qt D T .t/; Qx D ı1x C ı2; Qu D
�
ı1

Tt

� 1
n

u;

Q̨ .Qt/ D ˛

Tt
C Ttt

nT 2t
; Q̌.Qt / D ı1

5

Tt
ˇ.t/; Qn D n;

where ıj ; j D 1; 2, are arbitrary constants, T is an arbitrary smooth function with
ı1Tt > 0.

The entire set of admissible transformations of the class (1) is generated by the
transformations from the group G�.
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Remark 1. If we assume that the constant n varies in the class (1), then the equiv-
alence group G� is generalized since n is involved explicitly in the transformation
of the variable u. Since n is invariant under the action of transformations from
the equivalence group, the class (1) can be considered as the union of its disjoint
subclasses with fixed n. For each such subclass the equivalence group G� is
usual one.

Using Theorem 1 we derive a criterion of reducibility of variable-coefficient
Eq. (1) to constant coefficient equations from the same class.

Theorem 2. A variable coefficient equation from the class (1) is reducible to the
constant coefficient equation from the same class if and only if its coefficients ˛ and
ˇ satisfy the equality

n .˛=ˇ/t D .1=ˇ/t t : (4)

Equivalence transformations from the group G� allow us to gauge one of the
arbitrary element ˛ or ˇ to a simple constant value, for example, ˛ can be set to
zero or ˇ to unity. The gauge ˛ D 0 leads to more essential simplification of the
study than the gauge ˇ D 1, therefore, the first one is preferable. Any equation from
the class (1) can be mapped to an equation from the same class with Q̨ D 0 by the
equivalence transformation

Qt D
Z
e�n

R
˛.t/ dtdt; Qx D x; Qu D e

R
˛.t/ dtu: (5)

Then the single variable coefficient in the transformed equation will be expressed via
˛ and ˇ as Q̌ D en

R
˛.t/ dtˇ. (Here and in what follows an integral with respect to t

should be interpreted as a fixed antiderivative.) Therefore, we can restrict ourselves
to the study of the class

ut C unux C ˇ.t/uxxxxx D 0: (6)

This will not lead to a loss of generality as all results on symmetries, classical
solutions and other related objects for Eq. (1) can be constructed using the similar
results obtained for equations from the class (6) and equivalence transformation (5).

To derive the equivalence group for (6) we set Q̨ D ˛ D 0 in the corresponding
transformation presented in Theorem 1 and deduce that the function T is linear with
respect to t . The following assertion is true.

Corollary 1. The generalized equivalence group G�0 of the class (6) comprises the
transformations

Qt D ı3t C ı4; Qx D ı1x C ı2; Qu D
�
ı1

ı3

� 1
n

u; Q̌.Qt/ D ı1
5

ı3
ˇ.t/; Qn D n;

(7)

where ıj ; j D 1; 2; 3; 4, are arbitrary constants with ı1ı3 > 0.



Group Analysis of Generalized Fifth-Order Korteweg–de Vries Equations 315

The entire set of admissible transformations of the class (6) is generated by the
transformations from the group G�0 .

Remark 1 is also true for the equivalence group G�0 .

3 Lie Symmetries

In the previous section we have shown that the group classification problem for the
class (1) reduces to the similar problem for its subclass (6). In order to carry out the
group classification of (6) we use the classical algorithm [8]. Namely, we look for
symmetry generators of the formQ D �.t; x; u/@t C �.t; x; u/@x C �.t; x; u/@u and
require that

Q.5/fut C unux C ˇ.t/uxxxxxg D 0 (8)

identically, modulo Eq. (6). Here Q.5/ is the fifth prolongation of the opera-
tor Q [8, 9]. Note that the restriction on n to be integer is inessential for the group
classification problem, so we can assume that n is a real nonzero constant.

The infinitesimal invariance criterion implies

� D �.t/; � D �.t; x/; � D �1.t; x/u C �0.t; x/;

where � , � , �1 and �0 are arbitrary smooth functions of their variables. The rest of
the determining equations have the form

�ˇt D .5�x � �t /ˇ; �1x D 2�xx; �1xx D �xxx; 2�1xxx D �xxxx;

�1xunC1 C �0xun C .�1t C �1xxxxxˇ/u C �0t C �0xxxxxˇ D 0;

.�t � �x C n�1/un C n�0un�1 C .5�1xxxx � �xxxxx/ˇ � �t D 0:

The derived determining equations were verified using GeM software package [2].
The latter two equations can be split with respect to different powers of u. Special
cases of the splitting arise if n D 0 or n D 1. If n D 0 Eq. (6) are linear ones
and, therefore, excluded from the consideration. The case n D 1 is thoroughly
investigated in [7]. So, we concentrate our attention on the case n ¤ 0; 1.

If n ¤ 0; 1 the determining equations result in

� D .c1 � c2n/t C c3; � D c1x C c0; �1 D c2; �0 D 0;

where ci , i D 0; : : : ; 3, are arbitrary constants. Thus, the infinitesimal generator has
the form

Q D ..c1 � c2n/t C c3/@t C .c1x C c0/@x C c2u@u:
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The classifying equation on ˇ is

..c1 � c2n/t C c3/ˇt D .4c1 C nc2/ˇ: (9)

To derive the kernelAker of maximal Lie invariance algebrasAmax of equations from
the class (6) (i.e., the Lie invariance algebra admitted by any equation from (6)) we
split in (9) with respect to ˇ and ˇt . Then c1 D c2 D c3 D 0 and Q D c0@x . Thus,
Aker D h@xi. To get possible extensions of Aker we consider (9) not as an identity
but as an equation on ˇ, that has the form

.pt C q/ˇt D rˇ: (10)

The group classification of class (6) is equivalent to the integration of the latter
equation up to the G�0 -equivalence. The equivalence transformations (7) act on the
coefficients p; q, and r of Eq. (10) as follows:

Qp D �p; Qq D �.qı3 � pı4/; Qr D �r;

where � is a nonzero constant. Therefore, there are three inequivalent nonzero
triples .p; q; r/: .1; 0; �/, .0; 1; 1/ and .0; 1; 0/, where � is an arbitrary constant.
We integrate (10) for these values of .p; q; r/. Up to G�0 -equivalence ˇ takes the
values from the set f"t�; "et ; "g. Here � and " are arbitrary constants with �" ¤ 0,
" D ˙1 mod G�0 . The last step is to substitute the obtained forms of ˇ into Eq. (9)
and to find the corresponding values of ci ; i D 0; : : : ; 3, that define the infinitesimal
operator Q. We get that all G�0 -inequivalent cases of Lie symmetry extension are
exhausted by the following:

ˇ D "t�; � ¤ 0W Q D 5

�C 1
c1t@t C .c1x C c0/@x C � � 4

n.�C 1/
c1u@u;

ˇ D "et W Q D 5c1@t C .c1x C c0/@x C 1

n
c1u@u;

ˇ D "W Q D .5c1t C c3/@t C .c1x C c0/@x � 4

n
c1u@u;

where c0, c1 and c3 are arbitrary constants. We have proved the following statement.

Theorem 3. The kernel of the maximal Lie invariance algebras of nonlinear
equations from the class (6) with n ¤ 1 coincides with the one-dimensional algebra
h@xi. All possibleG�0 -inequivalent cases of extension of the maximal Lie invariance
algebras are exhausted by those presented in Cases 2–4 of Table 1.

Proposition 1. A group classification list for the class (1) up to G�-equivalence
coincides with the list presented in Table 1.
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Table 1 The group
classification of the class (6)
with n ¤ 0; 1 up to
G�0 -equivalence

No. ˇ.t/ Basis of Amax

1 8 @x

2 "t� @x; 5nt@t C .�C 1/nx@x C .� � 4/u@u

3 "et @x; 5n@t C nx@x C u@u

4 " @x; @t ; 5nt@t C nx@x � 4u@u

Here � is an arbitrary nonzero constant; " D ˙1 mod
G�0

Table 2 The group classification of the class (1) with n ¤ 0; 1 using no
equivalence

No. ˇ.t/ Basis of Amax

1 8 @x

2 �Tt
�
T C ��� @x; 5n.T C �/T�1t @t C n.�C 1/x@x C

C .� � 4� 5n˛.t/.T C �/T�1t /u@u

3 �Tt e
mT @x; 5nT

�1
t @t Cmnx@x C �m� 5n˛.t/T�1t

�
u@u

4 �Tt @x; T
�1
t .@t � ˛.t/u@u/; 5nT T

�1
t @t C nx@x �

� .4C 5n˛.t/T T�1t /u@u

Here �, �, �, and m are arbitrary constants with ��m ¤ 0, T D T .t/ DR
e�n

R
˛.t/ dtdt , and the function ˛.t/ is arbitrary in all cases

Proposition 2. An equation of the form (1) admits a three-dimensional Lie sym-
metry algebra if and only if it is point-equivalent to the constant-coefficient fKdV
equation ut C unux C "uxxxxx D 0 from the same class.

For convenience of further applications we present in Table 2 the complete list of
Lie symmetry extensions for the initial class (1), where arbitrary elements are not
simplified by equivalence transformations (the detailed procedure of deriving such
a list from a simplified one is described in [14]).

The obtained group classification results give all Eq. (1) for which the classical
method of Lie reduction can be applied.

4 Symmetry Reductions and Construction of Exact Solutions

One of the most efficient techniques for construction of solutions for nonlinear
partial differential equations is the Lie reduction method, based on the usage of Lie
symmetries that correspond to Lie groups of continuous point transformations [8,9].
Any (1C1)-dimensional partial differential equation admitting a one-parameter Lie
symmetry group (acting regularly and transversally on a manifold defined by this
equation) can be reduced to an ordinary differential equation. Lie reduction method
is well known and algorithmic [8, 9]. In order to get an optimal system of group-
invariant solutions reductions should be performed with respect to subalgebras from
the optimal system [8, Section 3.3].
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To find optimal systems of one-dimensional subalgebras for Lie algebras Amax

presented in Table 1, we firstly consider their structure, using notations of [11]. In
Cases 2 and 3 the maximal Lie-invariance algebras are two-dimensional. In Case 2
with � D �1 it is Abelian (2A1). The algebras adduced in Case 2 with � ¤ �1 and
Case 3 are non-Abelian (A2). The three-dimensional algebra with basis operators
presented in Case 4 is of the type Aa3:5, where a D 1=5.

Therefore, optimal systems of one-dimensional subalgebras of the maximal Lie
invariance algebras Amax presented in Table 1 are the following:

2�¤�1W g0 D h@xi; g2:1 D h5nt@t C .�C 1/nx@x C .� � 4/u@ui;
2�D�1W g0 D h@xi; ga2:2 D hnt@t C a@x � u@ui, where a is an arbitrary constant;
3W g0 D h@xi; g3 D h5n@t C nx@x C u@ui;
4W g0 D h@xi; g�4:1 D h@t C�@xi, g4:2 D h5nt@t Cnx@x �4u@ui; � 2 f�1; 0; 1g.

We do not perform the reductions with respect to the subalgebra g0 since they
lead to constant solutions only. The reductions with respect to other one-dimensional
subalgebras from the found optimal lists are presented in Table 3.

It is possible to consider also reductions of the generalized fKdV equations
to algebraic equations using two-dimensional subalgebras of their Lie invariance
algebras. There is only one such subalgebra that leads to a nonconstant solution, it
is the subalgebra

h@t ; 5nt@t C nx@x � 4u@ui
of the algebra Amax presented in Case 4 of Table 1. The corresponding Ansatz u D
Cx� 4

n reduces the equation

ut C unux C "uxxxxx D 0 (11)

to an algebraic equation on the constant C . We solve it and get the stationary
solution

u D .�8".nC 1/.nC 2/.nC 4/.3nC 4//
1
n .nx/� 4

n :

Table 3 Similarity reductions of the equations ut C unux C ˇ.t/uxxxxx D 0

No. ˇ.t/ g ! Ansatz Reduced ODE

1 "t�; � ¤ �1 g2:1 xt�
�C1
5 u D t

��4
5n '.!/ "'00000 C



'n � �C1

5
!
�
'0 C

C ��4

5n
' D 0

2 "t�1 ga2:2 x � a
n

ln t u D t�
1
n '.!/ "'00000 C �'n � a

n

�
'0 �

� 1
n
' D 0

3 "et g3 xe�
1
5 t u D e

1
5n t '.!/ "'00000 C �'n � 1

5
!
�
'0 C

C 1
5n
' D 0

4 " g�4:1 x � �t u D '.!/ "'00000 C .'n � �/ '0 D 0

5 " g4:2 xt�
1
5 u D t�

4
5n '.!/ "'00000 C �'n � !

5

�
'0 �

� 4
5n
' D 0

Here a is an arbitrary constant, � 2 f�1; 0; 1g, " D ˙1 mod G�0 ; n ¤ 0; 1
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of Eq. (11). Using this solution and equivalence transformation (5) we construct
simple nonstationary exact solution,

u D .�8".nC 1/.nC 2/.nC 4/.3nC 4//
1
n .nx/�

4
n e�

R
˛.t/ dt ;

for the fKdV equation with time-dependent coefficients

ut C unux C ˛.t/u C "e�n
R
˛.t/ dtuxxxxx D 0; (12)

where ˛ is an arbitrary nonvanishing smooth function.
If n D 2 the travelling wave solution

u D ˙2p�10" �3 tanh.x C 24"t/2 � 2�

of Eq. (11) is known [10]. Using (5) we get the exact solution of Eq. (12) with n D 2,

u D ˙2p�10"
�
3 tanh



x C 24"

R
e�2

R
˛.t/ dtdt

�2 � 2
�
e�

R
˛.t/ dt :

It is worthy to note that the obtained reductions to ODEs can be used for
construction of numerical solutions of the generalized fKdV equations, see [6, 16]
for details.

5 Conclusion and Discussion

In this paper we present the exhaustive group classification of generalized fKdV
equations with time dependent coefficients of the general form (1). The complete
result is achieved due to the use of equivalence transformations. We show that up
to point equivalence the group classification problem for the initial class can be
reduced to a simpler problem for its subclass with ˛ D 0 (6). After the group
classification for the subclass (6) is performed, the most general forms of Eq. (1)
admitting Lie symmetry extensions can be easily recovered using equivalence
transformations. The derived results together with ones obtained in [7] for the case
n D 1 give the complete solution of the group classification problem for nonlinear
equations of the form (1).

We mentioned in the introduction that Lie symmetry analysis of the class (1) was
initiated in [18], and the case n D 2 was also treated separately in [17]. However,
the results presented therein are either incorrect [18] or incomplete [17]. Here we
discuss main lucks of the results obtained in those two papers.

In [17] only some cases of Lie symmetry extensions for equations of the form (1)
with n D 2 were found, namely, the cases with ˛ D const and ˛ D 1=t .
If one performs the group classification up to the corresponding equivalence
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transformations it is enough to consider the case ˛ D 0. If one wants to get the
classification, where all equations admitting Lie symmetry extensions are presented,
not only their inequivalent representatives, then all such equations will have the
coefficient ˛ being arbitrary, so the cases ˛ D const and ˛ D 1=t can be considered
as particular examples only. Moreover, even studying these particular cases the
authors of [17] missed one case of Lie symmetry extension for each value of ˛
considered by them. For example, for the case ˛ D 0 this is ˇ D ".t C ı/�, where
", ı and � are arbitrary constants with "� ¤ 0. Nevertheless, at least dimensions
and basis operators of the found Lie symmetry algebras for those particular cases
derived in [17] are correct in contrast to the results presented in [18].

In [18] the authors state that they find three cases of Lie symmetry extensions
for Eq. (1) and in each derived case the corresponding Lie symmetry algebra is
four-dimensional. This is a false assertion. In this paper and in [7] we show that
Eq. (1) admits four-dimensional Lie symmetry algebra if and only if n D 1 and,
moreover, the equation is point-equivalent to the simplest constant-coefficient fKdV
equation ut C uux C �uxxxxx D 0, where � D const. So, the results of [18] are
principally incorrect.

In the modern group analysis of differential equations the solution of a group
classification problem should be inseparably linked with the study of admissible
transformations in the corresponding class of equations. Neglecting of this often
leads to incomplete results as shown in the discussion. Moreover, the knowledge
of such transformations can be used for solving other problems concerned with the
study of classes of variable-coefficient differential equations or their systems. In
particular, in the recent work [15] the application of admissible transformations to
the study of integrability was analyzed.
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A Construction of Generalized Lotka–Volterra
Systems Connected with sln.C/

S.A. Charalambides, P.A. Damianou, and C.A. Evripidou

Abstract We construct a large family of Hamiltonian systems which are connected
with root systems of complex simple Lie algebras. These systems are generaliza-
tions of the KM system. The Hamiltonian vector field is homogeneous cubic but
in a number of cases a simple change of variables transforms such a system to a
quadratic Lotka–Volterra system. We classify all possible Lotka–Volterra systems
that arise via this algorithm in the An case.

1 Introduction

The Volterra model, also known as the KM system is a well-known integrable
system defined by

Pxi D xi .xiC1 � xi�1/ i D 1; 2; : : : ; n; (1)

where x0 D xnC1 D 0. It was studied by Lotka in [7] to model oscillating chemical
reactions and by Volterra in [10] to describe population evolution in a hierarchical
system of competing species. It was first solved by Kac and van-Moerbeke in [6],
using a discrete version of inverse scattering due to Flaschka [5]. In [8] Moser gave
a solution of the system using the method of continued fractions and in the process
he constructed action-angle coordinates. Equation (1) can be considered as a finite-
dimensional approximation of the Korteweg–de Vries (KdV) equation. The Poisson
bracket for this system can be thought as a lattice generalization of the Virasoro
algebra [4].

The Volterra system is associated with a simple Lie algebra of type An
in the sense that it can be written in Lax pair form PL D ŒB;L� where
L D Pn

iD1 ai .X˛i CX�˛i / and B D Pn�1
iD1 aiaiC1

�
X˛iC˛iC1 �X�˛i�˛iC1

�
with

f˛1; : : : ; ˛ng being the simple roots of the root system of the Lie algebra of type An
and X˛i the corresponding root vectors. This Lax pair is due to Moser [8]; it gives a
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polynomial (in fact cubic) system of differential equations. The change of variables
xi D 2a2i , produces Eq. (1). The purpose of this paper is to generalize this Lax
pair and produce a larger class of Hamiltonian systems which we call generalized
Volterra systems since in some cases by a simple change of variables we produce
Lotka–Volterra systems.

In this paper we restrict our attention in the An case. However, this algorithm
applies, more generally for each complex simple Lie algebra. In dimension 3 this
procedure produces only two systems, the KM system and the periodic KM system.
In dimensions 4 and 5 (i.e. the cases of A3 and A4) and by allowing the use of
complex coefficients this method works in all possible cases and in fact we have
verified using Maple that all the resulting systems are Liouville integrable. To
establish integrability we have used standard techniques of Lax pairs and Poisson
geometry and also a particular technique of Moser which uses the square of the Lax
matrix. After the definition of Lotka–Volterra systems in Sect. 2, we describe our
algorithm in Sect. 3. Finally in Sect. 4 we give a classification of all cases which give
rise to Lotka–Volterra systems via the transformation ai ! 2a2i . We also explicitly
present the corresponding Lotka–Volterra systems.

2 Lotka–Volterra Systems

The KM-system belongs to a large class of the so called Lotka–Volterra systems.
The most general form of the Lotka–Volterra equations is

Pxi D "ixi C
nX

jD1
aij xixj ; i D 1; 2; : : : ; n:

We may assume that there are no linear terms ("i D 0). We also assume that
the matrix A D .aij / is skew-symmetric. All these systems can be written in
Hamiltonian form using the Hamiltonian function

H D x1 C x2 C � � � C xn :

Hamilton’s equations take the form Pxi D fxi ;H g D Pn
jD1 �ij with quadratic

functions

�i;j D fxi ; xj g D aij xixj ; i; j D 1; 2; : : : ; n: (2)

From the skew symmetry of the matrix A D .aij / it follows that the Jacobi identity
is satisfied.

The Poisson tensor (2) is Poisson isomorphic to the constant Poisson structure
defined by the constant matrix A, see [1]. If k D .k1; k2 � � � ; kn/ is a vector in the
kernel of A then the function

f D x
k1
1 x

k2
2 � � � xknn
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is a Casimir. Indeed for an arbitrary function g the Poisson bracket ff; gg is

ff; gg D
nX

i;jD1
fxi ; xj g @f

@xi

@g

@xj
D

nX
jD1

 
nX
iD1

aij ki

!
xj f

@g

@xj
D 0 :

If the matrix A has rank r then there are n � r functionally independent Casimirs.
This type of integral can be traced back to Volterra [10]; see also [1, 2, 9].

3 Generalized Volterra Systems

We recall the following procedure from [3]. Let g be any simple Lie algebra
equipped with its Killing form h� j �i. One chooses a Cartan subalgebra h of g, and
a basis ˘ of simple roots for the root system � of h in g. The corresponding set
of positive roots is denoted by �C. To each positive root ˛ one can associate a
triple .X˛;X�˛;H˛/ of vectors in g which generate a Lie subalgebra isomorphic
to sl2.C/. The set .X˛;X�˛/˛2�C [ .H˛/˛2˘ is a basis of g, called a root basis.
Let ˘ D f˛1; : : : ; ˛`g and let X˛1; : : : ; X˛` be the corresponding root vectors in g.
Define

L D
X
˛i2˘

ai .X˛i CX�˛i /:

To find the matrix B we use the following procedure. For each i; j form the vectors�
X˛i ; X˛j

	
. If ˛i C˛j is a root then include a term of the form aiaj

�
X˛i ; X˛j

	
in B .

We make B skew-symmetric by including the corresponding negative root vectors
aiaj ŒX�˛i ; X�˛j �. Finally, we define the system using the Lax equation PL D ŒL; B�.
For a root system of type An we obtain the KM system.

In this paper we generalize this algorithm as follows. Consider a subset ˚ of�C
such that ˘ � ˚ � �C: The Lax matrix is easy to construct

L D
X
˛i2˚

ai .X˛i CX�˛i / :

Here we use the following enumeration of ˚ which we assume to havem elements.
The variables aj correspond to the simple roots ˛j for j D 1; 2; : : : ; `. We
assign the variables aj for j D ` C 1; ` C 2; : : : ; m to the remaining roots
in ˚ . To construct the matrix B we use the following algorithm. Consider the set
˚ [ ˚� which consists of all the roots in ˚ together with their negatives and let
� D ˚

˛ C ˇ j ˛; ˇ 2 ˚ [ ˚�; ˛ C ˇ 2 �C� : Define

B D
X

cij aiaj .X˛iC˛j �X�˛i�˛j / (3)
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where cij D ˙1 if ˛i C ˛j 2 � with ˛i ; ˛j 2 ˚ [ ˚� and 0 otherwise. In all
eight cases in A3 we are able to make the proper choices of the sign of the cij so that
we can produce a Lax pair. This method produces a Lax pair in all but five out of
sixty four cases in A4. However, when we allow the cij to take the complex values
˙i we are able to produce a Lax pair in all 64 cases. By using Maple we were
able to check that all these examples in A3 and A4 are in fact Liouville integrable.
We will not attempt to prove the integrability of these systems in general due to
the complexity of their definition. In this paper we restrict our attention to some
examples in the An case. Examples from other Lie algebras will be presented in a
future publication.

This algorithm for certain subsets ˚ recovers well known integrable systems.
For example for ˚ D ˘ , the simple roots of the root system An, and ci;iC1 D 1 for
i D 1; 2; : : : ; n�1we obtain the KM system while for˚ D ˘[f˛nC1g, the simple
roots and the highest root, the choice of the signs ci;iC1 D 1 for i D 1; 2; : : : ; n� 1
and c1;nC1 D cn;nC1 D �1 produce the periodic KM system. In the next proposition
we present a sufficient (but not necessary) condition on the subset ˚ which gives a
consistent Lax pair.

Proposition 1. Let˘ � ˚ � �C be a subset of the positive roots with the property
that whenever ˛; ˇ; � 2 ˚ [˚� then ˛C ˇC � ¤ 0 and if ˛C ˇC � 2 �C then
˛CˇC � 2 ˚ . Also let B be the matrix constructed using the algorithm described
in (3). Then for any choice of the signs ci;j the pair L;B is a Lax pair.

This condition is of course not necessary. For example the KM and the periodic
KM systems do not fall in this class.

Example 1. Let ˚ be the subset of the positive roots of the root system An
containing all the roots of odd height. We immediately see that ˚ satisfies the
hypothesis of Proposition 1 and therefore for all possible choices of the signs ci;j we
have a consistent Lax pair. For example when n D 3; ˚ D f˛1; ˛2; ˛3; ˛1C˛2C˛3g
and this choice gives rise to the matrix

L D
3X
iD1

ai .X˛i CX�˛i /C a4.X˛1C˛2C˛3 CX�˛i�˛2�˛3/ :

The skew symmetric matrix B constructed using (3) has upper triangular part

.c1;2a1a2 C c3;4a3a4/X˛1C˛2 C .c1;4a1a4 C c2;3a2a3/X˛2C˛3

Now we easily verify that all 16 possible choices of the signs ci;j give consistent
Lax pairs. Of course only half of them give possibly non-isomorphic systems and
only one of them gives a Lotka Volterra system (see Theorem 1), the well known
periodic KM system.

Example 2. For the root system of type A3 if we take ˚ D f˛1; ˛2; ˛3; ˛1 C ˛2g
then

� D f˛1; ˛2; ˛1 C ˛2; ˛2 C ˛3; ˛1 C ˛2 C ˛3g:
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In this example the variables ai for i D 1; 2; 3 correspond to the three simple roots
˛1; ˛2; ˛3 and the variable a4 to the root ˛1 C˛2. We obtain the following Lax pair:

L D

0
BB@
0 a1 a4 0

a1 0 a2 0

a4 a2 0 a3
0 0 a3 0

1
CCA ; B D

0
BB@

0 �a4a2 a1a2 �a4a3
a4a2 0 �a1a4 a2a3

�a1a2 a1a4 0 0

a4a3 �a2a3 0 0

1
CCA :

Using the substitution xi D a2i followed by scaling, the system defined by the Lax
equation PL D ŒL; B� is transformed to the following Lotka–Volterra system.

Px1 D x1x2 � x1x4; Px2 D �x2x1 C x2x3 C x2x4;

Px3 D �x3x2 C x3x4; Px4 D x4x1 � x4x2 � x4x3 :

This system is integrable. There exist two functionally independent Casimir func-
tions F1 D x1x3 D detL and F2 D x1x2x4. The standard quadratic Poisson
bracket (2) is defined by the relations fxi ; xj g D ri;j xixj where r1;2 D r2;3 D
r3;4 D r2;4 D �r1;4 D 1 and r1;3 D 0. One can find the Casimirs by computing the
kernel of the skew symmetric matrix A D .ri;j /1	i;j	4. The additional integral is
the Hamiltonian H D x1 C x2 C x3 C x4 D trL2.

4 Subsets ˚ Giving Rise to Lotka Volterra Systems

In this section we classify the subsets of the positive roots containing the simple
roots which give rise to Lotka Volterra systems via the transformation xi D 2a2i .
We also explicitly describe each system associated with this subsets. We have the
following theorem.

Theorem 1. The only choices for the subset ˚ of �C so that the corresponding
generalized Volterra systems, under the substitution xi D 2a2i , are transformed into
Lotka–Volterra systems are the following five.

1. ˚ D ˘ ,
2. ˚ D ˘ [ f˛2 C ˛3 C � � � C ˛n�1g,
3. ˚ D ˘ [ f˛1 C ˛2 C � � � C ˛n�1g,
4. ˚ D ˘ [ f˛2 C ˛3 C � � � C ˛ng,
5. ˚ D ˘ [ f˛1 C ˛2 C � � � C ˛ng.

We outline the proof of this theorem. First we prove the theorem for the special
case where ˚ is the subset of the positive roots containing the simple roots and only
one extra root. This is done by explicitly writing down the matrix ŒB;L� and setting
equal to zero the coefficients of the root vectors corresponding to roots not appearing
in ˚ . We end up with a linear system of the signs ci;j , which in order to have a
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solution, the extra root ˛nC1 2 ˚ must be of the form ˛nC1 D ˛kC˛kC1C : : :C˛m
with k � 2 and m 	 n � 1. Since subsystems of Lotka Volterra systems are also
Lotka Volterra systems, the proof of Theorem 1 is a case by case verification of all
of the 16 possible subsets ˚ containing the simple roots and roots in

f˛k C ˛kC1 C : : :C ˛m W k � 2 and m 	 n � 1g:

Below we describe the corresponding Lotka Volterra systems.
Case (1) gives rise to the KM system while case (5) gives rise to the periodic KM

system. Case (2) corresponds to the Lax equation PL D ŒL; B� with L matrix

L D

0
BBBBBBBBBBBBBB@

0 a1 0 � � � 0 0 0 0

a1 0 a2 0 0 anC1 0

0 a2 0 a3
: : : 0 0

::: 0 a3
: : :

: : : 0

0
: : :

: : : 0 an�2 0
:::

0 0 an�2 0 an�1 0
0 anC1 0 0 an�1 0 an
0 0 0 0 � � � 0 an 0

1
CCCCCCCCCCCCCCA

:

The skew symmetric matrix B is defined using the method described in Sect. 3.
More explicitly its upper triangular part is given by the formula

n�1X
iD1

aiaiC1X˛iC˛iC1 � an�1anC1X˛nC1�˛n�1 � a2anC1X˛nC1�˛2

�a1anC1X˛1C˛nC1 � ananC1X˛nC1C˛n :

After substituting xi D 2a2i for i D 1; : : : ; n C 1, the Lax pair L;B becomes
equivalent to the following equations of motion:

Px1 D x1.x2 � xnC1/;
Px2 D x2.x3 � x1 � xnC1/;
Pxi D xi .xiC1 � xi�1/; i D 3; 4; : : : ; n � 2; n

Pxn�1 D xn�1.xn � xn�2 C xnC1/;
PxnC1 D xnC1.x1 C x2 � xn�1 � xn/:

It is easily verified that for n even, the rank of the corresponding Poisson matrix is
n and the function f D x2x3 � � � xn�1xnC1 is the Casimir of the system, while for n
odd, the rank of the Poisson matrix is n � 1 and the functions f1 D x1x3 � � � xn Dp

detL and f2 D x2x3 � � � xn�1xnC1 are the Casimirs.
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Case (3) corresponds to the Lax pair whose Lax matrix L is given by

L D
nC1X
iD1

ai .X˛i CX�˛i /

with anC1 D ˛1 C : : : C ˛n�1. The upper triangular part of the skewsymmetric
matrix B is

n�1X
iD1

aiaiC1X˛iC˛iC1 � an�1anC1X˛nC1�˛n�1 � a1anC1X˛nC1�˛1 �

� ananC1X˛nC1C˛n :

After substituting xi D 2a2i for i D 1; : : : ; n C 1, we obtain the following
equivalent equations of motion:

Px1 D x1.x2 � xnC1/
Pxi D xi .xiC1 � xi�1/; i D 2; 3; 4; : : : ; n � 2; n

Pxn�1 D xn�1.xn � xn�2 C xnC1/

PxnC1 D xnC1.x1 � xn � xn�1/:

For n even, the rank of the Poisson matrix is n and the function f D x1x2 � � �
xn�1xnC1 is the Casimir, while for n odd, the rank of the Poisson matrix is n � 1

and the functions f1 D x1x3x5 � � � xn D p
detL and f2 D x1x2 � � � xn�1xnC1 are

Casimirs.
The system obtained in case (4) turns out to be isomorphic to the one in case (3).

In fact, the change of variables unC1�i D �xi for i D 1; 2; : : : ; n and unC1 D
�xnC1 in case (3) gives the corresponding system of case (4).
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Systems of First-Order Ordinary Differential
Equations Invariant with Respect to Linear
Realizations of Two- and Three-Dimensional
Lie Algebras

Oksana Kuriksha

Abstract The complete group classification of systems of two first-order ordinary
differential equations with respect to point transformations linear in dependent
variables is carried out.

1 Introduction

The group analysis of differential equations (DEs) has appeared in works by
outstanding mathematician Lie in nineteenth century. He made a fundamental
contribution to the problem of exact solvability of ordinary differential equations
(ODEs) by quadratures. Lie has shown that special methods of integration of such
equations (specific changes of variables, the method of integrating multiplier, etc.)
can be derived in a regular way using the group theory [1, 2].

Finding symmetries of DEs is an algorithmic procedure implemented in many
computer algebra packages. However, these packages are effective mainly for
equations without free parameters. Group classification of a class of DEs as a rule is
a non-trivial problem. At the same time just such problems are very important since
they allow to find a number of ODEs integrable in quadratures.

In this paper we classify systems of first-order ODEs,

Pua D fa.u1; u2/; (1)

where ua are unknown functions of t , Pua D dua=dt; a D 1; 2.
Systems of Eq. (1) are widely used in mathematical biology [3, 4] and diffusion

theory [5].
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2 Symmetry of the System (1)

It is well known that systems (1) admit infinite-dimensional Lie symmetry algebras
which, unfortunately, can not be described constructively [6]. However, it is possible
to make a preliminary group classification for these equations if we impose some a
priori restrictions on the class of symmetries.

In this paper we present a complete group classification of equations of (1) with
respect to groups of point transformations linear in dependent variables ua. Such
classification is still a rather complicated problem. To solve it we use the ideas
proposed and implemented in [7–9]. First we specify the generic form of basis
elements of symmetry algebra, which can be realized on the set of solutions of
Eq. (1). Then we use the invariance criterium to complete this specification.

Since Eq. (1) do not depend on t explicitly, they admit the obvious symmetry,
with respect to shifts of independent variable t . The corresponding infinitesimal
generator is

X0 D @t : (2)

Other symmetry operators are supposed to be of the form

X D �@t C �a@ua ; (3)

where �a D �abub C !a and �, �ab , !a are functions of t .
First, we find all inequivalent two-dimensional symmetry algebras for the

system (1), which include infinitesimal operators X0 and X . They should satisfy
the condition

ŒX0;X� D ˛X0 C ˇX; (4)

where ˛ and ˇ are real constants.
Equivalence transformations which keep the form of Eq. (1) are given by the

following formula

ua ! �abub C 'a; (5)

where �ab and 'a are arbitrary constants, and �ab is an invertible matrix.
Substituting (3) into (4) we obtain the system of determining equations

P� D ˛ C ˇ�; P�ab D ˇ�ab; P!a D ˇ!a:

Solving this system, we find functions �, �ab and !a which determine infinitesi-
mal operator (3). As a result we come to the following statement.
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Theorem 1. Up to transformations (5), there exist exactly six inequivalent infinites-
imal operators X , satisfying condition (4):

X1 D �t@t � u1@u1 � �u2@u2 ; X2 D �t@t � @u1 � u2@u2 ;

X3 D �t@t � �@u1 � @u2 ; X4 D e�t .u1@u1 C �u2@u2 / ; (6)

X5 D e�t .@u1 C u2@u2 / ; X6 D e�t .�@u1 C @u2 /;

where �, � and � are arbitrary constants.

The next step is to construct three-dimensional Lie algebras, which include the
infinitesimal operator X0 and two infinitesimal operators of the generic form (3).
They should satisfy the conditions

ŒX0;Xa� D ˛aX0 C ˇabXb; ŒX1;X2� D ˛0X0 C ˇ0bXb: (7)

Similarly, substituting two infinitesimal operators of the generic form (3) into (7),
we find possible functions �, �ab and !a. As a result we get the following statement.

Theorem 2. There are 42 inequivalent realizations of three-dimensional Lie alge-
bras for systems of ODEs of form (1) that include operator (2) and two operators
of the form (3). These additional pairs of operators are enumerated in the following
formula:

R1 W �t@t C u1@u1 C �tu2@u2 ; X7 D u2@u2 I
R2 W X8 D �t@t � u1@u1 ; X9 D �t@t � u2@u2 I
R3 W F1u1@u1 CG1u2@u2 ; F2u1@u1 CG2u2@u2 I
R4 W X10 D �t@t C u1@u1 C �t@u2 ; X11 D @u2 I
R5 W �t@t C �tu1@u1 C @u2 ; X12 D u1@u1 I
R6 W .F1 CG1u1/@u2 ; .F2 CG2u1/@u2 I
R7 W F1u1@u1 CG1@u2 ; F2u1@u1 CG2@u2 I
R8 W X11; X13 D �t@t C @u1 C �t@u2 I

R9 W X14 D @u1 C u1@u2 ; �t@t CX11 C �tX14I
R10 W X11; X15 D �t@t C .�t C u1/@u2 I
R11 W F1X11 CG1X14; F2X11 CG2X14I

R12 W �t@t C .u1 C �t/@u1 C �u2@u2 ; X16 D @u1 I
R13 W X17 D .�u1 � u2/@u1 C .u1 C �u2/@u2 ; �t@t CX18 C �tX17I

R14 W X18 D u1@u1 C u2@u2 ; �t@t CX17 C �tX18I
R15 W X19 D u1@u2 ; �t@t CX20 C �tX19I
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R16 W X19; �t@t C u1@u1 C .�u2 C �tu1/@u2 ; � ¤ 1I
R17 W �t@t CX14 C �t.X7 CX18/; X7 CX18I
R18 W �X19; �t@t C u1@u1 C .1 � �tu1/@u2 I
R19 W X1j�D1 �X19; X21 D �t@t � u1@u2 I
R20 W F1X20 CG1X19; F2X20 CG2X19I
R21 W F1X18 CG1X17; F2X18 CG2X17I

R22 W X8; X22 D �t@t � @u2 I
R23 W X22; X23 D �t@t � @u1 I

R24 W X21; X23I
R25 W X11; X13 CX19I
R26 W X22; X23 �X19I

R27 W X1; X16I
R28 W X1j�D1 ; X24 D �@u1 C @u2 I
R29 W X24; �t@t C �tX24 CX18I

R30 W X2; X11I
R31 W X1j�D1 ; �t@t �X17I

R32 W F1@u1 CG1@u2 ; F2@u1 CG2@u2 I
R33 W X1j�¤1 ; X19I
R34 W X7 CX13; X11I
R35 W X8 �X11; �X19I

R36 W X9; X19I
R37 W X18; X23 �X19I

R38 W X20 D u1@u1 C .u1 C u2/@u2 ; �t@t C �tX20 CX19I
R39 W X19; �t@t C .�tu1 C u2/@u2 I

R40 W X1j�D1 �X19; X11I
R41 W X11; X15 CX18I

R42 W X19; �t@t C .1C �tu1/@u2 :

Here .F1;G1/ and .F2;G2/ are solutions of the system Ft D �F C �G, Gt D
�F C �G, where �, �, � , � are arbitrary constants.



Systems of ODEs Invariant with Respect to Lie Algebras 335

3 Construction of Invariant Equations

Let us rewrite the system of ODEs (1) in the form

Fa.u1; u2; Pu1; Pu2/ D Pua � fa.u1; u2/ D 0: (8)

The infinitesimal operator X is a symmetry operator of Eq. (8), if [6]:

X.1/F
ˇ̌
ŒF �

D 0;

where ŒF � is the manifold determined by Eq. (8) in the first-order jet-space over
the space of variables t , u1, u2, and X.1/ D X C �a@Pua is the first prolongation
of the infinitesimal operator X . The coefficients �a are calculated by the formula
�a D Dt.�

a/ � PuaDt .�/, where Dt D @t C Pua@ua C Rua@Pua C � � � is the operator of
total differentiation with respect to t .

Acting by the prolonged infinitesimal operatorX.1/ on the functionF D .F1; F2/

and equate the resulting expression to zero we obtain:

X.1/F D 0; or P�abub C �ab Pub C P!a � P�Pua D �
�cbub C !c

� @fa
@uc

:

The transition to the manifold defined by ŒF � is made by substituting Pua D fa into
the latter equality. As a result we obtain the determining equations:

P�abub C �abfb C P!a � P�fa D �
�cbub C !c

� @fa
@uc

: (9)

For each case presented in Theorems 1 and 2 we substitute the expressions for the
coefficients �ab , !a and � into (9). As a result, we obtain the system of determining
equations for arbitrary elements fa. Solving these equations we obtain the lists
of Eq. (1) with non-equivalent symmetries, presented in the following theorems.
These lists do not include linear and autonomic systems (1) which are integrable
independently on their symmetries.

Theorem 3. Inequivalent systems of the form (1) invariant with respect to the two-
dimensional Lie algebras listed in Theorem 1, have the following forms:

X1 W Pu1 D u1C�1 F1
�
u2u��1

�
; Pu2 D u�C�1 F2

�
u2u��1

� I
X2 W Pu1 D u�2 F1 .u2e

�u1 / ; Pu2 D u�C12 F2 .u2e�u1 / I
X3 W Pu1 D e�u2F1 .�u2 � u1/ ; Pu2 D e�u2F2 .�u2 � u1/ I

X4 W Pu1 D u1
�
� ln ju1j C F1

�
u2u��1

��
; Pu2 D u2

�
� ln ju2j C F2

�
u2u��1

�� I
X5 W Pu1 D �u1 C F1 .u2e�u1 / ; Pu2 D �u1u2 C u2F2 .u2e�u1 / I
X6 W Pu1 D �u1 C F1 .�u2 � u1/ ; Pu2 D �u2 C F2 .�u2 � u1/ :
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Theorem 4. Inequivalent systems of the form (1) invariant with respect to the three-
dimensional Lie algebras Rn, are presented by the following list:

R2 W Pu1 D C1u
1C�
1 u�2; Pu2 D C2u

�
1 u1C�2 I

R3 W Pu1 D u1 .� ln u1 C � ln u2 C C1/ ; Pu2 D u2 .� ln u1 C � ln u2 C C2/ I
R7 W Pu1 D u1 .� ln u1 C �u2 C C1/ ; Pu2 D � ln u1 C �u2 C C2I

R9 W if � ¤ 0 W Pu1 D �
�

C C1e
�
2 u21��u2 ;

Pu2 D �
�

u1 C .C1u1 C C2/e
�
2 u21��u2 I

if � D 0 W Pu1 D �.2u2 � u21/C C1;

Pu2 D 2�u1.2u2 � u21/C u1 C C2I
R11 W Pu1 D � �

2
u21 C �u1 C �u2 C C1;

Pu2 D � �
2

u31 C �
� � �

2

�
u21 C .� C C1 C �u2/u1 C �u2 C C2I

R13; � D 0 W
Pu1 D �

2
.�u1 � u2/ ln

�
u21 C u22

�C C1u1 � ��.�u1 � u2/ arctan u2
u1

C .C2 C �/u2;

Pu2 D �
2
.�u2 C u1/ ln

�
u21 C u22

�C C1u2 � ��.�u2 C u1/ arctan u2
u1

� .C2 C �/u1I
R14; � D 0 W

Pu1 D �u1 arctan u2
u1

C C1u1 C C2u2; Pu2 D �u2 arctan u2
u1

C C1u2 � C2u1I
R17; � D � D 0 W (10)

Pu1 D C1

q
u21 � 2u2; Pu2 D C1u1

q
u21 � 2u2 C C2.u21 � 2u2/I

R19 W Pu1 D C1u
���C1
1 e

�
u2
u1 ; Pu2 D



C1u

���
1 u2 C C2u

���C1
1

�
e
�

u2
u1 I

R20 W Pu1 D u1 ..� � �/ ln u1 C C1/C �u2;

Pu2 D u1 ..� � � � � C �/ ln u1 C C2/C u2


� C � C .� � �/ ln u1 C C1 C � u2

u1

�
I

R21 W Pu1 D u1g1 C u2g2; Pu2 D u2g1 � u1g2;

where g1 D ��C�
2

ln
�
u21 C u22

�C �
� C �.� � �/ � ��2� arctan u2

u1
C C1;

g2 D � �
2

ln
�
u21 C u22

�C .�� � �/ arctan u2
u1

C .C2 C �/I
R22 W Pu1 D C1u

1C�
1 e�u2 ; Pu2 D C2u

�
1 e

�u2 I
R26 W Pu1 D C1e

u1
2 .2���u1/C�u2 ; Pu2 D .C1u1 C C2/e

u1
2 .2���u1/C�u2 I

R38; � ¤ 0 W Pu1 D �
�

u1 C C1u
�C1
1 e

� �u2
u1 ;
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Pu2 D �
�
.u1 C u2/C .C1u2 C C2u1/ u�1 e

� �u2
u1 I

� D 0 W Pu1 D �u2 C u1.C1 � � ln ju1j/;
Pu2 D C2u1 � �.u1 C u2/ ln ju1j C .� C C1 C �u2

u1
/u2:

4 Equivalence Transformations

We have found a complete list of systems (1) invariant with respect to two-
and three-dimensional Lie algebras. Some of these equations can be simplified
using the equivalence transformations that preserve the differential structure of this
class of systems. The continuous equivalence transformations are generated by the
infinitesimal operators of the following general form

Q D '.t/@t C .˛ab.t/ub C ˇa.t//@ua :

Operators Q generates an equivalence transformation for (1) iff the commutator
of its first prolongation Q.1/ with the first prolongations of found symmetry
operators Ys , s D 1; l is a linear combination of these symmetry operators with
functional coefficients,

ŒQ.1/; Ys� D �ss0.t; u1; u2/Ys0 ; s D 1; l: (11)

As an example, consider the following transformation for the system invariant
with respect to the realization R14 (10):

Pu1 D �u1 arctan
u2
u1

C C1u1 C C2u2; Pu2 D �u2 arctan
u2
u1

C C1u2 � C2u1: (12)

To exclude linear systems we suppose that � ¤ 0. The system (12) admits the
three-dimensional Lie algebra with infinitesimal operators

X0 D @t ; X1 D u1@u1 C u2@u2 ; X2 D �tX1 � u2@u1 C u1@u2 : (13)

Their first prolongations are

Y0 D @t ; Y1 D X1 C Pu1@Pu1 C Pu2@Pu2 ;
Y2 D X2 C .�u1 C �t Pu1 � Pu2/@Pu1 C .�u2 C �t Pu2 C Pu1/@Pu2 :

The first prolongation of the infinitesimal operator Q takes the form

Q.1/ D QC . P̨ab.t/ub C ˛ab.t/Pub C P̌
a.t/ � Pua P'.t//@Pua :
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The equations obtained from (11) for s D 1 lead to the conditions

˛11 D �11 C �2t C ��3
2
t 2; ˛12 D �12 � �3t; ˛21 D �21 C �3t;

˛22 D �22 C �2t C ��3
2
t 2; ' D �0 C �1t; �a D const; ˇa D const:

Equation (11) for s D 2; 3 result in the conditions

ˇa D 0; �11 D �22; �12 D ��21:

Thus, Q is a linear combination of the infinitesimal operators

@t ; u1@u1 C u2@u2 ; t .u1@u1 C u2@u2 / � u2@u1 C u1@u2 ;

t@t ; �u2@u1 C u1@u2 ;
�t2

2
.u1@u1 C u2@u2 /C t .�u2@u1 C u1@u2 /:

The first three operators are Lie symmetry operators of the system (12). There-
fore, the groups of transformations which correspond to these infinitesimal operators
leave the system invariant. The last infinitesimal operator is not a Lie symmetry,
but it generates the equivalence transformation. The operator t@t generates scaling
transformations of the variable t . This group can be expanded by adding the discrete
transformation t ! �t . Then system (12) takes the form

Pu1 D u1 arctan
u2
u1

C QC1u1 C QC2u2; Pu2 D u2 arctan
u2
u1

C QC1u2 � QC2u1; (14)

where QCa D ��1Ca.
The operator �u2@u1 C u1@u2 corresponds to the group of rotations of the

dependent variables. The rotation u1 ! u1 cos QC1 C u2 sin QC1, u2 ! u2 cos QC1 �
u1 sin QC1 maps the system (14) into the same system with QC1 D 0.

Consider now the operator �t
2

2
.u1@u1 Cu2@u2 /Ct .�u2@u1 Cu1@u2 /. It corresponds

to the one-parameter group of transformations of the dependent variables: u1 !
e
"t2

2 .u1 cos "t � u2 sin "t/, u2 ! e
"t2

2 .u2 cos "t C u1 sin "t/. The transformations of
the arbitrary elements � and Ca of the class (12) are given by the formulas � ! �,
C1 ! C1, and C2 ! C2 � ". If we select " D QC2, then the system of Eq. (14)
reduces to the form

Pu1 D u1 arctan
u2
u1
; Pu2 D u2 arctan

u2
u1
: (15)

Thus, up to the obtained equivalence transformations it is sufficient to con-
sider (15) instead of (12). In the same way other systems listed in Sect. 3 can be
reduced to simpler forms, but we prefer to present more general expressions (10).
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5 Integration of Systems that Admit Group Transformations

If a system of ODEs admits a three-dimensional Lie symmetry algebra, it can be
integrated by quadratures using the standard Lie algorithm. Systems that admit two-
dimensional Lie symmetry algebras can be reduced to autonomous systems, which
also are integrated in quadratures. The procedure of integration of ODEs that admit
Lie symmetry algebra is known and described in the monographes [2, 6, 10]. We
illustrate the procedure by the following example.

Consider the system (12) that admits Lie symmetry algebra (13). We introduce
new variables Qu1 D Qu1.u1; u2/ and Qu2 D Qu2.u1; u2/ such that the operatorsX1 andX2
are transformed to the shift operators. Such variables are solutions of the following
system of equations:

X1 Qu1 D 1; X1 Qu2 D 0; X2 Qu1 D 0; X2 Qu2 D 1;

which are Qu1 D 1
2

ln.u21 C u22/ � �t arctan u2
u1

, and Qu2 D arctan u2
u1

. Then the system
of Eq. (12) and the infinitesimal operators (13) take the form:

PQu1 D C1 C C2�t; PQu2 D �C2; QX1 D @Qu2 ; QX2 D @Qu1 :

The obtained system of ODEs can be easily integrated:

Qu1 D C1t C C2�

2
t2 C C3; Qu2 D �C2t C C4:

Returning to the functions u1 and u2 we obtain the solution of (12):

u1 D e�
C2�

2 t2C.C4�CC1/tCC3 cos .C2t � C3/;
u2 D �e� C2�2 t2C.C4�CC1/tCC3 sin .C2t � C3/:

All systems from the list (10) can be integrated in an analogous way.

Conclusion
We carry out the complete group classification of systems of first-order

ODEs of the form (1) with respect to Lie groups of transformations that are
linear in the dependent variables u1 and u2. The found equations admit two-
or three-dimensional algebras of symmetries. The importance of found lists
is that they present all inequivalent systems (1) integrable by quadratures
using their symmetries. An algorithm for constructing such solutions is well
known and is implemented in computer algebra systems, e.g., Maple and
Mathematica.
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Supersymmetry and Quantum Groups



On Principal Finite W -Algebras for Certain
Orthosymplectic Lie Superalgebras and F.4/

Elena Poletaeva

Abstract We study finite W -algebras associated to even regular (principal)
nilpotent elements for basic classical Lie superalgebras. We describe the principal
finite W -algebras for Lie superalgebras osp.1j2/; osp.1j4/; osp.2j2/, osp.3j2/, and
obtain partial results for the exceptional classical Lie superalgebra F.4/.

1 Introduction

A finite W -algebra is a certain associative algebra attached to a pair .g; e/ where g
a complex semi-simple Lie algebra and e 2 g is a nilpotent element.

Finite W -algebras for semi-simple Lie algebras were introduced by A. Premet
[9] (see also [5]). In the case of Lie superalgebras, finite W -algebras were studied
by mathematicians and physicists in the following works [1,2,10,11]. The principal
finite W -algebras for gl.mjn/ associated to regular (principal) nilpotent elements
were described as certain truncations of a shifted version of the super-Yangian of
gl.1j1/ in [2].

In [6, 7] we obtained the precise description of the principal finite W -algebras
for classical Lie superalgebras of Type I and defect one, and for the exceptional Lie
superalgebra D.2; 1I˛/. In [8] we studied in detail the case when g D Q.n/. In
particular, we proved that the principal finite W -algebra for Q.n/ is isomorphic to
a quotient of the super-Yangian of Q.1/.

In this paper we describe the principal finite W -algebras for certain orthosym-
plectic Lie superalgebras: osp.1j2/; osp.1j4/; osp.2j2/ and osp.3j2/. We also obtain
partial results for the exceptional classical Lie superalgebra F.4/. This is a joint
work with V. Serganova.
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2 Preliminaries

Let g D gN0˚gN1 be a basic classical Lie superalgebra, i.e. g is simple, gN0 is a reductive
Lie algebra, and g has an even non-degenerate invariant supersymmetric bilinear
form .�j�/. Let e 2 gN0 be an even nilpotent element. By the Jacobson-Morozov
theorem, a nonzero e can be included in sl.2/ D< e; h; f >. As in the Lie algebra
case, the linear operator adh defines a Dynkin Z-grading g D

M
j2Z

gj , where

gj D fx 2 g j adh.x/ D jxg:

Let ge D Ker.ade/. Note that as in the Lie algebra case, dim ge D dim g0 C
dim g1, and ge �

M
j
0

gj . Let � 2 g�N0 � g� be defined by �.x/ D .xje/ for all

x 2 g. Note that �.ŒX; Y �/ defines a non-degenerate skew-symmetric even bilinear
form on g�1. Let l be a maximal isotropic subspace with respect to this form. We
consider a nilpotent subalgebra m D .

M
j	�2

gj /
M

l of g. The restriction of � to m,

� W m �! C, defines a one-dimensional representation C� D< v > of m. Let I� be
the left ideal of U.g/ generated by a � �.a/ for all a 2 m.

Definition 1. The induced g-module

Q� WD U.g/˝U.m/ C� Š U.g/=I�

is called the generalized Whittaker module.

Definition 2. The finite W -algebra associated to the nilpotent element e is

W� WD EndU.g/.Q�/
op:

Note that by Frobenius reciprocity

EndU.g/.Q�/ D HomU.m/.C�;Q�/:

That defines an identification of W� with the subspace

Qm
� D fu 2 Q� j au D �.a/u for all a 2 mg: (1)

In what follows we denote by � W U.g/ ! U.g/=I� the natural projection.
By above

W� D f�.y/ 2 U.g/=I� j .a � �.a//y 2 I� for all a 2 mg; (2)

or, equivalently,
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W� D f�.y/ 2 U.g/=I� j ad.a/y 2 I� for all a 2 mg:

The algebra structure on W� is given by

�.y1/�.y2/ D �.y1y2/

for yi 2 U.g/ such that ad.a/yi 2 I� for all a 2 m and i D 1; 2.

Definition 3. A nilpotent element e 2 gN0 is called regular nilpotent, if geN0 attains
the minimal dimension, which is equal to rank.gN0/.

Theorem 1 (B. Kostant, [4]). For a reductive Lie algebra g and a regular nilpotent
element e 2 g, the finite W -algebra W� is isomorphic to the center Z.g/ of U.g/.

This theorem does not hold for Lie superalgebras, since W� must have a non-
trivial odd part, and the center Z.g/ of U.g/ is even.

Let l0 be some subspace in g�1 satisfying the following two properties:

• g�1 D l ˚ l0,
• l0 contains a maximal isotropic subspace with respect to the form defined by
�.Œ�; ��/ on g�1.

If dim.g�1/N1 is even, then l0 is a maximal isotropic subspace. If dim.g�1/N1 is odd,
then l? \ l0 is one-dimensional and we fix 
 2 l? \ l0 such that �.Œ
; 
�/ D 2. It is
clear that �.
/ 2 W� and �.
/2 D 1.

Definition 4. Define a Z-grading on T .g/ by setting the degree of g 2 gj to be
j C 2. This induces a filtration on U.g/ and therefore on U.g/=I� which is called
the Kazhdan filtration. We will denote by GrK the corresponding graded algebras.
Since by (2) W� � U.g/=I�, we have an induced filtration on W�.

Let p D
M
j
0

gj . By the PBW theorem, U.g/=I� ' S.p ˚ l0/ as a vector space.

Therefore GrK.U.g/=I�/ is isomorphic to S.p ˚ l0/ as a vector space. The Dynkin
Z-grading of g induces the grading on S.p˚ l0/. For any X 2 U.g/=I� let GrK.X/
denote the corresponding element in GrK.U.g/=I�/, and P.X/ denote the highest
weight component of GrK.X/ in the Dynkin Z-grading. We denote by degP.X/
the Kazhdan degree of GrK.X/ and by wtP.X/ the weight of the highest weight
component of GrK.X/.

Theorem 2 ([8], Theorem 2.5). Let X 2 W�. If dim.g�1/N1 is even, then P.X/ 2
S.ge/, and if dim.g�1/N1 is odd, then P.X/ 2 S.ge ˚ C
/.

Theorem 3 (A. Premet, [9]). Let g be a semi-simple Lie algebra. Then the
associated graded algebra GrKW� is isomorphic to S.ge/.

Theorem 4 ([8], Proposition 2.7). Let y1; : : : ; yp be a basis in ge homogeneous in
the good Z-grading. Assume that there exist Y1; : : : ; Yp 2 W� such that P.Yi / D yi
for all i D 1; : : : ; p. Then
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(a) if dim.g�1/N1 is even, then Y1; : : : ; Yp generateW�, and if dim.g�1/N1 is odd, then
Y1; : : : ; Yp and �.
/ generate W�;

(b) if dim.g�1/N1 is even, then GrKW� ' S.ge/, and if dim.g�1/N1 is odd, then
GrKW� ' S.ge/˝ CŒ��, where CŒ�� is the exterior algebra generated by one
element � .

3 Principal Finite W -Algebras for Orthosymplectic
Lie Superalgebras

Recall that g D osp.mj2n/ � gl.mj2n/ is the Lie superalgebra which preserves
a non-degenerated supersymmetric even bilinear form on a superspace V with
dimV D .mj2n/. We will study the case when e 2 gN0 is a regular nilpotent element.
Recall that def.osp.2m C 1j2n// D def.osp.2mj2n// D min.m; n/, where def
stands for defect. We observed in [7] that

dim.ge/N1 D 2defg; if g D osp.2mC 1j2n/; m 	 n; or osp.2mj2n/; m � n;

dim.ge/N1D2defg C 1; if gDosp.2mC 1j2n/; m < n; or osp.2mj2n/; m > n:

3.1 The Case of osp.1j2/

Let g D osp.1j2/ D< X; Y;H j s; r >, where

X D
0
@0 0 00 0 1

0 0 0

1
A ; Y D

0
@ 0 0 00 0 0

0 1 0

1
A ; H D

0
@0 0 0

0 1 0

0 0 �1

1
A ;

s D
0
@ 0 1 0

0 0 0

�1 0 0

1
A ; r D

0
@0 0 11 0 0

0 0 0

1
A :

Consider the even non-degenerate invariant supersymmetric bilinear form .ajb/ D
1
2
st r.ab/ on g: .sjr/ D 1; .X jY / D � 1

2
; .H jH/ D �1.

Let sl.2/ D< e; h; f >, where e D X; h D H;f D Y . Note that ge D<
X j r >. The element h defines a Z-grading on g:

g D g�2 ˚ g�1 ˚ g0 ˚ g1 ˚ g2; where

g�2 D< Y >; g�1 D< s >; g0 D< H >; g1 D< r >; g2 D< X > :

Note that m D g�2, and �.Y / D � 1
2
. Let 
 D s. Note that �.
/ 2 W�, and

�.
/2 D 1
2
.

Let ˝ be the Casimir element of g. Then
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�.˝/ D �.2X CH �H2 C 2r
/:

Let

R D �.r �H
/:

Note that �.˝/ and R belong to W�, and P.�.˝// D 2X , P.R/ D r .

Proposition 1. The principal finite W -algebra W� is generated by �.˝/ and two
odd elements �.
/ and R. The defining relations are

Œ�.˝/;R� D Œ�.˝/; �.
/� D 0;

ŒR;R� D �.˝/; ŒR; �.
/� D � 1
2
; Œ�.
/; �.
/� D 1:

3.2 The Case of osp.1j4/

Let g D osp.1j4/, where

X D

0
BBBBB@

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 �1 0

1
CCCCCA
; Y D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 �1
0 0 0 0 0

1
CCCCCA
;

H1 D

0
BBBBB@

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 �1 0
0 0 0 0 0

1
CCCCCA
; H2 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 �1

1
CCCCCA
;

P1 D

0
BBBBB@

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCA
; P2 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

1
CCCCCA
; P3 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 1

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCA
;

Q1 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

1
CCCCCA
; Q2 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

1
CCCCCA
; Q3 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

1
CCCCCA
;
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s1 D

0
BBBBB@

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

�1 0 0 0 0
0 0 0 0 0

1
CCCCCA
; s2 D

0
BBBBB@

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

�1 0 0 0 0

1
CCCCCA
;

r1 D

0
BBBBB@

0 0 0 1 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCA
; r2 D

0
BBBBB@

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCA
:

Consider the even non-degenerate invariant supersymmetric bilinear form .ajb/ D
�st r.ab/ on g:

.P1jQ1/ D .P2jQ2/ D 1; .P3jQ3/ D 2; .X jY / D 2; .H1jH1/ D .H2jH2/ D 2;

.r1js1/ D .r2js2/ D 2:

Let sl.2/ D< e; h; f >, where e D X C P2; f D 3Y C 4Q2, h D
diag.0j3; 1;�3;�1/. Note that ge D< X C P2; P1jr1 >. The element h defines
a Z-grading on g:

g D g�6 ˚ g�4 ˚ g�3 ˚ g�2 ˚ g�1 ˚ g0 ˚ g1 ˚ g2 ˚ g3 ˚ g4 ˚ g6; where

g�6 D< Q1 >; g�4 D< Q3 >; g�3 D< s1 >; g�2 D< Y;Q2 >;

g�1 D< s2 >; g0 D< H1;H2 >; g1 D< r2 >; g2 D< X;P2 >;
g3 D< r1 >; g4 D< P3 >; g6 D< P1 > :

Note that m D g�6 ˚ g�4 ˚ g�3 ˚ g�2, and �.Y / D 2, �.Q2/ D 1.
Let 
 D s2. Note that �.
/ 2 W�, and �.
/2 D �1. Let ˝ be the Casimir

element of g. Then

�.˝/ D �.2X C 2P2 C 1

2
.H2

1 CH2
2 � 3H1 �H2/ � r2s2/:

Let

R D �.r1 � 1

2
H1r2 C 1

2
r2 � 1

2
P2s2 C 1

2

2X
iD1

His2 � 1

8

2X
i;jD1

HiHj s2/:

Note that �.˝/ and R belong to W� and

P.�.˝// D 2X C 2P2; P.R/ D r1:
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Proposition 2. The principal finite W -algebra W� is generated by even elements
�.˝/ and C , where P.C/ D P1, and odd elements �.
/ and R, which satisfy the
following relations:

Œ�.
/; R� D 1

2
�.˝/ � 3

8
; Œ�.
/; �.
/� D �2:

Conjecture 1 ([6]). The principal finite W -algebra W� for osp.1j2n/ is generated
by the first n Casimir elements of g and odd elements �.
/ and R, so that:

ŒR;R� 2 Z.g/; ŒR; �.
/� 2 Z.g/; Œ�.
/; �.
/� D �2:

3.3 The Case of osp.2j2/

Let g D osp.2j2/, where

X D

0
BB@
0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

1
CCA ; Y D

0
BB@
0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

1
CCA ;H D

0
BB@
0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 �1

1
CCA ;H1 D

0
BB@
1 0 0 0

0 �1 0 0
0 0 0 0

0 0 0 0

1
CCA ;

s1 D

0
BB@
0 0 1 0

0 0 0 0

0 0 0 0

0 �1 0 0

1
CCA ; s2 D

0
BB@
0 0 0 0

0 0 1 0

0 0 0 0

�1 0 0 0

1
CCA ; r1 D

0
BB@
0 0 0 1

0 0 0 0

0 1 0 0

0 0 0 0

1
CCA ; r2 D

0
BB@
0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0

1
CCA :

Note that g is of type I, i.e. gN1 is a direct sum of two simple gN0-submodules. Then g
admits a Z-grading:

g D g�1 ˚ g0 ˚ g1; where

g0 D< X; Y;H;H1 >; g�1 D< r1; s1 >; g1 D< r2; s2 > :

Consider the even non-degenerate invariant supersymmetric bilinear form .ajb/ D
�st r.ab/ on g:

.X jY / D 1; .H jH/ D 2; .H1jH1/ D �2;

.r1js2/ D 2; .r2js1/ D 2:

Let sl.2/ D< e; h; f >, where e D X; h D H;f D Y . Note that ge D <

X;H1 j r1; r2 >. The element h defines a Z-grading on g:

g D g�2 ˚ g�1 ˚ g0 ˚ g1 ˚ g2; where
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g�2 D< Y >; g�1 D< s1; s2 >; g0 D< H1;H >;

g1 D< r1; r2 >; g2 D< X > :

Note that m D g�2 ˚ l, where l D< s1 >, and �.Y / D 1.
Let ˝ be the Casimir element of g. W� has even generators C; �.˝/ and odd

generators R1;R2:

C D �.H1/; �.˝/ D �.2X C 1
2
H2 � 1

2
H2
1 � r1s2/;

R1 D �.r1/; R2 D �.r2 C 1
2
.H CH1/s2/;

Note that P.C/ D H1, P.�.˝// D 2X , P.R1/ D r1, P.R2/ D r2.

Proposition 3. The principal finite W -algebra W� is generated by even elements
�.˝/, C , and odd elements R1 and R2. The defining relations are

Œ�.˝/; C � D Œ�.˝/;Ri � D 0; i D 1; 2;

ŒC;R1� D R1; ŒC;R2� D �R2;
ŒRi ; Ri � D 0; i D 1; 2; ŒR1; R2� D �.˝/:

Remark 1. Note that the superalgebra osp.2j2/ is of Type I and defect one. The
general theorem for such superalgebras was stated in [7] (Theorem 2).

3.4 The Case of osp.3j2/

Let g D osp.3j2/, where

X1 D

0
BBBBB@

0 0 1 0 0

0 0 0 0 0

0 �1 0 0 0
0 0 0 0 0

0 0 0 0 0

1
CCCCCA
; Y1 D

0
BBBBB@

0 0 0 0 0

0 0 �2 0 0
2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCA
; H1 D

0
BBBBB@

2 0 0 0 0

0 �2 0 0 0
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1
CCCCCA
;

X2 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

1
CCCCCA
; Y2 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

1
CCCCCA
; H2 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 �1

1
CCCCCA
;
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r1 D

0
BBBBB@

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 �1 0 0 0

1
CCCCCA
; r2 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 1 0 0

0 0 0 0 0

1
CCCCCA
;

s1 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

1
CCCCCA
; s2 D

0
BBBBB@

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 �1 0 0

1
CCCCCA
;

q1 D

0
BBBBB@

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 0 0 0

1
CCCCCA
; q2 D

0
BBBBB@

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

�1 0 0 0 0

1
CCCCCA
:

Consider the even non-degenerate invariant supersymmetric bilinear form .ajb/ D
� 1
2
st r.ab/ on g:

.X1jY1/ D �2; .H1jH1/ D �4; .X2jY2/ D 1
2
; .H2jH2/ D 1;

.q1jq2/ D 1; .r1; s1/ D �1; .r2js2/ D 1:

Let sl.2/ D< e; h; f >, where e D X1 CX2; h D H1 CH2; f D Y1 CY2. Note
that ge D< X1;X2 j r1 C r2; q1 >. The element h defines a Z-grading of g:

g D g�3 ˚ g�2 ˚ g�1 ˚ g0 ˚ g1 ˚ g2 ˚ g3; where

g�3 D< q2 >; g�2 D< Y1; Y2 >; g�1 D< s1; s2 >; g0 D< H1;H2 >;

g1 D< r1; r2 >; g2 D< X1;X2 >; g3 D< q1 > :

Note that m D g�3 ˚ g�2 ˚ l, where l D< s1 >, and �.Y1/ D �2, �.Y2/ D 1
2
.

W� has even generators C1; C2 and odd generators R1;R2:

C1 D �.2X1 � 1
4
H2
1 � 1

2
H1 CH2 � 2r2s2/; C2 D �.2X2 CH2

2 � 2H2/;

R1 D �.r1 C r2 C . 1
2
H1 CH2/s2/;

R2 D �.q1 C 2s2X2 C 1
2
H1r2 CH2r1 C . 1

2
H1 CH2/H2s2/:
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Note that P.C1/ D 2X1; P.C2/ D 2X2, P.R1/ D r1 C r2, P.R2/ D q1. Let ˝ be
the Casimir element of g. Then

�.˝/ D �.2X1 C 2X2 � 1

4
H2
1 CH2

2 � 1

2
H1 �H2 � 2r2s2/:

Hence

�.˝/ D C1 C C2:

Proposition 4. The principal finite W -algebra W� is generated by even elements
�.˝/, C2 and odd R1. The relations are

Œ�.˝/; C2� D Œ�.˝/;Ri � D 0; for i D 1; 2;

ŒC2; R1� D R1 � 2R2; ŒC2; R2� D �3R2 � 2C2R1;
ŒR1;R2� D 1

2
�.˝/; ŒR2;R2� D �C2�.˝/ � 2R2R1; ŒR1;R1� D �.˝/:

4 Principal Finite W -Algebra for F.4/

Recall that g D F.4/ D gN0 ˚ gN1 is the exceptional basic classical Lie superalgebra,
where gN0 D sl.2/ ˚ so.7/, gN1 D U ˝ V , U is the standard sl.2/-module, and
V D �.�1; �2; �3/ is the Grassmann algebra (see [3]).

Let fX;H; Y g be the standard basis in sl.2/ and fx; yg be the standard basis
in U . Let C.�i ; �i / be the Clifford algebra with generators �i , �i , i D 1; 2; 3, and
relations:

�i �j D ��j �i ; �i�j D ��j �i ; �i �j D ıi;j � �j �i ; i; j D 1; 2; 3:

Note that so.7/ can be realized inside C.�i ; �i / as follows:

so.7/ D< �i�j ; �i�j ; �i�j � 1

2
ıij ; �i ; �j j i; j D 1; 2; 3 > : (3)

The commutator ŒgN0; gN1� is given by the natural action of sl.2/ on U and of so.7/
on V . Note that the action of �i on V is the multiplication in the Grassmann algebra,
and �i acts by @�i .

Let P W U�U ! sl.2/ be the sl.2/-invariant bilinear mapping defined as follows:

P.x; x/ D 2X; P.y; y/ D �2Y; P.x; y/ D P.y; x/ D �H;

and let < �; � > be the non-degenerate skew-symmetric form on U defined by

< x; y >D � < y; x >D 1:
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To describe the commutator ŒgN1; gN1�, we consider the paring on so.7/ defined by
a non-degenerate invariant symmetric bilinear form on so.7/. For example, the form
.a; b/ D 1

2
t r.ab/ defines the paring ui $ ui . Explicitly,

�i �j $ ��i�j ; �i�j $ �j �i ; i 6D j;

�i�i � 1
2

$ �i�i � 1
2
; �i $ 1

2
�i ; i D 1; 2; 3:

Consider the symmetric so.7/-invariant bilinear form �.�; �/ on V defined as
follows:

�.v;w/ D @�1@�2@�3.vw/; if v;w 6D 1;

�.v;w/ D �@�1@�2@�3.vw/; if v D 1 or w D 1;

where v;w are monomials in V . Let

Q.v;w/ D
X
i

�.uiv;w/ui ;

where ui runs through the basis (3) of so.7/. The commutator ŒgN1; gN1� is defined as
follows:

Œp ˝ v; q ˝ w� D P.p; q/�.v;w/C 4

3
< p; q > Q.v;w/;

where p; q 2 U , v;w 2 V . Consider the following even non-degenerate invariant
supersymmetric bilinear form on g:

.X jY / D � 1
2
; .H jH/ D �1; .�i �j j�i�j / D � 3

4
; .�i�j j�j �i / D 3

4
; i 6D j;

.�i j�i / D 3
2
; .�i�i � 1

2
j�i�i � 1

2
/ D 3

4
; i D 1; 2; 3;

.x ˝ �1�2�3jy ˝ 1/ D 1; .y ˝ �1�2�3jx ˝ 1/ D �1;

.y ˝ �1�2jx ˝ �3/ D 1; .x ˝ �1�2jy ˝ �3/ D �1;

.x ˝ �1�3jy ˝ �2/ D 1; .x ˝ �1jy ˝ �2�3/ D �1;

.x ˝ �2jy ˝ �1�3/ D 1; .y ˝ �1jx ˝ �2�3/ D 1:

Let sl.2/ D< e; h; f >, where e D �1�2C�2�3C�3CX , f D �2�1C10�3�2C
6�3 C Y , h D 6�1�1 C 4�2�2 C 2�3�3 � 6 C H . Note that e is a regular nilpotent
element.

We have that

geN0 D< ci j i D 1; : : : ; 4 >; geN1 D< ri j i D 1; 2; 3 >; (4)
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where

c1 D X; c2 D �1�2 C �2�3 C �3; c3 D �1 C 2�2�3; c4 D �1�2 ;

r1 D x ˝ .�1 C �2�3/; r2 D y ˝ �1�2�3 � x ˝ �1�2; r3 D x ˝ �1�2�3:

Note that dim.ge/ D .4j3/. In fact, according to [7], if g D F.4/, then dim.geN1/ D
2defg C 1, and def.F.4// D 1. Note also that the Lie algebra geN0 is abelian, and the
nonzero commutation relations between ci and ri are as follows:

Œc1; r2� D r3; Œc2; r2� D r3; Œc3; r1� D 3r3;

Œr1; r1� D �4c1; Œr1; r2� D 2
3
c3; Œr2; r2� D � 8

3
c4:

The element h defines a Z-grading g D
M

�10	j	10
gj , where

g�10 D< �1�2 >; g
˙9 D 0; g�8 D< �1�3 >; g�7 D< y ˝ 1 >;

g�6 D< �2�3; �1 >; g�5 D< x ˝ 1; y ˝ �3 >;

g�4 D< �3�1; �2 >; g�3 D< x ˝ �3; y ˝ �2 >; g�2 D< �2�1; �3�2; �3; Y >;
g�1 D< x ˝ �2; y ˝ �1; y ˝ �2�3 >; g0 D< H; �i�i � 1

2
j i D 1; 2; 3 >;

g1 D< x ˝ �1; y ˝ �1�3; x ˝ �2�3 >; g2 D< �1�2; �2�3; �3; X >;

g3 D< y ˝ �1�2; x ˝ �1�3 >; g4 D< �1�3; �2 >;
g5 D< x ˝ �1�2; y ˝ �1�2�3 >; g6 D< �2�3; �1 >; g7 D< x ˝ �1�2�3 >;

g8 D< �1�3 >; g10 D< �1�2 > :

Note that m D .
M
j	�2

gj /
M

l, where l D< x ˝ �2 >, and �.x ˝ �2/ D 0,

�.�2�1/ D �.�3�2/ D 3
4
; �.�3/ D 3

2
; �.Y / D � 1

2
. Let 
 D y ˝ .�1 C �2�3/. Note

that 
 2 g�1, �.
/ 2 W� and �.
/2 D �1. Note that the following elements C1; C2
and R1 belong to W�:

C1 D �.X CH � 1
2
H2/;

C2 D �


�1�2 C �2�3 C �3 �H C .x ˝ �1/.y ˝ �2�3/C .x ˝ �2�3/.y ˝ �1/C

2
3

P3
iD1.�i�i � 1

2
/2 � 4

3
.�1�1 C �2�2 � 1/

�
;

R1 D �.x ˝ .�1 C �2�3/CH
/:

We have that P.C1/ D c1; P.C2/ D c2, and P.R1/ D r1.

Conjecture 2. There exists an element R2 2 W� such that P.R2/ D r2.

Idea of Proof. Recall that we identify W� with Qm
� (see (1)). The elements x ˝

�2; �2�1; �3�2; �3; Y generate m. We can show that W� has an element R2 D u C w,
where u;w 2 Q�, such that

au D �.a/u; aw D �.a/w for a D x ˝ �2; �2�1; �3; Y;
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where

u D �


y ˝ �1�2�3 � x ˝ �1�2 � .H C 2

3
.�3�3 � 1

2
//.y ˝ �1�2/ C

C 2
3
.�2 C 2H.�2�3/C 4

3
.�3�3 � 1

2
/.�2�3//.y ˝ �2�3/C 4

3
.�2�3/.x ˝ �2�3/

�
;

so that P.u/ D r2, degP.u/ D 7;wtP.u/ D 5, and degP.w/ D 7, wtP.w/ < 5.
Then P.R2/ D r2.

Proposition 5. The principal finiteW -algebraW� is generated by �.˝/; C1; �.
/
and R2, where ˝ is the Casimir element of g.

Proof. Note that

2C1 C 2C2 D �.˝/; ŒC1; �.
/� D R1 � 1

2
�.
/: (5)

Observe that if X; Y 2 W�, P.X/; P.Y / 2 ge and ŒP.X/; P.Y /� 6D 0, then
P.ŒX; Y �/ D ŒP.X/; P.Y /�. Set

R3 D ŒC1; R2�; C3 D 3

2
ŒR1;R2�; C4 D �3

8
ŒR2;R2�: (6)

Since P.C1/ D c1, P.R2/ D r2 and Œc1; r2� D r3, then P.R3/ D r3. Since
P.R1/ D r1, P.R2/ D r2 and Œr1; r2� D 2

3
c3, then P.C3/ D c3. Finally, since

P.R2/ D r2 and Œr2; r2� D � 8
3
c4, then P.C4/ D c4. Note that P.Ci / for i D

1; : : : ; 4 and P.Rj / for j D 1; 2; 3 form a homogeneous basis of ge , see (4). Then
by Theorem 4 (a) Ci , Rj and �.
/ generate W�. It follows from (5) and (6) that
�.˝/; C1; �.
/ and R2 generate W�. ut
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Super-de Sitter and Alternative
Super-Poincaré Symmetries

V.N. Tolstoy

Abstract It is well-known that de Sitter Lie algebra o.1; 4/ contrary to anti-de Sitter
one o.2; 3/ does not have a standard Z2-graded superextension. We show here that
the Lie algebra o.1; 4/ has a superextension based on the Z2 � Z2-grading. Using
the standard contraction procedure for this superextension we obtain an alternative
super-Poincaré algebra with the Z2 � Z2-grading.

1 Introduction

In supergravity theory (SUGRA) already for more than 20 years there is the
following unsolved (up to now) problem. All physical reasonable solutions of
SUGRA models with cosmological constants � have been constructed for the case
� < 0, i.e. for the anti-de Sitter metric

gabDdiag .1;�1;�1;�1; 1/; .a; b D 0; 1; 2; 3; 4/ (1)

with the space-time symmetry o.2; 3/. In the case � > 0, i.e. for the Sitter metric

gabDdiag .1;�1;�1;�1;�1/; .a; b D 0; 1; 2; 3; 4/ (2)

with the space-time symmetry o.1; 4/ no reasonable solutions have been found. For
example, in SUGRA it was obtained the following relation

� D �3m2; (3)

wherem is the massive parameter of gravitinos. Thus if� > 0, thenm is imaginary.
In my opinion these problems for the case� > 0 are connected with superexten-

sions of anti-de Sitter o.2; 3/ and de Sitter o.1; 4/ symmetries. The o.2; 3/ symmetry
has the superextension—the superalgebra osp.1j.2; 3//. This is the usual Z2-graded
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superalgebra. In the case of o.1; 4/ such superextension does not exist. However the
Lie algebra o.1; 4/ has an alternative superextension that is based on the Z2�Z2-
grading and a preliminary analysis shows that we can construct the reasonable
SUGRA models for the case� > 0. In this paper we shall consider certain Z2�Z2-
graded supersymmetries, but we will not discuss supergravity models based on such
supersymmetries.

All standard relativistic SUSY (super-anti de Sitter, super-Poincaré, super-
conformal, extended N -supersymmetry, etc) are based on usual (Z2-graded) Lie
superalgebras (osp.1j.2; 3//, su.N j.2; 2//, osp.N j.2; 3// etc). It turns out that
every standard relativistic SUSY has an alternative variant based on an alternative
(Z2 � Z2-graded) Lie superalgebra:

Standard relativistic SUSY Alternative relativistic SUSY

Distinctive features of the standard and alternative relativistic symmetries (in the
example of Poincaré SUSY) are connected with the relations between the four-
momenta and the Q-charges and also between the space-time coordinates and the
Grassmann variables. Namely, we have.

(I) For the standard (Z2-graded) Poincaré SUSY:

ŒP�;Q˛� D ŒP�; NQ P̨ � D 0 ; fQ˛; NQ P̌g D 2�
�

˛ P̌P�; (4)

Œx�; 
˛� D Œx�; P
 P̨ � D f
˛; N
 P̌g D 0: (5)

(II) For the alternative (Z2 � Z2-graded) Poincaré SUSY:

fP�;Q˛g D fP�; NQ P̨ g D 0; ŒQ˛; NQ P̌� D 2�
�

˛ P̌P�; (6)

fx�; 
˛g D fx�; P
 P̨ g D Œ
˛; N
 P̌� D 0: (7)

We wrote down only the relations which are changed in the Z2- and
Z2 � Z2-cases.

The paper is organized as follows. Section 2 provides definitions and general
structure of Z2- and Z2 � Z2-graded superalgebras and also some classification
of such simple Lie superalgebras. In Sect. 3 we describe the orthosymplectic
Z2- and Z2�Z2-graded superalgebras osp.1j4/ and osp.1j2; 2/ and their real forms.
We show here that a real form of osp.1j4/ contains o.2; 3/ and a real form of
osp.1j2; 2/ contains o.1; 4/. In Sect. 4 using the standard contraction procedure for
the superextension osp.1j2; 2/ we obtain an alternative super-Poincaré algebra with
the Z2 � Z2-grading.
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2 Z2- and Z2 � Z2-Graded Lie Superalgebras

A Z2-Graded Superalgebra [1] A Z2-graded Lie superalgebra (LSA) g, as a linear
space, is a direct sum of two graded components

g D
M
aD0;1

ga D g0 ˚ g1 (8)

with a bilinear operation (the general Lie bracket), ŒŒ�; ���, satisfying the identities:

deg.ŒŒxa; yb��/ D deg.xa/C deg.yb/ D aC b .mod 2 /; (9)

ŒŒxa; yb�� D �.�1/abŒŒyb; xa��; (10)

ŒŒxa; ŒŒyb; z���� D ŒŒŒŒxa; yb��; z��C .�1/abŒŒyb; ŒŒxa; z����; (11)

where the elements xa and yb are homogeneous, xa 2 ga, yb 2 gb , and the element
z 2 g is not necessarily homogeneous. The grading function deg.�/ is defined
for homogeneous elements of the subspaces g0 and g1 modulo 2, deg.g0/ D 0,
deg.g1/ D 1. The first identity (9) is called the grading condition, the second
identity (10) is called the symmetry property and the condition (11) is the Jacobi
identity. It follows from (9) that g0 is a Lie subalgebra in g, and g1 is a g0-module.
It follows from (9) and (10) that the general Lie bracket ŒŒ�; ��� for homogeneous
elements posses two values: commutator Œ�; �� and anticommutator f�; �g.

A Z2 �Z2-Graded Superalgebra [4] A Z2 �Z2-graded LSA Qg, as a linear space, is
a direct sum of four graded components

QgD
M

aD.a1;a2/
Qga D Qg.0;0/ ˚ Qg.1;1/ ˚ Qg.1;0/ ˚ Qg.0;1/ (12)

with a bilinear operation ŒŒ�; ��� satisfying the identities (grading, symmetry, Jacobi):

deg.ŒŒxa; yb��/ D deg.xa/C deg.yb/ D a C b D .a1 C b1; a2 C b2/; (13)

ŒŒxa; yb�� D �.�1/abŒŒyb; xa��; (14)

ŒŒxa; ŒŒyb; z���� D ŒŒŒŒxa; yb��; z��C .�1/abŒŒyb; ŒŒxa; z����; (15)

where the vector .a1 C b1; a2 C b2/ is defined mod .2; 2/ and ab D a1b1 C a2b2.
Here in (13)–(15) xa 2 Qga, yb 2 Qgb, and the element z 2 Qg is not necessarily
homogeneous. It follows from (13) that Qg.0;0/ is a Lie subalgebra in Qg, and the
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subspaces Qg.1;1/, Qg.1;0/ and Qg.0;1/ are Qg.0;0/-modules. It should be noted that Qg.0;0/ ˚
Qg.1;1/ is a Lie subalgebra in Qg and the subspace Qg.1;0/ ˚ Qg.0;1/ is a Qg.0;0/ ˚ Qg.1;1/-
module, and moreover fQg.1;1/; Qg.1;0/g � Qg.0;1/ and vice versa fQg.1;1/; Qg.0;1/g � Qg.1;0/.
It follows from (13) and (14) that the general Lie bracket ŒŒ�; ��� for homogeneous
elements posses two values: commutator Œ�; �� and anticommutator f�; �g as well as in
the previous Z2-case.

Let us introduce a useful notation of parity of homogeneous elements: the parity
p.x/ of a homogeneous element x is a scalar square of its grading deg.x/modulo 2.
It is evident that for the Z2-graded superalgebra g the parity coincides with the
grading: p.ga/ D deg.ga/ D Na ( Na D N0; N1).1 In the case of the Z2 � Z2-graded
superalgebra Qg we have

p.Qga/ WD a2 D a21 C a22 .mod 2 /; (16)

that is

p.Qg.0;0// D p.Qg.1;1// D N0; p.Qg.1;0// D p.Qg.0;1// D N1: (17)

Homogeneous elements with the parity N0 are called even and with parity N1 are odd.
Thus,

QgDQgN0 ˚ QgN1; QgN0 D Qg.0;0/ ˚ Qg.1;1/; QgN1 D Qg.1;0/ ˚ Qg.0;1/: (18)

The even subspace QgN0 is a subalgebra and the odd one QgN1 is a QgN0-module. Thus the
parity unifies “cousinly” the Z2- and Z2 � Z2-graded superalgebras.

Classification of the Z2- and Z2�Z2-Graded Simple Lie Superalgebras A complete
list of simple Z2-graded (standard) Lie superalgebras was obtained by Kac [1]. The
following scheme resumes the classification [2]:

Simple SLSA
��
Cartan type SLSA:

W (n), S(n), S̃(n), H(n)
Classical SLSA

��
Basic SLSA:

sl(m|n), osp(m|2n),
F (4), G(3), D(2, 1;α)

Strange SLSA:
P (n), Q(n)

1Integer value of the parity will be denoted with the bar.
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There is a Z2 � Z2-analog (alternative superalgebras) of this scheme:

Simple ALSA
��
Cartan type ALSA:
?????

Classical ALSA
��

Basic ALSA:
sl(m1, m2|n1, n2), osp(m1, m2|2n1, 2n2),

F̃i(4), G̃j(3), D̃k(2, 1;α)

Strange ALSA:
P1(m, n), P3(m, n), ospP3(m, n),

P1,2(m), Q̃(m)

where i D 1; 2; : : : ; 6, j D 1; 2; 3, k D 1; 2; 3. It should be noted that the
classification of the classical series sl.m1;m2jn1; n2/, osp.m1;m2j2n1; 2n2/ and
all strange series was obtain by Rittenberg and Wyler in [4].

There are numerous references about the Z2-graded Lie superalgebras and their
applications. Unfortunately, in the Z2 � Z2-case the situation is somewhat poor.
There are a few references where some Z2 � Z2-graded Lie superalgebras were
studied and applied [3–8].

Analysis of matrix realizations of the basic Z2 � Z2-graded Lie superalgebras
shows that these superalgebras (as well as the Z2-graded Lie superalgebras) have
Cartan-Weyl and Chevalley bases, Weyl groups, Dynkin diagrams, etc. However
these structures have a specific characteristics for the Z2- and Z2 �Z2-graded cases.
Let us consider, for example, the Dynkin diagrams. In the case of the Z2-graded
superalgebras the nodes of the Dynkin diagram and corresponding simple roots
occur at three types:

white �, gray �× , dark �.

While in the case of Z2 � Z2-graded superalgebras we have six types of nodes:

(00)-white �, (11)-white �, (10)-gray �× ,

(01)-gray �× , (10)-dark �, (01)-dark �.

In the next section we consider in detail two basic superalgebras of rank 2: the
orthosymplectic Z2-graded superalgebra osp.1j4/ and the orthosymplectic Z2�Z2-
graded superalgebra osp.1j2; 2/ WD osp.1; 0j2; 2/. It will be shown that their real
forms, which contain the Lorentz subalgebra o.1; 3/, give us the super-anti-de
Sitter (in the Z2-graded case) and super-de Sitter (in the Z2 � Z2-graded case) Lie
superalgebras.
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3 Anti-de Sitter and de Sitter Superalgebras

The Orthosymplectic Z2-Graded Superalgebra osp.1j4/ The Dynkin diagram:

�
α

���

β

The Serre relations:

Œe˙˛; Œe˙˛; e˙ˇ�� D 0 ; ŒfŒe˙˛; e˙ˇ�; e˙ˇg; e˙ˇ� D 0: (19)

The root system �C:

2ˇ; 2˛ C 2ˇ; ˛; ˛ C 2ˇ„ ƒ‚ …
deg.�/D0

; ˇ; ˛ C ˇ„ ƒ‚ …
deg.�/D1

:
(20)

The Orthosymplectic Z2 � Z2-Graded Superalgebra osp.1j2; 2/ The Dynkin
diagram:

�

α

���

β

The Serre relations:

fe˙˛; fe˙˛; e˙ˇgg D 0; fŒfe˙˛; e˙ˇg; e˙ˇ�; e˙ˇg D 0: (21)

The root system �C:

2ˇ; 2˛ C 2ˇ„ ƒ‚ …
deg.�/D.00/

; ˛; ˛ C 2ˇ„ ƒ‚ …
deg.�/D.11/

; ˇ„ƒ‚…
deg.�/D.10/

; ˛ C ˇ„ƒ‚…
deg.�/D.01/

:
(22)

Commutation relations, which contain Cartan elements, are the same for the
osp.1j4/ and osp.1j2; 2/ superalgebras and they are:

ŒŒe� ; e�� 0 �� D ı�;� 0h� ;

Œh� ; e� 0 � D .�; � 0/e� 0 (23)

for �; � 0 2 f˛; ˇg. These relations together with the Serre relations (19) and (21)
correspondingly are called the defining relations of the superalgebras osp.1j4/
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and osp.1j2; 2/ correspondingly. It is easy to see that these defining relations
are invariant with respect to the non-graded Cartan involution .	/ (.x	/	 D x,
ŒŒx; y��	 D ŒŒy	; x	�� for any homogenous elements x and y):

e
	

˙� D e�� ; h
	
� D h� : (24)

The composite root vectors e˙� (� 2 �C) for osp.1j4/ and osp.1j2; 2/ are defined
as follows

e˛Cˇ WD ŒŒe˛; eˇ��; e˛C2ˇ WD ŒŒe˛Cˇ; eˇ��;

e2˛C2ˇ WD 1p
2

fe˛Cˇ; e˛Cˇg; e2ˇ WD 1p
2

feˇ; eˇg;

e�� WD e
	
� :

(25)

These root vectors satisfy the non-vanishing relations:

Œe˛; e˛C2ˇ� D .�1/deg˛�degˇ
p
2e2˛C2ˇ; Œe˛; e2ˇ� D p

2 e˛C2ˇ;

ŒŒe˛Cˇ; e�˛�� D �.�1/deg˛�degˇeˇ; Œe˛C2ˇ; e�˛� D �p
2 e2ˇ;

Œe2˛C2ˇ; e�˛� D �.�1/deg˛�degˇ
p
2e˛C2ˇ; Œe2ˇ; e�ˇ� D �p

2 eˇ;

ŒŒe˛C2ˇ; e�˛�ˇ�� D �.�1/deg˛�degˇeˇ; ŒŒeˇ; e�˛�ˇ�� D e�˛;

ŒŒeˇ; e�˛�2ˇ�� D �e�˛�ˇ; Œe2˛C2ˇ; e�˛�ˇ� D �p
2e˛Cˇ;

Œe˛C2ˇ; e�2˛�2ˇ� D �.�1/deg˛�degˇ
p
2e�˛; Œe2ˇ; e�˛�2ˇ� D �p

2 e�˛;

fe˛Cˇ; e�˛�ˇg D h˛ C hˇ; Œe˛C2ˇ; e�˛�2ˇ� D �h˛ � 2hˇ;

Œe2ˇ; e�2ˇ� D �2hˇ; Œe2˛C2ˇ; e�2˛�2ˇ� D �2h˛ � 2hˇ:

(26)

The rest of non-zero relations is obtained by applying the operation .	/ to these
relations.

Now we find real forms of osp.1j4/ and osp.1j2; 2/, which contain the real
Lorentz subalgebra o.1; 3/. It is not difficult to check that the antilinear mapping .�/
(.x�/� D x, ŒŒx; y��� D ŒŒy�; x��� for any homogenous elements x and y) given by

e�̇ ˛ D �.�1/deg˛�degˇe�˛; e�̇ ˇ D �ie˙.˛Cˇ/;

e�̇ 2ˇ D �e˙.2˛C2ˇ/; e�̇ .˛C2ˇ/ D �e˙.˛C2ˇ/;

h�̨ D h˛; h�̌ D �h˛ � hˇ:

(27)

is an antiinvolution and the desired real form with respect to the antiinvolution is
presented as follows.
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The Lorentz algebra o.1; 3/:

L12 D �1
2
h˛;

L13 D � i

2
p
2



e2ˇ C e2˛C2ˇ C e�2ˇ C e�2˛�2ˇ

�
;

L23 D � 1

2
p
2



e2ˇ � e2˛C2ˇ � e�2ˇ C e�2˛�2ˇ

�
;

L01 D i

2
p
2



e2ˇ C e2˛C2ˇ � e�2ˇ � e�2˛�2ˇ

�
;

L02 D 1

2
p
2



e2ˇ � e2˛C2ˇ C e�2ˇ � e�2˛�2ˇ

�
;

L03 D � i
2
.h˛ C 2hˇ/:

(28)

The generators L�4:

L04 D � i
2



e˛C2ˇ C .�1/deg˛�degˇe�˛�2ˇ

�
;

L14 D � i
2



e˛ C .�1/deg˛�degˇe�˛

�
;

L24 D 1

2



e˛ � .�1/deg˛�degˇe�˛

�
;

L34 D � i
2



e˛C2ˇ � .�1/deg˛�degˇe�˛�2ˇ

�
:

(29)

Here are: deg˛ D 0; degˇ D 1, i.e. .�1/deg˛�degˇ D 1, for the case of the
Z2-grading; deg˛ D .1; 1/; degˇ D .1; 0/, i.e. .�1/deg˛�degˇ D �1, for the case of
the Z2 � Z2-grading.

The all elements Lab (a; b D 0; 1; 2; 3; 4) satisfy the relations

ŒLab; Lcd
	 D i

�
gbc Lad � gbd Lac C gad Lbc � gac Lbd

�
;

Lab D �Lba; L�ab D Lab; (30)

where the metric tensor gab is given by

gab D diag .1;�1;�1;�1; g.˛/44 /;
g
.˛/
44 D .�1/deg˛�degˇ: (31)
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Thus we see that in the case of the Z2-grading, .�1/deg˛�degˇ D 1, the generators
(28) and (29) generate the anti-de-Sitter algebra o.2; 3/, and in the case of the
Z2 � Z2-grading, .�1/deg˛�degˇ D �1, the generators (28) and (29) generate the
de-Sitter algebra o.1; 4/.

Finally we introduce the “supercharges”:

Q1 WD p
2 exp



� i�
4

�
e˛Cˇ; Q2 WD p

2 exp


� i�
4

�
e�˛�ˇ;

NQP1 WD p
2 exp



� i�
4

�
eˇ ;

NQP2 WD p
2 exp



� i�
4

�
e�ˇ:

(32)

They have the following commutation relations between themselves:

fQ1;Q1g D �i2p2e2˛C2ˇ D 2.L13 � iL23 � L01 C iL02/;

fQ2;Q2g D �i2p2e�2˛�2ˇ D 2.L13 C iL23 � L01 � iL02/;

fQ1;Q2g D �i2.h˛ C hˇ/ D 2.L03 C iL12/;

f NQ P�; NQP�g D fQ�;Q�g� . NQ P� D Q�� for � D 1; 2I P� D P1; P2/;

(33)

ŒŒQ1;
NQP1�� D �i2e˛C2ˇ D 2.L04 C L34/;

ŒŒQ1;
NQP2�� D �i2e˛ D 2.L14 � iL24/;

ŒŒQ2;
NQP1�� D �i2.�1/deg˛�degˇe�˛ D 2.L14 C iL24/;

ŒŒQ2;
NQP2�� D �i2.�1/deg˛�degˇe�˛�2ˇ D 2.L04 � L34/:

(34)

Here ŒŒ�; ��� � f�; �g for the Z2-case and ŒŒ�; ��� � Œ�; �� for the Z2 � Z2-case. Using the
explicit formulas (28), (29), (32) and the commutation relations (26) we can also
calculate commutation relations between the operators Lab and the supercharges
Q’s and NQ’s .

4 Z2- and Z2 � Z2-Graded Poincaré Superalgebras

Using the standard contraction procedure: L�4 D RP� (� D 0; 1; 2; 3), Q˛ !p
R Q˛ and NQ P̨ ! p

R NQ P̨ (˛ D 1; 2; P̨ D P1; P2) for R ! 1 we obtain the
super-Poincaré algebra (standard and alternative) which is generated by L�� , P�,
Q˛ , NQ P̨ where �; � D 0; 1; 2; 3; ˛ D 1; 2; P̨ D P1; P2, with the relations (we write
down only those which are distinguished in the Z2- and Z2 � Z2-cases).
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(I) For the Z2-graded Poincaré SUSY:

ŒP�;Q˛� D ŒP�; NQ P̨ � D 0 ; fQ˛; NQ P̌g D 2�
�

˛ P̌P�: (35)

(II) For the Z2 � Z2-graded Poincaré SUSY:

fP�;Q˛g D fP�; NQ P̨ g D 0 ; ŒQ˛; NQ P̌� D 2�
�

˛ P̌P�; (36)

Let us consider the supergroups associated to the Z2- and Z2 � Z2-graded
Poincaré superalgebras. A group element g is given by the exponential of the super-
Poincaré generators, namely

g.x�; !��; 
˛; N
 P̨ /Dexp.x�P� C !��M�� C 
˛Q˛ C NQ P̨ N
 P̨ /: (37)

Because the grading of the exponent is zero ((0) or (00)) the result is as follows.

(1) Z2-case: degP D deg x D 0, degQ D deg NQ D deg 
 D deg N
 D 1. This
means that

Œx�; 
˛� D Œx�; N
 P̨ � D f
˛; N
 P̌g D f
˛; 
ˇg D f N
 P̨ ; N
 P̌g D 0: (38)

(2) Z2 � Z2-case: degP D deg x D .11/, degQ D deg 
 D .10/, deg NQ D
deg N
 D .01/. This means that

fx�; 
˛g D fx�; N
 P̨ g D Œ
˛; N
 P̌� D f
˛; 
ˇg D f N
 P̨ ; N
 P̌g D 0: (39)

One defines the superspaces as the coset spaces of the standard and alternative
super-Poincaré groups by the Lorentz subgroup, parameterized the coordinates
x�, 
˛ , N
 P̨ , subject to the condition N
 P̨ D .
˛/�. We can define a superfield F
as a function of superspace.

Acknowledgements The author would like to thank the Organizers for the kind invitation to speak
at the tenth International Workshop “Lie Theory and Its Applications in Physics” (LT-10, Varna,
June 17–23, 2013), and for support of his visit on the Workshop. The paper was supported by the
RFBR grant No. 11-01-00980-a and the grant No. 12-09-0064 of the Academic Fund Program of
the National Research University Higher School of Economics.

References

1. Kac, V.G.: Lie superalgebras. Adv. Math. 26, 8–96 (1977)
2. Frappat, L., Sciarrino, A., Sorba, P.: Dictionary on Lie supealgebras. 145 (1996) arXiv:hep-th/

9607161v1
3. Lukierski, J., Rittenberg, V.: Color-de Sitter an Color-Conformal Superalgebras. Phys. Rev.

D18(2), 385–389 (1978)

arXiv:hep-th/9607161v1
arXiv:hep-th/9607161v1


Super-de Sitter and Alternative Super-Poincaré Symmetries 367

4. Rittenberg, V., Wyler, D.: Sequences of Z2�Z2-graded Lie algebras and superalgebras. J. Math.
Phys. 19(10), 2193–2200 (1978)

5. Rittenberg, V., Wyler, D.: Generalized superalgebras. Nucl. Phys. B139(10), 189–200 (1978)
6. Sheunert, M.: Generalized Lie algebras. J. Math. Phys. 20(4), 712–720 (1979)
7. Vasiliev, M.A.: De Sitter supergravity with positive cosmological constant and generalized Lie

superalgebras. Class. Quantum Grav. 2, 645–659 (1985)
8. Zheltukhin, A.A.: Para-Grassmann extension of the Neveu–Schwarz–Ramond algebra. Teor.

Mat. Fiz. 71(2), 218–225 (1987)



Localizations of Uq.sl.2// and Uq.osp.1j2//
Associated with Euclidean and Super
Euclidean Algebras

Patrick Moylan

Abstract We construct homomorphisms from the Euclidean and super Euclidean
algebras, iso.2/ and U.fiso.2//, onto their images in localizations of Uq.sl.2//
and Uq.osp.1j2//, respectively, and, conversely, we describe homomorphisms of
Uq.sl.2// and Uq.osp.1j2// into localizations of U.iso.2// and U.fiso.2//. These
homomorphisms give results on the relationship between the representation theory
of the respective algebras, and, in particular, lead to new representations of
Uq.osp.1j2//.

1 Introduction

This paper generalizes the ideas in [1, 2] and [3] to quantum super algebras. In
those papers we described homomorphisms of Lie algebras and their q deformations
into commutative algebraic extensions of quotient rings of enveloping algebras
(localization). In this paper we describe supersymmetric analogs of those results.
Here we show in complete analogy with the Uq.so.2; 1// case treated in [2] that
it is possible to construct homomorphisms from Uq.osp.1j2// into localizations of
U.fiso.2// and U.iso.2// and, conversely, homomorphism of iso.2/ and fiso.2/ into
localizations of Uq.osp.1j2// and Uq.sl.2//. These homomorphism enable us to
construct new representations of Uq.osp.1j2// out of representations of iso.2/ and
Uq.sl.2//. We believe that at least some of our results are capable of generalization
to other q deformations of super algebras such as Uq.osp.1j2n// [4].

Note on notation: except for elements of the Cartan subalgebras for which we
always use plain faced letters, quantities made out of elements of U.iso.2// and
U
�fiso.2/� and of their localizations are usually denoted with bold faced letters

and we use plain faced letters to denote elements of sl.2/q and osp.1j2/q and their
localizations. Elements of super algebras are always denoted with tildes placed over
the letters.
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2 The Algebras U q.sl.2// and U.iso.2//

We define the q-deformation U q.sl.2// ' Uq.so.3;C// of the simple Lie
algebra sl.2/ as the unital associative algebra with generators E, F , K, K�1
and relations [5]

KK�1 D K�1K D I;KEK�1 D q2E;KFK�1 D q�2F

EF � FE D K �K�1
q � q�1 :

Equivalently, with K D qH we have generators H , X˙ with relations:

ŒH;X˙� D ˙ 2X˙; (1)

ŒXC; X�� D ŒH �q2 (2)

where Œx�q D .qx=2�q�x=2/
.q1=2�q�1=2/ , E D XC, F D X� and Œ�; �� denote commutator. The

Casimir operator is

�q D XCX�C
 �
H � 1
2

�
q2

!2
�1
4

�I D X�XCC
 �
H C 1

2

�
q2

!2
�1
4

�I : (3)

Define a real formUq.so.2; 1//with generatorsLij (i; j D 1: 2; 3, i < j ) specified
by X˙ D L13 � iL23; L12 D � i

2
H . The Lij are preserved under the following

antilinear, anti-involution (star structure) [5]: !.H/ D H ; !.X˙/ D � X�.
A basis for the Euclidean Lie algebra iso.2/ is L12 and Pi .i D 1; 2/. They

satisfy the following commutation relations:

ŒL12 ; P2� D � P1 ; ŒL12 ; P1� D P2 ;

ŒP1 ; P2� D 0 :

Complexified translations generators are P˙ D �P1 ˙ iP2. We also define as above
H D 2iL12 and it generates an SO.2/ subgroup whose Lie algebra is so.2/. We
have:

ŒH;P˙� D ˙ 2P˙ ; ŒPC;P�� D 0 : (4)

The enveloping algebra of iso.2/ is U.iso.2//. The center Z.U.iso.2/// of
U.iso.2// is generated by

Y 2 D PCP� D P�PC: (5)
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3 The Algebras U Qq.osp.1j2// and U
�
eiso.2/

�

The Qq-deformation UQq.osp.1j2// D osp.1j2/Qq of the orthosymplectic Lie super
algebra osp.1j2/ is defined as the unital associative algebra with generators e, f , k,
k�1 and relations [5, 6]:

kk�1 D k�1k D I; kek�1 D Qqe; kf k�1 D Qq�1f; ef C fe D k � k�1
Qq � Qq�1 :

The Z2 grading on UQq.osp.1j2// is d.e/ D d.f / D 1; d.k/ D 0 where d.x/ is the

parity of x. Let f�; �g denote anticommutator and let k D Qq QH , e D QXC, f D QX�
and we obtain generators QH , QX˙ with relations:

Œ QH; QX˙� D ˙ QX˙ ; (1bis)

f QXC; QX�g D Œ QH�Qq2 : (2bis)

The Casimir operator of UQq.osp.1j2// is Q�Qq D QS 2

Qq C 2 � I with [6]

QSQq D Qq1=2k � Qq�1=2k�1
Qq � Qq�1 � . Qq1=2 C Qq�1=2/fe D Œ QH C 1

2
�Qq2 � Œ2�Qq QX� QXC D

� Qq�1=2k � Qq1=2k�1
. Qq � Qq�1/ C . Qq1=2 C Qq�1=2/ef D �Œ QH � 1

2
�Qq2 C Œ2�Qq QXC QX�: (3bis)

It is straightforward to show that QSQq anticommutes with QXC and QX� and commutes
with QH . A star structure (or real form) is specified as follows. Let Q! be such
that Q!. QH/ D QH , Q!. QX˙/ D � QX�. Q! is, as in the sl.2/ case, an antilinear, anti-
involution.

A basis for the three dimensional super Euclidean Lie algebra fiso.2/ is given by
QL12 D � i

2
QH and QPi .i D 1; 2/ with commutation relations

Œ QH; QP˙� D ˙ QP˙ ; f QPC; QP�g D 0 : (4bis)

The universal enveloping algebra of fiso.2/ is U
�fiso.2/�. Let QY 2 2 Z.U �fiso.2/

�
/ be

given by

QY 2 D � i.�1/ QH QPC QP� D i.�1/ QH QP� QPC: (5bis)
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4 Localizations of Algebras

R is a ring with unity and S ¤ ; a multiplicatively closed subset of R such that
0 … S , 1R 2 S where IR the identity in R. A nonzero element a in a ring R is
said to be a left [resp. right] zero divisor if there exists a nonzero b 2 R such that
ab D 0 [resp. ba D 0]. A zero divisor is an element of R which is both a left and a
right zero divisor.

Definition 1. A ring Q is said to be a left quotient ring of R with respect to S if
there exists a ring homomorphism ' W R �! Q such that the following conditions
are satisfied:

(1) '.s/ is a unit inQ for all s 2 S (This means that a D '.s/ is both left and right
invertible i.e. 9c 2 Q.resp: b 2 Q/ such that ca D IQ.resp: ab D IQ).);

(2) every element of Q is in the form .'.s//�1'.r/, for some r 2 R, s 2 S ;
(3) ker' D fr 2 R W sr D 0, for some s 2 Sg.

The left (resp. right) quotient ring of R w.r.t. S , if it exists, is called the left (resp.
right) localization of R at S and it is denoted by S�1R (resp. RS�1). If S = R,
the localization S�1R is the left skew field of fractions of R i.e.the left quotient
field of R.

Note that if rs D 0, for some r 2 R, s 2 S , then s0r D 0, for some s0 2 S . This
is because 0 D '.rs/ D '.r/'.s/ and thus '.r/ D 0, since, by condition 1), '.s/
is a unit of Q. We need to multiply fractions like .s�1a/.s0�1b/ so we must be able
to move s0�1 to the other side of a. This leads to the Ore condition: Ra \Rs ¤ ;
for a 2 R and s 2 S . It is a necessary and sufficient condition for the existence of
localizations [7].

Integral (no zero divisors) Noetherian rings satisfy the Ore condition [8], so that
we can construct localizations. Examples of Noetherian rings include enveloping
algebras of finite dimensional Lie algebras and, at least for semisimple ones, their
q-deformations. For a proof that Uq.sl.2// is Noetherian see [9]. It is easy to adapt
the just mentioned proof in [9] for Uq.sl.2// to the case of Uq.osp.1j2/ in order to
show that the Ore condition also holds for Uq.osp.1j2/. In what follows we need to
consider algebraic extensions (e.g. extensions of quotient rings obtain by adjoining
square roots of operators) of localizations and we sometimes refer to these also as
localizations.

It is important for us to know when a given representation of a ring R lifts to a
representation of its localization. Suppose f W R �! R1 is a ring homomorphism
and Q D S�1R

�
RS�1

�
is a left (right) quotient ring of R with respect to S . If Q

is a left quotient ring of R and ' is the map in Definition 2.1, then for all r 2 R,
s 2 S we define g W Q �! R1 by f .s/g..'.s//�1'.r// WD f .r/ and similarly for
right quotient rings.

Lemma 1. If f .s/ is a unit in R1 for every s 2 S , then g is well-defined and is the
unique ring homomorphism g W Q �! R1 which extends f .

A proof of this Lemma can be found in [10].
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5 Homomorphisms of Uq.sl.2// and U.iso.2//

into Localizations of U.iso.2// and Uq.sl.2//

We shall make frequent use of the following result and it is readily established by
using Eq. (4) and the Maclaurin series formula: let f be any analytic function, then

P˙f
 �
H

2

�
q

!
D f

 �
H � 2

2

�
q

!
P˙ : (6)

We shall also make use of a similar equation for Uq.sl.2//; it is the same as Eq. (6)
but with P˙ replaced by X˙.

We define

X˙ D L 13�iL 23 D
(

˙ 1

Y

�
H � 1

2

�
q2

C I

)
P˙ D P˙

(
˙ 1

Y

�
H ˙ 1

2

�
q2

C I

)

(7)

where Y is a solution of the algebraic equation Y 2 � PCP� D 0 in U.iso.2//. Note
that we used Eq. (6) to obtain the last equality. To make sense out of quantities like�
H˙1
2

	
q2

in Eq. (7) as elements ofU.iso.2//we consider formal series expansions in
H . This requires going to an extension of U.iso.2// which allows for such arbitrary
formal series (cf. [11]). To keep things simple we do not make a distinction between
enveloping algebras and necessary such extensions for incorporating formal series
expansions. (Observe that similar observations apply to the same quantities viewed
as elements of Uq.sl.2//.) Let �.X˙/ D X˙ and �.H/ D H . This defines
a mapping � from Uq.sl.2// into an algebraic extension of the localization of
U.iso.2// with denominators consisting of powers of Y .

Proposition 1. � is a homomorphism from Uq.sl.2// onto its image. In particular
the X˙ defined by Eq. (7) together with H satisfy the relations, Eqs. (1) and (2), of
the generators of Uq.sl.2//. Furthermore, let �q be defined by Eq. (3) but with X˙
replacing X˙. Then �q D Y 2 � 1

4
� I .

The only difficult part of the proof of this proposition is to show that the X˙ and H
satisfy the defining relations, Eqs. (1) and (2), of Uq.sl.2// and for this we refer the
reader to [2].

Now let Y be such that it commutes with all elements of Uq.sl.2// and satisfies
the equation

Y 2 D �q C 1

4
� I ; (8)

and let P˙ D .DL̇ /
�1
X˙ D X˙.DṘ /

�1
with DL̇ D



˙ 1
Y

�
H�1
2

	
q2

C I
�

and

DṘ D


˙ 1
Y

�
H˙1
2

	
q2

C I
�

and define � 0 by � 0.P˙/ D P˙ and � 0.H/ D H .
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Proposition 2. � 0 extends by linearity to a homomorphism from iso.2/ into a
localization of Uq.sl.2//. In particular, � 0.P ˙/ and � 0.H/ satisfy the commutation
relations, Eqs. (4), of iso.2/ and, furthermore, PCP� D Y 2.

For the proof we again refer to [2].

6 Homomorphisms of U Qq.osp.1j2// into Localizations
of U

�
eiso.2/

�
and U

�
iso.2/

�

We start by establishing homomorphisms from fiso.2/ and iso.2/ onto their
images in certain spaces which we now make precise. Define �0 by �0.H/ D
�2 QH ; �0.P C/ D �QP� ; �0.P �/ D e�i� QH QPC and Q�0 by Q�0. QH/ D
� 1
2
H ; Q�0. QP�/ D �P C, Q�0. QPC/ D e� i�2 HP �. (We again refer the reader to

[11] in order to give a precise meaning to expressions like e� i�2 H and e�i� QH .)

Proposition 3. �0 and Q�0 define Lie algebra and Lie super algebra homomorphisms
from iso.2/ and fiso.2/ onto their images in U

�fiso.2/� and U.iso.2// , respectively.

The proof of the proposition is easy. We extend �0 and Q�0 by linearity to iso.2/ andfiso.2/, respectively, and verify the respective commutation relations.
We now describe homomorphisms of UQq.osp.1j2// and U

�fiso.2/� into exten-
sions of localizations of U

�fiso.2/� and UQq.osp.1j2//, respectively, i.e. the analogs
of Propositions 1 and 2. Let QX˙ D

 
1

QY

s
ei� QH

�
QH � 1

2

�
Qq2

C p˙I
! QP˙q

Œ2�Qq
D

D
QP˙q
Œ2�Qq

 
˙i
QY

s
ei� QH

�
QH ˙ 1

2

�
Qq2

C p˙I
!

(7bis)

where I is the identity in U
�fiso.2/�. In obtaining the last term of this equation we

used the equations
q
Œ QH � 1

2
�Qq2 QP˙ D QP˙

q
Œ QH ˙ 1

2
�Qq2 and ei�

QH
2 QP˙ D ˙i QP˙ei� QH2

which equations follow easily from Eq. (4bis).

Proposition 4. If QY is such that it commutes with all elements of U
�fiso.2/� and

satisfies Eq. (5bis), then Eq. (7bis) define a homomorphism Q� from UQq.osp.1j2// into
a localization of U

�fiso.2/�, with Q�. QX˙/ D QX˙ and Q�. QH/ D QH . Furthermore, let
QSQq be defined by Eq. (3bis) but with QX˙ replacing QX˙, then QSQq D �e�i� QH QY 2.
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The proof of this proposition is straightforward and is very similar to the proof of
Proposition 1. The main part of the proof is to show that the QX˙ defined by Eq. (7bis)
together with QH satisfy the relations, Eqs. (1bis) and (2bis), of the generators of
UQq.osp.1j2//.

Now let QP˙ D . QDL̇ /
�1 QX˙ D QX˙. QDṘ /

�1
with

q
Œ2�Qq QDL̇ D 1

QY

s
ei� QH

�
QH � 1

2

�
Qq2

C p˙ I and

q
Œ2�Qq QDṘ D ˙i

QY

s
ei� QH

�
QH ˙ 1

2

�
Qq2

C p˙ I ;

where now I is the identity in UQq.osp.1j2//.
Proposition 5. Let Q� 0. QP˙/ D QP˙ and Q� 0. QH/ D QH . If QY 2 is such that it commutes
with all elements of UQq.osp.1j2// and satisfies

QY 2 C ei�
QH QSQq D 0; (8bis)

then Q� 0 extends to a homomorphism of fiso.2/ onto its image in a localization of
UQq.osp.1j2//. In particular QP˙ and QH satisfy the commutation relations (4bis) of

U
�fiso.2/

�
and, furthermore, QPC QP� D ie�i� QH QY 2.

Proof. We shall establish that f QPC; QP�g D 0, since the rest of the proof is
straightforward. From the definitions of QPC and QP� we have:

Œ2�Qq. QPC QP� C QP� QPC/ D (9)

D 1

1
QY
q
.�1/ QH � QH � 1

2

	
Qq2 C I

� QXC QX� 1

�i
QY
q
.�1/ QH � QH � 1

2

	
Qq2 C i I

� C

C 1

1
QY
q
.�1/ QH � QH C 1

2

	
Qq2 C i I

� QX� QXC 1

i
QY
q
.�1/ QH � QH C 1

2

	
Qq2 C I

� D

D i QY 2 QXC QX� 1
q
.�1/ QH � QH � 1

2

	
Qq2 C QY

� 
q
.�1/ QH � QH � 1

2

	
Qq2 � QY

� �

� i QY 2 QX� QXC 1
q
.�1/ QH � QH C 1

2

	
Qq2 C i QY

� 
q
.�1/ QH � QH C 1

2

	
Qq2 � i QY

� D

D i QY 2
8<
:

QXC QX�

.�1/ QH � QH � 1

2

	
Qq2 � QY 2

� �
QX� QXC


.�1/ QH � QH C 1
2

	
Qq2 C QY 2

�
9=
; D
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D i QY 2
8<
:

QXC QX�

.�1/ QH � QH � 1

2

	
Qq2 C .�1/ QH QSq

� �

�
QX� QXC


.�1/ QH � QH C 1
2

	
Qq2 � .�1/ QH QSq

�
9=
; D

D i QY 2
.�1/ QH

8<
:

QXC QX�
� QH � 1
2

	
Qq2 C QSq

� �
QX� QXC
� QH C 1
2

	
Qq2 � QSq

�
9=
;

where in obtaining the second to last line we used Eq. (8bis). Now use Eq. (3bis)
twice to obtain the desired result.

7 Representations

Let R be Uq.sl.2// and QR be UQq.osp.1j2//. Consider an R ( QR) module, V ( QV ). For
� 2 C define the �-weight space of V ( QV ) to be V� WD fen 2 V jHen D �eng
( QV� WD fen 2 QV j QHen D �eng). We call V . QV ) a highest weight module if there
exists a �0 such that (1) dim V�0 D 1 (dim QV�0 D 1), (2) V D RV�0 ( QV D QR QV�0)
and (3) if V� ¤ 0 ( QV� ¤ 0), then �0 � � 2 N [ f0g. The �0 which satisfies these
conditions is unique and is called the highest weight of V ( QV ).

Set b WD CH C CXC. This is the analog of a Borel subalgebra of sl.2/. If
� 2 C write C� for the one dimensional b-module killed by H � �I and XC.
The Verma module of highest weight �0 2 C is V.�0/ WD R ˝U.b/ C�0 . It follows
that V.�0/ ' CŒX�� as a left CŒX��-module (cf.[9]). Set Ce�0 WD I ˝ C�. Each

.X�/ke�0 is of weight �0 � k and V.�0/ D
˚P

k2N[f0g
V�0�k where V�0�k D Ce�0�k .

V.�0/ is a highest weight module with highest weight �0 and dimCV��k D 1 for
each k 2 N [ f0g. The action of XC on a weight vector increases its weight by
1. For the analogous construction of the Verma module of highest weight �0 for QR
simply replace everywhere H , XC and X� by QH , QXC and QX�. Call it QV .�0/.

It is well-known that, at least for q not a root of unity, the following statements
are equivalent (compare [5]): (1) The R-module, V.�0/ ( QR-module, QV .�0/), is

reducible; (2) V.�0/
� QV .�0/

�
admits a singular vector .X�/` e�0


� QX��` e�0
�

for

` 2 N (` > 0); (3) The unique irreducible quotient module of V.�0/
� QV .�0/

�
,

which we denote by W.�0/
� QW .�0/

�
, is finite dimensional.

We now prove that we cannot get representations of fiso.2/ from highest weight
representations of UQq.osp.1j2// by using Proposition 5. Using the fact that every
highest weight module is a quotient module of a Verma module, it suffices to show
that the action of QDCR in QV .�0/ vanishes on e�0 for any �0 2 C, since then QDCR
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has no well-defined inverse in QV .�0/ and we cannot use Proposition 5 to define an
action of QPC in QV .�0/. Using the definition of QDCR we have:

QDCR e�0 D iq
Œ2�Qq QY

 s
ei� QH

�
QH C 1

2

�
Qq2

� i QY
!
e�0 D

D iq
Œ2�Qq QY

 s
ei� QH

�
QH C 1

2

�
Qq2

�
q
ei� QH QSQq

!
e�0 D

D iq
Œ2�Qq QY

 s
ei� QH

�
QH C 1

2

�
Qq2

�
s
ei� QH

�
QH C 1

2

�
Qq2

!
e�0 D 0:

A similar computation establishes the analogous result that we cannot get repre-
sentations of iso.2/ out of highest weight representations of Uq.sl.2// by using
Proposition 2.

We shall now make use of the Propositions to construct new representations of
UQq.osp.1j2// out of representations of iso.2/ and also representations of iso.2/ out
of representations ofUq.sl.2//. Combining these two results we can thus obtain new
representations of UQq.osp.1j2// out of representations of Uq.sl.2//.

We first construct representations of iso.2/ from representations ofUq.sl.2//. Let
H.m;�/ be the one dimensional vector space Cem withm D nC�; n D 0;˙1;˙2; : :
for fixed � D 0 or 1

2
. For � 2 C and for q 2 C, q ¤ 0 and not a root of unity,

the following formulae define a representation d��;� of Uq.sl.2// on the space
˚n2ZH.m;�/:

d��;�.H/em D 2m em ; d�
�;�.X˙/em D Œ�� ˙m�q2em˙1 : (10)

Recall the real form Uq.so.2; 1// of Uq.sl.2// introduced in Sect. 2. For jqj D 1

and q not a root of unity we have the following [3]: (1) for � D i� � 1
2

(� 2 R),
the representation space is H.�;�/ D P

m

˚H.m;�/ and d��;� is the (infinitesimally

unitarizable) principal series of Uq.so.2; 1//; (2) for � D � mod.2/ and � D `

with ` < � 1
2
, (a) the representation space X�`;�C is the linear span of the above em

with m > �`, (b) the representation space X�`;�� is the linear span of the em with
m < `. d��;� acts irreducibly on X�`;�˙ . These give q deformed discrete series of
Uq.so.2; 1//.

We now construct representations of iso.2/ out of the (infinitesimally unita-
rizable) principal series representations of Uq.so.2; 1// using Proposition 2. We
start with a given such d��;� . A simple calculation using Eqs. (3), (8) and (9) and
Eq. (5) of [12] shows Y 2 D .Œi��q2/

2 I on H.�;�/ (I is the identity on H.�;�/).

It follows that the actions of .DṘ /
�1

in the representation exist as operators
on the representation space. This is seen as follows: d��;�.ŒH˙1

2
�q2/ jm >D

sin..m˙ 1
2 /˛/

sin˛ / jm >
�
q D ei˛

�
, and Y D i

sinh˛�
sin˛ I (taking the positive square root
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of Y 2). It follows that the eigenvalues of d��;�.� 1
Y
ŒH˙1

2
�q2 CI / are never zero and

Y �1 is well-defined on H.�;�/ provided � ¤ 0. Thus, d��;�.� 1
Y
ŒH˙1

2
�q2 CI / has no

nonzero eigenvalues and d��;�.D/ is invertible. Using Proposition 2 and Eq. (9) ,
we can easily write down the action of the P˙ on the em of the representation space
H.�;�/. We find:

d Q��;�q .P˙/ em D �
 

Œi��q2 Œ� �m�q2�
� C 1

2

	
q2

� �
m˙ 1

2

	
q2

!
em˙1 : (11)

Finally, using Propositions 3 and 4 we construct representations ofUQq.osp.1j2//
out of representations of U.iso.2// and U

�fiso.2/�. We start with the positive mass
representations of the Euclidean Lie algebra. They are characterized by a real
number � (� ¤ 0)and an integer � which is either 0 or 1

2
. They are described as

follows [13]. The representation space is H.i�;�/ D P
m

˚H.m;�/ where the H.m;�/

are the same one dimensional vector spaces introduced above. The actions of the
generators of U.iso.2// on H.i�;�/ are given by

d��;�.P˙/ em D � .i �/ em˙1 (12)

d��;�.H/ em D 2m em: (13)

Using Proposition 3 we obtain the following representation of U
�fiso.2/� on H.i�;�/:

d Q��;�. QP˙/ em D � .i �/ e�i �2 f.m�1/˙.m�1/g em�1 (14)

d Q��;�. QH/ em D �m em : (15)

Now use Proposition 4 together with the Lemma to obtain the representation of
UQq.osp.1j2// on H.i�;�/. We claim that the conditions of the Lemma are satisfied
provided zero is in the resolvent set of d Q��;�. QY /. It is easy to see that this is always
the case for any nonzero � and any �, since from Eq. (5bis) we have d Q��;�. QY 2/em D
�i.�1/d Q��;�. QH/d Q��;�. QPC/d Q��;�. QP�/em, and using Eqs. (13) and (14) we easily
obtain

d Q��;�. QY 2/ D �i.�1/2��2I (16)

where I is the identity operator on H.i�;�/. Hence, since � ¤ 0, d Q��;�. QY 2/ is
invertible and so also its square root

d Q��;�. QY / D i
p
i.�1/�� I: (17)

Clearly the image of QY 2 and its square root are units in the localization of the
algebraic extension of U

�fiso.2/� obtained by adjoining the square root of QY 2 and
from Eq. (16) we see that the conditions of the Lemma are satisfied. Using (7bis)
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together with Eqs. (13), (14) and (16) we can explicitly construct the representation
of UQq.osp.1j2// on the above representation space. We obtain:

QXCem D 1q
Œ2�Qq

.�i�/

8̂
<
:̂
.�1/m=2

q
Œm � 1

2
�q2

i
p
i.�1/�� � 1

9>=
>; .�1/

mem�1 (18)

QX�em D 1q
Œ2�Qq

.i�/

8̂
<
:̂
.�1/�m=2

q
ŒmC 1

2
�q2

i
p
i.�1/�� C i

9>=
>; emC1 (19)

with the action of QH on the representation space being given by Eq. (14). These
representations of UQq.osp.1j2// seem to be new.
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1. Havlíček, M., Moylan, P.: J. Math. Phys. 34(11), 5320–5332 (1998)
2. Moylan, P.: Czech J. Phys. 48 , 1457–1464 (1998)
3. Moylan, P.: Group 24: physical and mathematical aspects of symmetries. In: Gazeau, J.-P. (ed.)

Institute of Physics Conference Series, vol. 123, pp. 230–235. Institute of Physics Publishing,
London (2003)

4. Zhang, R.B.: Lett. Math. Phys. 25, 317–325 (1992)
5. Clark, S., Wang, W.: Lett. Math. Phys. 103, 207–231 (2013)
6. Arnaudon, D., Bauer, M.: Lett. Math. Phys. 40, 307–320 (1997)
7. Cohn, P.M.: Am. Math. Mon. 78, 596–615 (1971)
8. Dixmier, J.: Enveloping Algebras, vol. 122. American Mathematical Society, Providence

(1996)
9. Smith, S.P.: Trans. Am. Math. Soc. 322(1), 285–314 (1990)

10. Dixmier, J.: Enveloping Algebras, vol. 119. American Mathematical Society, Providence
(1996)

11. Jacobson, N.: Lie Algebras, vol. 171. Dover, New York (1979); Zhelobenko, D.P.: Representa-
tions of Reductive Lie Algebras, Chap. 3. Nauka, Moscow (1994)

12. Kachurik, I.I.: Ukrainian Math. J. 50(8), 1201–1211 (1998)
13. Talman, J.D.: Special Functions: A Group Theoretic Approach, vol. 199. Benjamin, New York

(1968)



On the 2D Zero Modes’ Algebra of the SU(n)
WZNW Model

Ludmil Hadjiivanov and Paolo Furlan

Abstract A quantum group covariant extension of the chiral parts of the Wess-
Zumino-Novikov-Witten (WZNW) model on a compact Lie group G gives rise to
two matrix algebras with non-commutative entries. These are generated by “chiral
zero modes” ai˛ ; Naˇj which combine, in the 2D model, into Qi

j D ai˛ ˝ Na˛j . The Q-
operators provide important information about the internal symmetry and the fusion
ring. Here we review earlier results about the SU.n/ WZNW Q-algebra and its
Fock representation for n D 2 and make the first steps towards their generalization
to n 	 3.

1 Introduction

The object of our study, the “zero modes”, appear naturally in the splitting of the
(single valued) 2D WZNW field G.x; Nx/ D .GA

B.x; Nx// into left and right quantum
group covariant chiral components gA˛ .x/ and Ng˛B. Nx/. The latter are necessarily

quasiperiodic, i.e. have monodromies: for example, gA˛ .xC 2�/ D gAˇ .x/M
ˇ
˛ . The

chiral zero modes a D .ai˛/ and Na D . Na˛j / are assumed to diagonalize the left and
right monodromy matrices, respectively, so that

GA
B.x; Nx/ D gA˛ .x/˝ Ng˛B. Nx/ D uAi .x/˝Qi

j ˝ NujB. Nx/ ; Qi
j WD ai˛ ˝ Na˛j (1)
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(summation over repeated upper and lower indices is implicitly understood), where
the chiral fields u.x/ and Nu. Nx/ have diagonal monodromies. We call hereafter
Q WD .Qi

j / the matrix of 2DWZNW zero modes.
The concept of chiral WZNW zero modes, classical or quantum, appeared in

[1, 2, 6], and has been developed further in [12, 13, 15]. The Q-algebra has been
studied, in the SU.2/ case, in [11]. It can be shown that a finite dimensional quotient
of it, and the Fock representation thereof, provide a link to the internal symmetry
and the fusion of the unitary WZNW model. We will describe below the first steps
in attempt to extend this framework to SU.n/ ; n 	 3.

2 Chiral WZNW Zero Modes

The (left sector) chiral zero modes’ algebra Mq for the SU.n/ WZNW model at
level k has been introduced in [15]. It is generated by the n mutually commuting
operators qpj whose product is equal to the unit operator,

qpi qpj D qpj qpi ;

nY
jD1

qpj D 1 ; j D 1; : : : ; n ; (2)

and by the entries of the n � n zero modes’ quantum matrix a D .ai˛/ satisfying
quadratic exchange relations,

a
j

ˇa
i
˛ Œpij � 1� D ai˛a

j

ˇ Œpij � � aiˇ a
j
˛ q

�˛ˇpij . for i ¤ j and ˛ ¤ ˇ / ;

Œaj˛ ; a
i
˛� D 0 ; ai˛a

i
ˇ D q�˛ˇ aiˇa

i
˛ ; i; j ; ˛ ; ˇ D 1; : : : ; n

. �˛ˇ D ��ˇ˛ ; �˛ˇ D 1 for ˛ > ˇ ; Œp� WD qp � q�p
q � q�1 / (3)

the following mixed relations with qpj ,

qpj ai˛ D qı
i
j� 1

n ai˛ q
pj ) qpj`ai˛ D qı

i
j�ıi`ai˛ qpj` . pj` WD pj � p` /

(4)
and the (n-linear in the zero modes) inhomogeneous determinant condition

1

Œn�Š
�i1:::in a

i1
˛1
: : : ain˛n "

˛1:::˛n DW det.a/ D Dq.p/ WD
Y
i<j

Œpij � : (5)

The "-tensor in (5) is totally q-antisymmetric,

"˛1:::˛i ˛iC1:::˛n D �q��˛i ˛iC1 "˛1:::˛iC1˛i :::˛n ; i D 1; : : : ; n � 1 (6)
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its non-zero components being given by

"˛1:::˛n D q�
n.n�1/
4 .�q/`.�/ for � D

�
n : : : 1

˛1 : : : ˛n

�
2 Sn (7)

(the length `.�/ of an element � of the symmetric group Sn is equal to the number
of inversions which, in our notation, are the pairs .˛i ; ˛j / such that ˛i < ˛j for

i < j ) while �i1:::in D .�1/`.�/ for � D


n ::: 1
i1::: in

�
2 Sn.

The exchange relations (3) originate from

OR12.p/ a1 a2 D a1 a2 OR12 , ORij
i 0j 0
.p/ ai

0

˛ a
j 0

ˇ D ai˛0a
j

ˇ0
OR˛0ˇ0˛ˇ (8)

where OR12 D P12R12 ; OR12.p/ D P12R12.p/ ; P12 is the permutation matrix,
R12 the Drinfeld-Jimbo quantum R-matrix for Uq.s`.n// [4, 17] and R12.p/ the
corresponding dynamical quantum R-matrix [5, 15, 16]. Explicitly,

q� 1
n OR˛ˇ

˛0ˇ0
D ı˛ˇ0ı

ˇ

˛0
C .q�1 � q��˛ˇ / ı˛˛0ıˇˇ0 ; �˛ˇ D

8<
:

1 ; ˛ > ˇ

0 ; ˛ D ˇ

�1 ; ˛ < ˇ

(9)

(our deformation parameter is q D e�i �h where the height h D k C n) and

q� 1
n ORij

i 0j 0
.p/ D aij .p/ ı

i
j 0ı

j

i 0
C bij .p/ ı

i
i 0ı

j

j 0
;

ai i .p/ D q�1 ; aij .p/ D ˛.pij /
Œpij � 1�
Œpij �

; i ¤ j . ˛.pji / D 1

˛.pij /
/ ;

bi i .p/ D 0 ; bij .p/ D q�pij
Œpij �

; i ¤ j ; (10)

respectively. Indeed, getting rid of the denominators in (10) and using the identity
Œp � 1� � q˙1Œp� D � q˙p , we obtain (3) for ˛.pij / D 1.

The right zero modes’ algebra NMq is generated by Na D . Na˛i / and q Npj . The
relevant relations follow from the left sector’s ones according to the rules

q ! q�1 ; .a�1/˛i ! Na˛i ; qpj ! q Npj (11)

which can be justified e.g. by examining the classical chiral symplectic forms and
the subsequent canonical quantization procedure [12]. Thus q Npj satisfy relations
identical to (2) as well as mixed exchange relations

q Npj Na˛i D qıij� 1
n Na˛i q Npij ) q Npj` Na˛i D qıij�ıi` Na˛i q Npj` : (12)
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The right sector counterpart of (8) has the form

OR12 Na1 Na2 D Na1 Na2 ONR12. Np/ : (13)

The fact that the constant R-matrices in (8) and (13) are the same ensures the
local commutativity of the 2D field (1); there is no such requirement however for
the dynamical ones. Inserting explicitly the ˛-dependence in the notations of the
dynamical R-matrices (so that e.g. OR12.p/ � OR.1/12 .p/ for ˛.pij / D 1 in (10))

we observe that (13) becomes identical to (8) if we choose ONR12. Np/ D t OR12. Np/ �
OR.˛/12 . Np/ for

˛. Npij / D Œ Npij C 1�

Œ Npij � 1� .D 1

˛. Npji / / : (14)

To this end we note that the constant R-matrix (9) is symmetric ( OR˛ˇ
˛0ˇ0

D OR˛0ˇ0˛ˇ ,

i.e. OR12 D t OR12) and that q Npij commutes with Na˛i Naˇj , cf. (12), so there is no change

in the argument of ONR12. Np/ when it is moved to the left of Na1 Na2 in (13). Getting rid
of the denominators, we obtain

Naˇj Na˛i ŒONpij � 1� D Na˛i Naˇj ŒONpij � � Naˇi Na˛j q�˛ ǑNpij . for i ¤ j and ˛ ¤ ˇ / ;

Œ Na˛j ; Na˛i � D 0 ; Na˛i Naˇi D q�˛ˇ Naˇi Na˛i ; ˛; ˇ; i; j D 1; : : : ; n : (15)

That (3) and (15) coincide is a desirable result, as the left and the right sector
quantities appear in (1) on equal footing. It also suggests that the definition of det. Na/
and the condition it satisfies are identical to (5), up to exchanging upper and lower
indices; note that (7) implies

"˛1:::˛n D "˛1:::˛n ) "˛1:::˛n"˛1:::˛n D Œn�Š WD Œn�Œn � 1� : : : Œ1� : (16)

The chiral matrix algebras generate Fock spaces Fq D Mq j 0i and NFq D
NMq j 0i with vacuum vector j0i satisfying

pij j0i D .j�i/ j0i D Npij j0i ; ai˛ j0i D 0 D Na˛i j0i for i ¤ 1 : (17)

Justification of (17) can be found in [10, 12]; we will only note here that the
eigenvalues of piiC1 and NpiiC1 ; i D 1; : : : ; n play the role of shifted integral s`.n/
weights.

For qh D �1, the condition Œpij � v D 0 (i ¤ j ) for some vector v 2 Fq ˝ NFq
implies that pij v D Nh v for some integer N . One infers from (3) (and similarly,
from(15)) that

Œpij � v D 0 ) ai˛a
j

ˇ v D aj˛a
i
ˇ v ; Œ Npij � v D 0 ) Na˛i Naˇj v D Na˛j Naˇi v : (18)
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Let e.g. J .h/
q be the two-sided ideal of Mq generated by the h-th powers of all ai˛

and the 2h-th powers of qpij . It is easy to see that the quotient M.h/
q WD Mq=J .h/

q

is non-trivial, due to the relation (valid for i ¤ j ; ˛ ¤ ˇ)

Œpij � 1�.ajˇ/mai˛ D ai˛.a
j

ˇ/
mŒpij � � Œm�.ajˇ/m�1aiˇ aj˛ q�˛ˇpij (19)

generalizing the first Eq. (3) for any positive integer m. (Equation (19) is easily be
proved by induction, using the q-number relation ŒpCm� D Œp�ŒmC1��Œp�1�Œm�.)
By a similar construction we obtain the quotient right sector zero modes’ algebra

NM.h/
q . We further define restricted Fock spaces and their tensor product

F .h/
q ˝ NF .h/

q D M.h/
q ˝ NM.h/

q j0i (20)

on which the algebra of Q-operators will act.

3 Q-Algebra—The n D 2 Case

A great simplification in the n D 2 case comes from the fact that the exchange
relations combine with the determinant condition (5), which in this case is also
bilinear in the zero modes, to form powerful operator identities.

For n D 2 and q D e˙i �h the chiral Fock space Fq carries a representation
of the 2h3-dimensional restricted quantum group U q D U q.s`.2// generated by

E;F;K such that Eh D 0 D F h ; K2h D 1 [14]. The restricted Fock space F .h/
q is

h2-dimensional. The entries of the 2D zero modes’ matrix

Q D .Qi
j / D

�
Q1
1 Q

1
2

Q2
1 Q

2
2

�
�
�
A B

C D

�
(21)

have the following properties [11].

• If .ai˛/
h D 0 D . Na˛j /h 8 ˛ 2 f1; 2g, then .Qi

j /
h D 0.

• Diagonal and off-diagonal elements of Q commute:

AB D BA ; CA D AC ; BD D DB ; CD D DC : (22)

• The triples A;D;L and B;C;N , generate two commuting U q algebras:

ŒA;D� D ŒL� ; LA D q2AL ; LD D q�2DL ; L˙1 WD � q˙p ˝ q˙ Np

ŒB; C � D ŒN � ; NB D q2BN ; NC D q�2CN ; N˙1 WD � q˙p ˝ q� Np

Ah D Dh D 0 D Bh D Ch ; L2h D 1 D N2h .p D p12 ; Np D Np12/ : (23)
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• The vacuum representation of the off-diagonal Q-algebra is one-dimensional:

B j0i D 0 D C j0i ; N j0i D � j0i .) ŒN � j0i D 0 / : (24)

• The diagonal Q-algebra generates an indecomposable representation of U q

(a Verma module [7, 8] VC1 ; dimVC1 D h , with a 1-dimensional submodule),

A j mi D ŒmC 1� j mC 1i ; D j mi D ŒmC 1� j m � 1i .D j0i D 0 / ;

.LC q2.mC1// j mi D 0 for j mi WD Am

Œm�Š
j0i ; m D 0; : : : ; h � 1 : (25)

• The invariant hermitean scalar product on (25) (s.t. A	 D D ; L	 D L�1) is
semidefinite, the U q-invariant subspace C jh � 1i � VC1 being isotropic:

.m0 j m/ D ŒmC 1� ımm0 � sin .mC 1/�
h

sin �
h

ımm0 ; m D 0; : : : ; h� 1 : (26)

Note that the dimension of the quotient space VC1 =fC j h � 1ig coincides with the
number h�1 D kC1 of (integrable) sectors in the unitary bsu.2/k WZNW model [3].
This is a manifestation of a much deeper result providing an interpretation analogous
to covariant quantization of gauge theories [11]. Without going into details, we
would like to call special attention to the fact that only the diagonal entries of the
matrixQ (21) are represented non-trivially. It guarantees, together with (4) and (12),
that the eigenvalues of p and Np on the diagonal Q-vectors j mi (25) coincide.

4 Q-Algebra—The General n Case

The general n case is much harder to explore, partly because the n-linear determi-
nant conditions for the chiral zero modes should be considered for n 	 3 separately
from the quadratic exchange relations. For this reason we will only comment below
the extensions to higher n of the first two points listed in Sect. 3 for n D 2, leaving
the rest for a future work.

It turns out that the generalization of the first one is straightforward.

Proposition. If .ai˛/
h D 0 D . Na˛j /h 8˛ 2 f1; : : : ; ng, then .Qi

j /
h D 0.

Proof. The indices i and j play no role here; introducing the “˛-components”
Q˛ WD ai˛ ˝ Na˛j (no summation in ˛ is assumed) of Qi

j D Pn
˛D1 Q˛ , we have

.Q˛/
h D .ai˛/

h ˝ . Na˛j /h D 0 ; Q˛ Qˇ D ai˛a
i
ˇ ˝ Na˛j Naˇj D q2�˛ˇ Qˇ Q˛ :

(27)
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We will perform the proof by induction in n, observing that

Q˛ .Q1 C � � � CQ˛�1/ D q2.Q1 C � � � CQ˛�1/Q˛ ; ˛ D 2; : : : ; n : (28)

The calculation is based on the q-binomial identity (in fact, the case n D 2)

Q2Q1 D q2Q1Q2 ) .Q1 CQ2/
m D

mX
rD0


m
r

�
C
Qr
1Q

m�r
2 (29)

where
�
m
r

�
C D .m/CŠ

.r/CŠ.m�r/CŠ ; .r/CŠ D .r/C : : : .1/C ; .r/C D q2r�1
q2�1 , implying

.Q1 CQ2/
h D .Q1/

h C
h�1X
rD1

�
h

r

�
C
Qr
1Q

h�r
2 C .Q2/

h D 0 (30)

(Eq. (29) can be proved by induction in m). Equations (28)–(30) imply

.Q1C� � �CQ˛/
h D .Q1C� � �CQ˛�1/hC .Q˛/

h D .Q1C� � �CQ˛�1/h ; (31)

etc. The following general formula can be proved by induction as well:

 
nX

˛D1
Q˛

!h
D

nX
˛D1

.Q˛/
h C .h/CŠ � (32)

�
X

m1Cm2C���CmnDh
0�mi�h�1

.Q1/
m1

.m1/CŠ
.Q2/

m2

.m2/CŠ
: : :

.Qn/
mn

.mn/CŠ
D 0:

In compliance with the final remark of Sect. 3, we will make the following

Conjecture. AnyQ-monomial containing off-diagonal entries of Q annihilates the
vacuum vector.

Recall that in the n D 2 case this property is valid, due to the general fact
(following from (17)) that Qi

j j 0i D 0 for i ¤ j and the commutativity of the
diagonal and off-diagonal entries of Q (22) which however doesn’t hold in general
but is replaced by the following corollaries of (3) and (15).

Lemma 1. The entries of Q belonging to the same row or column commute:

ŒQ
j
i ;Q

`
i � D 0 D ŒQi

j ;Q
i
`� : (33)

Proof. It is sufficient to explore the case in (33) when the different indices (j and `)
are carried by the left sector variables since the bar quantities satisfy identical
relations. We obtain (assuming implicitly that equal upper and lower greek i.e.
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quantum group, indices are summed over all admissible values from 1 to n, if no
restrictions are indicated under a summation symbol)

Œp j̀ � 1�Qj
i Q

`
i D Œp j̀ � 1� .ajˇ ˝ Naˇi /.a`˛ ˝ Na˛i / D Œp j̀ � 1� ajˇa`˛ ˝ Naˇi Na˛i D

D Œp j̀ � 1�
X
˛

aj˛a
`
˛ ˝ Na˛i Na˛i C

X
˛¤ˇ

Œp j̀ � 1� ajˇ a`˛ ˝ Naˇi Na˛i D

D Œp j̀ � 1�
X
˛

a`˛a
j
˛ ˝ Na˛i Na˛i C

X
˛¤ˇ



a`˛a

j

ˇ Œp j̀ � � a`ˇ a
j
˛ q

�˛ˇp j̀

�
˝ Naˇi Na˛i D

D Œp j̀ � 1�
X
˛

a`˛a
j
˛ ˝ Na˛i Na˛i C

X
˛¤ˇ

a`ˇ a
j
˛

�
q�˛ˇ Œp j̀ � � q�˛ˇp j̀

�˝ Naˇi Na˛i D

D Œp j̀ � 1� a`ˇ aj˛ ˝ Naˇi Na˛i D Œp j̀ � 1�Q`
i Q

j
i i:e:; Œp j̀ � 1� ŒQj

i ;Q
`
i � D 0

(34)

(we have applied (3), exchanged the dummy indices ˛ and ˇ in a term on the fourth
line and then used the identity q�Œp� � q�p D Œp � 1� for � D ˙1). The first
relation (33) ŒQj

i ;Q
`
i � D 0 follows since, by exchanging the upper (left sector)

indices j and `, we can also derive that

Œpj` � 1� ŒQ`
i ;Q

j
i � D Œp j̀ C 1� ŒQ

j
i ;Q

`
i � D 0 ; (35)

and there is no vector on which the operators Œp j̀ C 1� and Œp j̀ � 1� vanish
simultaneously. In a similar way one obtains from (15) that ŒQi

j ;Q
i
`� D 0.

Lemma 2. The entries of Q belonging to different rows and columns satisfy

.Œpij � 1�˝ Œ Np`m� � Œpij �˝ Œ Np`m � 1�/Qi
` Q

j
m .� Œpij � Np`m�Qi

` Q
j
m / D

D Œpij � 1�˝ Œ Np`m�Qj

` Q
i
m � Œpij �˝ Œ Np`m � 1�Qi

m Q
j

` . i ¤ j ; ` ¤ m/: (36)

Remark. Below we will make use of the following q-identities:

Œp ˙ 1�˝ Œ Np � � Œp �˝ Œ Np ˙ 1� D � Œp � Np � WD � qp ˝ q� Np � q�p ˝ q Np

q � q�1 ;

Œp ˙ 1�˝ Œ Np � � Œp �˝ Œ Np � 1� D ˙ Œp C Np � WD ˙ qp ˝ q Np � q�p ˝ q� Np

q � q�1 ;

Œp �˝ q� Np � q�p ˝ Œ Np � DW Œp � Np � ; � D ˙1 : (37)

Proof. Equation (36) is suggested by (8) and (13), (14) implying

ORij
i 0j 0
.p/Qi 0

` Q
j 0

m D Qi
`0 Q

j

m0
. OR.˛//`0m0`m . Np/ (38)
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but can be also verified directly with the help of (3), (15) and (37):

Œpij � 1�˝ Œ Np`m�Qj

` Q
i
m � Œpij �˝ Œ Np`m � 1�Qi

m Q
j

` D
D Œpij � 1�˝ Œ Np`m�

X
˛

aj˛ a
i
˛ ˝ Na˛` Na˛m C

C
X
˛¤ˇ

.Œpij � a
i
˛ a

j

ˇ � q�˛ˇpij aiˇ aj˛/˝ Œ Np`m� Naˇ` Na˛m �

� Œpij �˝ Œ Np`m � 1�
X
˛

ai˛ a
j
˛ ˝ Na˛m Na˛` �

�
X
˛¤ˇ

Œpij � a
i
ˇ a

j
˛ ˝ . Œ Np`m� Na˛` Naˇm � q�˛ˇ Np`m Naˇ` Na˛m / D

D Œpij � Np`m�
X
˛

ai˛ a
j
˛ ˝ Na˛` Na˛m C

C
X
˛¤ˇ

. Œpij �˝ q�˛ˇ Np`m � q�˛ˇpij ˝ Œ Np`m� / aiˇ aj˛ ˝ Naˇ` Na˛m D

D Œpij � Np`m�Qi
` Q

j
m . i ¤ j ; ` ¤ m/ : (39)

Let us see what the above two Lemmas tell us in the cases involving diagonal entries
of Q. Equation (33) implies that

ŒQ
j
i ;Q

i
i � D 0 D ŒQi

j ;Q
i
i � ; (40)

while Eq. (36) gives rise to the following relations valid for i ¤ j ¤ ` ¤ i (which
is only possible if n 	 3):

Œpij � 1�˝ Œ Npi`�Qj

` Q
i
i D Œpij �˝ Œ Npi` C 1�Qi

i Q
j

` � Œpij C Npi`�Qi
` Q

j
i ;

Œpij �˝ Œ Npi` � 1�Qj

` Q
i
i D Œpij C 1�˝ Œ Npi`�Qi

i Q
j

` � Œpij C Npi`�Qj
i Q

i
` : (41)

So an off-diagonal Q-operator can jump over a diagonal one, except in cases
when the p-dependent coefficients in the left-hand sides of the two identities (41)
vanish simultaneously (note that the last terms of (41) only contain off-diagonal
Q-operators). Moreover, if Œpij � v D 0 or Œ Npi`� v D 0, then

Œpij � v D 0 ) Q
j

` Q
i
i v D Qi

` Q
j
i v ; Œ Npi`� v D 0 ) Q

j

` Q
i
i v D Q

j
i Q

i
` v
(42)

by (18), so the only obstacle arises when we apply (41) to vectors v satisfying

Œpij � 1� v D 0 D Œ Npi` � 1� v for i ¤ j ¤ ` ¤ i : (43)
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The above facts open the possibility to prove the Conjecture by induction in the
number of diagonal Q-operators applied to the vacuum, starting with v0 Dj 0i and
v1 D Q1

1 j 0i. To find out if and when (43) occurs, we need to explore the space
of diagonal Q-vectors Fdiag D fv j v D P.Qn

n ; : : : ;Q
1
1/ j 0ig and its subspace

F 0 � Fdiag that is annihilated by all off-diagonal elements,Qr
s F 0 D 0 ; r ¤ s. (In

these terms our conjecture is equivalent to F 0 .‹/D Fdiag.) The exchange relations for
diagonal elements that follow from (36)

Œpij �˝ Œ Npij C 1�Qi
i Q

j
j � Œpij � 1�˝ Œ Npij �Qj

j Q
i
i D Œpij C Npij �Qi

j Q
j
i ; (44)

Œpij C 1�˝ Œ Npij �Qi
i Q

j
j � Œpij �˝ Œ Npij � 1�Qj

j Q
i
i D Œpij C Npij �Qj

i Q
i
j

. i ¤ j / :

imply (as the eigenvalues of pij and Npij on Fdiag are equal)

Œpij C 1�Qi
i Q

j
j � Œpij � 1�Qj

j Q
i
i (45)

where the “weak equality” sign refers to an identity that holds on F 0.
As already mentioned, these are just the first steps in our study of the Q-

algebra and its vacuum representation for n 	 3. The obvious immediate tasks
are the completion of the proof of the diagonality conjecture and the description of
Fdiag . To this end, one should take next into account (besides the bilinear exchange
relations) the n-linear determinant condition (which suggests a basis in Fdiag

labelled by su.n/ Young diagrams [9]) and also some trilinear relations following
from the chiral structure of theQ-operators. Together with .Qi

i /
h D 0 (32) and (45),

the latter seem to imply the finite dimensionality of Fdiag.

5 Discussion and Outlook

It would be intriguing to look for a possible connection of the diagonal Q-algebra
with the algebra of the (phase model) “hopping operators” fQ1; : : : ;Qng on a
circle (also called “affine local plactic algebra”). The latter is characterized by the
relations

ŒQi ;Qj � D 0 ; if i ¤ j ˙ 1 modn

Qi Q
2
j D Qj Qi Qj ; Q2

i Qj D Qi Qj Qi ; if i D j C 1 modn (46)

and provides a description of the (unitary) bsu.n/k affine fusion ring [18, 19]. In
contrast to our (diagonal) Q-algebra, it does not depend explicitly on the level k
which only labels its representations. Although it is clear from the outset that the
two algebras are not isomorphic, relations (46) can suggest the correct procedure
needed to obtain the physical subquotient space for general n.
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Breaking so.4/ Symmetry Without
Degeneracy Lift

M. Kirchbach, A. Pallares Rivera, and F. de J. Rosales Aldape

Abstract We consider on S3R the quantum motion of a scalar particle of mass m,
perturbed by the trigonometric Scarf potential (Scarf I) with one internal quantized
dimensionless parameter, `, the 3D orbital angular momentum, and another, an
external scale introducing continuous parameter, B . We show that a loss of the
geometric hyper-spherical so.4/ symmetry of the free motion can occur that leaves
intact the unperturbed N 2-fold degeneracy patterns, with N D .` C n C 1/ and n
denoting the nodes of the wave function. Our point is that although the number
of degenerate states for any N matches dimensionality of an irreducible so.4/
representation space, the corresponding set of wave functions do not transform
irreducibly under any so.4/. Indeed, in expanding the Scarf I wave functions in
the basis of properly identified so.4/ representation functions, we find power series
in the perturbation parameter, B , where 4D angular momenta K 2 Œ`;N � 1�

contribute up to the order O


2mR2B
„2

�N�1�K
. In this fashion, we work out an explicit

example on a symmetry breakdown by external scales that retains the degeneracy.
The scheme extends to so.d C 2/ for any d .

1 Introduction

The theory of Lie algebras provides, in terms of its invariants, a powerful tool for the
description of observed constants of motion both in free and interacting systems and
enables in this manner uncovering of universal physical laws. In spectral problems,
symmetry as a rule is signaled by energy values degenerate with respect to certain
sets of quantum numbers, an indication that a Lie algebra might exist whose
irreducible representations have dimensionalities that match the number of states
in the levels. In this fashion, a relationship between symmetry and degeneracy can
be established. AnyN -fold degenerate system is gl.N;R/ symmetric in so far as by
virtue of Sturm-Liouville’s theory of differential equations, any linear superposition
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of solutions characterized by a common eigenvalue is again a solution to the
same eigenvalue. The case of our interest here is the one in which the degeneracy
patterns can be mapped on the irreducible representations of a Lie algebra distinct
from gl.N;R/. Popular examples are the spectra of the Harmonic-Oscillator–,
and the Coulomb problems, whose Hamilton operators can be cast in their turn
as su.3/, and so.4/ invariants, respectively. Especially in the latter case, the N 2-
fold degeneracies of the states in a level (N being the principal quantum number,
N D n C ` C 1 2 Œ1;1/, and ` and n denoting the orbital angular momentum
value, and the number of nodes, respectively) has been explained in terms of so.4/
irreducible representations of dimensionalities, N 2. It has been realized already in
the early days of quantum mechanics that a Hamiltonian with Coulomb interaction
can be cast in the form of a Casimir invariant of the isometry algebra so.4/ of the
three-dimensional (3D) sphere, S3R with R being the hyper-radius [4]. This example
shows that a relationship between symmetry and degeneracy can be at the very root
of spectroscopic studies, a reason for which it is important to understand as to what
extent Lie-algebraic degeneracy patterns are at par with the correct transformation
properties of the wave functions under the algebra in question. Our point is that
degeneracy alone is not sufficient to claim a particular Lie algebraic symmetry
of the Hamiltonian. On the example of the quantum motion of a scalar particle
on S3R, perturbed by the trigonometric Scarf potential (Scarf I), we show that the
perturbation completely retains the so.4/ degeneracies of the free motion without
that the “perturbed” wave functions would behave as eigenfunctions of an so.4/
Casimir operator.

The contribution is structured as follows. In the next section we study the
so.4/ symmetry properties of the hyper-geometric differential equation for the
Gegenbauer polynomials, G�n .x/, for � D .` C 1/ with ` non-negative integer.
First we observe that in subjecting the eigenvalue problem of the canonical so.4/
Casimir operator to a similarity transformation by .1 � sin2 �/

�
2� 14 , the square-root

of the weight function of the Gegenbauer polynomials, and setting x D sin�, with
� standing for the second polar angle in E4, amounts to the Gegenbauer equation,
thus making the so.4/ symmetry of the latter manifest. As long as free quantum
motion on S3R can be cast as the eigenvalue problem of the Casimir operator of the
transformed so.4/, whose wave functions are the Gegenbauer polynomials, so.4/
has been proved to be the relevant symmetry both of the spectrum and the wave
functions. This contrasts the case of the Jacobi polynomials, P˛`ˇ`

n .x/, considered
in Sect. 3 for the following parameter values, ˛` D `C 1

2
� b, and ˇ` D `C 1

2
C b,

which present themselves as linear combinations of Gegenbauer polynomials of
equal � D .`C 1/ parameters but different degrees, n, and do not behave as so.4/
representation functions. Nonetheless, because of the above specific choice of the
parameters, the Jacobi polynomial equation can be transformed to a motion on S3R
perturbed by the trigonometric Scarf potential, whose spectrum carries by chance
same so.4/ degeneracy patterns as the free motion, without that this symmetry is
shared by the wave functions. In this manner, we explicitly work out an example
of breaking so.4/ by a perturbation without degeneracy lift. The paper closes with
brief conclusions.
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2 The Gegenbauer Polynomial Equation as Eigenvalue
Problem of An so.4/ Casimir Operator

The Gegenbauer polynomial equation [1] for the special choice of the parameter,
� D `C 1, with ` non-negative integer, is given by

�
1 � x2� d2G`C1n .x/

dx2
� .2`C 3/ x

dG`C1n .x/

dx
Cn.nC 2`C 2/G`C1n .x/ D 0: (1)

At the same time, the eigenvalue problem of the well known Casimir operator, K2, of
the so.4/ isometry algebra of the three dimensional (3D) unit sphere, to be denoted
by S3, reads

�
K2 �K.K C 2/

	
YK`m.�; 
; '/ D 0; K2 D .�1/

cos2 �

@

@�
cos2 �

@

@�
C L2.
; '/

cos2 �
;

YK`m.�; 
; '/ D cos` �G`C1nDK�`.sin�/Y`m.
; '/; K D nC `;

L2.
; '/Y`m.
; '/ D `.`C 1/Ylm.
; '/: (2)

Here, L.
; '/ is the 3D angular momentum operator, K, ` and m are in turn the
4D-, 3D, and 2D angular momentum values, YK`m.�; 
; '/ are the 4D spherical
harmonics, with � 2 ���

2
;C�

2

	
, and 
 2 Œ0; �� standing for the two polar angles

parameterizing S3, and ' 2 Œ0; 2�� denoting the ordinary azimuthal angle. In the so
called quasi-radial variable [6], �, Eq. (2) reduces to
�
� 1

cos2 �

@

@�
cos2 �

@

@�
C `.`C 1/

cos2 �
�K.K C 2/

�
cos` �G`C1K�`.sin�/ D 0; (3)

and it is straightforward to check that (3) is equivalent to
� QK2 � .nC l/.nC l C 2//

	
G`C1K�`.sin�/ D 0;

with QK2 D cos�` �K2 cos` �; (4)

because of

QK2 D cos�` �K2 cos` � D � d2

d�2
C .2`C 2/ tan�

d

d�
C `.`C 2/: (5)

The cos` � function relates to the square-root of the weight function, !�.x/, of the
Gegenbauer polynomials, G�n .x/, as,

!�.x/ D .1 � x2/�� 12 ; x D sin�; � D .`C 1/;

cos` � D
s
!`C1.sin�/

dx
d�

: (6)
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Therefore, upon changing variable in (5) to x D sin�, and back-substituting in (3),
one obtains the claimed equality between the so.4/ Null operator,

� QK2 �K.K C 2/
	
; K D nC `; (7)

and the Gegenbauer polynomial equation as,

� QK2 � .nC l/.nC l C 2/
	
G`C1K�`.x/ D �

1 � x2� d2G`C1K�`.x/
dx2

�

� .2`C 3/
dG`C1K�`.x/

dx
C n.nC 2`C 2/G`C1K�`.x/ D 0: (8)

The latter equation means that the Gegenbauer polynomials, occasionally termed
to as ultra-spherical polynomials, are representation functions to an so.4/ algebra
obtained from the canonical one according to (6) through a similarity transformation
by the square-root of their weight function and upon accounting for a change
of variable. An interesting connection between the latter equation and the 1D
Schrödinger equation with the sec2 � potential can be established upon substituting,

cos` �G`C1K�`.sin�/ D U `n.�/
cos�

; n D K � `: (9)

In so doing, one finds that U `n.�/ satisfies the 1D Schrödinger equation with the
sec2 � potential according to,

�
� d2

d�2
C `.`C 1/

cos2 �

�
U `n.�/ D .K C 1/2U `n.�/; (10)

whose spectrum is characterized by .K C 1/2-fold degeneracy of the levels, just as
the H atom, due to

P`DK
`D0 .2` C 1/ D .K C 1/2. Therefore, the so.4/ symmetry

of the Gegenbauer polynomials shows up as so.4/ degeneracy patterns in the
spectrum of the corresponding 1D Schrödinger equation with the sec2 � interaction.
More general, there are several two-parameter potentials, v.zI˛; ˇ/ for which the
Schrödinger equation,

�
� d2

dz2
C v.zI˛; ˇ//

�
R˛ˇn .z/ D �R˛ˇn .z/; (11)

can be exactly solved by reducing it to a hyper-geometric differential equation by
means of a point-canonical transformation of the type [8],

R˛ˇn .z/ D R˛ˇn .z D f .x// WdefD g˛ˇn .x/ D
q
!˛ˇ.x/J ˛ˇn .x/

1q
df .x/

dx

; x 2 Œa; b�;

(12)



Breaking so.4/ Symmetry Without Degeneracy Lift 399

where J ˛ˇn .x/ are polynomials of degree n and orthogonal with respect to their
weight-function !˛ˇ.x/ according to

Z 1
0

R˛ˇn .z/R
˛ˇ

n0
.z/dz D

Z b

a

g˛ˇn .x/g
˛ˇ

n0
.x/df .x/ D

Z b

a

!˛ˇ.x/J ˛ˇn .x/J
˛ˇ

n0
.x/dx

(13)

And vice verse, any hyper-geometric differential equation can be brought back to
an 1D Schrödinger equation in (11) by inverting the transformation in (12).

The above procedure establishes an interesting link between the symmetry
properties of orthogonal polynomials and the degeneracies in the corresponding
potential spectra. In the next subsection we shall see that a Lie algebraic degeneracy
in the Schrödinger spectrum can appear by chance and without it being shared by
the polynomial equation.

3 A Jacobi Polynomial Equation as Eigenvalue Problem
of a “Frustrated” so.4/ Casimir Operator

The hyper-geometric differential equation solved by the Jacobi polynomial
reads [1],

�
1 � x2� d2P ˛ˇ

n .x/

dx2
C Œ.ˇ � ˛/ � .˛ C ˇ C 2/ x�

dP˛ˇ
n .x/

dx
C

C n.nC ˛ C ˇ C 1/P ˛ˇ
n .x/ D 0; (14)

and acquires a shape pretty close to (1) for the following special choice of the
parameters,

˛` D ` � b C 1

2
; ˇ` D `C b C 1

2
; (15)

namely,


 QK2 � .nC `/.nC `C 2/C 2b
d

dx

�
P
`�bC 1

2 ;`CbC 1
2

n .x/ D

D �
1 � x2� d2P

`�bC 1
2 ;`Cb 12

n .x/

dx2
C Œ2b � .2`C 3/ x�

dP
`�bC 1

2 ;`CbC 1
2

n .x/

dx
C

C n.nC 2`C 2/P
`�bC 1

2 ;`CbC 1
2

n .x/ D 0: (16)

The latter relation reveals the Jacobi equation as the so.4/ Null-operator in (7),
“frustrated” by the gradient term

��2b d
dx

	
. In consequence, the Jacobi polynomials
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Table 1 Decompositions of some of the Jacobi polynomials P
`�bC 1

2 ;`CbC
1
2

n

.sin�/ in (15) for fixed ` in so.4/ representation functions of 4D angular
momenta K 2 Œ`; �� with � D nC ` D N � 1
` K P

.˛`;ˇ`/

nD��`.sin�/ D P�
KD` cK�.b/G`C1K�`.sin�/

� K D � P
.˛k ;ˇk/
0 .sin�/ D GkC10 .sin�/

� � 1 K 2 Œ� � 1; �� P
.˛k�1;ˇk�1/
1 .sin�/ D .2kC1/

4k
Gk1 .sin�/ �

� b Gk0 .sin�/

� � 2 K 2 Œ� � 2; �� P
.˛k�2;ˇk�2/
2 .sin�/ D 1

8

.2kC1/

.k�1/
Gk�12 .sin�/ �

� b
2

k
.k�1/

Gk�11 .cot�/C
C b2

2
Gk�10 .sin�/

� � 3 K 2 Œ� � 3; �� P
.˛k�3;ˇk�3/
3 .sin�/ D 1

32

.4�2�1/

.�2�3�C2/
G.k�2/3 .sin�/

� b
8

.2�2��/

.�2�3�C2/
G.k�2/2 .sin�/

C b2

8

.2k�1/

.k�2/
G.k�2/1 .sin�/

� b
24

.4b2k�4b2C2kC1/

.k�1/
�

� G.k�2/0 .sin�/

The K labeled Gegenbauer polynomials contribute to the order O
�
b��K

�
to the

expansion and give the order to which the so.4/ symmetry fades away, with b
defined in (15) and (18)

do not behave as so.4/ representation functions. This is best illustrated through
the finite series decomposition of a Jacobi polynomial of degree n in Gegenbauer
polynomials of degrees running from 0 to n, shown in Table 1. In recalling that the
degrees of the Gegenbauer polynomials under considerations express in terms of
the 4D angular momentum values, K, as n D .K � `/, the decompositions present
themselves as mixtures of so.4/ representation functions of different 4D angular
momentum values, K 2 Œ`; `C n�.

Despite the absence of so.4/ symmetry of the Jacobi polynomials, a curiosity
occurs insofar as the associated 1D Schrödinger equation (in units of „2=.2mR2/),

�
� d2

d�2
C vScI .�I˛`; ˇ`/

�
R
`�bC 1

2 ;`CbC 1
2

n .�/ D � R
`�bC 1

2 ;`CbC 1
2

n .�/ ; (17)

vScI .�I˛`; ˇ`/ D b2 C `.`C 1/

cos2 �
� b.2`C 1/ tan�

cos�
; b D B.2mR2/

„2 ; (18)

R
`�bC 1

2 ;`CbC 1
2

n .�/ D e�b tanh�1 sin� cos`C1 �P `�bC 1
2 ;`CbC 1

2
n .sin�/ ; (19)
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N D nC `C 1; � D N 2; � D E.2mR2/

„2 ; ŒE�; ŒB� D MeV; (20)

reduced to the hyper-geometric differential equation along the line of the above
Eqs. (13)–(12) for � D f .x/ D sin�1 x, and

!`�bC 1
2 ;`CbC 1

2 .x/ D e�b tanh�1 x.1 � x2/`C 1
2 ; (21)

exhibits same degeneracy patterns as the fully so.4/ symmetric problem in (10) and
the underlying (8). In (18), the vScI .�I˛`; ˇ`/ potential is known under the name of
the trigonometric Scarf potential, abbreviated, Scarf I ([8] and references therein).
Under the substitution,

R
`�bC 1

2 ;`CbC 1
2

n .�/ D U
`�bC 1

2 ;`CbC 1
2

n .�/

cos�
; (22)

Eq. (18) is transformed to motion on S3 perturbed by Scarf I. The expansions in

Table 1 apply equally well to the wave functions U
`�bC 1

2 ;`CbC 1
2

n .�/ which can not
transform as so.4/ representation functions despite the so.4/ degeneracy patterns
in the spectrum. In this fashion, we worked out an example that a Lie algebraic
symmetry in a spectral problem does not necessarily imply same symmetry of the
Hamiltonian. Figure 1 is illustrative of this type of so.4/ breaking.

Fig. 1 The breaking of the so.4/ symmetry of the free motion of a scalar particle on S3 in (3)–
(5) and (10), through the external scale B D „

2b
2mR2

, due to a perturbation by the trigonometric

Scarf potential (17)–(20). The wave function U
3
2�b;

3
2Cb

3 .�/ in (22) (right) in comparison to its
counterpart, cos` �G23 .sin�/ in (4) (left) describing the unperturbed so.4/ symmetric motion.
These functions describe equal energies in the respective potential problems in Eqs. (10) and (20)
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Conclusions
In this work we constructed an explicit example for the possibility to remove
a Lie algebraic symmetry of a Hamiltonian by perturbation and without
lifting the unperturbed degeneracy patterns in the spectrum. The clue of
this observation is that Lie algebraic degeneracy patterns can throughout
be tolerant towards external scales, such as masses, temperatures, lengths
etc. Such a type of so.4/ symmetry lift could reconcile the experimentally
detected conformal symmetry patterns in the spectra of the high-lying light
flavored hadrons, both baryons and mesons, with the conformal symmetry
removal through the dilation mass. The relevance of the conformal symmetry
for QCD is predicted by the AdS5/CFT4 duality and is compatible with
spectroscopic data on the light-flavored hadron spectra (see Fig. 2) due to
the walking of the strong coupling constant in the infrared towards a fixed
value [3], sketched in Fig. 3. The relevance of the hyper-spherical geometry
in conformal field theories is derived from the possibility of mapping a
flat space-time QFT on Einstein’s closed universe, R1 ˝ S3R, whose isometry

Fig. 2 Hydrogen like (conformal type) degeneracy in the reported spectra of the
excited L3.2J /, i.e. � baryons (left) and the high-lying light flavored mesons (right)
(for details on the notations and more references see [2, 7]). Full and shadowed
bricks denote degenerate hadron states of opposite parities. The numbers inside of
the parenthesis give the masses (in MeV) while the question marks denote “missing”
states. The meson sector is close to parity doubled, a possible hint on chiral sym-
metry restoration from the spontaneously broken Nambu-Goldstone—to the manifest
Wigner-Wyle mode. Notice the pronounced supersymmetric baryon-meson degeneracy

(continued)
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Fig. 3 Schematic presentation of the walking (dashed line) of the strong coupling constant in
the infrared according to [3]

algebra is the covering of the conformal one, a result due to [9]. The so
called compactified Minkowski space time, in being of finite 3D volume,
provides a natural scenario for the QCD confinement phenomenon [10] and
the inverse of the S3R radius provides a natural scale that can be interpreted as
the temperature [5].
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On the Relation Between an N D 1
Supersymmetric Liouville Field Theory
and a Pair of Non-SUSY Liouville Fields

Leszek Hadasz and Zbigniew Jaskólski

Abstract We discuss a relation between the tensor product of the N D 1 super-
Liouville field theory with the imaginary free fermion and a certain projected tensor
product of the real and the imaginary Liouville field theories. Using techniques
of two dimensional, conformal field theory we give a complete proof of their
equivalence in the NS sector.

1 Introduction

Several years ago the so called AGT relation between partition functions of N D 2

superconformal SU.N / gauge theories in four dimensions and correlation functions
in the two-dimensional Liouville/Toda field theories was established [1,15]. One of
its essential generalizations, first formulated in [2], was the proposal that N D 2

SU.N / gauge theories on R
4=Zp should be related to certain coset conformal fields

theories. Some further checks of the AGT relation for N D p D 2; corresponding
to the N D 1 super-Liouville theory, were done in the NS sector in [4,6,7] and in the
R sector in [3,11]. It was in particular observed in [6,7] that the blow-up formula for
the Nekrasov partition function suggests a precise relation between N D 1 super-
Liouville and Liouville conformal blocks. An explanation of this phenomenon on
the CFT side was given in [16]. It was motivated by old results [8,9,12,13] relating
various rational models realized as quotients,

V.p;m/ �
cSU.2/p � cSU.2/m

cSU.2/pCm
:
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The case relevant for the present discussion is the relation between the Virasoro
minimal models V.m/ D V.1;m/ and the N D 1 superconformal models
SV.m/ D V.2;m/:

V.1/˝ SV.m/ � V.m/˝P V.mC 1/; m D 1; 2; : : : ;

where the symbol ˝P denotes a projected tensor product in which only selected
pairs of conformal families are present. The nonrational counterpart of this relation
proposed in [16] takes the schematic form

free fermion ˝ N D 1 super-Liouville � Liouville ˝P Liouville: (1)

In the NS sector this relation has been made much more precise in [5] where it was
used as an essential element of the proof of the AGT correspondence in the case of
N D p D 2. The extension of (1) to the Ramond sector along with some nontrivial
checks were presented in [14].

Although most of the ingredients and constructions were already discussed in [5]
and [14] a precise content of (1) as an exact equivalence of CFT models was an
open problem. The aim of this letter is to show how the gaps present in [5, 14] can
be filled. For technical details the reader may consult [10].

2 Liouville Field Theory

The Liouville field theory on a flat, two-dimensional space is described by an action

SLŒ'� D
Z
d2z

�j@'j2 C �e2b'
	

where ' is a real, bosonic field. It possesses a holomorphic current (energy-
momentum tensor):

T .z/ D �1
2

�
@'/2 CQ@2'; Q D b C b�1;

of conformal weights .2; 0/; whose modes form the Virasoro algebra

ŒLm;Ln� D .m � n/LmCn C c

12
m
�
m2 � 1� ımCn

with the central charge c D 1C 6Q2:

For c > 0 (what corresponds to Q 2 R) the solution of Liouville field theory is
known:
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• its Hilbert space is

H D
Z

˚
�Vir.p/˝ N�Vir.p/ dp; p 2 RC

where �Vir.p/ is the Virasoro Verma module build on the highest weight state jpi
with the highest weight (eigenvalue of L0) equal to �p D 1

4
Q2 C p2;

• three-point function of primary fields

Vp.z; Nz/ Š e2˛'; ˛ D Q

2
C ip;

is expressible through the special function

(b.x/ D
1Z

0

dt

t

2
4
�
Q

2
� x

�2
e�t �

sinh2


Q

2
� x

�

sinh bt
2

sinh t
2b

3
5

and reads

CL.˛1; ˛2; ˛3/ � (b.2˛1/(b.2˛2/(b.2˛3/

(b.˛1C2C3 �Q/(b.˛1C2�3/(b.˛2C3�1/(b.˛3C1�2/
with ˛1C2�3 � ˛1 C ˛2 � ˛3 etc.

Three-point correlation function C� .˛3; ˛2; ˛1/ of Liouville field theory with
c < 1 was obtained by analytically continuing difference equation satisfied
by CL.˛3; ˛2; ˛1/ to the region c < 1 [17]. This model is still to some extend
mysterious: C� .˛3; ˛2; 0/ does not vanish for ˛3 ¤ ˛2; some degenerate fields do
not decouple, there exist extra operator (beside identity) of dimension 0 and the
spectrum, on which one should factorize correlation functions, is not known.

2.1 N D 1 Superconformal Liouville Field Theory

The action of the model reads

SSLŒ';  � D
Z
d2z

�j@'j2 C  N@ C N @ N C � N  eb'
	

where  ; N are two-dimensional fermions with conformal weights . 1
2
; 0/ and .0; 1

2
/;

respectively. This model possesses two holomorphic currents

T .z/ D � 1
2
.@'/2 � 1

2
 @ CQ@2'; G.z/ D �i @' C iQ@ :
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Their modes satisfy the Neveu-Schwarz–Ramond (or NSR) algebra

ŒLm;Ln� D .m � n/LmCn C c
12
m
�
m2 � 1� ımCn;

ŒLm;Gk� D �
1
2
m � k�GmCk;

fGk;Glg D 2LkCl C c
3

�
k2 � 1

4

�
ıkCl ;

with c D 3
2

C 3Q2:

We shall only discuss the Neveu-Schwarz (or NS) sector with the half-
integer k:

• The super-primary fields in this sector are ˚˛ Š e˛'; with equal left and right
conformal dimensions �p D 1

8
Q2 C 1

2
p2; ˛ D 1

2
C ip:

• The basic three-point coupling constants

CSL.˛3; ˛2˛1/ � h˚˛3˚˛2˚˛1i

and

QCSL.˛3; ˛2˛1/ �
D
˚˛3

� NG� 12 G� 12 � ˚˛2
�
˚˛1

E
;

are known and expressible through the functions

(0.x/ D (b
�
xCb
2

�
(b
�
xCb�1
2

�
; (1.x/ D (b

�
x
2

�
(b
�
xCQ
2

�
:

Let us denote by QFNS the algebra of fermionic modes

ffr ; fsg D ırCs;0; r; s 2 Z C 1
2
; fGk; frg D ŒLm; fr � D 0:

Using them together with the modes of NS algebra one can construct two sets of
generators:

LL
n D 1

1 � b2Ln � 1C 2b2

1 � b2 L
f
n C b

1 � b2
X
r

fn�rGr ;

L�
n D 1

1 � b�2 Ln � 1C 2b�2

1 � b�2 L
f
n C b�1

1 � b�2
X
r

fn�rGr :

They form two mutually commuting Virasoro algebras with central charges

cL D 1C 6 .QL/2 ; QL D bL C 1

bL
; bL D 2bp

2 � 2b2 ;
cL D 1 � 6 .Q� /2 ; Q� D 1

b�
� b� ; 1

b�
D 2p

2 � 2b2 :
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For generic values of the momentum p the highest weight representation of
NSR ˚ QFNS is irreducible and its character is given by

�NSR˚ QFNS
.q/ D �FNS.q/

2�B.q/

where

�FNS.q/ D
Y
n>0



1C qn� 12

�
; �B.q/ D

Y
n>0

1

1 � qn :

The Jacobi triple product identity

Y
n>0



1C qn� 12

�2
.1 � qn/ D

X
k2Z

q
k2

2

then gives a decomposition of the highest weight module of NSR ˚ QFNS into the
direct sum

�NSR˚ QFNS
D
M
j2Z

�
j

Vir˚Vir:

Here �jVir˚Vir is the Verma module of the algebra Vir ˚ Vir with the highest weight
jp; j i;

L
L;�
0 jp; j i D �L;� .p; j /jp; j i; LL;�

n jp; j i D 0; n > 0

where

�L.p; j / D 1

1 � b2
 
Q2

8
C .p C ij b/2

2

!
;

�� .p; j / D 1

1 � b�2
 
Q2

8
C
�
p C ij b�1

�2
2

!
:

3 The Relation

To precisely formulate the relation between double Liouville and super-Liouville
field theory we have to:

• construct the states jp; j i in �NS˚ QFNS
;

• construct the corresponding operators (they are primary fields with respect to
Vir ˚ Vir; but descendants of NS),
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• compute normalization factors and check the equality of three-point correlation
functions on both sides,

• prove the equality of higher-point correlation functions.

There exist a well known family of “free field” (or Feigin-Fuchs) representations
of the NSR generators in terms od the bosonic and fermionic oscillators,

L0.p/ D
X
m>1

c�mcm C
X
k> 1

2

k  �k k C 1
8
Q2 C 1

2
p2;

Ln.p/ D 1
2

X
m¤0;n

cn�mcm C 1
2

X
k2ZC 1

2

k  n�k k C


inQ

2
C p

�
cn; n ¤ 0;

Gk.p/ D
X
m¤0

cm k�m C .iQk C p/ k;

where

Œcm; cn� D mımCn; f r;  sg D ırCs:

If we denote by j!i the Fock vacuum of the cm;  k; fr algebra and define

�k D fk � i k
then the states

jp; j iF D ˝.p; j /�� 2j�12 : : : �� 12 j!i

do satisfy defining equations of jp; j i:
In order to view them as states in �NS˚ QFNS

we need to express — using the form
of the Feigin-Fuchs representation of NSR — the state

 � 2j�12 : : :  � 12 j!i

in the basis of the NS Verma module.
Let J;K;K 0 and M;N;N 0 denote multiindices. We have

c�M �J j!i D
X

N;N 0;K;K0

h!jG	

�K0.p/L
	

�N 0.p/c�M �J j!i �

� BN 0K0;NK L�NG�K j�pi

where BN 0K0;NK is the inverse to the Gramm-Shapovalov matrix on �NS: The
coefficients of this expansion are rational functions of p with poles at some subset
of zeroes of the Kac determinant.
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Let us define

˝.p; j / D
Y
hr;si2Z

�
2ip C rb C sb�1

�

where Z is chosen such that the coefficients c 1
2
1
2 :::

1
2
; c 1

2
1
2 :::

3
2
; : : : of the expansion

˝.p; j / � 2j�12 : : :  � 12 j!i D


c 1
2
1
2 :::

1
2
.p/G

j2

� 12
C c 1

2
1
2 :::

3
2
G
j 2�3
� 12

G� 32 C : : :
�

j!i

are polynomials in p with no common factor. One can then show that

Z D fhr; si W r; s 2 Z>0; r C s � 0 mod 2; r C s 6 2j g:

We have already demonstrated that (as the vector spaces)

M
j2Z

�Vir.�
L.p; j //˝ �Vir.�

� .p; j // D �NS.�p/˝ � QFNS

where

LL�M j �L
p;j i ˝ L��N j ��p;j i �! LL�ML��N jp; j i

The equivalence above is a unitary isomorphism if we assume on the l.h.s. the
scalar product such that

h�L
p;j ˝ ��p;j j �L

p;j 0 ˝ ��p;j 0i D hp; j jp;�j i ıjCj 0;0:

The skew form of this product is the only one consistent with the complex weights
�L.p; j /;�� .p; j /; j ¤ 0 and the hermiticity of LL

0; L
�

0 :

A counterpart of the map between vector spaces

LL�ML��N jp; j in �! LL�M j �L
p;j i ˝ L��N j ��p;j i:

is a map between chiral vector operators

LL�ML��NVp;j �! LL�MV L
p;j ˝ L��NV �

p;j :

In particular

Vp;j �! V L
p;j ˝ V �

p;j :

Let us denote NS ˚ QFNS � ANS: The matrix element of the chiral field Vp2;j2.z/
between the states jp1; j1 i � �p1;j1 and jp3; j3 i can be written as
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hp3; j3 jVp2;j2.1/ jp1; j1 i D CNS
b .˛3; ˛2; ˛1/ �

A
NS.�p3;j3 ; �p2;j2 ; �p1;j1 j1/

where CNS is a chiral three point super-Liouville structure constants.
The three point blocks �A

NS can be explicitly calculated by applying free-field
representation of involved fields, the so-called reflection map on the ANS algebra
and computing Selberg averages of some symmetric polynomials.

On the double Liouville side the matrix element
D
�L
p3;j3

ˇ̌
ˇ˝

D
��p3;j3

ˇ̌
ˇV L

p2;j2
˝ V �

p2;j2

ˇ̌
ˇ�L
p3;j3

E
˝
ˇ̌
ˇ��p3;j3

E

is given by a product of “ordinary” and “imaginary” Liouville chiral structure
constants

CL
bL.˛

L
3 C j3b

L

2
; ˛L

2 C j2b
L

2
; ˛L

1 C j1b
L

2
/C�

b� .˛
�

3 C j3

2b�
; ˛�2 C j2

2b�
; ˛�1 C j1

2b�
/:

The equality

CL
bL.˛L

3 C j3b
L

2
; ˛L

2 C j2b
L

2
; ˛L

1 C j1b
L

2
/C�

b� .˛
�

3 C j3
2b�
; ˛�2 C j2

2b�
; ˛�1 C j1

2b�
/

CNS
b .˛3; ˛2; ˛1/

D
0
@ 3Y
kD1

.�1/ j
2
k
2p

l.2˛k; 2jk/l.2˛k �Q; 2jk/

1
A �A

NS.�p3;j3 ; �p2;j2 ; �p1;j1 j1/

where

l.x; n/ D
Y

06rCs<n

�
x C rb C sb�1

�
; r; s 2 N; r C s 2 2N;

then follows thanks to some identities satisfied by the Barnes special functions.
After a final check that for LL

n; L
�
n generators one can use the same Virasoro

Ward identities on both sides of the correspondence, we conclude that the map

LL�ML��N jp; j in �! LL�M j �L
p;j i ˝ L��N j ��p;j i;

an isomorphism of Vir ˚ Vir representations, together with its counterpart for the
corresponding chiral operators

LL�ML��NVp;j �! LL�MV L
p;j ˝ L��NV �

p;j ;

provides an equivalence of the SLiouville � fermion and double Liouville field
theories.
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Let us finally note some unusual features of the correspondence: it is chiral down
to the level of structure constants and on the double-Liouville side there appear
operators with arbitrary integer, two-dimensional “spins”.
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Multi-Point Virtual Structure Constants
and Mirror Computation of CP2-Model

Masao Jinzenji

Abstract This article is a brief summary of the results presented in the paper
(Jinzenji, M., Shimizu, M.: Multi-point virtual structure constants and mirror
computation of CP 2-model. Communications in Number Theory and Physics, 7(3),
411–468 (2013)) with the same title, which is a joint work with Dr. M. Shimizu.

1 Introduction

In [8], we gave a geometrical construction of the mirror map used in the mirror
computation of the genus 0 Gromov-Witten invariants of projective hypersurfaces.

LetMk
N be a degree k hypersurface in CPN�1. The two-pointed Gromov-Witten

invariant hOhaOhb i0;d is a rational number geometrically defined by the following
formula:

hOhaOhb i0;d D
Z
M0;2.CPN�1;d/

ev�1 .ha/ ^ ev�2 .hb/ ^ ctop.R0��ev�3OCPN�1 .k//:

(1)
h is the hyperplane class inH1:1.CPN�1;C/.M0;n.CP

N�1; d/ is the moduli space
of stable maps of degree d from genus 0 semi-stable curves with n marked points
to CPN�1. evi W M0;n.CP

N�1; d/ ! CPN�1 is the evaluation map at the i -th
marked point. � W M0;3.CP

N�1; d/ ! M0;2.CP
N�1; d/ is the forgetful map that

forgets the third marked point. Roughly speaking, this invariant counts the number
of rational curves in Mk

N that intersect Poincaré dual cycles PD.ha/ and PD.hb/.
The first and the second factors in the integrand of (1) represent the condition that
the image of the stable map intersect PD.ha/ and PD.hb/, and the third factor
guarantees that the image curve lies inside the hypersurface. If the topological
selection rule:

aC b D N � 3C .N � k/d; (2)

M. Jinzenji (�)
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is satisfied, this invariant becomes non-trivial (otherwise, it is trivially 0). If N > k,
it is believed to be an integer and to count indeed the number of rational curves that
satisfies the above conditions.

Mirror computation of the genus 0 Gromov-Witten invariant hOhaOhb i0;d is a
way of computing it by using the following differential equation as a starting point:

�
.@x/

N�1 � k � ex � .k@x C k � 1/.k@x C k � 2/ � � � .k@x C 1/

�
w.x/ D 0: (3)

Let us briefly review the process of mirror computation in the case when N D k,
i.e., when the hypersurface is a Calabi-Yau manifold. In this case, we consider the
following decomposition of the differential operator in the differential equation (3):

��
@x
�k�1 � kex

k�1Y
jD1

�
k@x C j

��
w.x/ D (4)

D 1

QLk;kk�1.ex/
@x.

1

QLk;kk�2.ex/
@x.

1

QLk;kk�3.ex/
@x.� � � . 1

QLk;k1 .ex/
@x.

w.x/
QLk;k0 .ex/

//: � � � ///

where QLk;kj .ex/ D 1 C P1
dD1 QLk;k;dj edx I .j D 0; 1; � � � ; k � 1/ is a power series

in ex . We call the expansion coefficient QLk;k;dj “virtual structure constants”. These
power series are efficiently determined by the solution of the differential equation.
Let wj .x/ .j D 0; 1; 2; � � � ; k � 1/ be a set of functions given by,

w.x; y/ WD
1X
dD0

Qkd
jD1.j C ky/Qd
jD1.j C y/k

e.dCy/x; (5)

wj .x/ WD 1

j Š

@jw

@yj
.x; 0/:

wj .x/ .j D 0; 1; � � � ; k � 2/ are solutions of (3) with N D k. Then QLk;kj .ex/ is
determined inductively by the following relations1:

QLk;k0 .ex/ D w0.x/; QLk;k1 .ex/ D d

dx

w1.x/

w0.x/
D d

dx

w1.x/
QLk;k0 .ex/

; (6)

QLk;kj .ex/ D d

dx
.

1

QLk;kj�1.ex/
d

dx
.

1

QLk;kj�2.ex/
d

dx
.

1

QLk;kj�3.ex/
� � � �

� d

dx
.

1

QLk;k1 .ex/

d

dx

wj .x/
QLk;k0 .ex/

/ � � � ///:

1 In (6), we need to use formally wk�1.x/ to determine QLk;kk�1.ex/ though it is not a solution of (3).
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We define the mirror map t D t .x/ which plays a crucial role in the mirror
computation from QLk;k1 .ex/:

t D t .x/ D
Z

QLk;k1 .ex/dx D x C
1X
dD1

QLk;k;d1

d
edx: (7)

By inverting the mirror map in the form x D x.t/, we can obtain the generating
function of hOhj�1Ohk�2�j i0;d from

R QLk;kj .ex/dx .j D 1; 2; � � � ; k � 2/ by the
following equality:

kt C
1X
dD1

hOhj�1Ohk�2�j i0;d edt D kx.t/C
1X
dD1

k QLk;k;dj

d
edx.t/: (8)

This equality follows from the mirror computation of three point genus 0 Gromov-
Witten invariants of Mk

k [7]:

k C
1X
dD1

hOhOhj�1Ohk�2�j i0;d edt D d

dt

�
kt C

1X
dD1

hOhj�1Ohk�2�j i0;d edt
�

D k �
QLk;kj .ex.t//

QLk;k1 .ex.t//
: (9)

Our motivation of the work [8] comes from the formula (8). In (8),

hOhj�1Ohk�2�j i0;d and
k QLk;k;dj

d
differ only by coordinate change. Therefore,

there must be a possibility to construct
k QLk;k;dj

d
as an intersection number of some

moduli space of holomorphic maps from genus 0 curve to CPN�1, with different
compactification. In [8], we consider a moduli space of quasi-maps with two marked
points from genus 0 curve to CPN�1, compactified by C� geometric invariant
theory. We denote this space by eMp0;2.N; d/. Detailed construction of this moduli
space is given in [8]. Boundary components of eMp0;2.N; d/ consist only of quasi-
maps from genus 0 semi-stable curves whose components are arranged in a line
shape. Therefore, combinatorial structure of boundaries is much simpler than the
moduli space of stable maps: M0;2.CP

N�1; d/. In [8], we defined the following
intersection number of eMp0;2.N; d/, whose geometrical meaning is analogous to
hOhaOhb i0;d of Mk

N .

w.OhaOhb /0;d D
Z
fMp0;2.N;d/ ev�1 .ha/ ^ ev�2 .hb/ ^ ctop.Ek/: (10)

The three factors in the integrand has the same geometrical meaning as the
ones in (1). Since combinatorial structure of eMp0;2.N; d/ is much simpler than
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M0;2.CP
N�1; d/, we can derive an explicit closed formula of w.OhaOhb /0;d with

the aid of localization technique. With this formula, we proved the following
theorem:

Theorem 1 ([8]).

w.Ohj�1C.N�k/dOhN�2�j /0;d D k QLN;k;dj

d
: (11)

Here, QLN;k;dj is a “virtual structure constant” constructed from the differential

equation (3), and it is translated into genus 0 Gromov-Witten invariants of Mk
N via

“generalized mirror transformation”. The expansion coefficients of the mirror map

used in the generalized mirror transformation are given by
QLN;k;d
1C.k�N/d

d
in the case of

general k and N . Since QLN;k;dj D 0 .j < 0/, the mirror map becomes trivial when
N � k > 1. In this case, we obtain,

w.Ohj�1C.N�k/dOhN�2�j /0;d D k QLN;k;dj

d
D hOhj�1C.N�k/dOhN�2�j i0;d ; (12)

.N � k > 1/:

Let us look back at the k D N case. If we combine (7) with (11), we obtain

t D t .x/ D x C
1X
dD0

w.O1Ohk�3 /0;d

k
edt : (13)

This formula says that the mirror map can be interpreted as a generating function
of intersection numbers of eMp0;2.N; d/. 2 We can also rewrite (8) in the following
form:

kt C
1X
dD1

hOhj�1Ohk�2�j i0;d edt D kx.t/C
1X
dD1

w.Ohj�1Ohk�2�j /0;d e
dx.t/: (14)

(13) and (14) say that we can reconstruct the mirror computation of genus 0
Gromov-Witten invariants by using w.OhaOhb /0;d as a starting point. Our aim of this
article is to generalize the above results to construct a kind of “mirror computation”
of genus 0 Gromov-Witten invariants of CP 2.

2Recently, some works that can be regarded as generalization of this result appeared [3, 5].
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2 Multi-Point Virtual Structure Constants

In the CP 2 case, interesting genus 0 Gromov-Witten invariants are:
h.Oh2/

3d�1i0;d .d 	 1/. Therefore, in order to generalize the formalism in
Sect. 1 to the CP 2 case, we have to construct w-intersection numbers with more
than two operator insertions. In [10], we constructed eMp0;2jn.N; d/, the moduli
space of quasi-maps from genus 0 curve to CPN�1 with 2 C n marked points,
compactified by C� geometric invariant theory. In construction of eMp0;2jn.N; d/,
we use semi-stable genus 0 curves whose component CP 1’s are arranged in a line
shape and are connected at 0 and 1. The 0 of the left end CP 1 and the 1 of the
right end CP 1 are two special marked points and correspond to 2 in the notation 2jn.
These marked points are special and distinguished from th other n marked points.
The remaining n marked points are distributed to CP 1 components randomly, but
should not lie on 0 and 1 of each component CP 1. In contrast to the construction
of eMp0;2.N; d/, we allow existence of some component CP 1’s mapped to a point
in CPN�1. To describe this kind of situation, we use M0;2jm, the moduli space of
complex structure of genus 0 curve with 2Cm marked points, compactified by C�
geometric invariant theory [1,13]. Detailed construction ofeMp0;2jn.N; d/ is given in
[10]. With this moduli space, we introduced the following intersection number that
can be regarded as an analogue of the genus 0 Gromov-Witten invariant of CPN�1:
hOhaOhb

Qn
jD1Oh

mj i0;d .

Definition 1.

w.OhaOhb j
nY

jD1
Oh

mj /0;d WD
Z
fMp0;2jn.N;d/ ev�0 .ha/ �ev�1.hb/ �

nY
jD1

ev�j .hmj /; (15)

where � is the product of the cohomology ring H�.eMp0;2jn.N; d//.

In (15), ev0 is the evaluation map at 0 of the left end CP 1, and ev1 is the evaluation
map at 1 of the right end CP 1. evj is also the evaluation map at the j -th marked

point of the remaining n marked points. In the same way as the eMp0;2.N; d/ case,
we can derive an explicit closed formula of this intersection number.

Theorem 2.

w.OhaOhb j
nY
iD1
.Ohmi //0;d

D 1

.2�
p�1/dC1

I
E0.0/

d z0
.z0/N

I
E1.0/

d z1
.z1/N

� � �
I
Ed.0/

d zd
.zd /N

�.z0/a �
�d�1Y
jD1

1

.2zj � zj�1 � zjC1/

�
� .zd /b �

nY
iD1

� dX
jD1

w1mi .zj�1; zj /
�
; .d > 0/:

(16)
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where w1m.z;w/ D zm�wm

z�w and 1

2�
p�1

H
E
j

.0/

d zj means the operation of taking

residues at zj D 0 and zj D zj�1CzjC1
2

for j D 1; 2; � � � ; l � 1 (resp. zj D 0

for j D 0; d ).

The proof of this theorem is given by localization technique, but in contrast to
the case of eMp0;2.N; d/, some results on intersection numbers of gravitational
descendants on M0;2jn are needed. For this purpose, we used the results given in
[1, 13]. In (16), effect of the first two operator insertions OhaOhb is reflected in
the terms .z0/a and .zd /b in the r.h.s., but effect of remaining operator insertionsQn
iD1.Ohmi / is represented by

Qn
iD1
�Pd

jD1 w1mi .zj�1; zj /
�

. This fact tells us that

these two kinds of operator insertions have different characteristics. Therefore we
insert “j” in the notation :w.OhaOhb j

Qn
iD1.Ohmi //0;d . From this formula, we can

easily see that the puncture axiom:

w.OhaOhb jO1

nY
jD1

Oh
mj /0;d D 0; (17)

and the divisor axiom:

w.OhaOhb jOh

nY
jD1

Oh
mj /0;d D d � w.OhaOhb j

nY
jD1

Oh
mj /0;d ; (18)

hold for the latter type of operator insertions.

3 Mirror Computation

In this section, we focus on the intersection number w.OhaOhb j
Qn
iD1.Ohmi //0;d for

CP 2 and use it as the starting point of mirror computation of genus 0 Gromov-
Witten invariants of CP 2 in the spirit of the formulas (13) and (14). Since
H�;�.CP 2;C/ is spanned by 1 D h0, h and h2, we introduce the following
generating function of w.OhaOhb j

Q2
jD0.Ohj /

mj /0;d :

Definition 1.

w.OhaOhb j.x0; x1; x2//0

WD xc �
Z
CP2

haCbCc C
X

d>0;fmj g
w.OhaOhb j

2Y
jD0

.Ohj /
mj /0;d �

2Y
jD0

.xj /mj

mj Š
;

(19)

where xj .j D 0; 1; 2/ is the variable associated with insertion of Ohj .
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Since the puncture axiom (17) and the divisor axiom (18) hold for operator
insertions on the right side of “j”, the generating function is simplified into the
following form:

w.OhaOhb j.x0; x1; x2//0 D xc �
Z
CP2

haCbCc C (20)

C
X
d>0;m

w.OhaOhb j.Oh2/
m/0;d � edx1 � .x

2/m

mŠ
:

We also introduce the corresponding generating function of genus 0Gromov-Witten
invariants of CP 2.

Definition 2. Let hQ2
jD0.Ohj /

mj i0;d be the rational Gromov-Witten invariant of
degree d of CP 2.

hOhaOhb .t
0; t 1; t 2/i0 WD

WD t c �
Z
CP2

haCbCc C
X

d>0;fmj g
hOhaOhb

2Y
jD0

.Ohj /
mj i0;d �

2Y
jD0

.t j /mj

mj Š
D

D t c �
Z
CP2

haCbCc C
X
d>0;m

hOhaOhb .Oh2/
mi0;d � edt1 � .t

2/m

mŠ
; (21)

where t j .j D 0; 1; 2/ is the variable associated with insertion of Ohj .

With this set-up, we state the following conjecture, which is a generalization of the
results given by (13) and (14) to the CP 2 case.

Conjecture 1. If we define the mirror map,

t j .x0; x1; x2/ WD w.Oh2�jO1j.x0; x1; x2//0; (22)

we have the following equality:

hOhaOhb .t
0.x0; x1; x2/; t 1.x0; x1; x2/; t 2.x0; x1; x2//i0 D

D w.OhaOhb j.x0; x1; x2//0: (23)

Conversely, if we invert the mirror map,

xj D xj .t0; t 1; t 2/; (24)
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we obtain the mirror formula to compute the genus 0 Gromov-Witten invariants of
CP 2 from the multi-point virtual structure constants:

hOhaOhb .t
0; t 1; t 2/i0 D w.OhaOhb j.x0.t0; t 1; t 2/; x1.t0; t 1; t 2/; x2.t0; t 1; t 2///0:

(25)

Since we have the formula (16) to compute w.OhaOhb j
Q2
jD0.Ohj /

mj /0;d , we can
write down numerically the mirror maps.

t 2 D x2C1

4
q.x2/4 C 33

70
q2.x2/7 C 16589

12600
q3.x2/10 C 143698921

32432400
q4.x2/13 C � � � ;

t 1 D x1 C 1

2
.x2/3q C 7

10
.x2/6q2 C 2593

1512
q3.x2/9 C 2668063

498960
q4.x2/12 C � � � ;

t 0 D x0 C 1

2
.x2/2q C 8

15
.x2/5q2 C 983

840
q3.x2/8 C 4283071

1247400
q4.x2/11 C � � � ;

.q WD ex
1

/: (26)

Of course, we can also compute one of the generating function,

w.OhOhj.x0; x1; x2//0 D

D x0 C .x2/2q C 16

15
.x2/5q2 C 961

420
q3.x2/

8 C 4105537

623700
q4.x2/11 C � � � : (27)

If we invert the mirror maps and substitute them to (27),

w.OhOhj.x0.t0; t 1; t 2/; x1.t0; t 1; t 2/; x2.t0; t 1; t 2///0 D

D t 0 C 1

2
.t2/2QC 1

30
.t2/5Q2 C 3

1120
.t2/8Q3 C 31

124740
.t2/11Q4 C � � �

D t 0 C 1

2Š
.t2/2QC 22

5Š
.t2/5Q2 C 32 � 12

8Š
.t2/8Q3 C 42 � 620

11Š
.t2/11Q4 C � � �

.Q WD et
1

/; (28)

the result coincides with hOhOh.t
0; t 1; t 2/i0 computed from the associativity

equation [12]. If we compute,

w.Oh2Oh2 j.x0; x1; x2//0 D

D q C 2

3
.x2/3q2 C 17

15
q3.x2/6 C 6455

2268
q4.x2/9 C � � � ; (29)
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we obtain hOh2Oh2.t
0; t 1; t 2/i0.

w.Oh2Oh2 j.x0.t0; t 1; t 2/; x1.t0; t 1; t 2/; x2.t0; t 1; t 2///0 D

D QC 1

6
.t2/3Q2 C 1

60
Q3.t2/6 C 31

18144
Q4.t2/9 C 1559

8553600
Q5.t2/12 C � � �

D QC 1

3Š
.t2/3Q2 C 12

6Š
.t2/6Q3 C 620

9Š
.t2/9Q4 C � � � : (30)

In this way, we can confirm numerically the validity of Conjecture 1. We can prove
the conjecture up to the d D 3 case by using the technique of manipulation of
residue integrals, that was presented in Sect. 5 of [9], but for general proof, we
have to overcome difficulties of taking non-equivariant limit of the localization
formula of Gromov-Witten invariants obtained from [11]. In [4], a different type
of mirror computation of genus 0 Gromov-Witten invariants of CP 2 is presented. It
is a modern refinement of the results in [2,6] and it starts from extended I -function.
We compared our mirror map (26) with the mirror map obtained from the extended
I -function. Surprisingly, these two mirror maps turn out to be different. Therefore,
we have to answer the question whether these two types of mirror computations are
essentially different or not.
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N-Conformal Galilean Group as a Maximal
Symmetry Group of Higher-Derivative
Free Theory

Krzysztof Andrzejewski and Joanna Gonera

Abstract It is shown that for N odd the N -conformal Galilean algebra is the
algebra of maximal Noether symmetry group, both on the classical and quantum
level, of free higher derivative dynamics.

1 Introduction

Contrary to the relativistic case, the structure of non-relativistic space-time is
more complicated. Instead of being pseudo-Riemannian manifold it is equipped
with a foliation of codimension one together with a torsionless affine connection
obeying certain compatibility conditions. This implies that the notion of conformal
invariance is more subtle. As a result there exists a variety of transformation
groups GN numbered by integer N which can be viewed as the counterparts of
relativistic conformal symmetry [1, 2]. They have a common structure of direct
product of SU.2/ and SL.2;R/ groups acting on Abelian normal subgroup and
differ only by the choice of the latter. ForN odd the non-relativistic conformal group
admits central extension. The centrally extended N D 1 group is the well-known
Schrodinger group, which is the maximal symmetry group for free motion both on
the classical and quantum level [3–5]. The natural question is what are the simplest
(i.e. such that our group acts transitively) dynamics invariant under the action ofGN
withN -odd,N > 1. On the Hamiltonian level the answer has been given in [6] and,
in general case of non-trivial internal degrees of freedom, in [7]. It appeared that the
relevant dynamics is the free motion described by .NC1/-th order equation. Below,
following our common paper [8] we complete the picture by showing that the GN
group is maximal symmetry group of the above higher-derivative dynamics.
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2 The Niederer’s Result

The Schrodinger group can be defined as the most general group of transformations
(of wave function) of the form

 .t;q/ D f .t;q/ .g�1.t;q// (1)

where

.t;q/ �! g.t;q/ (2)

is the group action on configuration space, which leaves invariant free Schrodinger
equation,

i@t D H ;  D  .t;q/: (3)

The Lie algebra of the group of these transformations consists of the operators X

� iX D a
@

@q
C a

@

@t
C c; (4)

The invariance condition can be now written in the form

Œi@t �H;X� D i�.i@t �H/; (5)

for a certain function � D �.t;q/ (see [5]).
The transformation (1) provides the quantum counterpart of point transformations.
On the classical level the general infinitesimal point transformation reads

q0.t 0/ D q.t/C ıq.q.t/; t/; t 0 D t C ıt.t/ (6)

and yields the following conserved charge

G D ıq
@L

@ Pq � ıtH � ıf D .ıq/p � ıtH � ıf; (7)

where ı Pf is the (infinitesimal) change of the Lagrangian.
G obeys the well known condition

fG;H g C @G

@t
D 0: (8)

On the quantum level one has (assuming there are no ordering problems)

 0 D OV  ; OV ' 1C i� OG; (9)
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with OG obeying quantum counterpart of classical condition

Œ OG; OH�C i
@ OG
@t

D 0: (10)

In order to write out the generator QG acting “on shell” (i.e. on the set of solution to
Schrodinger equation) one has to replace OH by i @

@t
in OG. Therefore, the resulting

relation reads

OG D QG C ıt.i
@

@t
� OH/: (11)

Equations (10) and (11) give

Œ QG; i @
@t

� OH� D iı Pt
�
i
@

@t
� OH

�
; (12)

so we arrive at the Niederer’s condition withX D QG and � D � Pıt . This implies that
� depends on time only; however, we admitted more general form of � (as Niederer
did) to provide the additional consistency check.

3 Symmetries of Higher Derivative Free Theory

3.1 The Classical Case

We consider the free higher derivative theory defined by the Lagrangian

L D m

2

�
dnq
dtn

�2
; (13)

where m is a “mass” parameter.
Let us first look at the symmetry on the classical level. We are looking for all

point Noether symmetries of the Lagrangian (13), i.e. for the transformations

t 0 D t 0.t/; q0.t 0/ D q0.q; t /; (14)

obeying

L.q0;
dq0

dt 0
; : : : ;

dnq0

dt 0n
/
dt 0

dt
D

L.q;
dq
dt
; : : : ;

dnq
dtn

/C df

dt
.q;

dq
dt
; : : : ;

d .n�1/q
dt.n�1/

/: (15)



428 K. Andrzejewski and J. Gonera

We write (14) in infinitesimal form

t 0 D t C � .t/; q0.t 0/ D q C �ffi.q; t / (16)

and insert in Eq. (15).
Note that f D f .q; Pq; : : :;q.n�1//. This gives the following forms of the

functions  and ffi entering Eq. (16)

 D � C �t C ct2;

�˛ D
�
2n � 1
2

�
P q˛ C !˛ˇqˇ C

2n�1X
kD0

v˛kt
k: (17)

Writing out Eq. (16) in differential form and identifying the coefficients related
to arbitrary parameters, one finds the generators of the most general point Noether
symmetry.

H D i
@

@t
; D D �i t @

@t
� i

�
2n � 1
2

�
q
@

@q
;

K D i t 2
@

@t
C i .2n � 1/ tq @

@q
; (18)

J D �iq � @

@q
; Ck D i.�1/ktk @

@q
:

It is straightforward to check that they obey the following algebra

ŒD;H� D iH;

ŒD;K� D �iK;
ŒK;H� D 2iD;

ŒJ˛; Jˇ� D i�˛ˇ�J� ;

ŒJ˛; Cˇk� D i�˛ˇ�C�k;

ŒH;C˛k� D �ikC˛k�1; (19)

ŒD; C˛k� D i
�
2n�1
2

� k�C˛k;
ŒK; C˛k� D i.2n � 1 � k/C˛kC1:

which is N -conformal Galilean algebra with N D 2n � 1 [1, 2, 9–11].
It is known that for N odd this algebra admits central extension. However, the

central charge appears only on Hamiltonian level.
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3.2 The Quantum Case

Lagrangian dynamics defined by the Lagrangian

L D m

2

�
dnq
dtn

�2
; (20)

can be put in the Hamiltonian form using the Ostrogradski formalism [12]. To this
end we enlarge the configuration space. The new coordinates are

q1 D q; q2; : : : ;qn (21)

The Ostrogradski Hamiltonian is

H D
n�1X
jD1

pjqjC1 C 1

2m
p2n: (22)

To pass to the quantum description we write out the Schrodinger equation

i@t D H ;  D  .t;q1; : : : ;qn/: (23)

Again we look for transformations of the form

 .t;q1; : : : ;qn/ ! .Tg /.t;q1; : : : ;qn/ D
D fg.t;q1; : : : ;qn/ .g�1.t;q1; : : : ;qn//; (24)

leaving the Schrodinger equation invariant. The relevant symmetry generators
read now

� iX D
nX

jD1
aj

@

@qj
C a

@

@t
C c; (25)

and the symmetry condition remains unchanged

Œi@t �H;X� D i�.i@t �H/; (26)

except that � D �.t;q1; : : : ;qn/. In general, one can argue as previously that �
depends on time only. We keep the qi dependence in order to check this explicitly.
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The form of the symmetry generators and the symmetry condition implies the
following set of equations on a coefficient of the operator X

� D Qa;

�qjC1 D Qaj � ajC1; j D 1; : : : ; n � 1;
0 D iQc C 1

2m
@2c
@q2n
;

0 D iQan C 1
2m

@2an
@q2n

C 1
m

@c
@qn
;

0 D @a
@qn
; (27)

0 D @ajˇ
@qn˛

; j D 1; : : : ; n � 1;
ı˛ˇ D @anˇ

@qn˛
C @an˛

@qnˇ
;

where ˛; ˇ etc. are vector indeces while Q D @
@t

C Pn�1
kD1 qkC1 @

@qk
: The detailed

analysis of Eq. (27) [13] leads to the following conclusion:
The most general form of the operator X is a linear combination of generators

H D �i @
@t

I

D D �i t @
@t

� i
nX

jD1
.
n

2
C 1

2
� j /qj @

@qj
� i 3

4
n2 I

K D �i t 2 @
@t

� i 3
2
n2t � i

nX
iD1

�
.j � 1/.2nC 1 � j /qj�1 @

@qj
�

�i t.2n � 2j C 1/qj
@

@qj

�
�mn

2

2
.qn/2 I

Cl D �i lŠ.
lX

kD0

t l�k

.l � k/Š
@

@qkC1
/; l D 0; : : : ; n � 1 I

Cj D �ij Š
n�1X
lD0

t j�l

.j � l/Š
@

@qlC1
�mj Š

jX
kDn

q2n�k.�1/n�k t j�k

.j � k/Š ;

j D n; : : : ; 2nC 1 I

J D �i
nX

jD1
qj � @

@qj
: (28)

Again it is not difficult to check by the explicit calculation that they close to the
centrally extended N -conformal Galilean algebra (N D 2n � 1) with m being the
central charge.
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Conclusions

• For N -odd the N -conformal Galilean algebra/group has transparent inter-
pretation. It is the maximal group of point transformations which are the
symmetry transformations, both on classical and quantum level, of higher
derivative free dynamics.

This result extends the one obtained in [5,6] where has been shown that
forN oddN -conformal Galilean algebra is the symmetry algebra of higher
derivative free theory. For N even such simple interpretation is lacking.

• The equation of motion resulting from the Lagrangian

L D m

2

�
dnq
dtn

�2
; (29)

is of the form

dNC1q
dtNC1

D 0; n D N C 1

2
; (30)

The maximal set of point transformations which leaves the above equation
invariant takes the same form for allN . The main difference is that forN -even
equation (30) is of odd order and has no simple Lagrangian form.
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7. Andrzejewski, K., Gonera, J., Maślanka, P.: Phys. Rev. D86, 065009 (2012)
8. Andrzejewski, K., Gonera, J.: Phys. Lett. B721, 319 (2013)
9. Galajinsky, A.V.: Nucl. Phys. B832, 586 (2010)

10. Galajinsky, A.V., Masterov, I.: Nucl. Phys. B866, 212 (2013)
11. Galajinsky. A.V., Masterov, I.: Phys. Lett. B702, 265 (2011)
12. Ostrogradski, M.: Mem. Acad. St. Petersburg 4, 385 (1850)
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Virasoro Structures in the Twisted Vertex
Algebra of the Particle Correspondence
of Type C

Iana I. Anguelova

Abstract In this paper we study the existence of Virasoro structures in the twisted
vertex algebra describing the particle correspondence of type C. We show that this
twisted vertex algebra has at least two distinct Virasoro structures: one with central
charge 1, and a second with central charge �1.

1 Introduction

This paper is part of a series studying various particle correspondences from the
point of view of vertex algebras. There are several types of particle correspondences,
such as the boson-fermion and boson-boson correspondences, known in the litera-
ture. The best known is the charged free fermion-boson correspondence, also known
as the boson-fermion correspondence of type A (the name “type A” is due to the
fact that this correspondence is canonically related to the basic representations of
the Kac-Moody algebras of type A, see [8, 9, 14]). The correspondence of type A is
an isomorphism of super vertex algebras, but most boson-fermion correspondences
cannot be described by the concept of a super vertex algebra due to the more general
singularities in their operator product expansions. In order to describe the more
general cases, including the correspondences of types B, C and D-A, in [1] and
[2] we defined the concept of a twisted vertex algebra which generalizes super
vertex algebra. In [2] we showed that the correspondences of types B, C and D-
A are isomorphisms of twisted vertex algebras. As expected in chiral conformal
field theory, many examples of super vertex algebras were shown to have a Virasoro
structure. Super vertex algebras with a Virasoro field are called vertex operator
algebras (see e.g. [11, 12, 18], subject also to additional axioms), or conformal
vertex algebras [10,15]; and are extensively studied. In particular, the boson-fermion
correspondence of type A has a one-parameter family of Virasoro fields, LA;�.z/,
parameterized by � 2 C, with central charge �12�2 C 12� � 2 (see e.g. [14, 15]).
As was done for super vertex algebras, in a series of papers we study the existence
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of Virasoro structures (see Definition 2.7) in important examples of twisted vertex
algebras, such as the correspondences of types B, C and D-A. We started with the
correspondence of type D-A, and as we show in [3] the twisted vertex algebra
describing the correspondence of type D-A has two distinct types of Virasoro
structures. These structures are distinct in two ways: first, they have different central
charges (correspondingly 1

2
and 1). But also, the Virasoro fields with central charge

1
2

are 1-point local, however the Virasoro field with central charge 1 isN -point local
(see Definition 2.1 for N -point locality), although it could be reduced to the usual
1-point locality by a change of variables zN to z. In this second paper we continue
with the study of the existence of Virasoro structures for the correspondence of type
C. The correspondence of type C was introduced in [7], and further studied in [20].
In [2] we interpret it as an isomorphism of twisted vertex algebras and in [4] we
study some properties of its space of fields. In this paper we show that the twisted
vertex algebra describing the correspondence of type C is conformal, i.e., it has
Virasoro structures. In particular, we show that it has (at least) two distinct Virasoro
structures, one with central charge 1, and a second with central charge -1. Both these
Virasoro structures are 2-point local, but could be reduced to a 1-point locality by a
change of variables z2 to z.

2 Notation and Background

We work over the field of complex numbers C. LetN be a positive integer, and let �
be a primitive N -th root of unity. Recall that in two-dimensional chiral field theory
a field a.z/ on a vector space V is a series of the form

a.z/ D
X
n2Z

a.n/z
�n�1; a.n/ 2 End.V /;

such that a.n/v D 0 for any v 2 V; n � 0:

The coefficients a.n/ 2 End.V / are called modes. (See e.g. [11, 12, 15, 18]).

Definition 2.1 ([4]) (N -Point Local Fields). We say that a field a.z/ on a vec-
tor space V is even and N -point self-local at 1; �; �2; : : : ; �N�1, if there exist
n0; n1; : : : ; nN�1 2 Z
0 such that

.z � w/n0.z � �w/n1 � � � .z � �N�1w/nN�1 Œa.z/; a.w/� D 0:

In this case we set the parity p.a.z// of a.z/ to be 0.
We set fa; bg D ab C ba. We say that a field a.z/ on V is N -point self-local at

1; �; �2; : : : ; �N�1 and odd if there exist n0; n1; : : : ; nN�1 2 Z
0 such that

.z � w/n0.z � �w/n1 � � � .z � �N�1w/nN�1fa.z/; a.w/g D 0:
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In this case we set the parity p.a.z// to be 1. For brevity we will just write p.a/
instead of p.a.z//. If a field a.z/ is even or odd, we say that a.z/ is homogeneous.
If a.z/; b.z/ are homogeneous fields on V , we say that a.z/ and b.z/ are N -point
mutually local at 1; �; �2; : : : ; �N�1 if there exist n0; n1; : : : ; nN�1 2 Z
0 such that

.z � w/n0.z � �w/n1 � � � .z � �N�1w/nN�1 �a.z/b.w/ � .�1/p.a/p.b/b.w/a.z/� D 0:

For a rational function f .z;w/with poles only at z D 0, z D �iw; 0 � i � N�1,
we denote by iz;wf .z;w/ the expansion of f .z;w/ in the region jzj � jwj (the region
in the complex z plane outside of all the points z D �iw; 0 � i � N � 1), and
correspondingly for iw;zf .z;w/. Let

a.z/� WD
X
n
0

anz�n�1; a.z/C WD
X
n<0

anz�n�1: (1)

Definition 2.2 (Normal Ordered Product) ([4, 11, 15, 18]). Let a.z/; b.z/ be
homogeneous fields on a vector space V . Define

W a.z/b.w/ WD a.z/Cb.w/C .�1/p.a/p.b/b.w/a�.z/: (2)

We extend by linearity, and we call this the normal ordered product of a.z/ and b.w/.

Remark 1. Let a.z/; b.z/ be fields on a vector space V . Then W a.z/b.�i z/ W and
W a.�i z/b.z/ W are well defined fields on V for any i D 0; 1; : : : ; N � 1.

The mathematical background of the well-known and often used in physics notion
of Operator Product Expansion (OPE) of product of two fields for the case of usual
locality (N D 1) has been established for example in [15,18]. The following lemma
extended the mathematical background to the case of N -point locality:

Lemma 2.3 ([4]) (Operator Product Expansion (OPE)). Suppose a.z/, b.w/ are
N -point mutually local. Then exists fields cjk.w/, j D 0; 1; : : : ; N � 1I k D
0; : : : ; nj � 1, such that we have

a.z/b.w/ D iz;w

N�1X
jD0

nj�1X
kD0

cjk.w/

.z � �jw/kC1
C W a.z/b.w/ W : (3)

We call the fields cjk.w/, j D 0; : : : ; N � 1I k D 0; : : : ; nj � 1, OPE coefficients.
We will write the above OPE as

a.z/b.w/ �
NX
jD1

nj�1X
kD0

cjk.w/

.z � �jw/kC1
: (4)

The � signifies that we have only written the singular part, and also we have omitted
writing explicitly the expansion iz;w, which we do acknowledge tacitly.
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The OPE expansion in the multi-local case allowed us to extend the Wick’s
Theorem (see e.g., [5,13]) to the case of multi-locality (see [4]). We further have the
following expansion formula extended to the multi-local case, which we will use
extensively in what follows:

Lemma 2.4 ([4]) (Taylor Expansion for Normal Ordered Products). Let
a.z/; b.z/ be N -point mutually local fields on a vector space V . Then

iz;z0 W a.�i z C z0/b.z/ W D
X
k
0



W .@.k/

�i z
a.�i z//b.z/ W

�
zk0 I

for any i D 0; 1; : : : ; N � 1:

Definition 2.5 (The Field Descendants Space FDfa0.z/; a1.z/; : : : ; ap.z/g). Let
a0.z/; a1.z/; : : : ; ap.z/ be given homogeneous fields on a vector spaceW , which are
self-local and pairwise N -point local with points of locality 1; �; : : : ; �N�1. Denote
by FDfa0.z/; a1.z/; : : : ; ap.z/g the subspace of all fields on W obtained from the
fields a0.z/; a1.z/; : : : ; ap.z/ as follows:

1. IdW ; a0.z/; a1.z/; : : : ; ap.z/ 2 FDfa0.z/; a1.z/; : : : ; ap.z/g;
2. If d.z/ 2 FDfa0.z/; a1.z/; : : : ; ap.z/g, then @z.d.z// 2 FDfa0.z/; : : : ; ap.z/g;
3. If d.z/ 2 FDfa0.z/; a1.z/; : : : ; ap.z/g, then d.�i z/ are also elements of

FDfa0.z/; a1.z/; : : : ; ap.z/g for i D 0; : : : ; N � 1;
4. If d1.z/; d2.z/ are both in FDfa0.z/; a1.z/; : : : ; ap.z/g, then W d1.z/d2.z/ W is also

an element of FDfa0.z/; a1.z/; : : : ; ap.z/g, as well as all OPE coefficients in the
OPE expansion of d1.z/d2.w/.

5. All finite linear combinations of fields in FDfa0.z/; a1.z/; : : : ; ap.z/g are still in
FDfa0.z/; a1.z/; : : : ; ap.z/g.

We will not remind here the definition of a twisted vertex algebra as it is rather
technical, see instead [1] and [2]. A twisted vertex algebra is a generalization of a
super vertex algebra, in the sense that any super vertex algebra is an N D 1-twisted
vertex algebra, and vice versa. A major difference is that in twisted vertex algebras
the space of fields V is allowed to be strictly larger than the space of states W on
which the fields act (i.e., the field-state correspondence is not necessarily a bijection
as for super vertex algebras, but only a projective surjection). We have the following
construction theorem for twisted vertex algebras:

Proposition 2.6 ([4]). Let a0.z/; a1.z/; : : : ; ap.z/ be given homogeneous fields on
a vector space W , which are N -point local with points of locality �i , i D
0; : : : ; N � 1, where � is a primitive root N th of unity. Then any two fields in
FDfa0.z/; a1.z/; : : : ; ap.z/g are self and mutually N -point local. Further, if the
fields a0.z/; a1.z/; : : : ; ap.z/ satisfy the conditions for generating fields for a twisted
vertex algebra (see [4]), then there exists a twisted vertex algebra structure with a
space of states W and a space of fields V D FDfa0.z/; a1.z/; : : : ; ap.z/g.
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Recall the well-known Virasoro algebra V ir , the central extension of the
complex polynomial vector fields on the circle. The Virasoro algebra V ir is the
Lie algebra with generators Ln, n 2 Z, and central element C , with commutation
relations

ŒLm;Ln� D .m � n/LmCn C ım;�n
.m3 �m/

12
C I ŒC; Lm� D 0; m; n 2 Z: (5)

Equivalently, the Virasoro field L.z/ WD P
n2ZLnz�n�2 has OPE with itself

given by:

L.z/L.w/ � C=2

.z � w/4
C 2L.w/

.z � w/2
C @wL.w/

.z � w/
: (6)

Definition 2.7. We say that a twisted vertex algebra with a space of fields V has a
Virasoro structure if there is field in V such that its modes are the generators of the
Virasoro algebra V ir .

We want to mention that the Virasoro field is of conformal weight 2 (for a precise
definition of conformal weight see e.g. [11, 15, 18]).

Remark 2. The boson-fermion correspondence of type A, which is generated from
two odd 1-point local fields  C.z/ and  �.z/, has a one-parameter family of
Virasoro fields with central charge �12�2 C 12� � 2 (see e.g. [15], Chap. 5):

LA;�.z/ D 1

2
W ˛.z/2 W C.1

2
� �/@z˛.z/ (7)

D .1 � �/ W .@z 
C.z// �.z/ W C� W .@z 

�.z// C.z/ W; (8)

where ˛.z/ DW  C.z/ �.z/ W is the Heisenberg field for the correspondence of
type A, � 2 C. ˛.z/ is of conformal weight 1 (roughly speaking the normal order
products and the derivatives behave as expected with respect to the conformal
weight). We would like to underline that the two components of the Virasoro
field come from the only two possibilities for conformal-weight-2-fields: first,
W ˛.z/2 W, and second, a linear combination of the normal ordered products W
.@z 

C.z// �.z/ W and W .@z 
�.z// C.z/ W, which in this particular case is their

difference and equals @z˛.z/. Moreover, for the correspondence of type A we also
have

W ˛.z/˛.z/ WDW .@z 
C.z// �.z/ W C W .@z 

�.z// C.z/ W; (9)

hence the Virasoro fieldLA;�.z/ is purely a linear combination of the normal ordered
products W .@z 

C.z// �.z/ W and W .@z 
�.z// C.z/ W. The equivalent of (9) does

not hold for the correspondence of type C, as we will show.



440 I.I. Anguelova

3 Virasoro Structure for the Correspondence of Type C

For the correspondences of type C we only need N D 2, i.e., the points of locality
are at z D w and z D �w. Since this correspondence is an isomorphism of twisted
vertex algebras (see [2, 4]), it is enough to only consider one of the sides of the
correspondence to determine the existence of a Virasoro structure.

The correspondence of type C is strictly speaking not a boson-fermion corre-
spondence: the first side is generated by an even twisted boson field �C .z/, which
is then bosonized further to get the second, also bosonic, side of the correspondence
of type C [7, 20]. The field �C .z/, �C .z/ WD P

n2ZC1=2 �Cn zn�1=2 (the half-integers
are commonly used when indexing in this case); has OPE:

�C .z/�C .w/ � 1

z C w
; in modes: Œ�Cm ; �

C
n � D .�1/n� 12 ım;�n1: (10)

The modes of the field �C .z/ form a Lie algebra which we denote by LC . Let
FC be the highest weight module of LC with the vacuum vector j0i, such that
�Cn j0i D 0 for n < 0. By Proposition 2.6 there is a twisted vertex algebra
structure with a space of fields FDf�C .z/g, acting on the space of states FC . We
now study the existence of Virasoro structures in this twisted vertex algebra. First, a
prominent element of the space of fields FDf�C .z/g is the normal ordered product
W �C .z/�C .�z/ W, and we have the following bosonization lemma:

Lemma 3.1. Let hC .z/ D 1
2

W �C .z/�C .�z/ W2 FDf�C .z/g. We have hC .z/ D
hC .�z/, thus we index hC .z/ as hC .z/ D P

n2ZC1=2 hCn z�2n�1 (note the half-
integers). The field hC .z/ has OPE with itself given by:

hC .z/hC .w/ � � z2 C w2

2.z2 � w2/2
� �1

4

1

.z � w/2
� 1

4

1

.z C w/2
; (11)

and its modes, hCn ; n 2 Z C 1=2, generate a twisted Heisenberg algebra HZC1=2
with relations ŒhCm; h

C
n � D �mımCn;01, m; n 2 Z C 1=2.

The above result appears in [7] (proof by brute force using the modes directly),
we prove it here to illustrate the use of the combination of Wick’s Theorem and the
Taylor expansion Lemma 2.4 in the multi-local case.

Proof. The fact that hC .z/ D hC .�z/ follows immediately from the fact that the
field �C .z/ is even, as W �C .�w/�C .w/ WDW �C .w/�C .�w/ W. Next, Wick’s theorem
applies here (see e.g. [4, 5, 13]) and we have

W �C .z/�C .�z/ W W �C .w/�C .�w/ W� 1

z C w
� �1

z C w
C �1

z � w
� 1

z � w

C �1
z � w

W �C .z/�C .�w/ W C �1
z C w

W �C .z/�C .w/ W

C 1

z C w
W �C .�z/�C .�w/ W C 1

z � w
W �C .�z/�C .w/ W :
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Now we apply Taylor expansion formula from Lemma 2.4:

W �C .z/�C .�z/ W W �C .w/�C .�w/ W� � 1

.z C w/2
� 1

.z � w/2

C �1
z � w

W �C .w/�C .�w/ W C �1
z C w

W �C .�w/�C .w/ W

C 1

z C w
W �C .w/�C .�w/ W C 1

z � w
W �C .�w/�C .w/ W :

The other summands from the Taylor expansion will produce nonsingular terms and
thus do not contribute to the OPE. Using that �C .z/ is even finishes the proof. ut
Remark 3. We know from the OPE expansion, Lemma 2.3, and by continuing the
Taylor expansion in the calculation above, that we can express the normal ordered
product W hC .z/hC .z/ W as follows:

hC .z/hC .w/ D �iz;w
�

1

.z C w/2
C 1

.z � w/2

�

C iz;w

�
1

z C w
� 1

z � w

�
.W �C .w/�C .�w/ W � W �C .�w/�C .w/ W/

� 2 �W .@w�
C .w//�C .�w/ W C W .@�w�

C .�w//�C .w/ W�
C 2 W �C .w/�C .�w/�C .w/�C .�w/ W CO.z � w; z C w/:

That gives us, in contrast to (9), not only second order terms, but a fourth order
non-vanishing term as well:

W hC .w/hC .w/ W D �2 �W .@w�
C .w//�C .�w/ W C W .@�w�

C .�w//�C .w/ W�
(12)

C 2 W �C .w/�C .�w/�C .w/�C .�w/ W : (13)

The analogous fourth order term vanishes in the case of the correspondence of type
A (see [15], Chap. 3.6), hence (9) holds. Further, in this case of type C we have

@zh
C .z/ DW .@z�

C .z//�C .�z/ W � W .@�z�
C .�z//�C .z/ W : (14)

For the correspondence of type C the field hC .z/ is the equivalent of the field ˛.z/
(for notation see e.g. [15]) from the correspondence of type A. The field 1

2
W ˛.z/2 W

is the field whose modes produce the well-known oscillator representation of V ir
(see e.g. [11, 14]). Similarly we expect the field 1

2
W hC .z/2 W to be related to the

twisted oscillator representation of V ir (see e.g. [11]). But as the Remark above
shows, here we cannot treat the term 1

2
W hC .z/2 W as part of the linear combination
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of the second order terms W .@w�
C .w//�C .�w/ W and W .@�w�

C .�w//�C .w/ W, as
opposed to the case of the boson-fermion correspondence of type A (see Remark 2).
Thus we have two separate cases in the following:

Proposition 3.2. I. LetLC;1.z/ D � 1
2z2

W hC .z/hC .z/ W C 1
16z4

. We haveLC;1.z/ D
LC;1.�z/, and we index this field as LC;1.z/ D P

n2ZLC;1n z�2n�4. The modes
LC;1n of the field LC;1.z/ satisfy the Virasoro commutation relations with central
charge 1. Equivalently, we can write LC;1.z/ D LC1 .z

2/, where the field LC1 .z
2/

is a Virasoro field with central charge 1, and has the OPE (6) with variables z,
w changed correspondingly to z2, w2.

II. Let LC;�1.z/ D � 1
8z2

�W .@z�
C .z//�C .�z/ W C W .@�z�

C .�z//�C .z/ W� � 1
32z4

.

We have LC;�1.z/ D LC;�1.�z/, and we index this field as LC;�1.z/ DP
n2ZLC;�1n z�2n�4. The modes LC;�1n of the field LC;�1.z/ satisfy the Virasoro

commutation relations with central charge �1. Equivalently, we can write
LC;�1.z/ D LC�1.z2/, where the field LC�1.z2/ is a Virasoro field with central
charge �1, and has the OPE (6) with variables z, w changed correspondingly
to z2, w2.

Proof. I. Wick’s Theorem applies here, and we have

LC;1.z/LC;1.w/ � 1

4z2w2
W hC .z/hC .z/ WW hC .w/hC .w/ W

� .z2 C w2/2

8z2w2.z2 � w2/4
� z2 C w2

2z2w2.z2 � w2/2
W hC .z/hC .w/ W

� 1

8z2w2.z2 � w2/2
C 1=2

.z2 � w2/4

� 1

4z2w2.z � w/2
W hC .z/hC .w/ W

� 1

4z2w2.z C w/2
W hC .z/hC .w/ W

� 1

8z2w2.z2 � w2/2
C 1=2

.z2 � w2/4

�
�

1

4w4.z � w/2
� 1

2w5.z � w/

�
W hC .z/hC .w/ W

�
�

1

4w4.z C w/2
C 1

2w5.z C w/

�
W hC .z/hC .w/ W :

We now apply Taylor’s expansion formula (Lemma 2.4), noting that hC .w/ D
hC .�w/ and thus @�wh

C .�w/ D �@wh
C .w/:
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LC;1.z/LC;1.w/ � 1

8z2w2.z2 � w2/2
C 1=2

.z2 � w2/4

�
�
1

4w4

�
1

.z � w/2
C 1

.z C w/2

�

C 1

2w5

�
1

z C w
� 1

z � w

��
W hC .w/hC .w/ W

� 1

4w4

�
1

z � w
� 1

z C w

�
W @wh

C .w/hC .w/ W

� 1=2

.z2 � w2/4
C 1

8z2w2.z2 � w2/2

� 1

.z2 � w2/2
� 1

w2
W hC .w/hC .w/ W

C 1

z2 � w2
� 1

2w4
W hC .w/hC .w/ W

� 1

z2 � w2
� 1

2w3
W @wh

C .w/hC .w/ W

� 1=2

.z2 � w2/4
C 1

8w4.z2 � w2/2
� 1

8w6.z2 � w2/

C 1

.z2 � w2/2

�
2LC1 .w

2/ � 1

8w4

�

C 1

z2 � w2

�
@w2L

C
1 .w

2/C 1

8w6

�

� 1=2

.z2 � w2/4
C 1

.z2 � w2/2
2LC1 .w

2/C 1

z2 � w2
@w2L

C
1 .w

2/:

This proves part I of the Proposition. To shorten the calculations in part II denote

A.z/ WDW .@z�
C .z//�C .�z/ W; B.z/ DW .@�z�

C .�z//�C .z/ W : (15)

A combination of Wick’s Theorem and Taylor expansion Lemma 2.4 gives us

A.z/A.w/ � 2

.z C w/3
W �C .w/�C .�w/ W �4.z

2 C w2/

.z2 � w2/2
A.w/

� 2w

z2 � w2
@wA.w/ � 2

.z C w/4
C 1

.z � w/4
I

B.z/B.w/ � � 2

.z C w/3
W �C .�w/�C .w/ W �4.z

2 C w2/

.z2 � w2/2
B.w/
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� 2w

z2 � w2
@wB.w/ � 2

.z C w/4
C 1

.z � w/4
I

A.z/B.w/ � 2

.z � w/3
W �C .�w/�C .w/ W �4.z

2 C w2/

.z2 � w2/2
B.w/

� 2w

z2 � w2
@wB.w/ � 2

.z � w/4
C 1

.z C w/4
I

B.z/A.w/ � � 2

.z � w/3
W �C .w/�C .�w/ W �4.z

2 C w2/

.z2 � w2/2
A.w/

� 2w

z2 � w2
@wA.w/ � 2

.z � w/4
C 1

.z C w/4
:

We have

LC;�1.z/LC;�1.w/ � 1

64z2w2
.A.z/C B.z// .A.w/C B.w//

� 1

64z2w2

� �2
.z � w/4

C �2
.z C w/4

�
C 1

.z � w/3
� 0C 1

.z C w/3
� 0

� 8.z2 C w2/

64z2w2.z2 � w2/2
.A.w/C B.w//

� 4w

64z2w2.z2 � w2/
.@wA.w/C @wB.w//

� �1=2
.z2 � w2/4

� 1

16z2w2.z2 � w2/2

� 1

4w2.z2 � w2/2
.A.w/C B.w//

C 1

8w4.z2 � w2/
.A.w/C B.w//

� 1

16w3.z2 � w2/
.@wA.w/C @wB.w//

� �1=2
.z2 � w2/4

� 1

16w4.z2 � w2/2
C 1

16w6.z2 � w2/

C 1

.z2 � w2/2

�
2LC�1.w2/C 1

16w4

�
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C 1

w2.z2 � w2/

�
�LC�1.w2/ � 1

32w4
/

�

C 1

16w3.z2 � w2/

�
� 1

2w3
C 16wLC�1.w2/C 16w3@w2L

C�1.w2/
�

� �1=2
.z2 � w2/4

C 2LC�1.w2/
.z2 � w2/2

C @w2L
C�1.w2/

z2 � w2
:

ut
As we mentioned, the first of these Virasoro structures is not entirely surprising—the
field 1

2
W hC .z/2 W is related to the twisted oscillator representation of V ir . But the

second Virasoro structure was completely unexpected, especially the fact that it is 2-
point local (the analogous field in the correspondence of type D-A is 1-point-local).
The linear combination of the fields A.z/ and B.z/ producing the Virasoro field is
not arbitrary, in fact it is the only linear combination possible. Due to the multi-
locality, we have four conformal-weight-two fields which can potentially contribute
to a Virasoro structure: A.z/ DW .@z�

C .z//�C .�z/ W, B.z/ DW .@�z�
C .�z//�C .z/ W,

W .@z�
C .z//�C .z/ W and W .@�z�

C .�z//�C .�z/ W. A very long calculation which we
omit here shows that of all the complex linear combinations only the one above will
produce a Virasoro field. Furthermore, there are no one-point-local Virasoro fields
in the correspondence of type C. This is due perhaps to the absence of a super vertex
algebra structure on each of the two “sheets” that the twisted vertex algebra structure
“glues” together, as opposed to the case of type D-A (although here each “sheet”
is a twisted module for an appropriate super vertex algebra). The two-point local
Virasoro fields are due to the overall twisted vertex algebra structure responsible
for the bosonization of type C. We expect that there is a genuine (non-splitting)
representation of a version of a two-point Virasoro algebra (see e.g. [6, 16, 17, 19])
arising from a linear combination of these four weight-two fields.

To summarize: this paper is part of a series studying the Virasoro structures in
various particle correspondences. We show in [3] that the twisted vertex algebra
describing the correspondence of type D-A has two distinct types of Virasoro
structures: the Virasoro fields with central charge 1

2
are one-point local, however

the Virasoro field with central charge 1 is N -point local. In this paper we show
that in the twisted vertex algebra describing the correspondence of type C there
are two Virasoro structures, both are two-point local; there are no one-point local
Virasoro fields in this twisted vertex algebra. In the next paper we will continue
with the Virasoro structures in the twisted vertex algebra of the boson-fermion
correspondence of type B. Although similar to the type C, the OPEs in the
correspondence of type B do not allow for a direct application of Wick’s theorem
[4], thus a more complicated modification has to be used.

In conclusion, we would like to thank the organizers of the International
Workshop “Lie Theory and its Applications in Physics” for a most enjoyable and
productive workshop, and we look forward to the next one!
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On the Correspondence Between
Mirror-Twisted Sectors for N D 2
Supersymmetric Vertex Operator
Superalgebras of the Form V ˝ V
and N D 1 Ramond Sectors of V

Katrina Barron

Abstract Using recent results of the author along with Vander Werf, we present the
classification and construction of mirror-twisted modules for N D 2 supersymmetric
vertex operator superalgebras of the form V ˝V for the signed transposition mirror
map automorphism. In particular, we show that the category of such mirror-twisted
sectors for V ˝ V is isomorphic to the category of N D 1 Ramond sectors for V .

1 Introduction

In [5, 6], the author studied twisted modules for N D 2 supersymmetric vertex
operator superalgebras (N D 2 VOSAs) for finite order VOSA automorphisms
arising from automorphisms of the N D 2 Neveu-Schwarz algebra of N D 2

infinitesimal superconformal transformations. Among such automorphisms is the
mirror map. In [5], mirror maps were given for N D 2 VOSAs of the form V ˝ V

where V is an N D 1 supersymmetric VOSA of the form VL ˝ Vfer , where VL is a
rank d lattice VOSA or the d free boson vertex operator algebra and Vfer is the d
free fermion VOSA. In particular, we showed that one of the mirror maps for such
an N D 2 VOSA, V ˝ V , is given by the signed transposition map

Q� D .1 2/ W V ˝ V �! V ˝ V; u ˝ v 7! .�1/jujjvjv ˝ u (1)

where jvj D j mod 2 for v 2 V .j /, with the Z2-grading of V given by V D V .0/ ˚
V .1/.

In [7] and [10], the author along with Vander Werf constructed and classified
the cyclic permutation-twisted V ˝k-modules, where V is any VOSA and k is
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a positive integer. For k even, this classification is in terms of parity-twisted
V -modules where the parity automorphism of a VOSA is the map

� W V �! V; v 7! .�1/jvjv: (2)

In this note, we apply the results of [10] to the setting of the mirror map (1) acting
on an N D 2 supersymmetric VOSA of the form V ˝V , to show that the category of
Q�-twisted .V ˝ V /-modules is isomorphic to the category of � -twisted V -modules,
which are the N D 1 Ramond sectors for the N D 1 supersymmetric VOSA, V .
This classification also provides an explicit construction of these modules.

In particular, our result shows that if a representation M� of the N D 1 Ramond
algebra is also a parity-twisted modules for a VOSA V , where V ˝ V is N D 2

supersymmetric, then M� is also naturally a representation of the mirror-twisted
N D 2 Neveu-Schwarz algebra. These results can be used to calculate the graded
dimensions for one module in terms of the graded dimensions for the other as
shown in Corollary 2 below. Note that for our results, we do not need to make
any assumptions about, for instance, the values of the central charge, the complete
reducibility of the representations, or the rationality of the VOSAs.

Certain representations of the N D 1 Ramond algebra and related VOSA con-
structions have previously been studied in, e.g., [1, 16, 17, 19–22, 24, 25, 27, 30, 31].
Certain representations of the mirror-twisted N D 2 Neveu-Schwarz algebra have
previously been studied in, e.g., [12, 13, 15, 18, 23, 26, 28, 29]. In particular, the
relationship between characters of certain modules for the N D 1 Ramond algebra
and certain modules for the mirror-twisted N D 2 Neveu-Schwarz algebra had
previously been observed. Our explicit isomorphism between mirror-twisted sectors
for V ˝ V and N D 1 Ramond sectors for V , gives a constructive and overarching
explanation of this phenomenon through the theory of VOSAs.

2 The Notions of VOSA and Twisted Module

Following the notation of [7, 10], we recall the notion of VOSA and the notions of
weak, weak admissible and ordinary g-twisted V -module for a VOSA, V , and an
automorphism g of V of finite order.

Let x; x0; x1; x2; denote commuting independent formal variables. Let ı.x/ DP
n2Z xn. Expressions such as .x1 � x2/

n for n 2 C are to be understood as formal
power series expansions in nonnegative integral powers of the second variable.

Definition 1. A vertex operator superalgebra is a 1
2
Z-graded (by weight) vector

space V D L
n2 12Z Vn, satisfying dimVn < 1 and Vn D 0 for n sufficiently

negative, that is also Z2-graded by sign, V D V .0/˚V .1/, with V .j / D L
n2ZC j

2
Vn,

and equipped with a linear map

V �! .EndV /ŒŒx; x�1��; v 7! Y.v; x/ D
X
n2Z

vnx
�n�1; (3)
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and with two distinguished vectors 1 2 V0, (the vacuum vector) and ! 2 V2 (the
conformal element) satisfying the following conditions for u; v 2 V : unv D 0 for n
sufficiently large; Y.1; x/v D v; Y.v; x/1 2 V ŒŒx��, and limx!0 Y.v; x/1 D v;

x�10 ı

�
x1 � x2
x0

�
Y.u; x1/Y.v; x2/ �

� .�1/jujjvjx�10 ı

�
x2 � x1

�x0
�
Y.v; x2/Y.u; x1/ D

D x�12 ı

�
x1 � x0
x2

�
Y.Y.u; x0/v; x2/ (4)

(the Jacobi identity), where jvj D j if v 2 V .j / for j 2 Z2; writing Y.!; x/ DP
n2ZL.n/x�n�2, i.e.,L.n/ D !nC1, for n 2 Z, then theL.n/ give a representation

of the Virasoro algebra with central charge c 2 C (the central charge of V ); for
n 2 1

2
Z and v 2 Vn, then L.0/v D nv D .wt v/v; and the L.�1/-derivative property

holds: d
dx
Y.v; x/ D Y.L.�1/v; x/.

An automorphism of a VOSA, V , is a linear map g from V to itself, preserving
1 and ! such that the actions of g and Y.v; x/ on V are compatible in the sense that
gY.v; x/g�1 D Y.gv; x/, for v 2 V: Then gVn � Vn for n 2 1

2
Z.

Let ZC denote the positive integers. If g has finite order, V is a direct sum of the
eigenspaces V j of g, i.e., V D L

j2Z=kZ V j , where k 2 ZC is a period of g (i.e.,

gk D 1) and V j D fv 2 V j gv D �j vg, for � a fixed primitive k-th root of unity.

Definition 2. Let .V; Y; 1; !/ be a VOSA and g an automorphism of V of period
k 2 ZC. A weak g-twisted V -module is a vector space M equipped with a linear
map

V �! .EndM/ŒŒx1=k; x�1=k��; v 7! Y g.v; x/ D
X
n2 1k Z

vgnx
�n�1; (5)

with vgn 2 .EndM/.jvj/, and satisfying the following conditions for u; v 2 V and
w 2 M : vgnw D 0 for n sufficiently large; Y g.1; x/w D w;

x�10 ı

�
x1 � x2
x0

�
Y g.u; x1/Y

g.v; x2/ �

� .�1/jujjvjx�10 ı

�
x2 � x1

�x0
�
Y g.v; x2/Y

g.u; x1/ D

D x�12
1

k

X
j2Z=kZ

ı

 
�j
.x1 � x0/1=k

x
1=k
2

!
Y g.Y.gj u; x0/v; x2/ (6)

(the twisted Jacobi identity) where � is a fixed primitive k-th root of unity.
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As a consequence of the definition, we have that Y g.v; x/ D P
n2ZC j

k
vgnx�n�1

for j 2 Z=kZ and v 2 V j , and for v 2 V , we have

Yg.gv; x/ D lim
x1=k!��1x1=k

Yg.v; x/:

It also follows that writing Y g.!; x/D P
n2ZLg.n/x�n�2; i.e., setting Lg.n/ D

!
g
nC1, for n 2 Z, then the Lg.n/ satisfy the relations for the Virasoro algebra with

central charge c the central charge of V .
If we take g D 1, then we obtain the notion of weak V -module. The term “weak”

means we are making no assumptions about a grading on M .
A weak admissible g-twisted V -module is a weak g-twisted V -moduleM which

carries a 1
2k
N-grading M D L

n2 1
2kN

M.n/, such that vgmM.n/ � M.n C wt v �
m � 1/ for homogeneous v 2 V , n 2 1

2k
N, and m 2 1

k
Z. If g D 1, then a weak

admissible g-twisted V -module is called a weak admissible V -module.
An (ordinary) g-twisted V -module is a weak g-twisted V -module M graded

by C induced by the spectrum of L.0/: That is, we have M D L
�2CM�, where

M� D fw 2 M jL.0/gw D �wg, forL.0/g D !
g
1 . Moreover we require that dimM�

is finite and Mn=2kC� D 0 for fixed � and for all sufficiently small integers n.
If g D 1, then a g-twisted V -module is a V -module.

3 The Construction and Classification of .1 2 � � � k/-Twisted
V ˝k-Modules

Let V D .V; Y; 1; !/ be a VOSA, and let k be a fixed positive integer. Then V ˝k
is also a VOSA, and the permutation group Sk acts naturally on V ˝k as signed
automorphisms. In particular, taking the action of Sk on V ˝k to be a right action,
we have the action of .1 2 � � � k/ given by

.1 2 � � � k/ W V ˝ V ˝ � � � ˝ V �! V ˝ V ˝ � � � ˝ V (7)

v1 ˝ v2 ˝ � � � ˝ vk 7! .�1/jv1j.jv2jC���Cjvk j/v2 ˝ v3 ˝ � � � ˝ vk ˝ v1:

Let g D .1 2 � � � k/. Below, we will recall the classification and construction of
g-twisted V ˝k-modules from [7] and [10]. This construction is based on a certain
operator �k.x/ first defined in [8], (see also [11]) which we now recall.

Consider the polynomial 1
k
.1 C x/k � 1

k
in xQŒx�. Following [8], for k 2 ZC,

we define aj 2 Q for j 2 ZC, by

exp

 
�
X
j2ZC

aj x
jC1 @

@x

!
� x D 1

k
.1C x/k � 1

k
: (8)
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For example, a1 D .1 � k/=2 and a2 D .k2 � 1/=12: Let V D .V; Y; 1; !/ be a
VOSA. In .End V /ŒŒx1=2k; x�1=2k��, define

�k.x/ D exp

 X
j2ZC

aj x
� jk L.j /

!
.k

1
2 /�2L.0/



x

1
2k
.k�1/��2L.0/ : (9)

For v 2 V , and k any positive integer, denote by vj 2 V ˝k , for j D 1; : : : ; k,
the vector whose j -th tensor factor is v and whose other tensor factors are 1. Then
for g D .1 2 � � � k/, we have gvj D vj�1 for j D 1; : : : ; k where 0 is understood
to be k.

Let .M; YM / be a V -module, and .M� ; Y�/ a � -twisted V -module, where � is
the parity map on V . We define the g-twisted vertex operators for V ˝k on M , for k
odd, and on M� , for k even, as follows: Set

Yg.v
1; x/ D

8<
:
YM.�k.x/v; x1=k/ for k odd

Y�.�k.x/v; x1=k/ for k even
(10)

and for j D 0; : : : ; k � 1, define

Yg.v
jC1; x/ D lim

x1=k!�j x1=k
Yg.v

1; x/: (11)

Let V be an arbitrary VOSA and h an automorphism of V of finite order. Denote
the categories of weak, weak admissible and ordinary h-twisted V -modules by
Chw.V /; Cha .V / and Ch.V /, respectively. If h D 1, we habitually remove the index h:

Now again consider the VOSA, V ˝k , and the k-cycle g D .1 2 � � � k/. For k
odd, define

T kg W Cw.V / �! Cgw.V ˝k/; .M; YM / 7! .T kg .M/; Yg/ D .M; Yg/: (12)

For k even, define

T kg W C�w.V / �! Cgw.V ˝k/; .M� ; Y� / 7! .T kg .M�/; Yg/ D .M�; Yg/:

(13)

The following theorem is proved in [7] for k odd, and in [10] for k even.

Theorem 1 ([7, 10]).

(1) For k odd, the functor T kg is an isomorphism from the category Cw.V / of weak

V -modules to the category Cgw.V ˝k/ of weak g D .1 2 � � � k/-twisted V ˝k-
modules.
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(2) For k even, the functor T kg is an isomorphism from the category C�w.V / of weak

parity-twisted V -modules to the category Cgw.V ˝k/ of weak g D .1 2 � � � k/-
twisted V ˝k-modules.

(3) For any k 2 ZC, the functor T kg restricted to the respective subcategories
of weak admissible, ordinary or irreducible modules in Cw.V / or C�w.V /,
respectively, is an isomorphism between these subcategories and the corre-
sponding subcategory of weak admissible, ordinary or irreducible g-twisted
V ˝k-modules.

4 N D 2 Supersymmetric VOSAs, Ramond Sectors,
and Mirror-Twisted Sectors

In this section, we recall the notions of N D 1 or N D 2 supersymmetric VOSA,
following the notation and terminology of, for instance, [2, 3] and [4]. First we will
need the notion of several superextensions of the Virasoro algebra.

TheN D 1 Neveu-Schwarz algebra orN D 1 superconformal algebra is the Lie
superalgebra with basis consisting of the central element d , even elements Ln for
n 2 Z, and odd elements Gr for r 2 Z C 1

2
, and supercommutation relations

ŒLm;Ln� D .m � n/LmCn C 1

12
.m3 �m/ımCn;0 d; (14)

ŒLm;Gr � D

m
2

� r
�
GmCr ; (15)

ŒGr ; Gs� D 2LrCs C 1

3

�
r2 � 1

4

�
ırCs;0 d; (16)

form; n 2 Z, and r; s 2 ZC 1
2
. The N D 1 Ramond algebra is the Lie superalgebra

with basis the central element d , even elements Ln for n 2 Z, and odd elements Gr
for r 2 Z, and supercommutation relations given by (14)–(16), where now r; s 2 Z.

The N D 2 Neveu-Schwarz Lie superalgebra or N D 2 superconformal algebra
is the Lie superalgebra with basis consisting of the central element d , even elements
Ln and Jn for n 2 Z, and odd elements G.j /

r for j D 1; 2 and r 2 Z C 1
2
, and such

that the supercommutation relations are given as follows: Ln, d and G.j /
r satisfy the

supercommutation relations for the N D 1 Neveu-Schwarz algebra (14)–(16) for
both Gr D G

.1/
r and for Gr D G

.2/
r ; the remaining relations are given by

ŒLm; Jn� D �nJmCn; ŒJm; Jn� D 1

3
mımCn;0d (17)

�
Jm;G

.1/
r

	 D �iG.2/
mCr ;

�
Jm;G

.2/
r

	 D iG
.1/
mCr ; (18)

�
G.1/
r ; G

.2/
s

	 D i.s � r/JrCs: (19)
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The N D 2 Ramond algebra is the Lie superalgebra with basis consisting of the
central element d , even elements Ln and Jn for n 2 Z, and odd elements G.j /

r for
r 2 Z and j D 1; 2, and supercommutation relations given by those of the N D 2

Neveu-Schwarz algebra but with r; s 2 Z, instead of r; s 2 Z C 1
2
.

Note that there is an automorphism of the N D 2 Neveu-Schwarz algebra
given by

� W G.1/
r 7! G.1/

r ; G.2/
r 7! �G.2/

r ; Jn 7! �Jn; Ln 7! Ln; d 7! d;

(20)

called the mirror map automorphism of the N D 2 Neveu-Schwarz algebra.
Let .V; Y; 1; !/ be a VOSA, and suppose there exists � 2 V3=2 such that writing

Y.�; z/ D P
n2Z �nx�n�1 D P

n2ZG.n C 1=2/x�n�2, the G.n C 1=2/ D �nC1 2
.EndV /.1/ generate a representation of the N D 1 Neveu-Schwarz Lie superalgebra
such that the L.n/ are the modes of !. Then we call .V; Y; 1; �/ an N D 1 Neveu-
Schwarz VOSA, or an N D 1 supersymmetric VOSA, or just an N D 1 VOSA for
short.

Suppose a VOSA, V , has two vectors �.1/ and �.2/ such that .V; Y; 1; � .j // is an
N D 1 VOSA for both j D 1 and j D 2, and the �.j /nC1 D G.j /.nC 1=2/ generate a
representation of the N D 2 Neveu-Schwarz Lie superalgebra. Then we call such a
VOSA an N D 2 Neveu-Schwarz VOSA or an N D 2 supersymmetric VOSA, or for
short, an N D 2 VOSA.

For the case of the parity map, � , a � -twisted V -module, for V an N D 1 or
N D 2 VOSA, is naturally a representation of the N D 1 or N D 2 Ramond algebra,
respectively. (See for instance [5, 6], as well as references therein).

Suppose V is an N D 2 VOSA such that V has an automorphism g� which is a
lift of the mirror map � for the N D 2 Neveu-Schwarz algebra. That is letting g�
act by conjugation on End V , then g� restricts to the mirror map � on the elements
L.n/, J.n/, and G.j /.r/, for n 2 Z, j D 1; 2, and r 2 ZC 1

2
, which give the N D 2

Neveu-Schwarz algebra representation on the N D 2 VOSA, V . Following [5, 6],
we call such an automorphism g� of an N D 2 VOSA, V , a mirror map. Then a g�-
twisted V -module is naturally a representation of the “mirror-twisted N D 2Neveu-
Schwarz algebra”. The mirror-twisted N D 2 Neveu-Schwarz algebra is the Lie
superalgebra with basis consisting of even elements Ln, and Jr and central element
d , odd elements G.1/

r and G.2/
n , for n 2 Z and r 2 Z C 1

2
, and supercommutation

relations given as follows: The Ln and G.1/
r satisfy the supercommutation relations

for the N D 1Neveu-Schwarz algebra with central charge d ; theLn andG.2/
n satisfy

the supercommutation relations for the N D 1 Ramond algebra with central charge
d ; and the remaining supercommutation relations are

ŒLn; Jr � D �rJnCr ; ŒJr ; Js� D 1

3
rırCs;0d;

�
G.1/
r ; G

.2/
n

	 D �i.r � n/JrCn
(21)
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�
Jr ;G

.1/
s

	 D �iG.2/
rCs;

�
Jr ;G

.2/
n

	 D iG
.1/
rCn; (22)

for n 2 Z and r 2 Z C 1
2
. Note that this mirror-twisted N D 2 Neveu-Schwarz

algebra is not isomorphic to the ordinary N D 2 Neveu-Schwarz algebra [32].

5 Mirror-Twisted Modules for the Class of N D 2

VOSAs of the Form V ˝ V

There are large classes of N D 2 VOSAs of the form V ˝ V such that V is an
N D 1 VOSA, and Q� D .1 2/, the signed transposition map given by Eq. (1), is
a mirror map for V ˝ V . Examples of such N D 2 VOSAs, were studied in [5].
These include the following examples: Let VL be a rank d positive definite integral
lattice VOSA or the d free boson vertex operator algebra, and let V d

fer be the d free

fermion VOSA. As noted in [5], the VOSA V D VL ˝ V d
fer , is naturally an N D 1

VOSA, and V ˝ V is naturally an N D 2 VOSA. This uses the construction of
a VOSA from a positive definite integral lattice, following for instance [9, 14, 33].
Such N D 2 VOSAs have more than one mirror map as was shown in [5], where
the author constructed mirror-twisted modules for these VOSAs for the mirror map
which is not Q�.

For such N D 2 VOSAs of the form V ˝ V , and for the signed transposition
mirror-map Q�, we have the following immediate corollary to Theorem 1.

Corollary 1. The category of weak mirror-twisted .V ˝V /-modules for the signed
transposition mirror map automorphism of an N D 2 VOSA of the form V ˝ V is
isomorphic to the category of weak N D 1 Ramond-twisted V -modules (i.e., parity-
twisted V -modules). In addition, the subcategories of weak admissible, ordinary, or
irreducible modules are isomorphic.

In particular, it follows that if M� is a representation of the N D 1 Ramond
algebra such that M� is a weak parity-twisted module for an N D 1 VOSA, V , and
such that V ˝ V is an N D 2 VOSA, then M� is also naturally a representation of
the mirror-twisted N D 2 superconformal algebra and is a weak Q�-twisted module
for V ˝ V .

Furthermore, from the construction of such modules given by the functor T kg
for k D 2 as in (10), (11), (13), (see also [10]), we have as a consequence of
Corollary 6.5 in [10], the following:

Corollary 2. MQ� is an ordinary Q�-twisted .V ˝V /-module with graded dimension

dimqMQ� D t rM
Q�
q�2c=24CLQ� .0/ D q�c=12

X
�2C

dim.M�/q
�
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if and only if .T 2Q� /
�1.MQ�/ D MQ� is an ordinary � -twisted V -module with graded

dimension

dimq.T
2
Q� /
�1.MQ�/ D t rM

Q�
q�c=24CL� .0/ D dimq2MQ�;

where c is the central charge of V .
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Operadic Bridge Between Renormalization
Theory and Vertex Algebras

Nikolay M. Nikolov

Abstract A construction is presented that provides a correspondence between
renormalization groups in models of perturbative massless Quantum Field Theory
and models of vertex algebras.

The aim of this talk is to show how two different areas in Quantum Field Theory
(QFT) are governed by one and the same algebraic structure. This opens perspec-
tives of transferring constructions in both directions via this common structure. The
two connected fields are the theory of Operator Product Expansion (OPE) algebras
(called also vertex algebras) and the renormalization theory in perturbative QFT
and more concretely, the renormalization group and its action. The bridge between
these two structures is an operad, which we call the expansion operad E , and
whose algebras are the vertex (or OPE) algebras, while the group associated to this
operand is the renormalization group. Thus, our plan in this lecture is to consider
the following topics:

A. What is a vertex algebra?
B. What is an operad?
C. What is the renormalization group and its action (i.e., a representation by formal

diffeomorphisms on the physical parameters)?

A. Starting with the firs topic, a vertex algebra is the structure that is closed
by the OPE. The OPE in turn was introduced for the analysis of the short
distance behavior in QFT [10]. According to the general principles of locality
and causality in QFT one expects that the product of two local quantum fields
posses an asymptotic expansion at short distances x � y ! 0 of the form

�.x/  .y/ �
x! y

X
A


A.y/ CA.x � y/;
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for a suitable system of two-point numerical functions (distributions) CA.x � y/
that describes the local behavior of the product, and the coefficients 
A.y/ are
again local fields (the sign �

x! y
stands for the asymptotic expansion at short

distances). For instance, in perturbative massless QFT one can choose

CA.x � y/ D �
.x � y/2

�� �
.log.x � y//

�`
hm;� .x � y/ ; A D .�; `;m; �/ ;

where � 2 R, ` 2 f0; 1; : : : g and fhm;� .x/g� is a basis of harmonic homogeneous
polynomials (spherical functions) of degreem D 0; 1; : : : . Thus, for every index
A we obtain a binary operation


A DW � 

A
 H) ˚


A

�
A

in the vector space of all local quantum fields (this space is called “Borchers
class”). A vertex algebra is determined as the algebraic structure defined by this
infinite system of binary products

˚

A

�
A

. The main condition on the latter system

of operations comes from the operator product associativity:

�1.x1/
�
�2.x2/ �3.x3/

� D �
�1.x1/ �2.x2/

�
�3.x3/ :

However, it is rather nontrivial to reformulate this associativity in a purely algebraic
way for the system of binary products

˚

A

�
A

. This is completely understood only in

the following cases:

• In space-time dimension D D 1 (chiral) Conformal Field Theory (“on a light
ray”) the OPE takes the form

�.z/  .w/ D
X
n2Z

�
�.n/ 

�
.w/.z � x/�n�1

and its associativity and further properties was first axiomatized by
R. Borcherds [1].

• A generalization to higher D was introduced in [2] but in the context of QFT
vertex algebras have been considered in [6]. It has been shown it the latter paper
that these algebras are in one–to–one correspondence with models of Wightman
axioms possessing the so called Global Conformal Invariance [8].

B. We proceed by considering vertex algebras as algebras over an operad. So first,
what is an operad? Besides one of the first references on this topic [5] we
shall mention one recent book [4], from which we follow the definitions and
conventions.

One can think of an operad as a generalized type of algebras. An algebra of
a certain type is determined by introducing a set of multilinear operations subject
to certain identities that use compositions of these operations, eventually combined
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with permutations of the input arguments. Instead of this one can consider the spaces
of all possible multilinear operations obtained under compositions and the action
of permutations (and all this quotient by the relations). This will be the operad
corresponding to the considered type of algebras.

In more details, an operad includes

• a sequence of vector spaces fM.n/g1nD 1 (M.2/ being the space of binary
operations, . . . ).

• The structure is endowed by various structure maps called operadic
compositions,

M.k/˝ M.j1/ ˝ � � � ˝ M.jk/ �! M.n/

�00 ˝ �01 ˝ � � � ˝ �0k 7�! �00 ı .�01; � � � ; �0k/ ;
where n D j1 C � � � C jk , and permutation actions

M.n/ � Sn 3 � � � 7! �� 2 M.n/ ; .��1/�2 D ��1�2 :

The operadic composition �00 ı .�01; � � � ; �0k/ is pictorially drawn as:

One of the main examples of an operad is the endomorphism operad EndV for a
vector space V :

EndV .n/ WD Hom
�
V ˝n; V

�
;

where �00 ı .�01; � � � ; �0k/ is the actual composition of multilinear maps and

��.v1; � � � ; vn/ WD �.v�1 ; � � � ; v�n/ :
Morphisms of operads are defined as follows:

fM.n/g1nD 1 ! fN .n/g1nD 1 � ˚
M.n/ ! N .n/

�1
nD 1

plus compatibility with all structure maps. In particular, morphisms from an operad
to the endomorphisms operads have a meaning of “representations” but are called
algebras over the corresponding operad:

Representation � Algebra over an operad,

i.e., fM.n/gn ! fEndV .n/gn – morphism of operads,

i.e., M.n/ ! Hom
�
V ˝n; V

�
(the abstract operations in M.n/ become actual n–linear maps on V that is the
underlined space of the algebra).
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Example. The Lie operad Lie corresponds the class of Lie algebras and is defined as:

Lie.1/ D SpanCf1g �1�! Hom.V; V / ;

Lie.2/ D SpanCf�g �2�! Hom.V ˝2; V / ;

�2.�/.a; b/ D Œa; b� ;

Lie.3/ D Span
C
f� ı .1; �/ ; � ı .�; 1/ g

# #�
� ı .�; 1/�.1;3;2/ ! ŒŒa; c�; b� D Œa; Œb; c�� � ŒŒa; b�; c� ;

�
� ı .�; 1/�.1;3;2/ D � ı .�; 1/ � � ı .1; �/ ;

where �� for an element � in the nth operadic space and a permutation � 2 Sn
stands for the (right) actions of the permutation groups on the operad (that is one of
the basic structures in the operad).

The main construction in this work is based on a particular example of an operad,
which we call the expansion operad E D ˚

E.n/
�
n
. It is defined for a sequence of

graded function spaces

On � C1
��
R
D
��n n all diagonals

�
for n D 2; 3; : : : admitting expansions

G.x1; : : : ; xn/ D
X
`

G 0̀.xj ; : : : ; xjCk/G00̀.x1; : : : ; xj�1; xjCk; : : : ; xn/

for jxa � xjCkj � jxb � xjCkj when a 2 fj; : : : ; j C kg 3= b. We set

E.n/ D On
0 ;

which is the graded dual. In the applications to vertex algebras and renormalization
theory of massless fields:

On D The algebra of rational n–point functions P.x1 � x2; : : : ; xn�1 � xn/Q
16 j <k6n

�
.xj � xk/2

��j;k
on R

D 3 x1; : : : ; xn with light–cone singularities, graded by the degree
of homogeneity.

The key relation between the operad E and the vertex algebras is that every vertex
algebra induces a system of linear maps

E(n) −→ EndV (n)

O′
n −→ HomC

(
V ⊗n, V

) ∼= V ′ ⊗n ⊗ V ,
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where the down arrow is the dual of the correlation functions maps:

V ˝n ˝ V 0 7�! On

a1 ˝ � � � ˝ an ˝ � 7�! �
�
a1.x1 � xn/ � � � an�1.xn�1 � xn/ an

�
� ˝

�
ˇ̌
a1.x1 � xn/ � � � an�1.xn�1 � xn/ an

˛

(here we assume that the graded pieces of V are finite dimensional). Thus, the
operadic structure on E is such that the above system maps E.n/ �! EndV .n/
gives an operadic morphism. On the other hand, one can show that this operadic
structure can be described entirely in terms of the expansions’ operations in On.

C. Passing to the renormalization let us mention first that the same rational
functions belonging to On appear as “Feynman amplitudes” (= integrands in
the Feynman integrals) in massless field theories. Here is an example of such a
Feynman amplitude in the �4–theory:

←→

1(
(x1 − x2)2

)2
1

(x2 − x3)2

× 1(
(x3 − x4)2

)2
1

(x1 − x4)2
∈ O4

3

4

1

2

It is important for the present construction that we consider the ultraviolet
renormalization on configuration space. In terms of Feynman amplitudes the
renormalization is given by a system of linear maps

On ! D 0
�
.RD/�.n�1/

�

subject to (recursive) conditions (cf. [7, 9] and references therein). In particular,
the renormalization ambiguity at order n is described by a linear map: On !
D 0Œ0n�, where D 0Œ0n� stands for the space of distributions on .RD/�.n�1/
supported at the origin. We obtain a sequence of vector spaces

R.n/ WD ˚
Q W On ! D 0Œ0n�

ˇ̌
commuting with multiplication by polynomials

�

where the condition comes from the requirements on the renormalization maps
(as explained in [7] and [9]).

The bridge between the theory of the vertex algebras and renormalization is based
on an existence of a natural isomorphism [7]

E.n/ Š R.n/ :

Furthermore, the operadic compositions in E.n/ have an interpretation on R.n/ that
corresponds to basic operations used in the renormalization group composition. The
later has a very natural pictorial illustration
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and its combinatorial version was described in [3].
The role of the operad R in renormalization theory is that it describes the

Stückelberg–Bogoliubov renormalization group. The latter group is formed by all
possible changes in the renormalization:

{On → D ′((RD)×n
)}

↓ {Q′
n}

{On → D ′((RD)×n
)}

↓ {Q′′
n}

{On → D ′((RD)×n
)}

{Qn
′′′ ∈ R(n)} ,

where fQ0ng and fQ00ng are arbitrary sequences of changes of the renormalization
Q0n;Q00n 2 R.n/.

In the paper [3] a functor was constructed
n
Operads

o
�!

n
Groups

o
;

which produces:

• the Renormalization group when applied to E ;
• the group of formal diffeomorphisms when applied on EndV ;
• the renormalization group action via an operadic morphism E ! EndV .

Our conclusion is summarized in the following scheme:

The E-algebras are vertex algebras

"
Expansion operad E Š Renormalization operad R

#
The group associated to R is the renormalization group
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Superfields and Vertex Algebras
in Four Dimensions

Dimitar Nedanovski

Abstract This contribution is short presentation of the work (Nedanovski, D,
Superconformal vertex algebras in four dimensions. arXiv:1401.0884v1 [hep-th])
in which the vertex algebra techniques in four dimensions are used for developing a
superfield formalism for quantum fields with extended superconformal symmetry.

1 Introduction

The vertex algebra, first introduced by Borcherds [3], reflects the concept of operator
product expansion in the case of two-dimensional conformal filed theories.

In [8] (for an earlier work see also [4]) the notion of vertex algebra was
generalized for higher spacetime dimensions in one–to–one correspondence with
models of Wightman fields obeying the so called Global Conformal Invariance
(GCI) as introduced in [9]. GCI is an invariance of the Wightman functions under
finite transformations of the two-fold spin covering of the geometric conformal
group.

We use the ideas of [8] to extend the vertex algebra techniques to superconformal
field theories in four spacetime dimensions.

Basic Notations. As mentioned, we work in four dimensions, but some of the
constructions we use are valid in arbitrary dimension and for them the definitions
are given for general dimension D. Vectors in theD-dimensional Minkowski space
will be denoted by x D �

x�
�D�1
�D 0 , xj (j D 1; 2; : : : ). We shall use also vectors

in the complexified Euclidean space denoted by z D�z��D�1
�D 0 , zj (j D 1; 2; : : : ),

etc. . The corresponding metrics (and scalar products) are, x2 � x � x � �.x0/2 C
.x1/2 C � � � C .xD�1/2 and z2 � z � z � .z0/2 C � � � C .zD�1/2. Einstein summation
convention is assumed.
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2 Vertex Algebras

GCI allows us to extend the QFT models with such an invariance on a compactifica-
tion of the real spacetime. The latter is the (conformally) compactified Minkowski
space M . There are special complex coordinates that are obtained by a complex
conformal transformation, which globally coverM [8]. Vertex operators correspond
to local quantum fields in these new coordinates. This formalism is known in the
literature as compact picture, because of the compactness of the real spacetime in
this representation.

Let us stress two important technical features related to the formalism of vertex
algebras in GCI QFT.

The first is that in the complex coordinates that parameterize M it is natural
to change the signature of the metric to a complexified Euclidean metric. In
this way, the vertex operator depends on a formal complex Euclidean variable
z D .z0; : : : ; zD�1/ 2 C

D . Furthermore, the natural generators of the conformal
symmetry in these coordinates form a real basis of the Euclidean conformal Lie
algebra. However, this does not mean that we are considering Euclidean fields in
the sense of Euclidean field theory! The point is that the relevant real structure in
the compact picture, which comes from the initial theory on the Minkowski space is
not an ordinary complex conjugation related to the new coordinates or the symmetry
generators.

Second, the vertex operators are not exactly quantum fields in the usual sense
of Wightman axioms as they are not distributions. They are considered as formal
power series in the spatial coordinates (the above complex coordinates). This is
just for convenience and it can be considered as a topological lighten of the
formalism: instead of with actual distributions we work with formal distributions
(as these formal series are called in [5]). However, the axioms of vertex algebras
are strong enough to allow us to prove that the vertex operators are not only formal
distributions but determine also actual distributions.

The theory of vertex algebras is based on the formalism of formal Laurent–Taylor
series with “light–cone poles”. This formalism can be found in [8, Sect. 1] or in [1,
Sect I]. However, in the present work these techniques will not play a central role
and so, we shall not review them.

We follow the definition of a vertex algebra as given in [8, Definition 2.1],
partially stated below. For a short review of the definitions and especially for a
comparison with the one-dimensional, chiral case, we refer the reader to Sects. 1
and 2 of [2].

Thus, a vertex algebra is a .Z=2Z/–graded vector space V endowed with an even
(i.e., parity preserving) (bi)linear map1

1For a fixed first argument it defines a map Y.a; z/ W V ! V ŒŒz��Œ.z2/�1� called vertex operator.
Sometimes Y.a; z/ b is also denoted by a.z/b. The parity pa of a 2 V is called parity of the vertex
operator Y.a; z/ and it coincides with the parity of the above map V ! V ŒŒz��Œ.z2/�1� with respect
to the induced .Z=2Z/-gradings.
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V ˝ V 3 a˝ b 7! Y.a; z/ b 2 V ŒŒz��Œ.z2/�1�;

(V ŒŒz��Œ.z2/�1� stands for the space of formal Laurent–Taylor series with poles at
z2 D 0, z 2 C

D), a set of mutually commuting even endomorphisms T�, � D
0; : : : ;D � 1, called (infinitesimal) translation endomorphisms, and an even vector
j0i 2 V called vacuum. These data are subject to certain axioms: (a) locality, (b)
translation invariance and (c) vacuum axiom.

Let us remark that instead of defining individually the vertex operators Y.a; z/
like two sided infinite formal series, as it was done in [8, Definition 2.1], one can
use, without any loss of generality, the approach of [2, Sect. 1]. In this way, Y.a; z/
can be defined not individually but only when applied on b 2 V and then the result
lies in the space of Laurent–Taylor formal series V ŒŒz��Œ.z2/�1�.

A field acting on the .Z=2Z/–graded vector space V is a linear map

� W V �! V ŒŒz��Œ.z2/�1�

2 2

a 7�! �.z/a:
(1)

Let the map (1) has defined parity (called parity of the filed) p� . It is said that the
field � is mutually local with the vertex operators if the supercommutator

Œ�.z1/; Y.b; z2/� a WD �.z1/ Y.b; z2/ a � .�1/p�pb Y.b; z2/ �.z1/ a; a 2 V;
(2)

is local in the sense that it vanishes when multiplied with a sufficiently large power
of .z1 � z2/2 [1, Sect. IV.A]:

�
.z1 � z2/

2/
�N�;b Œ�.z1/; Y.b; z2/� a D 0: (3)

The field �.z/ is additionally called translation–invariant if

ŒT�; �.z/� a WD T� .�.z/ a/ � �.z/.T� a/ D @z� .�.z/ a/

for all � D 0; : : : ;D � 1 and a 2 V .
We consider fields which are within the class of the translation invariant fields

mutually local with all the vertex operators (i.e. local with respect to a translation
invariant local complete system of fields).

Every field a 7! �.z/ a from this class is of a form a 7! Y.b; z/ a, for some
b 2 V , i.e. it can be represented by a vertex operator [1, Corollary 4.3]. In fact,

b D �.z/j0i
ˇ̌
ˇ

z D 0
.

Translation–invariance of the vertex operators gives that [8, Proposition 3.2 (b)]:

Y.a; z/ j0i D ez �T a; (4)

where z � T WD z�T�.
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3 Superconformal Vertex Algebras

Some Preliminary Notations The Grassmann variables attached to the complex-
ified four-dimensional Euclidean space are denoted by � D .
˛A/ and N� D . N
AP̨ /,
where ˛ D 1; 2, P̨ D P1; P2 are chiral spinorial indices and A D 1; : : : ; N is
an su.N /-index. Grassmann variables with undotted spinorial indices are related
to . 1

2
; 0/ and those with doted ones to .0; 1

2
/ representations of the orthogonal

Lie algebra.
If V D V0 ˚ V1 is a .Z=2Z/-graded vector space, then V Œ�; N�� is the space

of polynomials in the anti-commuting variables .�; N�/, which naturally is a super
vector space. Note that if, in addition, V is a Lie superalgebra, then V Œ�; N�� is again
a Lie superalgebra.

Conformal Lie Algebra generators:

• T0; : : : ; TD�1—generators of translations in the compact picture.
• ˝�; � (0 6 � < � 6 D � 1) – generators of rotations in the compact picture.
• H—generator of dilatations in the compact picture. It is called conformal

Hamiltonian. The eigenvalues of the H are called scaling dimensions of the
corresponding eigenstates (or fields).

• C0; : : : ; CD�1—generators of special conformal transformations in the compact
picture.

Generators of the N-extended superconformal Lie algebra:
This Lie superalgebra is extension of the four dimensional conformal Lie algebra

(which is contained in the even sector) with the following additional generators:

• Odd generators QA
˛ and NQ P̨A called supertranslations. (˛ D 1; 2; P̨ D P1; P2;A D

1; : : : ; N; as already explained.)
• Odd generators S˛A and NSAP̨ called super special conformal translations. The

indices are as above.
• An even U.1/-generator R called R-charge.
• Even generators AA

B spanning the Lie algebra su.N/ (i.e., sl.N;C/, since we
consider the complexified su.N/). They are called R-symmetry generators.

For short description of the well-known N-extended superconformal Lie algebra,
coordinated with notations we use in our work, see [7, Appendix A.].

We adopt the following conventions: � � Q WD 
˛A Q
A
˛ and N� � NQ WD N
AP̨ NQ P̨A.

Superconformal Vertex Operators A superfield �.z;�; N�/ acting on the .Z=2Z/-
graded vector space V is a linear map

� W V �! V ŒŒz��Œ.z2/�1�Œ�; N��

2 2

a 7�! �.z;�; N�/ a:
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Actually, the superfields are polynomials in � and N� , such that their coefficients are
fields acting on V . We consider superfields whose coefficient fields are translation
invariant and mutually local with all the vertex operators, and thus representable
by vertex operators [1, Corollary 4.3]. Therefore such classes of superfields can be
obtained in the following manner.

Let Y.a; z/; z 2 C
4 be a vertex operator from a vertex algebra whose underlying

vector space V is endowed with an action of the N-extended superconformal algebra
via linear endomorphisms, such that this action annihilates the vacuum vector.2 We
define superconformal vertex operators

Y.a; z;�; N�/ WD e� �QC N� � NQ Y.a; z/ e� � �Q� N� � NQ 2 End
�
V ŒŒz��Œ.z2/�1�Œ�; N�� �:

(5)

Note that Y.a; z;�; N�/ is a polynomial in �; N� with coefficients that are vertex
operators. Therefore, using the state-field correspondence (4), Y.a; z;�; N�/ can be
reconstructed from its action on the vacuum,

Y.a; z;�; N�/ j0i D e� �QC N� � NQ Y.a; z/ j0i D ez �TC� �QC N� � NQ a: (6)

This allows us to deduce the covariance properties of the so defined superconfor-
mal vertex operators.

Let X be a generator3 of the superconformal Lie algebra. Commutators�
X; Y.a; z;�; N�/	 are computed from their action on the vacuum and using the

general formula [6] 4

X Y.a; z;�; N�/ j0i D Y.e�ad.z �TC� �QC N� � NQ/�X� a; z;�; N�/ j0i: (7)

We have
�
X ; Y.a; z;�; N�/	 j0i D X Y.a; z;�; N�/ j0i. Recalling that Y.a; z;�; N�/

is a polynomial in �; N� with coefficients being translation invariant fields mutually
local with all the vertex operators, we apply the vertex algebra analog of the Reeh-
Schlider property, i.e. [8, Theorem 3.1], which gives

�
X ; Y.a; z;�; N�/	 D Y.e�ad.z �TC� �QC N� � NQ/�X� a; z;�; N�/: (8)

2In other words V is a module for the N-extended superconformal algebra with an action that
annihilates the vacuum.
3In all the text we use the same notation for the generators of the N-extended superconformal
algebra and their representations as elements of End.V /. The meaning of the notation is clear
from the context in which it is used.
4One can deduce relation (7) by using the definition of superconformal vertex operator, state-field
correspondence (4) and axioms of vertex algebra.
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Due to the nilpotency of ad.z � T C � � Q C N� � NQ/, e�ad.z �TC� �QC N� � NQ/�X�
is a polynomial in z;�; N� with coefficients in the superconformal Lie algebra and
linearly depending of X . Further, it can be shown [7, Sect. 3] that the general form
of the commutators is

�
X ; Y.a; z;�; N�/	 D Z.X I z;�; N�/Y.a; z;�; N�/ C Y

�
M.X I z;�; N�/ a; z;�; N��;

(9)

where Z.X I z;�; N�/ is first order differential operator (i.e., a vector field) in z;�; N�
with polynomial coefficients in z;�; N� and M.X I z;�; N�/ has coefficients belonging
to SpanfC�; S˛A; NSAP̨ ; ˝�; �;H;AA

B;Rg.
Using (9), the super Jacobi identity

�
ŒX; X 0�; Y.a; z;�; N�/	 D

� .�1/pX pX0 �X 0; ŒX; Y.a; z;�; N�/� 	 C �
X; ŒX 0; Y.a; z;�; N�/� 	

can be written as

�Z.ŒX;X 0�I z;�; N�/ C M.ŒX;X 0�I z;�; N�/ D��Z.X I z;�; N�/ C M.X I z;�; N�/; �Z.X 0I z;�; N�/ C M.X 0I z;�; N�/	
(10)

(commutators are understood as .Z=2Z/–graded commutators). Note that in
Eq. (10) commutators like

�
Z.X I z;�; N�/;M.X 0I z;�; N�/	 are understood as a

commutator of first and zeroth order differential operators in .z;�; N�/.
We calculate M.X I z;�; N�/ and Z.X I z;�; N�/ for each generator X (see [7,

Eq. 3.25] for the results) and thereby obtain an action of the N-extended supercon-
formal Lie algebra on the superconformal vertex operators.

Thus, we arrive to the following notion of a superconformal vertex algebra. It is
a .Z=2Z/–graded vector space V endowed with an even (bi)linear map

V ˝ V 3 a˝ b 7! Y.a; z;�; N�/ b 2 V ŒŒz��Œ.z2/�1�Œ�; N��;

an even vector j0i 2 V called a vacuum, and a linear action on V of the
superconformal Lie algebra annihilating the vacuum. For the coefficient fields in
the expansion of Y.a; z;�; N�/ in � and N� we require to fulfil all the axioms of
vertex algebra. We also require to have an action of the N-extended superconformal
Lie algebra on the vector space V for which the superconformal vertex operators
are equivariant in the sense

�
X ; Y.a; z;�; N�/	 D Z.X I z;�; N�/Y.a; z;�; N�/ C

Y
�
M.X I z;�; N�/ a; z;�; N��, with M.X I z;�; N�/ and Z.X I z;�; N�/ given by [7,

Eq. 3.25], for every generator X .
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Conclusion
We developed an algebraic formalism for quantum superfields with extended
superconformal symmetry analogous to vertex algebras.

This can have various applications. First, in direction of cohomological
analysis of anomalies in the perturbative models of such theories. Second, it
gives a framework for constructing on shell models (i.e., models in a Hilbert
space).

Acknowledgements The author thanks his adviser Prof. Nikolay Nikolov, the organizers of the
Varna meeting and the referee of this contribution.
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Special Reduced Multiplets and Minimal
Representations for SO(p,q)

Vladimir Dobrev

Abstract Using our previous results on the systematic construction of invariant
differential operators for non-compact semisimple Lie groups we classify the special
reduced multiplets and minimal representations in the case of SO(p,q).

1 Introduction

In a recent paper [1] we started the systematic explicit construction of invariant dif-
ferential operators. We gave an explicit description of the building blocks, namely,
the parabolic subgroups and subalgebras from which the necessary representations
are induced. Thus we have set the stage for study of different non-compact groups.

Since the study and description of detailed classification should be done group
by group we had to decide which groups to study first. We decided to start with a
subclass of the hermitian-symmetric algebras which share some special properties
of the conformal algebra so.n; 2/. That is why, in view of applications to physics,
we called these algebras ‘conformal Lie algebras’ (CLA), (or groups) [2]. Later we
gave a natural way to go beyond this subclass using essentially the same results. For
this we introduce the new notion of parabolic relation between two non-compact
semisimple Lie algebras G and G0 that have the same complexification and possess
maximal parabolic subalgebras with the same complexification [3].

Thus, for example, using results for the conformal algebra so.n; 2/ (for fixed n)
we can obtain results for all pseudo-orthogonal algebras so.p; q/ such that pCq D
n C 2. In this way, in [3] (among other things) we gave the main and the reduced
multiplets of indecomposable elementary representations for so.p; q/ including the
necessary data for all relevant invariant differential operators. We specially stressed
that the classification of all invariant differential operators includes as special cases
all possible conservation laws and conserved currents, unitary or not. In the present
paper we give explicitly the conservation laws in the case of so.p; q/.
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This paper is a short sequel of [3]. Due to the lack of space we refer to [3] for
motivations and extensive list of literature on the subject.

2 Preliminaries

Let G D so.p; q/, p 	 q, p C q > 4. We choose a maximal parabolic P D
M ˚ A ˚ N such that:

M D so.p � 1; q � 1/; dim A D 1; dim N D p C q � 2: (1)

With this choice we get for the conformal algebra so.n; 2/ the Bruhat decomposition
G D P ˚ QN with direct physical meaning ( QN Š N ) [3].

We label the signature of the representations of G as follows:

� D fn1; : : : ; nh I c g; (2)

nj 2 Z=2; c D d � p C q � 2
2

; h � Œ
p C q � 2

2
�;

0 � jn1j < n2 < � � � < nh; p C q even;

0 < n1 < n2 < � � � < nh; p C q odd;

where the parameter c (related to the conformal weight d ) labels the characters of
A, and the first h entries are labels of the finite-dimensional (nonunitary for q ¤ 1)
irreps � of M .

Following [4] we call the above induced representations � D IndGP.�˝ � ˝ 1/

elementary representations (ERs) of G D SO.p; q/. Their spaces of functions are:

C� D fF 2 C1.G; V�/ j F.gman/ D e��.H/ �D�.m�1/F.g/g
where a D exp.H/, H 2 A , m 2 M D SO.p � 1; q � 1/, n 2 N D expN . The
representation action is the left regular action:

.T �.g/F/.g0/ D F.g�1g0/ ; g; g0 2 G: (3)

Remark. Note that the group M has more general irreps representing the centre
of M . However, these are discrete parameters which are not essential for the
classification of the reducible ERs, cf. [5, 6].}
• An important ingredient in our considerations are the highest/lowest weight

representations of GC. These can be realized as (factor-modules of) Verma
modules V � over GC, where � 2 .HC/�, HC is a Cartan subalgebra of GC,
weight � D �.�/ is determined uniquely from � [6].

Actually, since our ERs are induced from finite-dimensional representations
of M the Verma modules are always reducible. Thus, it is more convenient to use
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generalized Verma modules QV � such that the role of the highest/lowest weight
vector v0 is taken by the (finite-dimensional) space V� v0 . For the generalized
Verma modules (GVMs) the reducibility is controlled only by the value of
the conformal weight d , or the parameter c. Relatedly, for the intertwining
differential operators only the reducibility w.r.t. non-compact roots is essential.
Thus, from now on we shall consider the ERs factored by the maximal invariant
subspace generated by reducibilities w.r.t. compact roots. We shall call these
factored ERS: compactly restricted ERs.

• One main ingredient of our approach is as follows. We group the (reducible) ERs
with the same Casimirs in sets called multiplets [5]. The multiplet corresponding
to fixed values of the Casimirs may be depicted as a connected graph, the vertices
of which correspond to the reducible ERs and the lines (arrows) between the ver-
tices correspond to intertwining operators. The multiplets contain explicitly all
the data necessary to construct the intertwining differential operators. Actually,
the data for each intertwining differential operator consists of the pair .ˇ;m/,
where ˇ is a (non-compact) positive root of GC,m 2 N, such that the BGG Verma
module reducibility condition [7] (for highest weight modules) is fulfilled:

.�C �; ˇ_/ D m; ˇ_ � 2ˇ=.ˇ; ˇ/ (4)

where � is half the sum of the positive roots of GC. When the above holds then
the Verma module with shifted weight V ��mˇ (or QV ��mˇ for GVM and ˇ
non-compact) is embedded in the Verma module V � (or QV �). This embedding
is realized by a singular vector vs expressed by a polynomial Pm;ˇ.G�/ in the
universal enveloping algebra .U.G�// v0 , G� is the subalgebra of GC generated
by the negative root generators [8]. More explicitly, [6] vsm;ˇ D Pm;ˇ v0 (or

vsm;ˇ D Pm;ˇ V� v0 for GVMs).1

Then there exists [6] an intertwining differential operator of order m D mˇ:

Dm
ˇ W C�.�/ �! C�.��mˇ/ (5)

given explicitly by:

Dm
ˇ D Pm

ˇ .
OG�/ (6)

where OG� denotes the right action on the functions F , cf. (3).
Thus, in each such situation we have an invariant differential equation of

order m D mˇ:

Dm
ˇ f D f 0; f 2 C�.�/; f 0 2 C�.��mˇ/: (7)

1For explicit expressions for singular vectors we refer to [9].
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In many such situations the invariant operator Dm
ˇ has a non-trivial invariant

kernel. These kernels are very important since in them are realized the (irre-
ducible) subrepresentations of G as solutions of the equations:

Dm
ˇ f D 0; f 2 C�.�/; (8)

Furthermore, in some physical applications in the case of first order differential
operators, i.e., for m D mˇ D 1, Eq. (8) are called conservation laws, and the
elements f 2 kerDm;ˇ are called conserved currents.

3 Classification of Reducible ERs for so.p; q/

The reducible ERs are grouped in various multiplets. We start with the so-called
main multiplets (which contain the maximal number of ERs with this parabolic). We
present them with the following explicit parametrization of the ERs in the multiplets
(following [10], see also [11]):

�1̇ D f� n1; : : : ; nh I ˙nhC1g; nh < nhC1;

�2̇ D f� n1; : : : ; nh�1; nhC1 I ˙nhg
�3̇ D f� n1; : : : ; nh�2; nh; nhC1 I ˙nh�1g
: : : (9)

�ḣ�1 D f� n1; n2; n4; : : : ; nh; nhC1 I ˙n3g
�ḣ D f� n1; n3; : : : ; nh; nhC1 I ˙n2g

�ḣC1 D f� n2; n3; : : : ; nh; nhC1 I ˙n1g

� D
(

˙; p C q even

1; p C q odd

(� D ˙ is correlated with �˙). Clearly, the multiplets correspond 1-to-1 to the
finite-dimensional irreps of so.p C q;C/ with signature fn1; : : : ; nh; nhC1g and we
are able to use previous results due to the parabolic relation between the so.p; q/
algebras for p C q -fixed. Note that the two representations in each pair �˙ are
called shadow fields.

Further, we denote by Ci̇ the representation space with signature �i̇ .
The ERs in the multiplet are related by intertwining integral and differential

operators.
The integral operators were introduced by Knapp and Stein [12]. Here these

operators intertwine the pairs Ci̇ (cf. (9)):

Gi̇ W C�i �! Ci̇ ; i D 1; : : : ; hC 1: (10)
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The intertwining differential operators correspond to non-compact positive roots
of the root system of so.p C q;C/, cf. [6]. In the current context, compact roots of
so.pCq;C/ are those that are roots also of the subalgebra MC, the rest of the roots
are non-compact. We denote the differential operators by di ; d 0i . The spaces from
(9) they intertwine are:

di W C�i �! C�iC1; i D 1; : : : ; h I
d 0i W CCiC1 �! CCi ; i D 1; : : : ; h � 1 I
dh W CChC1 �! CCh ; .p C q/ � even I
d 0h W C�h �! CChC1; .p C q/ � even I
d 0h W C�hC1 �! CCh ; .p C q/ � even I
d 0h W CChC1 �! CCh ; .p C q/ � odd I
dhC1 W C�hC1 �! CChC1; .p C q/ � odd : (11)

The degrees of these intertwining differential operators are given just by the
differences of the c entries [10]:

deg di D deg d 0i D nhC2�i � nhC1�i D mhC2�i ; i D 1; : : : ; h;

deg d 0h D n2 C n1 D m1; .p C q/ � even;

deg dhC1 D 2n1 D m0hC1 D m1; .p C q/ � odd: (12)

where d 0h is omitted from the first line for .p C q/ even.

4 Multiplets and Representations for p C q Odd

4.1 Reduced Multiplets for p C q Odd

In this section we consider the case p C q odd, thus h D 1
2
.p C q � 3/. First we

rewrite the main multiplets from (9) in the following parametrization:

�1̇ D Œm1; : : : ; mh I ˙ 1
2
.m1 C 2m2;hC1/ �; (13)

�2̇ D Œm1; : : : ; mh�1; mh;hC1 I ˙ 1
2
.m1 C 2m2;h/ �

�3̇ D Œm1; : : : ; mh�2;mh�1;h; mhC1 I ˙ 1
2
.m1 C 2m2;h�1/ �

: : :

�i̇ D Œm1; : : : ; mh�iC1;mh�iC2;h�iC3;mhC4�i ; : : : ; mh; mhC1 I
˙ 1
2
.m1 C 2m2;hC2�i / �
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: : :

�ḣ�1 D Œm1; m2; m34; m5; : : : ; mh; mhC1 I ˙ 1
2
.m1 C 2m2;3/ �

�ḣ D Œm1; m23; m4; : : : ; mh; mhC1 I ˙ 1
2
.m1 C 2m2/ �

�ḣC1 D Œm1 C 2m2; m3; : : : ; mh; mhC1 I ˙ 1
2
m1 �

where the last entry (as before) is the value of c, whilemi 2 N are the Dynkin labels
(as in (12)):

m1 D 2n1 D 2`1C1; mj D nj �nj�1 D `j �`j�1C1; j D 2; : : : ; hC1:
(14)

and we use the shorthand notation:

mr;s � mr C� � �Cms; r < s; mr;r � mr; mr;s � 0; r > s; (15)

and we have also introduced the labels `k (in order to facilitate comparison with the
literature):

`k D nk � k C 1
2
; 0 � `1 � � � � � `hC1: (16)

We know that the ERs in a pair are related by the KS operatorsGi̇ (10), however
for pC q odd the operator GChC1 degenerates to a differential operator of degree m1

corresponding to the only short non-compact root "1 . The main multiplets are given
the Fig. 1. Note that following [3] we do not give the KS integral operators. Their
presence is assumed by the symmetry w.r.t the bullet in the centre of the figure.

In this case there are hC1 reduced multiplets which may be obtained by formally
setting one Dynkin label to zero. For mj D 0 we denote the signatures by j �k̇ .

We shall see that in every multiplet there is only one pair (which we mark with �)
whose representations are of direct physical relevance (including finite-dimensional
irreps of the M subalgebra). Yet we list the others since they are related by invariant
differential operators which we record in each case.

In detail, the signatures are given similarly to (13):

• mhC1 D 0 equiv nhC1 D nh

hC1�1̇ D hC1�2̇ D Œm1; : : : ; mh I ˙ 1
2
.m1 C 2m2;h/ �; �

hC1�3̇ D Œm1; : : : ; mh�2;mh�1;h; 0 I ˙ 1
2
.m1 C 2m2;h�1/ �

: : : (17)
hC1�ḣ�1 D Œm1; m2; m34; m5; : : : ; mh; 0 I ˙ 1

2
.m1 C 2m2;3/ �

hC1�ḣ D Œm1; m23; m4; : : : ; mh; 0 I ˙ 1
2
.m1 C 2m2/ �

hC1�ḣC1 D Œm1 C 2m2; m3; : : : ; mh; 0 I ˙ 1
2
m1 �
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Here there are two differential operators involving physically relevant represen-
tations, cf. Fig. 2:

Dmh
"1�"3 W C�1 D C�2 �! C�3

Dmh
"1C"3 W CC3 �! CC1 D CC2 (18)

• mh D 0 equiv nh D nh�1

h�1̇ D Œm1; : : : ; mh�1; 0 I ˙ 1
2
.m1 C 2m2;h�1 C 2mhC1/ �;

h�2̇ D h�3̇ D Œm1; : : : ; mh�1; mhC1 I ˙ 1
2
.m1 C 2m2;h�1/ �; �

: : : (19)
h�ḣ�1 D Œm1; m2; m34; m5; : : : ; mh�1; 0; mhC1 I ˙ 1

2
.m1 C 2m2;3/ �

h�ḣ D Œm1; m23; m4; : : : ; mh�1; 0; mhC1 I ˙ 1
2
.m1 C 2m2/ �

h�ḣC1 D Œm1 C 2m2; m3; : : : ; mh�1; 0; mhC1 I ˙ 1
2
m1 �

Here there are four differential operators involving physically relevant represen-
tations, cf. Fig. 3:

DmhC1
"1�"2 W C�1 �! C�2 D C�3

Dmh�1
"1�"4 W C�2 D C�3 �! C�4

Dmh�1
"1C"4 W CC4 �! CC2 D CC3

DmhC1
"1C"2 W CC2 D CC3 �! CC1 (20)

The above case is typical for mk D 0 for k > 2. Then for k D 2; 1 we have:
• m2 D 0 equiv n2 D n1

2�1̇ D Œm1; 0; m3; : : : ; mh I ˙ 1
2
.m1 C 2m3;hC1/ �;

2�2̇ D Œm1; 0; m3; : : : ; mh�1; mh;hC1 I ˙ 1
2
.m1 C 2m3;h/ �

2�3̇ D Œm1; 0; m3; : : : ; mh�2;mh�1;h; mhC1 I ˙ 1
2
.m1 C 2m3;h�1/ �

: : : (21)
2�ḣ�1 D Œm1; 0; m34; m5; : : : ; mh; mhC1 I ˙ 1

2
.m1 C 2m3/ �

2�ḣ D 2�ḣC1 D Œm1; m3; m4; : : : ; mh; mhC1 I ˙ 1
2
m1 �; �

Here there are three differential operators involving physically relevant represen-
tations, cf. Fig. 4
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Dm3
"1�"h W C�h�1 �! C�h D C�hC1
Dm1
"1

W C�h D C�hC1 �! CCh D CChC1
Dm3
"1C"h W CCh D CChC1 �! CCh�1 (22)

� m1 D 0 equiv n1 D 0

1�1̇ D Œ0; m2; : : : ; mh I ˙m2;hC1 �;
1�2̇ D Œ0; m2; : : : ; mh�1; mh;hC1 I ˙m2;h �

1�3̇ D Œ0; m2; : : : ; mh�2;mh�1;h; mhC1 I ˙m2;h�1 �

: : : (23)
1�ḣ�1 D Œ0; m2; m34; m5; : : : ; mh; mhC1 I ˙m2;3 �

1�ḣ D Œ0; m23; m4; : : : ; mh; mhC1 I ˙m2 �

1�hC1 D Œ2m2; m3; : : : ; mh; mhC1 I 0 �; �

Here there are two differential operators involving physically relevant represen-
tations, cf. Fig. 5:

Dm2
"1�"hC1 W C�h�1 �! CChC1 D C�hC1

Dm2
"1C"hC1 W CChC1 D C�hC1 �! CCh�1: (24)

For future reference we summarize the pairs of direct physical relevance
reparametrizing for more natural presentation and introducing uniform notation
r�k̇ :

r�1̇ D hC1�1̇ D Œm1; : : : ; mh I ˙ 1
2
.m1 C 2m2;h/�;

dC 	 2h; d� � 1;

r�2̇ D h�2̇ D Œm1; : : : ; mh I ˙ 1
2
.m1 C 2m2;h�1/�;

dC 	 2h � 1; d� � 2;

: : :

r�j̇ D h�jC2�j̇ D Œm1; : : : ; mh I ˙ 1
2
.m1 C 2m2;hC1�j /�;

dC 	 2h � j C 1; d� � j; 1 � j � h � 1
: : :

r�ḣ�1 D 3�ḣ�1 D Œm1; : : : ; mh I ˙ 1
2
.m1 C 2m2/�;

dC 	 hC 2; d� � h � 1;
r�ḣ D 2�ḣ D Œm1; : : : ; mh I ˙ 1

2
m1�; dC 	 hC 1; d� � h;

r�hC1 D 1�hC1 D Œ2m1; m2; : : : ; mh I 0�; d D hC 1
2

(25)
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where we have introduced notation d˙ corresponding to the “˙00 occurrences:

d˙ D hC 1
2

˙ jcj: (26)

4.2 Special Reduced Multiplets for p C q Odd

In addition to the standardly reduced multiplets discussed in the previous subsection,
there are special reduced multiplets which may be formally obtained by formally
setting one or two Dynkin labels to a positive half integer. Again from each
main multiplet only one pair is of physical relevance but unlike the standardly
reduced multiplets discussed in the previous subsection these pairs are not related
by differential operators to the rest of the reduced multiplet (though having the same
Casimirs). Thus, we present only the physically relevant pairs.

• mhC1 7! 1
2
�; � 2 2N � 1

s�1̇ D Œm1; : : : ; mh I ˙ 1
2
.m1 C 2m2;h C �/ � (27)

• mh 7! 1
2
�; mhC1 7! 1

2
�0; �; �0 2 2N � 1

s�2̇ D Œm1; : : : ; mh�1; 12 .�C �0/ I ˙ 1
2
.m1 C 2m2;h�1 C �/ � (28)

• mh�1 7! 1
2
�; mh 7! 1

2
�0; �; �0 2 2N � 1

s�3̇ D Œm1; : : : ; mh�2; 12 .�C �0/;mhC1 I ˙ 1
2
.m1 C 2m2;h�2 C �/ � (29)

• mh�jC2 7! 1
2
�; mh�jC3 7! 1

2
�0; �; �0 2 2N � 1; 2 � j � h

s�j̇ D Œm1; : : : ; mh�jC1; 12 .�C �0/;mhC4�j ; : : : ; mh; mhC1 I
˙ 1
2
.m1 C 2m2;hC1�j C �/ � (30)

• m3 7! 1
2
�; m4 7! 1

2
�0; �; �0 2 2N � 1

s�ḣ�1 D Œm1; m2;
1
2
.�C �0/; m5; : : : ; mh; mhC1 I ˙ 1

2
.m1 C 2m2 C �/ �

(31)

• m2 7! 1
2
�; m3 7! 1

2
�0; �; �0 2 2N � 1

s�ḣ D Œm1;
1
2
.�C �0/; m4; : : : ; mh; mhC1 I ˙ 1

2
.m1 C �/ � (32)

• m2 7! 1
2
�; � 2 2N � 1

s�ḣC1 D Œm1 C �; m3; : : : ; mh; mhC1 I ˙ 1
2
m1 � (33)
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In each pair there are the standard KS integral operators Gk̇ between r�
�
k . Fur-

thermore, the ERs in a pair are reducible w.r.t. the compact roots and in addition
the ERs r�

�
k are reducible w.r.t. the only short noncompact root "1 . Actually, the

corresponding differential operators are degenerations of the corresponding KS
operators GCk (10). (In the main multiplets the same was happening but only for
k D hC 1.) Thus, we have:

D2jck j
"1

Wr C�k �! rCCk ; GCk � D2jck j
"1

(34)

where ck is the value of c of the ER r�
�
k .

Finally, we give a doubly reduced case originating from (33) setting m1 D 0:

rs�ḣC1 D Œ�; m2; : : : ; mh I 0 �; mk 2 N; � 2 2N � 1: (35)

This is a singlet and the ER is reducible only w.r.t. the compact roots, there are no
non-trivial differential operators, thus, the corresponding generalized Verma module
and the compactly restricted ER are irreducible.

4.3 Special Cases for p C q Odd

The ERS ��1 are the only ones in the multiplet that contain as irreducible
subrepresentations the finite-dimensional irreducible representations of G. More
precisely, the ER ��1 contains the finite-dimensional irreducible representation of
G with signature .m1; : : : ; mhC1/. (Certainly, the latter is non-unitary except the
case of the trivial one-dimensional obtained for mi D 1, 8 i .)

Another important case is the ER with signature �C1 . It contains a unitary discrete
series representation of so.p; q/ realized on an invariant subspace D of the ER �C1 .
That subspace is annihilated by the KS operator G�1 , and is the image of the KS
operator GC1 .

Furthermore when p > q D 2 the invariant subspace D is the direct sum of two
subspaces D D DC ˚ D�, in which are realized a holomorphic discrete series
representation and its conjugate anti-holomorphic discrete series representation,
resp. Note that the corresponding lowest weight GVM is infinitesimally equivalent
only to the holomorphic discrete series, while the conjugate highest weight GVM is
infinitesimally equivalent to the anti-holomorphic discrete series.

Thus, the signatures of the (holomorphic) discrete series are:

�C1 D Œm1; : : : ; mh I d D hC 1
2
.m1 C 1/Cm2;h C � �; � 2 N (36)

More (non-holomorphic) discrete series representations are contained in �Ck for
1 < k � h.
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The next important case are the limits of (holomorphic) discrete series which
are contained in the reduced case (17):

r�
C
1 D Œm1; : : : ; mh I d D hC 1

2
.m1 C 1/Cm2;h � (37)

(with conformal weight obtained from (36) as “limit” for � D 0).
Finally, we mention the so called first reduction points (FRP). For q D 2 these

are the boundary values of d from below of the positive energy UIRs. Most of the
FRPs are contained in �ChC1, cf. (13), which we give with suitable reparametrization:

�ChC1 D Œm1; m2; : : : ; mh I d D hC 1
2
m1 � 1

2
�; m1 	 3: (38)

The FRP cases for m1 D 1; 2 (with the same values of d by specializing m1) are
found in (21), (23), resp:

r�
�
h D Œ1; m2; : : : ; mh I d D h �; (39)

r�hC1 D Œ2; m2; : : : ; mh I d D hC 1
2
�: (40)

Finally, we give some discrete unitary points below the FRP which are found in
the special reduced ERs (32) (used for m1 D � D 1, �0 D 2m2 � 1), and then (33)
used first for m1 D 2, � D 2k � 1, and then for m1 D 1, � D 2k � 1:

s�
�
h D Œ1; m2; : : : ; mh I d D h � 1

2
�; (41)

s�
�
hC1 D Œ2k C 1; m2; : : : ; mh I d D h � 1

2
�; k 2 N (42)

s�
�
hC1 D Œ2k; m2; : : : ; mh I d D h �; k 2 N (43)

4.4 Minimal Irreps for p C q Odd

First we give the minimal irreps occurring in standardly reduced multiplets display-
ing together only the physically relevant representations:

r�
�
1 D Œ 1; : : : ; 1 I d D 1 �; (44)

rL
�
1 D f ' 2 rC�1 W D1

"1�"3 ' D 0; GC1 ' D 0 g;
: : :

r�
�
j D Œ 1; : : : ; 1 I d D j �;

rL
�
j D f ' 2 rC�j W D1

"1�"jC2 ' D 0; GCj ' D 0 g;
1 � j � h � 1;

: : :
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r�
�
h D Œ 1; : : : ; 1 I dFRP D h �;

rL
�
h D f ' 2 rC�h W D1

"1
' D 0 g; GCh D D1

"1
;

r�hC1 D Œ 2; 1; : : : ; 1 I dFRP D hC 1
2
�;

rLhC1 D f ' 2 rC�hC1 W D1
"1C"hC1 ' D 0 g

(In the last case there is no KS operator since c D 0.)
We see that for h 	 2 there are discrete unitary points below the FRPs. For

fixed h 	 2 these are in r�
�
j with conformal weight d D j (and trivial M inducing

irreps) for j D 1; : : : ; h � 1. Furthermore, as evident from (61) for h 	 3 there
are discrete unitary points below those displayed. For fixed h 	 3 these are in
r�
�
j with conformal weight 1 � d < j (and non-trivial M inducing irreps) for

j D 2; : : : ; h � 2. It seems that all this picture is consistent with [13]. More details
will be given elsewhere.

Next we give the case of special reduced multiplets displaying together the
physically relevant representations:

s�
�
1 D Œ 1; : : : ; 1 I d D 1

2
�; (45)

sL
�
1 D f ' 2 sC�1 W D2h

"1
' D 0 g; GC1 D D2h

"1
;

: : :

s�
�
j D Œ 1; : : : ; 1 I d D j � 1

2
�; 1 � j � h

sL
�
j D f ' 2 sC�j W D2.hC1�j /

"1
' D 0 g; GCj D D2.hC1�j /

"1
;

: : :

s�
�
h D Œ 1; : : : ; 1 I d D h � 1

2
�;

sL
�
h D f ' 2 sC�h W D2

"1
' D 0 g; GCh D D2

"1
;

s�hC1 D Œ 2; 1; : : : ; 1 I d D h �;

sL
�
hC1 D f ' 2 sC�hC1 W D1

"1
' D 0 g; GChC1 D D1

"1
;

Here all irreps are below the FRP. The “most” minimal representations are the
last two cases of (45). For h D 1, i.e., so.3; 2/ these are the so-called singletons
discovered by Dirac [14].

4.5 Singular Vectors Needed for the Invariant
Differential Operators

The mostly used case is "1 D ˛1C� � �C˛` , ` D hC1. The corresponding singular
vector of weight m"1 is given in (13) [9] (noting that this is an sl.n/ formula in
quantum group setting, thus, one should take q D 1):
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vm"1 D
mX

k1D0
� � �

mX
k`�1D0

ak1:::k`�1 .X
�
1 /

m�k1 � � � .X �̀�1/m�k`�1 �

� .X �̀/m .X �̀�1/k`�1 � � � .X�1 /k1 ˝ v0; (46)

ak1:::k`�1 D .�1/k1C���Ck`�1 a`
�
m

k1

�
� � �

�
m

k`�1

�
�

� Œ.�C �/.H1/�

Œ.�C �/.H1/ � k1� � � � Œ.�C �/.H`�1/�
Œ.�C �/.H`�1/ � k`�1� ;

where Xk̇ are the simple root vectors, Hk are the long Chevalley Cartan elements
Hk D ŒXCk ; X�k �, k < `, Hs D H1 C H2 C � � � C Hs , � is the half-sum of the
positive roots.

Other cases are: "1 � "j D ˛1 C � � � C ˛j�1 . Clearly, one uses again formula
(46) replacing ` 7! j � 1.

The last case is: "1 C "` D ˛1 C � � � C ˛`�1 C 2˛` , ` D h C 1. The singular
vector is given in (19) of [9]:

vm"1C"` D
mX

k1D0
� � �

mX
k`�2D0

2mX
k`�1D0

bk1:::k`�1 .X
�
1 /

m�k1 � � � .X �̀�2/m�k`�2 �

� .X �̀/2m�k`�1 .X �̀�1/m .X �̀/k`�1 .X �̀�2/k`�2 � � � .X�1 /k1 ˝ v0 ; (47)

bk1:::k`�1 D .�1/k1C���Ck`�1 b`
�
m

k1

�
� � �

�
m

k`�2

� �
2m

k`�1

�
�

� Œ.�C �/.H1/�

Œ.�C �/.H1/ � k1� : : :
Œ.�C �/.H`�2/�

Œ.�C �/.H`�2/ � k`�2�
Œ.�C �/.H`/�

Œ.�C �/.H`/ � k`�1�

5 Multiplets and Representations for p C q Even

5.1 Reduced Multiplets for p C q Even

In this section we consider the case p C q odd, thus h D 1
2
.p C q � 2/. First we

introduce the Dynkin labels parametrization of the multiplets:

�1̇ D Œ.m1; : : : ; mh/
˙ I ˙. 1

2
m12 Cm3;hC1/ �; (48)

�2̇ D Œ.m1; : : : ; mh�1; mh;hC1/˙ I ˙. 1
2
m12 Cm3;h/ �

�3̇ D Œ.m1; : : : ; mh�2;mh�1;h; mhC1/˙ I ˙. 1
2
m12 Cm3;h�1/ �
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: : :

�j̇ D Œ.m1; : : : ; mh�jC1;mh�jC2;h�jC3;mhC4�j ; : : : ; mh; mhC1/˙ I
˙. 1

2
m12 Cm3;hC2�j / �; 2 � j � h � 1;

: : :

�ḣ�1 D Œ.m1; m2; m34; m5; : : : ; mh; mhC1/˙ I ˙. 1
2
m12 Cm3/ �

�ḣ D Œ.m103; m23; m4; : : : ; mh; mhC1/˙ I ˙ 1
2
m12 �

�ḣC1 D Œ.m13; m3; : : : ; mh; mhC1/˙ I ˙ 1
2
.m1 �m2/ �

where the conjugation of the M labels interchanges the first two entries:

.m1; : : : ; mh/
� D .m1; : : : ; mh/; (49)

.m1; m2; : : : ; mh/
C D .m2; m1; : : : ; mh/;

the last entry (as before) is the value of c, while mi 2 N are the Dynkin labels
(as in (12)):

m1 D n1 C n2 D `1 C `2 C 1; (50)

mj D nj � nj�1 D `j � `j�1 C 1; j D 2; : : : ; hC 1;

finally, m103 � m1 Cm3.
The main multiplets are given in Fig. 6. Note that as in the odd case we do not

give the KS integral operators.
Then we give the reduced multiplets:

• mhC1 D 0 equiv nhC1 D nh

�1̇ D �2̇ D Œ.m1; : : : ; mh/
˙ I ˙. 1

2
m12 Cm3;h/ �; � (51)

�3̇ D Œ.m1; : : : ; mh�2;mh�1;h; 0/˙ I ˙. 1
2
m12 Cm3;h�1/ �

: : :

�i̇ D Œ.m1; : : : ; mh�iC1;mh�iC2;h�iC3;mhC4�i ; : : : ; mh; 0/
˙ I

˙. 1
2
m12 Cm3;hC2�i / �

: : :

�ḣ�1 D Œ.m1; m2; m34; m5; : : : ; mh; 0/
˙ I ˙. 1

2
m12 Cm3/ �

�ḣ D Œ.m103; m23; m4; : : : ; mh; 0/
˙ I ˙ 1

2
m12 �

�ḣC1 D Œ.m13; m3; : : : ; mh; 0/
˙ I ˙ 1

2
.m1 �m2/ �
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Here there are two differential operators involving physically relevant represen-
tations, cf. Fig. 7:

Dmh
"1�"3 W C�1 D C�2 �! C�3

Dmh
"1C"3 W CC3 �! CC1 D CC2 (52)

• mh D 0 equiv nh D nh�1

�1̇ D Œ.m1; : : : ; mh�1; 0/˙ I ˙. 1
2
m12Cm3;h�1C2mhC1/ �; (53)

�2̇ D�3̇ D Œ.m1; : : : ; mh�1; mhC1/˙ I ˙. 1
2
m12Cm3;h�1/ � �

: : :

�i̇ D Œ.m1; : : : ; mh�iC1;mh�iC2;h�iC3;mhC4�i ; : : : ; mh�1; 0;

mhC1/˙ I ˙ . 1
2
m12Cm3;hC2�i / �

: : :

�ḣ�1 D Œ.m1; m2; m34; m5; : : : ; mh�1; 0; mhC1/˙ I ˙. 1
2
m12Cm3/ �

�ḣ D Œ.m103; m23; m4; : : : ; mh�1; 0; mhC1/˙ I ˙ 1
2
m12 �

�ḣC1 D Œ.m13; m3; : : : ; mh�1; 0; mhC1/˙ I ˙ 1
2
.m1 �m2/ �

Here there are four differential operators involving physically relevant represen-
tations, cf. Fig. 8:

DmhC1
"1�"2 W C�1 �! C�2 D C�3

Dmh�1
"1�"4 W C�2 D C�3 �! C�4

Dmh�1
"1C"4 W CC4 �! CC2 D CC3

DmhC1
"1C"2 W CC2 D CC3 �! CC1 (54)

The above case is typical formk D 0 for k > 3. Then for k D 3; 2; 1 we have:
• m3 D 0 equiv n3 D n2

�1̇ D Œ.m1; m2; 0; m4; : : : ; mh/
˙ I ˙. 1

2
m12 Cm4;hC1/ �; (55)

�2̇ D Œ.m1; m2; 0; m4; : : : ; mh�1; mh;hC1/˙ I ˙. 1
2
m12 Cm4;h/ �

: : :

�i̇ D Œ.m1; m2; 0; m4; : : : ; mh�iC1;mh�iC2;h�iC3;mhC4�i ; : : : ;

mh; mhC1/˙ I ˙. 1
2
m12 Cm4;hC2�i / �

: : :
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�ḣ�1 D �ḣ D Œ.m1; m2; m4; : : : ; mh; mhC1/˙ I ˙ 1
2
m12 �; �

�ḣC1 D Œ.m12; 0; m4; : : : ; mh; mhC1/˙ I ˙ 1
2
.m1 �m2/ �

Here there are six differential operators involving physically relevant representa-
tions, cf. Fig. 9:

Dm4
"1�"h�1 W C�h�2 �! C�h D C�h�1

Dm2
"1�"hC1 W C�h D C�h�1 �! C�hC1

Dm1
"1C"hC1 W C�h D C�h�1 �! CChC1

Dm1
"1C"hC1 W C�hC1 �! CCh D CCh�1

Dm2
"1�"hC1 W CChC1 �! CCh D CCh�1

Dm4
"1C"h�1 W CCh D CCh�1 �! CCh�2 (56)

• m2 D 0 equiv n2 D n1,

2�1̇ D Œ.m1; 0;m3; : : : ; mh/
˙ I ˙. 1

2
m1 Cm3;hC1/ �; (57)

2�2̇ D Œ.m1; 0;m3; : : : ; mh�1; mh;hC1/˙ I ˙. 1
2
m1 Cm3;h/ �

2�3̇ D Œ.m1; 0;m3; : : : ; mh�2;mh�1;h; mhC1/˙ I ˙. 1
2
m1 Cm3;h�1/ �

: : :

2�i̇ D Œ.m1; 0;m3; : : : ; mh�iC1;mh�iC2;h�iC3;mhC4�i ; : : : ;

mh; mhC1/˙ I ˙. 1
2
m1 Cm3;hC2�i / �

: : :

2�ḣ�1 D Œ.m1; 0; m34; m5; : : : ; mh; mhC1/˙ I ˙. 1
2
m1 Cm3/ �

2�ḣ D2�ḣC1 D Œ.m1Cm3; m3; : : : ; mh; mhC1/˙ I ˙ 1
2
m1 �; �

Here there are three differential operators involving physically relevant represen-
tations, cf. Fig. 10:

Dm3
"1�"h W C�h�1 �! C�h D C�hC1

Dm1
"1C"hC1 W C�h D C�hC1 �! CCh D CChC1
Dm3
"1C"h W CCh D CChC1 �! CCh�1 (58)
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• m1 D 0 equiv n2 D �n1,

1�1̇ D Œ.0; m2; : : : ; mh/
˙ I ˙. 1

2
m2 Cm3;hC1/ �; (59)

1�2̇ D Œ.0; m2; : : : ; mh�1; mh;hC1/˙ I ˙. 1
2
m2 Cm3;h/ �

1�3̇ D Œ.0; m2; : : : ; mh�2;mh�1;h; mhC1/˙ I ˙. 1
2
m2 Cm3;h�1/ �

: : :

1�i̇ D Œ.0; m2; : : : ; mh�iC1;mh�iC2;h�iC3;mhC4�i ; : : : ;

mh; mhC1/˙ I ˙. 1
2
m2 Cm3;hC2�i / �

: : :

1�ḣ�1 D Œ.0; m2; m34; m5; : : : ; mh; mhC1/˙ I ˙. 1
2
m2 Cm3/ �

1�ḣ D1 �
�
hC1 D Œ.m3; m2 Cm3; m4; : : : ; mh; mhC1/˙ I ˙ 1

2
m2 �; �

Here there are three differential operators involving physically relevant represen-
tations, cf. Fig. 11:

Dm3
"1�"h W C�h�1 �! C�h D CChC1

Dm2
"1�"hC1 W C�h D CChC1 �! CCh D C�hC1
Dm3
"1C"h W CCh D C�hC1 �! CCh�1 (60)

Note that the last two cases: (57) and (59) are conjugate to each other through
the M labels (1�i̇ has the same expressions for c as 2�i̇ , but the M labels are
conjugate).

For future reference we summarize the physically relevant pairs reparametrizing
for more natural presentation and introducing uniform notation r�k̇ :

r�1̇ D Œ.m1; : : : ; mh/
˙ I ˙. 1

2
m12 Cm3;h/ �; dC 	 2h � 1; d� � 1;

r�2̇ D Œ.m1; : : : ; mh/
˙ I ˙. 1

2
m12 Cm3;h�1/ �; dC 	 2h � 2; d� � 2;

: : :

r�j̇ D Œ.m1; : : : ; mh/
˙ I ˙. 1

2
m12 Cm3;hC1�j / �;

dC 	 2h � j; d� � j; 1 � j � h � 2; (61)

: : :
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r�ḣ�1 D Œ.m1; : : : ; mh/
˙ I ˙ 1

2
m12 �; dC 	 hC 1; d� � h � 1;

r�ḣ D Œ.mCm2; m2; m3; : : : ; mh/
˙ I ˙ 1

2
m �;

dC 	 hC 1
2
; d� � h � 1

2
;

r�ḣC1 D Œ.m2; mCm2; m3; : : : ; mh/
˙ I ˙ 1

2
m �;

dC 	 hC 1
2
; d� � h � 1

2
:

Note a last reduction obtained by setting m D 0 when the last two pairs in (61)
coincide and become further a singlet (being M self-conjugate):

r�
s D Œm2; m2; m3; : : : ; mh I 0 �; d D h: (62)

5.2 Special Cases for p C q Even

The ERS ��1 are the only ones in the multiplet that contain as irreducible
subrepresentations the finite-dimensional irreducible representations of G. More
precisely, the ER ��1 contains the finite-dimensional irreducible representation of
G with signature .m1; : : : ; mhC1/. (Certainly, the latter is non-unitary except the
case of the trivial one-dimensional obtained for mi D 1, 8 i .)

Another important case is the ER with signature �C1 . For pq 2 2N it contains a
unitary discrete series representation of so.p; q/ realized on an invariant subspace
D of the ER �C1 . That subspace is annihilated by the KS operator G�1 , and is the
image of the KS operator GC1 .

Furthermore when p > q D 2 the invariant subspace D is the direct sum of two
subspaces D D DC ˚ D�, in which are realized a holomorphic discrete series
representation and its conjugate anti-holomorphic discrete series representation,
resp. Note that the corresponding lowest weight GVM is infinitesimally equivalent
only to the holomorphic discrete series, while the conjugate highest weight GVM is
infinitesimally equivalent to the anti-holomorphic discrete series.

Thus, the signatures of the (holomorphic) discrete series are:

�C1 D Œm1; : : : ; mh I d D hC 1
2
m12 Cm3;h C � �; � 2 N (63)

More (non-holomorphic) discrete series representations are contained in �Ck for
1 < k � hC 1.

The next important case of positive energy UIRs are the limits of (holomorphic)
discrete series which are contained in the reduced case (61):

r�
C
1 D Œm1; : : : ; mh I d D hC 1

2
m12 Cm3;h � (64)

(with conformal weight obtained from (63) as “limit” for � D 0).
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Further we discuss the so called first reduction points (FRP). These are the
boundary values of d from below of the positive energy UIRs. Most of the FRPs
are contained in �Ch , cf. (48), which we give with suitable reparametrization:

�Ch D Œm1; m2; : : : ; mh I d D hC 1
2
m12 � 1 �; m1;m2 	 2: (65)

Some FRP cases when only one of m1;m2 is equal to 1 are found in �ḣC1:

��hC1 D Œm1; 1; m3; : : : ; mh I d D hC 1
2
.m1 � 3/ �; m1 	 3;

�ChC1 D Œ1; m2; : : : ; mh I d D hC 1
2
.m2 � 3/ �; m2 	 3: (66)

Finally the last three FRP cases .m1;m2/ D .1; 1/; .2; 1/; .1; 2/ are found in
r�
�
kD;h�1h;hC1:

r�
�
h�1 D Œ1; 1; m3; : : : ; mh I d D h � 1 �;
r�
�
h D Œ2; 1; m3; : : : ; mh I d D h � 1

2
�;

r�
�
hC1 D Œ1; 2; m3; : : : ; mh I d D h � 1

2
�: (67)

5.3 Minimal Irreps for p C q Even

The minimal irreps in this case happen to be related to the ERs in the reduced
multiplets. We define the minimal irreps L� as positive energy UIRs which involve
the lowest dimensional representation of M. Besides the signature we display the
equations that are obeyed by the functions of the irrep. Typically, the irrep is the
intersection of the kernel of the corresponding KS operator GC and of one or two
intertwining differential operators that were already displayed in the subsection on
reduced multiplets.

Below we denote by rLi̇ the irreducible subrepresentation of the ER rCi̇ . The
list is:

r�
�
1 D Œ.1; : : : ; 1/ I d D 1 �; (68)

rL
�
1 D f ' 2 rC�1 W D1

"1�"3 ' D 0; GC1 ' D 0 g;
r�
�
2 D Œ.1; : : : ; 1/ I d D 2 �;

rL
�
2 D f ' 2 rC�2 W D1

"1�"4 ' D 0; GC2 ' D 0 g;
: : :

r�
�
j D Œ.1; : : : ; 1/ I d D j �; 1 � j � h � 2;

rL
�
j D f ' 2 rC�j W D1

"1�"jC2 ' D 0; GCj ' D 0 g;



494 V. Dobrev

: : :

r�
�
h�1 D Œ.1; : : : ; 1/ I dFRP D h � 1 �;

rL
�
h�1 D f ' 2 rC�h�1 W D1

"1�"hC1 ' D 0; D1
"1C"hC1 ' D 0;

GCh�1 ' D 0 g;
r�
�
h D Œ.2; 1; : : : ; 1/ I d�FRP D h � 1

2
�;

rL
�
h D f ' 2 rC�h W D2

"1C"hC1 ' D 0 g; GCh � D1
"1C"hC1 ;

r�
�
hC1 D Œ.1; 2; 1; : : : ; 1/ I dFRP D h � 1

2
�;

rL
�
hC1 D f ' 2 rC�hC1 W D2

"1�"hC1 ' D 0 g;
GChC1 � D1

"1�"hC1 ;

where we have indicated (in the last two cases) the degeneration of KS integral
operators to differential operators.

We see in (68) that for h 	 3 there are discrete unitary points below the FRPs.2

For fixed h 	 3 these are in r�
�
j with conformal weight d D j (and trivial M

inducing irreps) for j D 1; : : : ; h � 2. Furthermore, as evident from (61) for h 	 4

there are discrete unitary points below those displayed. For fixed h 	 4 these are
in r�

�
j with conformal weight 1 � d < j (and non-trivial M inducing irreps) for

j D 2; : : : ; h � 2. It seems that all this picture is consistent with [13]. More details
will be given elsewhere.

Singular Vectors Needed for the Invariant Differential Operators

The necessary cases are:

"1 � "j D ˛hC3�j C � � � C ˛hC1; 2 � j � hC 1;

"1 C "hC1 D ˛1 C ˛3 C � � � C ˛hC1: (69)

These are roots of sl.n/ subalgebras (n < h C 1). Thus, we can use f-la (46) after
suitable change of enumeration.

2Thus, the most famous case so.4; 2/ is excluded.
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Figures

Fig. 1 Main multiplets for
so.p; q/; pC q D 2hC 3,
odd, p; q 
 1 i�1k corresponds

to weight mi."1 � "k/; iC1k
corresponds to weight
mi."1 C "k/
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Fig. 2 Reduced multiplets
RıhC1 for so.p; q/;
pC q D 2hC 3, odd,
p; q 
 1 i�1k corresponds to

weight mi."1 � "k/; iC1k
corresponds to weight
mi."1 C "k/

Fig. 3 Reduced multiplets
RıhC1.mh D 0/ for
so.p; q/; pC q D 2hC 3,
odd, p; q 
 1 i�1k corresponds

to weight mi."1 � "k/; iC1k
corresponds to weight
mi."1 C "k/
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Fig. 4 Reduced multiplets
RıhC1.m2 D 0/ for
so.p; q/; pC q D 2hC 3,
odd, p; q 
 1 i�1k corresponds

to weight mi."1 � "k/; iC1k
corresponds to weight
mi."1 C "k/

Fig. 5 Reduced multiplets
RıhC1.m2 D 0/ for
so.p; q/; pC q D 2hC 3,
odd, p; q 
 1 i�1k corresponds

to weight mi."1 � "k/; iC1k
corresponds to weight
mi."1 C "k/
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Fig. 6 Main multiplets for
so.p; q/; pC q D 2hC 2,
odd, p; q 
 1 i�1k corresponds

to weight mi."1 � "k/; iC1k
corresponds to weight
mi."1 C "k/



Special Reduced Multiplets and Minimal Representations for SO(p,q) 499

Fig. 7 Reduced multiplets
RıhC1.mhC1 D 0/pC q D
2hC 2, even, p; q 
 1 i�1k
corresponds to weight
mi."1 � "k/; iC1k corresponds
to weight mi."1 C "k/
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Fig. 8 Reduced multiplets
Reh.mh D 0/pCq D 2hC2,
even, p; q 
 1 i�1k
corresponds to weight
mi."1 � "k/; iC1k corresponds
to weight mi."1 C "k/
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Fig. 9 Reduced multiplets
Re2.m3 D 0/ for so.p; q/;
pC q D 2hC 2, even,
p; q 
 1 i�1k corresponds to

weight mi."1 � "k/; iC1k
corresponds to weight
mi."1 C "k/
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Fig. 10 Reduced multiplets
Re2.m2 D 0/ for
so.p; q/; pC q D
2hC 2; p; q 
 1 i�1k
corresponds to weight
mi."1 � "k/; iC1k corresponds
to weight mi."1 C "k/
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Fig. 11 Reduced multiplets
Re1.m1 D 0/ for
so.p; q/; pC q D 2hC 2,
p; q 
 1 i�1k corresponds to

weight mi."j � "k/; iC1k
corresponds to weight
mi."1 C "k/
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On the Structure of Green’s Ansatz

Igor Salom

Abstract It is well known that the symmetric group has an important role (via
Young tableaux formalism) both in labelling of the representations of the unitary
group and in construction of the corresponding basis vectors (in the tensor product of
the defining representations). We show that orthogonal group has a very similar role
in the context of positive energy representations of osp.1j2n;R/. In the language
of parabose algebra, we essentially solve, in the parabosonic case, the long standing
problem of reducibility of Green’s Ansatz representations.

1 Introduction

The osp.1j2n;R/ superalgebra attracts nowadays significant attention, primarily
as a natural generalization of the conformal supersymmetry in higher dimensions
[1–9]. In the context of space-time supersymmetry, knowing and understanding
unitary irreducible representations (UIR’s) of this superalgebra is of extreme
importance, as these should be in a direct relation with the particle content of the
corresponding physical models.

And the most important from the physical viewpoint are certainly, so called,
positive energy UIR’s, which are the subject of this paper. More precisely, the goal
of the paper is to clarify how these representations can be obtained by essentially
tensoring the simplest nontrivial positive energy UIR (the one that corresponds
to oscillator representation). This parallels the case of the UIR’s of the unitary
group U.n/ constructed within the tensor product of the defining (i.e. “one box”)
representations. In both cases the tensor product representation is reducible, and
while this reduction in the U.n/ case is governed by the action of the commuting
group of permutations, in the osp case,1 as we will show, the role of permutations
is played by an orthogonal group. We will clarify the details of this reduction.

1We will often write shortly osp.1j2n/ or osp for the osp.1j2n;R/.
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The osp.1j2n/ superalgebra is also known by its direct relation to parabose
algebra [10,11]. In the terminology of parastatistics, the tensor product of oscillator
UIR’s is known as the Green’s Ansatz [12]. The problem of the decomposition of
parabose Green’s Ansatz space to parabose (i.e. osp.1j2n/) UIR’s is an old one [12],
that we here solve by exploiting additional orthogonal symmetry of a “covariant”
version of the Green’s Ansatz.

2 Covariant Green’s Ansatz

Structural relations of osp.1j2n/ superalgebra can be compactly written in the form
of trilinear relations of odd algebra operators a˛ and a	˛:

Œfa˛; a	ˇg; a� � D �2ıˇ�a˛; Œfa	˛; aˇg; a	� � D 2ıˇ�a
	
˛; (1)

Œfa˛; aˇg; a� �; Œfa	˛; a	ˇg; a	� � D 0; (2)

where operators fa˛; a	ˇg, fa˛; aˇg and fa	˛; a	ˇg span the even part of the superalge-
bra and Greek indices take values 1; 2; : : : n (relations obtained from these by use
of Jacobi identity are also implied). This compact notation emphasises the direct
connection [11] of osp.1j2n/ superalgebra with the parabose algebra of n pairs of
creation/annihilation operators [10].

If we (in the spirit of original definition of parabose algebra [10]) additionally
require that the dagger symbol 	 above denotes hermitian conjugation in the algebra
representation Hilbert space (of positive definite metrics), then we have effectively
constrained ourselves to the, so called, positive energy UIR’s of osp.1j2n/.2
Namely, in such a space, “conformal energy” operator E � 1

2

P
˛fa˛; a	˛g must be

a positive operator. Operators a˛ reduce the eigenvalue of E, so the Hilbert space
must contain a subspace that these operators annihilate. This subspace is called
vacuum subspace:V0 D fjvi; a˛jvi D 0g. If the positive energy representation is
irreducible, all vectors from V0 have the common, minimal eigenvalue �0 of E:
Ejvi D �0jvi; jvi 2 V0. Representations with one dimensional subspace V0 are
called “unique vacuum” representations.

In this paper we will constrain our analysis to UIR’s with integer and half-integer
values of �0 (in principle, �0 has also continuous part of the spectrum—above the, so
called, first reduction point of the Verma module). It turns out that all representations
from this class can be obtained by representing the odd superalgebra operators a and
a	 as the following sum:

a˛ D Pp
aD1 ba˛ ea; a

	
˛ D Pp

aD1 b
a	
˛ ea: (3)

2Omitting a short proof, we note that in such a Hilbert space all superalgebra relations actually
follow from one single relation—the first or the second of (1).
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In this expression integer p is known as the order of the parastatistics, ea are
elements of a real Clifford algebra:

fea; ebg D 2ıab (4)

and operators ba˛ together with adjoint ba	˛ satisfy ordinary bosonic algebra relations.
There are total of n � p mutually commuting pairs of bosonic annihilation-creation
operators .ba˛; b

a	
˛ /:

Œba˛; b
b	

ˇ � D ıˇ˛ı
abI Œba˛; b

b
ˇ� D 0: (5)

Indices a; b; : : : from the beginning of the Latin alphabet will, throughout the paper,
take values 1; 2; : : : p. Relation (3) is a slight variation, more precisely, realization,
of a more common form of the Green’s Ansatz [10, 13].

The representation space of operators (3) can be seen as tensor product
of p multiples of Hilbert spaces Ha of ordinary linear harmonic oscillator in
n-dimensions multiplied by the representation space of the Clifford algebra:

H D H1 ˝ H2 ˝ � � � ˝ Hp ˝ HCL: (6)

A single factor Hilbert space Ha is the space of unitary representation of n
dimensional bose algebra of operators .ba˛; b

a	
˛ /; ˛ D 1; 2; : : : n: Ha Š U.ba	/j0ia,

where j0ia is the usual Fock vacuum of factor space Ha. The representation space
HCL of real Clifford algebra (4) is of dimension 2Œp=2�, i.e. isomorphic with C

2Œp=2�

(matrix representation). Positive definite scalar product is introduced in usual way
in each of the factor spaces, endowing entire space H also with positive definite
scalar product. The space is spanned by the vectors:

H D l:s:fP.b	/j0i ˝ !g; (7)

where P.b	/ are monomials in mutually commutative operators ba	˛ , j0i � j0i1 ˝
j0i2 ˝ � � � ˝ j0ip and w 2 HCL.

In the case p D 1 (the Clifford part becomes trivial) we obtain the simplest
positive energy UIR of osp.1j2n/—the n dimensional harmonic oscillator repre-
sentation. The order p Green’s Ansatz representation of osp.1j2n/ is, effectively,
representation in the p-fold tensor product of oscillator representations [12], with
the Clifford factor space taking care of the anticommutativity properties of odd
superalgebra operators. It is easily verified that even superalgebra elements act
trivially in the Clifford factor space and that their action is simply sum of actions in
each of the factor spaces.

The space (6) is highly reducible under action of osp superalgebra. It necessarily
decomposes into direct sum of positive energy representations (both unique vacuum
and non unique vacuum representations) and thus, from the aspect of osp transfor-
mation properties, space H is spanned by:

H D l:s:fj.�; l/; ��ig; (8)
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where � labels osp.1j2n/ positive energy UIR, l uniquely labels a concrete vector
within the UIR �, and �� D 1; 2; : : : N� labels possible multiplicity of UIR �

in the representation space H. If some UIR � does not appear in decomposition
of H, then the corresponding N� is zero. Label � in (8) runs through all (integer
and halfinteger positive energy) UIR’s of osp.1j2n/ such that N� > 0 and l runs
through all vectors from UIR �.

3 Gauge Symmetry of the Ansatz

Green’s Ansatz in the form (3) possesses certain intrinsic symmetries. First, we note
that hermitian operators

Gab �
nX

˛D1
i.ba	˛ b

b
˛ � bb	˛ ba˛/C i

4
Œea; eb� (9)

commute with entire osp superalgebra, which immediately follows after checking
that ŒGab; a˛� D 0. Operators Gab themselves satisfy commutation relations of
so.p/ algebra. The second term in (9) acts in the Clifford factor space, generating a
faithful representation of Spin.p/ (i.e. spinorial representation of double cover of
SO.p/ group). Action of the first terms from (9) generate SO.p/ group action in the
space H1˝H2˝� � �˝Hp . In the entire space H operatorsG generate Spin.p/ group
and all vectors belong to spinorial unitary representations of this symmetry group.
The two terms in (9) thus resemble orbital and spin parts of rotation generators
and we will often use that terminology. In particular H � Ho ˝ Hs, where
Ho D H1 ˝ H2 ˝ � � � ˝ Hp and Hs D HCL. Furthermore, due to existence of

operators I a � �iexp.i� P˛ b
a	
˛ b

a
˛/ee

a where e � i Œp=2�e1e2 � � � ep , for even
values of p, the symmetry can be extended to P in.p/ group (the double cover of
orthogonal group O.p/). We will refer to the symmetry group of the Green’s ansatz
as the gauge group.

Vectors in space H carry quantum numbers also according to their transformation
properties under the gauge group. As the gauge group commutes with osp.1j2n/,
these numbers certainly remove at least a part of degeneracy of osp representations
in H, in the sense that relation (8) can be rewritten as:

H D l:s:fj.�; l/; .M;m/; �.�;M/ig; (10)

where (�, l) uniquely label vector l within osp.1j2n/ positive energy UIR �,
(M , m) uniquely label vector m within finite dimensional UIR M of the gauge
group, and �.�;M/ D 1; 2; : : : N.�;M/ labels possible remaining multiplicity of
tensor product of these two representations Dosp

� ˝ Dgauge
M in the space H. Again,

if some combination .�;M/ does not appear in decomposition of H, then the
corresponding N.�;M/ is zero.
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Important property of the gauge symmetry is that it actually removes all
degeneracy in decomposition of H to osp.1j2n/ UIR’s, i.e. that the multiplicity of
osp.1j2n/ UIR’s is fully taken into account by labeling transformation properties
of the vector w.r.t. the gauge symmetry group. Furthermore, there is one-to-one
correspondence between UIR’s of osp.1j2n/ and of the gauge group that appear in
the decomposition, meaning that transformation properties under the gauge group
action automatically fix the osp.1j2n/ representation. We formulate this more
precisely in the following theorem.

Theorem 1. The following statements hold for the basis (10) of the Hilbert
space H:

1. All multiplicities N.�;M/ are either 1 or 0.
2. Let the N be the set of all pairs .�;M/ for which N.�;M/ D 1, i.e. N D

f.�;M/jN.�;M/ D 1g and let the L and M be sets of all� andM , respectively,
that appear in any of the pairs from N . Then pairs from N naturally define
bijection from L to M, N WL ! M .

The theorem is proved by explicit construction of the bijection N . First we must
go through some preliminary definitions and lemmas.

Corollary 1. If osp.1j2n/ representation � appears in the decomposition of the
space H, then its multiplicity in the decomposition is given by the dimension of the
gauge group representation N .�/.

4 Root Systems

At this point we must introduce root systems, both for osp.1j2n/ superalgebra and
for the so.p/ algebra of the gauge group.

We choose basis of a Cartan subalgebra hosp of (complexified) osp.1j2n/ as:

hosp D l:s:
n 1
2

fa	˛; a˛g; ˛ D 1; 2; : : : n
o
: (11)

Positive roots, expressed using elementary functionals, are:

�Cosp D fCı˛; 1 � ˛ � nI Cı˛ C ıˇ; 1 � ˛ < ˇ � nI
Cı˛ � ıˇ; 1 � ˛ < ˇ � nI C2ı˛; 1 � ˛ � ng (12)

and the corresponding positive root vectors, spanning subalgebra gCosp , are (in the
same order):

n
a
	
˛; 1 � ˛ � nI fa	˛; a	ˇg; 1 � ˛ < ˇ � nI

fa	˛; aˇg; 1 � ˛ < ˇ � nI fa	˛; a	˛g; 1 � ˛ � n
o
: (13)
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Simple root vectors are:

n
fa	1; a2g; fa	2; a3g; : : : ; fa	n�1; ang; a	n

o
: (14)

With this choice of positive roots, positive energy UIR’s of osp.1j2n/ become low-
est weight representations. Thus, we will label positive energy UIR’s of osp.1j2n/
either by their lowest weight

� D .�1; �2; : : : ; �n/; (15)

or by its signature

� D Œd I�1;�2; : : : ; �n�1� (16)

related to the lowest weight � by d D �1, �˛ D �˛C1 � �˛ . �˛ are nonnegative
integers [14] and spectrum of d is positive and dependant of �˛ values.

As a basis of Cartan subalgebra hso of so.p/ we take:

hso D l:s:

�
G.k/ � G2k�1;2k; k D 1; 2; : : : q



; (17)

where q D Œp=2� is the dimension of Cartan subalgebra (indices k; l; : : : from the
middle of alphabet will take values 1; 2; : : : ; q). Positive roots in case of even p are:

�Cso D fCık C ıl ; 1 � k < l � qI Cık � ıl ; 1 � k < l � qg; (18)

while in the odd case we additionally have fCık; 1 � k � qg.
In accordance with the choice of Cartan subalgebra hso it is more convenient to

use the following linear combinations:

B
.k/	

˛˙ � 1p
2
.b2k�1	˛ ˙ ib2k	˛ /; B

.k/

˛˙ D 1p
2
.b2k�1˛ � ib2k˛ /; (19)

instead of b	 and b , as ŒG.k/; B
.l/	

˛˙ � D ˙ıklB.l/	

˛˙ and ŒG.k/; B
.l/

˛˙� D �ıklB.l/

˛˙.

Similarly, we introduce e.k/˙ � 1p
2
.e2k�1 ˙ ie2k/ that satisfy:

ŒG.k/; e
.l/

˙ � D ˙ıkle.l/˙ : (20)

Odd superalgebra operators take form:

a	˛ D

 qX
kD1

B
.k/	
˛C e

.k/� C B.k/	
˛� e

.k/
C
�

C � bp	˛ e
p; (21)
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a˛ D

 qX
kD1

B
.k/
˛Ce

.k/
C C B.k/

˛�e.k/�
�

C � bp˛ e
p; (22)

where � D p mod 2.
The space H decomposes to spinorial UIR’s of so.p/ with the highest weight

� D .�1; �2; : : : ; �q/ satisfying �1 	 �2 	 � � � 	 �q�1 	 j�qj 	 1
2

with all �q

taking half-integer values (�q can take negative values when p is even). However,
since the gauge symmetry group in the case of even p is enlarged to P in.p/ group,
any highest weight of UIR of the gauge group satisfies: �1 	 �2 	 � � � 	 �q 	 0.
As the gauge group representation in H is spinorial, all �k take half-integer values
greater or equal to 1

2
. To label UIR’s of the gauge group we will also use signature

M D ŒM1;M2; : : : ;Mq� (23)

withMk D �k ��kC1; k < q andMq D �q � 1
2
. AllMk are nonnegative integers.

The “spin” factor space Hs is irreducible w.r.t. action of the gauge group. Gauge
group representation in the space Hs has the highest weight �s D . 1

2
; 1
2
; : : : ; 1

2
/.

Weight spaces of this representation are one dimensional, meaning that basis vectors
can be fully specified by weights �s:

Hs D l:s:f!�s � !.�1s ; �
2
s ; : : : ; �

q
s /j�ks D ˙1

2
g: (24)

An action of operators e.k/C ; e.k/� and ep in this basis is given by:

e
.k/

˙ !.�
1
s ; �

2
s ; : : : ; �

q
s / D p

2

 
k�1Y
lD1

2�ls

!
!.�1s ; : : : ; �

k�1
s ; �ks ˙ 1; �kC1s ; : : : ; �qs /

(25)
and, when p is odd, also:

ep!.�1s ; �
2
s ; : : : ; �

q
s / D

 
qY
lD1

2�ls

!
!.�1s ; �

2
s ; : : : ; �

q
s /: (26)

In these definitions it is implied that !.�1s ; �
2
s ; : : : ; �

q
s / � 0 if any j�ks j > 1

2
.

Gauge group representation in “orbital” factor space Ho decomposes to highest
weight �o UIR’s such that all �ko are nonnegative integers. Besides, it is not difficult
to verify that, if n < q, then

�nC1o D �nC2o D � � � D �qo D 0 (27)

(since maximally n operators (19) can be antisymmetrized).
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5 Decomposition of the Green’s Ansatz Space

Now we can formulate the following lemma that is the remaining step necessary for
the proof of Theorem 1.

Lemma 1. The vector j.�; �/; .�; �/; �.�;�/i 2 H that is the lowest weight vector
of osp.1j2n/ positive energy UIR � and the highest weight vector of the gauge group
UIR � exists if and only if signatures � and M (16, 23) satisfy:

Mk D �n�k; (28)

where �0 � d � p=2 and it is implied that Mk D 0; k > q and �˛ D 0; ˛ < 0. In
that case this vector has the following explicit form (up to multiplicative constant)
in the basis (7):

j.�; �/; .�; �/; �.�;�/i D


B
.1/	
nC
��n�1


B
.1/	
nC B

.2/	
n�1C � B.2/	

nC B
.1/	
n�1C

��n�2 � � �

�

 min.n;q/X
k1;k2;:::knD1

"k1k2:::knB
.k1/	
nC B

.k2/	
n�1C � � �B.kn/	

1C
��0 j0i ˝ !.

1

2
;
1

2
; : : : ;

1

2
/: (29)

We will omit a rather lengthy proof of the lemma.
Note that the Lemma 1 also determines whether an osp representation� appears

or not in the decomposition of Green’s Ansatz of order p: UIR � appears in the
decomposition if and only if the condition (28) can be satisfied by allowed integer
values of Mk . However, if q is not sufficiently high, the first n � q of the �
components �0;�1; : : : �n�q�1 are bound to be zero.

Corollary 2. All (half)integer positive energy UIR’s of osp.1j2n/ can be con-
structed in space H with p � 2nC 1.

Proof. Due to relation (28), values �0;�1; : : : �n�1 can be arbitrary integers when
q 	 n: choice p D 2n contains integer values of d UIR’s while p D 2n C 1

contains half-integer values. That spaces H for some p < 2n also contain all UIR’s
with d < n, can be verified by checking the list of all positive energy UIR’s of
osp.1j2n/ will be given elsewhere. ut

In other words, the above corollary states that no additional (half)integer energy
UIR’s of osp.1j2n/ appear when considering p > 2n C 1, i.e. it is sufficient to
consider only p � 2nC 1.

The proof of the Theorem 1 now follows from the Lemma 1.

Proof. Lemma 1 gives the explicit form of the vector that is the lowest weight vector
of osp.1j2n/ positive energy UIR � and the highest weight vector of the gauge
group UIR �, when such vector exists. It follows that there can be at most one such
vector. Therefore, the multiplicity N.�;�/ can be either 1 or 0. The relation between
� and � is given by (28) and it defines bijection N . ut
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Parafermionic Algebras, Their Modules
and Cohomologies

Todor Popov

Abstract We explore the Fock spaces of the parafermionic algebra introduced by
H.S. Green. Each parafermionic Fock space allows for a free minimal resolution by
graded modules of the graded two-step nilpotent subalgebra of the parafermionic
creation operators. Such a free resolution is constructed with the help of a classical
Kostant’s theorem computing Lie algebra cohomologies of the nilpotent subalgebra
with values in the parafermionic Fock space. The Euler-Poincaré characteristic
of the parafermionic Fock space free resolution yields some interesting identities
between Schur polynomials. Finally we briefly comment on parabosonic and
general parastatistics Fock spaces.

1 Introduction

The parafermionic and parabosonic algebras were introduced by H.S. Green as
inhomogeneous cubic algebras having as quotients the fermionic and bosonic
algebras with canonical (anti)commutation relations. In an attempt to find a new
paradigm for quantization of classical fields H.S. Green introduced the parabosonic
and parafermionic algebras [5] encompassing the bosonic and fermionic algebras
based on the canonical quantization scheme. Here we are dealing with the Fock
spaces of the parafermionic algebra g of creation and annihilation operators. These
Fock spaces are particular parafermionic algebra modules built at the top of a
unique vacuum state by the creation operators. The creation operators close a free
graded two-step nilpotent algebra n, n � g. The Fock space of a parafermionic
algebra g is then defined as a quotient module of the free n-module, where the
quotient ideal stems from the generalization of the Pauli exclusion principle. In
this note we calculate the cohomologies H �.n;V.p// of the nilpotent subalgebra
n with coefficients in the parafermionic Fock space V.p/ (taken as a n-module).
The cohomology ring H �.n;V.p// is obtained due to by now classical Kostant’s
theorem [8]. With the data of H �.n;V.p// one is able to construct a minimal
resolution by free n-module of the Fock space V.p/. Its existence is guaranteed by
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the Henri Cartan’s results on graded algebras. It turns out that the Schur polynomials
identities which have been recently put forward [9, 13] by Neli Stoilova and Joris
Van der Jeugt stem from the Euler-Poincaré characteristic of the minimal free
resolutions of the parafermionic and parabosonic Fock space.

2 Parafermionic and Parabosonic Algebras

The parafermionic algebra g with finite number n degrees of freedom is a Lie
algebra with a Lie bracket Œ�; �� generated by the creation a	i and annihilation aj

operators (i; j D 1; : : : ; n) having the following exchange relations

ŒŒa
	
i ; a

j �; a
	

k� D 2ı
j

k a
	
i ; ŒŒa

	
i ; a

j �; ak� D �2ıki aj ;
ŒŒa

	
i ; a

	
j �; a

	

k� D 0 ; ŒŒai ; aj �; ak� D 0 :
(1)

The parafermionic algebra g with finite number degrees of freedom n is isomorphic
to the semi-simple Lie algebra

g D h ˚
M
˛2�C

g˛ ˚
M
˛2��

g˛ ; (2)

for a root system � D �C [�� of type Bn with positive roots �C given by

�C D feig1	i	n [ fei C ej ; ei � ej g1	i<j	n ; and �� D ��C :

Here feigniD1 stands for the orthogonal basis in the root space, .ei jej / D ıij . One
concludes that the parafermionic algebra g with n degrees of freedom is isomorphic
to the orthogonal algebra g Š so2nC1 endowed with the anti-involution 	. The phys-
ical generators correspond to the Cartan-Weyl basis a	i WD Eei and aj WD E�ej .

Similarly one defines the parabosonic algebra Qg with exchange relations (1) as
the Lie super-algebra endowed with a Lie super-bracket Œ�; �� whose generators a	i
and aj are taken to be odd generators. The parabosonic algebra Qg with m degrees
of freedom is shown [3] to be isomorphic to the Lie super algebra of type B0;m in
the Kac table, i.e., osp1j2m. More generally, one defines the parastatistics algebra as
the Lie super-algebra with n even parafermionic and m odd parabosonic degrees of
freedom. The parastatistics algebra is shown to be isomorphic to the super-algebra
of type Bn;m, i.e., osp2nC1j2m [12]. Throughout this note we will concentrate on the
parafermionic algebra and its representations.
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3 Parafermionic Fock Space

The parafermionic relations (1) imply that the generators Ej
i D 1

2
Œa
	
i ; a

j � are the
matrix units satisfying

ŒE
j
i ; E

l
k� D ı

j

kE
l
i � ıli Ej

k :

These generators close the real form u of a linear algebra gln with .Ej
i /
	 D Ei

j .
One has decomposition of the parafermionic Lie algebra into reductive algebra u

and nilpotent Lie algebras, n and n�

g D n� Ì u Ë n

where u is the real form of the linear algebra gln. The free two-step nilpotent Lie
subalgebra n � g is generated in degree 1 by the creation operators a	i , V WDL

i Ca
	
i

n D n1 ˚ n2 D V ˚ ^2V :

Analogously the annihilation operators ai generate the subalgebra n� D V � ˚
^2V �.

The vector space V D n1 is the fundamental representation for the left action
of the algebra gln, Ej

i � a	k D ı
j

k a
	
i . Similarly V � D n�1 is the fundamental

representation for the right gln-action, ak � Ej
i D ıki a

j . The linear algebra gln acts
on the algebras n and n� by automorphisms.

Definition 1. The parafermionic Fock space is the unitary representation V.p/ of
the parafermionic algebra g Š so2nC1 built on a unique vacuum vector j0i such that

ai j0i D 0 ; Œai ; a
	
j �j0i D pıij j0i : (3)

The non-negative integer p is called the order of the parastatistics.

Let us single out a particular parabolic subalgebra p D gl Ë n. In the Fock
representation the vacuum module Cj0i is the trivial module for the subalgebra
p� D n� Ì gl. The representation induced by p� acting on the vacuum module is
isomorphic the universal enveloping algebra of the creation algebra n

Indgp�Cj0i D U g ˝p� Cj0i Š U n :

Hence the Fock representation V.p/ which we now describe is a particular quotient
of the algebra U n created by the free action of the creation algebra n.
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The V.p/ of parastatistics order p is a finite-dimensional g-module with a unique
Lowest Weight vector j0i of weight �p

2

Pn
iD1 ei and a unique Highest Weight (HW)

vector

j�i D .a
	
1/
p : : : .a	n/

p j0i (4)

thus the so2nC1-module V.p/ is a highest weight module of weight �

V � D V.p/ � D p

2

nX
iD1

ei :

The parafermionic algebra of order p D 1 coincides with the canonical fermionic
Fock space, i.e., the HW representation V.1/ D V 
 with 
 D 1

2

Pn
iD1 ei . The

physical meaning of the order p for the parafermionic algebra is the number of par-
ticles that can occupy one and the same state, that is, we deal with a Pauli exclusion
principle of order p. The symmetric submodule SpC1n1 � n

˝pC1
1 is spanned by

the “exclusion condition” .a	i /
pC1 D 0 and it generates an ideal .SpC1n1/. The

parafermionic Fock space V.p/ is a Lowest Weight module isomorphic to the factor
module of U n by the “exclusion” ideal .SpC1n1/

V.p/ Š U n=.SpC1n1/ :

On the other hand the parafermionic Fock space V.p/ D V � is a HW g-module
with HW vector j�i (4)

V � Š U n�=.SpC1n�1 // D V.p/ :

Theorem 1 (A.J. Bracken, H.S. Green[1]). The HW so2nC1-module V � Š V.p/
of HW vector j�i D jp
i splits into a sum of irreducible gln-modules V �

V � #so2nC1
gln

D
M

�W��.pn/
V ��.p=2/n ; � D p

2

nX
iD1

ei (5)

where the sum runs over all partitions which match inside the Young diagram .pn/.

Proof. The Weyl character formula applied to a Schur module V � yields the Schur
polynomial

s�.x1; : : : ; xn/ D
X

w2W1
".w/ew.�1C�/=

X
w2W1

".w/ew.�1/ W1 WD Sn ;

where the variables are xi WD exp.�ei / and the vector �1 D 1
2

Pn
iD1.n� 2i C 1/ei .

Alternatively the Schur polynomial is written as a quotient of determinants
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s�.x1; : : : ; nn/ D det jjx�1iC�ij jj
det jjx�1ij jj : (6)

The Weyl character formula applied to the so2nC1-module V � reads

�� D D�Cp
=D� D ep

X

�W l.�0/	p
s�.x1; : : : ; xn/ ; ep
 D .x1 : : : xn/

� p2 (7)

where W D Sn Ë Z
n
2 is the Weyl group of the root system of Dynkin type Bn and

D� D P
w2W ".w/ew� with � D 1

2

Pn
iD1.2n � 2i C 1/ei . The quotient of deter-

minants D�Cp
=D� can be further expanded as a sum over the Schur polynomials
with no more than p columns (see p. 84 in the book of Macdonald [11]). Here �0
stands for the partition conjugated to � and l.�/ is the length of the partition �. The
Schur polynomials s�.x/ are characters of the gln-modules thus the expansion of
the so2nC1-character �� implies the branching formula (5). We are done. ut

4 Kostant’s Theorem and the Cohomology H �.n;V.p//

The Kostant theorem is a powerful tool helping to calculate cohomologies. Let’s
have a semi-simple algebra g and its Borel subalgebra b D h ˚ L

˛2�C g˛ : Any
parabolic subalgebra p, g 
 p � b has a Levi decomposition p D g1 Ë n where g1
is a reductive algebra and n is the nilradical (largest nilpotent ideal) of p. Consider
the g-module V � of weight � and the cohomology H �.n; V �/ with coefficients in
the restriction n-module V � #g

n. The Kostant’s theorem gives the decomposition of
H �.n; V �/ as a sum of irreducibles g1-modules V �.

Theorem 2 (Kostant). Let W be the Weyl group of the algebra g and the subset
˚� � �C be

˚� WD ��� \�C � �C :

Let � be the Weyl vector � D 1
2

P
˛2�C ˛. The roots of the nilpotent radical n are

denoted as �.n/ and the subset W 1 D f� 2 W j˚� � �.n/g is a cross section of
the cosetW1nW . The cohomology H �.n; V �/ has a decomposition into irreducible
g1-modules V �

H �.n; V �/ D
M
�2W 1

V �.�C�/��

where the cohomological degree of Hj .n/ is the number of the elements j WD #˚� .
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J. Grassberger, A. King and P. Tirao [4] applied Kostant’s theorem to cohomol-
ogy H �.n;C/ with trivial coefficients. Here we extend their method for cohomolo-
gies with coefficients in the parafermionic Fock space V.p/, H �.n;V.p//.
Theorem 3. Let n be the free two-step nilpotent Lie algebra n D V ˚^2V and V �

be the parafermionic Fock space, V � D V.p/ . The cohomology H �.n; V �/ with
values in the n-module V � #g

n has a decomposition into irreducible gl.V /-modules

Hk.n;V.p// Š
M

�W�D�0
V ��.p/�.

p
2 /
n

; k D 1

2
.j�j C r.�// ; (8)

where the sum is over self-conjugated Young diagrams � D .˛j˛/ and the notation
�.p/ stays for the p-augmented diagram �.p/ D .˛ C pj˛/.
We recall the Frobenius notation for a Young diagram �

� WD .˛1; : : : ; ˛r jˇ1; : : : ; ˇr / r D r.�/

where the rank r.�/ is the number of boxes on the diagonal of �, the arm-length ˛i
is the number of boxes on the right of the i th diagonal box, and the leg-length ˇi
is the number of boxes below the i th diagonal box. The overall number of boxes in
� is j�j D r C Pr

iD1 ˛i C Pr
iD1 ˇi : The conjugated diagram �0 is the diagram in

which the arms and legs are exchanged

�0 WD .ˇ1; : : : ; ˇr j˛1; : : : ; ˛r / :

Proof. The parafermionic algebra g Š so2nC1 has Cartan decomposition (2).
Consider its parabolic subalgebra p D L

i>j gei�ej ˚ h ˚ L
˛2�C g˛ � g. From

the parafermionic relations (1) is readily seen that the Levi decomposition of the
parabolic subalgebra p D g1 Ë n has reductive component

g1 D h ˚
M
i¤j

gei�ej Š gln (9)

acting by automorphisms on the free two-step nilpotent algebra n (the space n1 D V

being the fundamental representation of g1 D gln)

n D
M
i

gei ˚
M
i<j

geiCej Š V ˚ ^2V : (10)

The Weyl group W1 of g1 D gln is the symmetric group Sn operating on
fe1; : : : ; eng by permutations. The Weyl group of g D so2nC1 is W D Sn Ë Z

n
2 .

The Z
n
2 is generated by operators �i , i D 1; : : : ; n such that �2i D 1 acting by
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�i .ej / D
� �ej i D j

ej i ¤ j
:

The elements �I 2 Z
n
2 are indexed by subsets I � f1; : : : ; ng, �I 2 Qi2I �i .

Let us describe the subset W 1 which has order jW 1j D 2n. Both W 1 and Z
n
2 are

cross sections of W1nW thus for each �I 2 Z
n
2 exists a unique permutation !I 2 Sn

such that !I �I 2 W 1.
Let b0 be the nilpotent part of the Borel algebra b0 D b=h and the complement

be m1 D g1 \ b0 D b0=n. The subsetW 1 D f� 2 W j˚� � �.n/g keeps stable also
the complement of �.n/

��.n/ � �C , ��1�.b0=n/ � �C :

The root system of m1 is �.m1/ D fei � ej ; i < j g therefore !I �I 2 W 1 implies
��1I !�1I �.m1/ � �C or �I!�1I .ei � ej / > 0 for i < j : These inequalities are
satisfied for !I 2 Sn defined by

!I .a/ > !I .b/ when

8<
:
a < b a 2 I b 2 I
a > b a … I b … I

a 2 I b … I
:

The permutation places all elements of I D fi1; : : : irg after all the elements of its
complement NI preserving the order of NI and reversing the order of I , that is,

!I .1; : : : ; i1; : : : ; ir ; : : : ; n/ D .1; : : : ; Oi1; : : : ; Oir ; : : : ; n; ir ; : : : ; i2; i1/ : (11)

The permutation !I can be represented as a product of cyclic permutations !I D
�ir : : : �i2�i1 where �ik is the cycle (of length n � ik C 1) from positions ik � k C 1

to n � k C 1. Therefore the action of !I is represented by the sequence of steps

�i1.1; : : : ; i1; : : : ; ik; : : : n/ D .1; : : : ; Oi1; i1 C 1; : : : ; n; i1/;

�i2 .1; : : : ; i2„ƒ‚…
place i2�1

; : : : ; n; i1/ D .1; : : : ; Oi2; : : : ; n; i2; i1/;

: : :

�ik .1; : : : ; ik„ƒ‚…
place ik�kC1

; : : : ; n; ik�1; : : : ; i1/ D .1; : : : ; Oik; : : : ; n; ik; : : : ; i1/ :

Note that after the j th step, the last j places are not touched by the next cyclings.
The Weyl vector � associated to g D so2nC1 reads � D 1

2

Pn
iD1.2n � 2i C 1/ei .

Note that the components of � are strictly decreasing with step 1 D �iC1 � �i . The
cohomology ring H �.n; V �/ decomposes into gl.V /-modules with HW weights
�.�C�/� � for � 2 W 1. We are interested in the case � D p

2

P
ei , V � D V.p/.
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Consider first the case p D 0, i.e., the cohomology with trivial coefficients
H �.n;C/ following [4]. The highest weights �I D �.�/ � � for � 2 W 1 are
non-positive due to �.�/i � �i . The cycling structure of !I implies

�I D
X

�j ej ; �j D �.n�in�jC1C1/�.n�rC1�j�n/�
rX

kD1

�.ik�kC1�j�n�k/ :

One has an isomorphism between a HW gln-module V �I with negative weight
�I � 0 and the dual representation V ��I with reflected weight �I 	 0

V �I Š V ��I �I WD
nX
iD1

�iei D �
nX
iD1

�n�iC1ei 	 0 :

The components of �I are decreasing positive integers �1 	 : : : 	 �n 	 0

�j D .n � ij C 1/�.1	j	r/ C
rX

kD1
�.kC1	j	n�ikCk/ ; (12)

and these components code a self-conjugated Young diagram �0I D �I

�I D .˛I j˛I / ˛I D .˛1; : : : ; ˛r /; for ˛j D n � ij :
Roughly speaking the j th cyclic permutation �ik in !I creates a self-conjugated
hook subdiagram of �I with ˛j D n � ij .

By virtue of the Kostant’s theorem [8] the cohomologyH �.n;C/ of the nilpotent
Lie algebra n has decomposition into Schur modules with HW vector j�I i

H �.n;C/ D
M

�I W�0ID�I
V ��I ; j�I i D E�˚� ; � 2 W 1

labelled by self-conjugated Young diagrams. All self-conjugated Young diagrams
f�I W �0I D �I g are in bijection with elements ofW 1 (with cardinality jW 1j D 2n),
all these diagrams are included into the maximal square diagram, �I � .nn/.

Consider now the cohomology ring H �.n; V �/ where � D p

2

P
ei . It decom-

poses into gln-modules with HW weights �.p/I D �.� C �/ � � where � D
!I �I 2 W 1. Given a set I D fi1; : : : ; irg the shift � modifies the dominant weight
�I D P

�iei to

�
.p/
j D ��.p/

n�jC1
; �

.p/
j D �p

2
C.n�ij C1Cp/�.1�j�r/C

rX
kD1

�.kC1�j�n�ikCk/ :
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The weights �.p/I D �
.p/
I � p

2

P
ei fix the HW vectors in the gln-modules V ��

.p/
I

V ��
.p/
I D V ��

.p/
I ˝ j�i where �

.p/
I D .˛I C pj˛I / ˛j D n � ij

from where the decomposition of H �.n;V.p// (8) follows, the sum over � 2
W 1 in Kostant’s theorem being replaced by the sum over self-conjugated Young
diagrams � D �0. The arm p-augmented diagram �

.p/
I stems from the self-

conjugated diagram �I D .˛I j˛I / cf. Eq. (12) by augmenting the arm-lengths,
�
.p/
I D .˛I C pj˛I /.

The cohomological degree k of the elements in V ��
.p/
I ˝j0i � Hk.n;V.p// do

not depend on p but only on � D !I �I 2 W 1 (or equivalently on �I ). In view of
˚� D �� \ ��1�C a root � 2 ˚� � �.n/ whenever ��1� < 0. But the set �.n/
is stable under permutations and ��1I D �I thus

#˚� D #f� 2 �.n/; �I � < 0g
D #fgei ; i 2 I g C #fgeiCej W i < j; i 2 I g

D
X
i2I
.1C n � i/ D r C

rX
kD1
.n � ik/ D r C s D deg�I :

Thus the cohomological degree k D deg�I D #˚� is the total degree k D .r C s/

of the bi-complex ^s.^2V �/˝ ^sV �. The number of boxes above the diagonal in
�I is s D 1

2
.j�I j � r/ so finally one gets k D deg�I D 1

2
.r.�I /C j�I j/ : We are

done. ut

5 Resolution of V.p/

A general result of Henri Cartan [2] states that every positively graded A-module
M of a graded algebra A D ˚n
0An allows for a minimal projective resolution
by projective A-modules. Moreover the notions of a projective and a free module
coincide in the graded category. Thus for every positively graded A-moduleM there
exists a minimal resolution by free A-modules.

The universal enveloping algebra U n is a graded associative algebra and the
parafermionic Fock space V.p/ D V � is a positively graded U n-module. There
exists [2] a minimal free resolution P� D LN

kD0 Pk of the right U n-module V.p/�

0 ! PN ! : : : ! P1 ! P0 ! V.p/� ! 0 (13)

by free right U n-modules Pk D Ek ˝ U n. We apply the functor � ˝Un C on the
complex P�, where C is the trivial U n-module. The minimality of the resolution
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P� implies [2] that the differentials of the complex P� ˝Un C vanish. Hence the
multiplicity spaces Ek coincide with the homologies

Ek Š TorUn
k .V.p/�;C/ D Hk.n;V.p/�/ ) E�k Š Hk.n;V.p// ;

where we used the isomorphism Hk.n;M/� D Hk.n;M �/. Theorem 3 gives
us the spaces Ek Š Hk.n;V.p//� so we have constructed the minimal free
resolution (13).

Theorem 4. The Euler-Poincaré characteristic of the free minimal resolution of the
(dual of the) parafermionic Fock space V.p/ (13) yields the identity

P
�W�D�0.�1/

1
2 .j�jCr.�//s�.p/ .x/Q

i .1 � xi /Qi<j .1 � xixj / D
X

�Wl.�0/	p
s�.x/ : (14)

Proof. In general, the mapping of modules of an algebra into its Grothendieck ring
of characters is an example of Poincaré-Euler characteristic. The free resolution (13)
is naturally a (reducible) gl.V /-module and the Schur functions (6) span the ring
of gl.V /-characters. All the homology of a resolution is concentrated in degree 0,
hence on the RHS of (14) stays the character of the self-conjugated1 module V.p/(7)

chV.p/ D chV.p/� D e�p

X
��.pn/

s�.x/ xi WD exp.ei / :

From the Poincaré-Birkhoff-Witt theorem follows that the character of Pk reads

chPk D ch.Ek ˝ U n/ D e��s�.p/ .x/Q
i .1 � xi /Qi<j .1 � xixj / :

Thus the alternating sum on the LHS comes from the characters of the gl.V /-
modules Ek ˝ U n taken with alternating signs corresponding to the homological
degree. The factor ep
 D e� accounting for the weight of the HW vector j�i cancels
which proves the parafermionic sign-alternating identity (14). ut
Remark. The free minimal resolution of the trivial module C constructed by
Józefiak and Weyman [6] with the help of the homologies Hk.n;C/ corresponds
to the resolution P� (13) of C Š V.p D 0/.

The parafermionic sign-alternating identity (14) was proposed by Stoilova and
Van der Jeugt in their study of parafermionic Fock space [13]. The parabosonic

1The self-conjugacy V.p/ Š V.p/� allows to switch between xi WD exp.˙ei / without a conflict.
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Fock space has been explored in [9] where the “super-symmetric partner” of the
identities (14) has been proposed (for a combinatorial proof see [7])

P
�W�D�0.�1/

1
2 .j�jCr.�//sŒ�.p/�0.x/Q

i .1 � xi /Qi<j .1 � xixj / D
X

�Wl.�/	p
s�.x/ : (15)

The parity functor ˘ switches parafermionic even generators to parabosonic odd

generators, thus g D so2nC1
˘! Qg D osp1j2n. The effect of ˘ is the passage

�
˘! �0. The identity (15) is rooted into a minimal free resolution of the parabosonic

Fock space QV.p/ D ˘V.p/ by free U Qn-modules of the nilpotent Lie super-algebra
Qn � Qg.

More generally, one can consider the parastatistics Fock space Vnjm.p/ of the
parastatistics Lie super-algebra gnjm WD osp2nC1j2m with n parafermionic and m
parabosonic modes. We conjecture that there exists a complex of free U nnjm-
modules of the maximal nilpotent Lie superalgebra nnjm � osp2nC1j2m whose
cohomology is Vnjm.p/. Then the Euler-Poincaré characteristics of such a complex
will yield one more identity (which was obtained by different method in [10])

Q
i<j ; Oi¤ Oj .1C xixj /

P
�W�D�0.�1/

1
2 .j�jCr.�//hs�.p/ .x/Q

i .1 � xi /Qi<j ; OiD Oj .1 � xixj / D
X

�W�1	p
hs�.x/ :

Here the .njm/-hook Schur polynomial hs�.x/ is the character of the irreducible
glnjm-module V �, hs�.x/ D ch V �. The non-trivial glnjm-modules V � are labelled
by diagrams � such that �nC1 � m.
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On Non-local Representations of the Ageing
Algebra in d � 1 Dimensions

Stoimen Stoimenov and Malte Henkel

Abstract Non-local representations of the ageing algebra for generic dynamical
exponents z and for any space dimension d 	 1 are constructed. The mechanism
for the closure of the Lie algebra is explained. The Lie algebra generators contain
higher-order differential operators or the Riesz fractional derivative. Covariant two-
time response functions are derived. An application to phase-separation in the
conserved spherical model is described.

1 Introduction: Ageing Systems and Ageing Algebra

Ageing behaviour has been first studied in structural glasses quenched from a molten
state to below “glass-transition temperature” by Struik [32]. Nowadays, ageing has
been seen in non-equilibrium relaxations in other glassy and non-glassy system far
from equilibrium (see e.g. [6, 16] for surveys). Schematically, one may characterise
ageing systems by (1) a slow relaxation dynamics, (2) absence of time-translation-
invariance and (3) dynamical scaling.

In this work,1 we consider the dynamical symmetries of ageing systems under-
going “simple ageing”, with a dynamics characterised by a single length scale,
L.t/ � t 1=z at large times, which defines the dynamical exponent z. One may
ask if the naturally present dynamical scaling in the long-time limit t ! 1
can be extended to a larger set of local scale transformation, called “local scale-
invariance” (LSI). The current state of LSI-theory, with its explicit predictions for
two-time responses and correlators, has been recently reviewed in detail in [16].

1This paper contains the main results from [18], presented by the first author at LT-10.
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Here, we describe an algebraic technique in order to extend known representations
of LSI algebras with dynamical exponents z D 2 (or z D 1) to more general values.

The analysis of the ageing of several simple magnetic systems, without disorder
nor frustrations, without any macroscopic conservation law of the dynamics, and
undergoing ageing when quenched to a temperature T < Tc below the critical
temperature Tc > 0 is characterised by the dynamical exponent z D 2 [5].
Then, the detailed scaling form of the two-time correlators and responses can be
obtained by an extension of simple dynamical scaling with z D 2 towards a
larger Lie group [13]. Its Lie algebra is known as “ageing algebra” age.d/ DD
X0;1; Y

.i/

˙ 1
2

;M0;Rij

E
1	i<j	d

and can be defined by the following non-vanishing

commutators [15]

ŒXn; Y
.i/
m � D


n
2

�m
�
Y
.i/
nCm; ŒXn;Xn0 � D .n � n0/XnCn0 ;

ŒY
.i/
1
2

; Y
.j /

� 12
� D ıijM0; ŒRij ; Rk`� D ıi`Rjk C ıjkRi` � ıikRj` � ıj`Rik;

ŒRij ; Y
.k/
m � D ıjkY

.i/
m � ıikY .j /m (1.1)

with n; n0 D 0; 1, m D ˙ 1
2

and 1 � i � j � d . When acting on time-space
coordinates .t; r/, a representation of (1.1) in terms of affine differential operators is:

X0 D �t@t � 1

2
.r � @r/ � x

2
; X1 D �t 2@t � t .r � @r/ � M

2
r2 � .x C �/t

Y
.i/

� 12
D �@ri ; Y

.i/
1
2

D �t@ri � Mri ; M0 D �M (1.2)

Rij D ri@rj � rj @ri D �Rji :

The above representation has a dynamical exponent z D 2 and acts locally on the
time-space coordinates. Furthermore, it generates a set of dynamical symmetries of
the Schrödinger (or diffusion) equation:

OS�.t; r/ D
�
2M@t C 2M

t
.x C � � d=2/ � r2

r

�
�.t; r/ D 0; (1.3)

in the sense that each of the generators of age.d/ maps a solution of (1.3) onto
another solution. The triplet .M; x; �/ characterises the solution � D �.M;x;�/ of
this equation.2 Furthermore, x and � are two independent scaling dimensions.

For systems undergoing simple ageing with z D 2, LSI as described by the
representation (1.2) of age.d/ indeed gives an appropriate description, including
several exactly solved examples where � ¤ 0 is required [15, 16]. The best-known
example is the 1D Glauber-Ising model quenched to T D 0. A main prediction is

2M 2 R is interpreted as an inverse diffusion constant, or as a non-relativistic mass if M 2 iR.
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the form of the two-time (linear) response R D R.t; s/ D ıh�.t/i
ıh.s/

ˇ̌
ˇ
hD0 of the order

parameter � with respect to its conjugate magnetic field.
In statistical physics, a common formulation uses a stochastic Langevin equation

@t�.t; r/ D �D ıHŒ��
ı�.t; r/

C �.t; r/ (1.4)

with a Ginzburg-Landau functional H and a centred gaussian noise � with a ı-
correlated second moment. The standard Janssen-de Dominicis formalism [20, 34]
relates this to the equation of motion derived from a dynamical functional J Œ Q�; �� D
J0Œ Q�; ��CJ�Œ Q��, written in terms of order parameter � D �M;x;� and its conjugate
response operator Q� D Q��M;Qx;Q� such that the “deterministic part” J0 is invariant

under the action of the Galilei sub-algebra gal.d/ D
D
Y
.i/

˙ 1
2

;M0;Rij

E
1	i<j	d

. This

implies the Bargmann super-selection rules [1].

Theorem 1 ([16, 29]). All n-point functions of “noisy theory” described by J can
be reduced to averages h�i0 calculable from the deterministic part J0 alone.

In particular the response function R.t; s/ D ˝
�.t/ Q�.s/˛ D ˝

�.t/ Q�.s/˛
0

(see e.g.
[20,34] for introductions and detailed references), is independent of the noise � and
can be derived from covariance under age.d/. These calculations have been carried
out for a long list of models undergoing simple ageing with z D 2 [2, 8, 16, 30].

Can one extend this procedure, at least for linear stochastic Langevin equations
of motion, to arbitrary values of the dynamical exponent z? If we were to restrict to
locally realised algebras, the recent classification of the non-relativistic limits of the
conformal algebra [7,9] would only admit the cases (1) z D 1: the conformal algebra
conf .d/ or the conformal Galilean algebra .cga.d// [11, 12, 28], eventually with
the exotic central extension for d D 2 [23] (2) z D 2: the Schrödinger algebra
and (3) z D 1; all along with their sub-algebras. Further examples can only be
found when looking at non-local representation, of known abstract algebras, that is
generators more general than first-order linear (affine) differential operators. Some
partial information is already available to serve as a guide:

1. the Galilei-invariance of the non-relativistic equation of motion OS� D 0 should
be kept (this guarantees the validity of the Bargmann superselection rule, hence
the applicability of the theorem above):

ŒY
.i/
1
2

; Y
.j /

� 12
� D ıijM0; Œ OS; Y .j /˙ 1

2

� D �
.j /

˙ OS; (1.5)

Computation of two-point functions requires some kind of conformal invariance.
2. In the context of LSI, different realisations of generalised symmetry algebras

have been constructed by using certain fractional derivatives [13, 14, 16]. The
closure of these sets of generators can only be achieved by taking a quotient with
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respect to a certain set of “physical” states. Although this has been successfully
applied to certain physical models [3, 8] the closing procedure is not completely
determined and it is not clear how to obtain the group (finite) transformations.

A distinct and potentially more promising method has been explored in [17].
Therein, new non-local representations of age.1/ for an integer-valued dynamical
exponent z D n 2 N were constructed. This reads

X0 D �n
2
t@t � 1

2
r@r � x

2
; Y� 12 D �@r ; M0 D ��

Y1
2

D �t@n�1r � �r; 2 � z D n 2 N

X1 D


�n
2
t2@t � t r@r � .x C �/t

�
@n�2r � 1

2
�r2 (1.6)

The commutation relations (1.1) are satisfied except the following

ŒX1; Y 1
2
� D n � 2

2
t2@n�3r

OS; (1.7)

Consequently, the algebra is “on shell” algebra that is closed only on quotients with
respect to the solution space of the equation

OS�.t; r/ D
�

z�@t � @z
r C 2�

t

�
x C � � z � 1

2

��
�.t; r/ D 0: (1.8)

The generators (1.6) act as dynamical symmetries [17] of the Eq. (1.8), for z 2 N.
In the limit z ! 2, the usual representation of the ageing algebra is recovered.

In Sect. 2 we shall generalise the above construction to any spatial dimension
d 	 1. This transition is not trivial because of non-locality of the generators (1.6).
Covariant two-point functions are computed from these non-local representations
in Sect. 3. In Sect. 4, we shall apply these results to some simple physical models,
namely the kinetic spherical model with a conserved order-parameter and quenched
to T D Tc and the Mullins-Herring (or Wolf-Villain) equations of interface growth
with mass conservation. The time-space responses are calculated from the non-
local representations of age.d/, to be compared with the known exact results
[3, 22, 24, 31]. We conclude in section “Conclusions”.

2 Non-local Representations of age.d/ in Dimensions d � 1

It turns out that only for z D 2n even, it is possible to extend the non-local
representation of ageing algebra (1.6) to d 	 1 dimensions, while this do not work
for z D 2nC1 odd. A common treatment of both cases requires the use of the Riesz
fractional derivative [16, 25]. It is defined as a linear operator r˛

r acting as follows
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r˛
r f .r/ D i˛

Z d

R

dk
.2�/d

jkj˛ eir�k Of .k/; (2.9)

where the right-hand side as to be understood in a distribution sense and Of .k/
denotes the Fourier transform. Some elementary properties are: [16]

r˛
r rˇ

r D r˛Cˇ
r ; r2

r D
dX
iD1

@2i D �r; Œr˛
r ; ri � D ˛@ir˛�2

r

Œr˛
r ; r

2� D 2˛.r � @r/r˛�2
r C ˛.d C ˛ � 2/r˛�2

r ; r˛
�rf .�r/ D j�j�˛r˛

r f .�r/:

The Riesz fractional derivative can be viewed as a “square root” of the Laplacian.
Now consider the generators:

X0 WD � z

2
t@t � 1

2
.r � @r/ � x

2
;

X1 WD


� z

2
t2@t � t .r � @r/ � .x C �/t

�
rz�2

r � �

2
r2

Y
.i/

�1=2 WD �@i ; Y
.i/

C1=2 WD �t@irz�2
r � �ri ; M0 WD ��

Rij WD ri@j � rj @i D �Rji : (2.10)

The commutators (1.1) of age.d/ are seen to hold true, except for

ŒX1; Y
.i/
1
2

� D 1

2
.z � 2/t2@irz�4

r OS : (2.11)

Hence, the above generators close into a Lie algebra age.d/ only in the quotient
space over solutions of “Schrödinger equation”

OS�.t; r/ D
�

z�@t � rz
r C 2�t�1

�
x C � � 1

2
.d C z � 2/

��
�.t; r/ D 0:

(2.12)

This representation of age.d/ generates dynamical symmetries of the Eq. (2.12)
since Œ OS; Y .i/� 12 � D Œ OS; Y .i/1

2

� D Œ OS;M0� D Œ OS;Rij � D 0 and

Œ OS;X0� D �1
2

z OS; Œ OS;X1� D �z t rz�2
r

OS:

Some comments are in order:

1. the non-locality only enters into the Galilei Y iC 1
2

and special transformations X1.

For z D 2n even, these non-local generators, as well as invariant equation (2.12)
are expressed in powers of the Laplacian
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Y
.i/

C1=2 WD �t@i�n�1
r � �ri

X1 WD ��nt2@t � t .r � @r/ � .x C �/t
�
�n�1

r � �

2
r2; (2.13)

OS�.t; r/ D
�
2n�@t ��n C 2�t�1

�
x C � � 1

2
.d C 2n � 2/

��
�.t; r/ D 0:

2. for a dynamical exponent z ¤ 2n, use of the Riesz fractional derivatives (2.10)
is necessary and there is no simple relation to the representations of age.1/.

Summarising, the representation of age.d/ proposed here explicitly uses generators
acting non-locally on space. In Fourier space, the generators become local, but non-
analytic. The special case of an even-valued dynamical exponent appears to have
rather special and possibly non-generic properties.

3 Covariant Two-Point Function

Covariance under (2.10) gives the two-point function (with �i D �i;.�1;x1;�1/.ti ; ri /)

F.t1; t2; r1; r2/ D h�1.t1; r1/�2.t2; r2/i (3.14)

The result is (with � D t1 � t2; y D t1=t2):

F D ı.�1C�2/t�
x1Cx2

z
2 .y�1/� 2z Œ x1Cx22 C�1C�2�zC2� y� 1z Œx2�x1C2�2�zC2� f

�jrjz��1� :
(3.15)

where f still has to be found from Galilei-covariance.

Even dynamical exponent z D 2n If p WD jrjz=� , Galilei-covariance gives

.�@rj �
n�1
r C �ri /f .p/ D rj



.2n/np

n�1
n @p�

n�1
p C �

�
f .p/ D 0: (3.16)

and j D 1; : : : d . In particular if

n D 2;

a Frobénius series representation leads to

f .p/ D f0 0F2

�
1

2
;
1

2
C d

4
I ��p

64

�
C f1 p

1=2
0F2

�
3

2
;
d

4
C 1I ��p

64

�

Cf2 p1=2�d=4 0F2 .1 � d=4; 3=2 � d=4I ��p=64/ : (3.17)
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Generic dynamical exponent matters become simple in Fourier space

.�@kj C iz�2�kj jkjz�2/ Of .�;k/ D 0 ) Of .�;k/ D f0.�/ exp

�
� iz�2

z

�

�
jkjz

�

(3.18)

This is rewritten in the direct space as follows

f .�; r/ D f0.�/

.2�/d

Z
Rd

dk exp

�
ik � r � iz�2

z

�

�
jkjz

�
D f0.�/

.2�/d
Iˇ.r/

ˇ WD ˛� D iz�2

z�
� 2 C; Iˇ.r/ WD

Z
Rd

dk exp Œik � r � ˇjkjz� (3.19)

Finally we have (with an infinite radius of convergence for z > 1)

f .�; r/ D f00
� .d=2/

� .d=z/

1X
nD0
.�1/n

�


2nCd

z

�

nŠ�
�
nC d

2

�
�

r2

4.˛�/2=z

�n
: (3.20)

4 Conserved Spherical Model. Field-Theoretical Description

The spherical model [4] is defined through spin variable S.t; x/ 2 R, attached to
each site x of the hyper-cubic lattice � � Z

d and which satisfy the mean spherical
constraint

˝P
x2� S.t; x/2

˛ D N , where N is the number of sites. The Hamiltonian
is H D �P.x;y/ SxSy, where the sum is over pairs of nearest neighbours. At
equilibrium, a second-order phase transition is observed for d > 2 at some Tc > 0.
The critical exponents have non-mean-field values for d < 4 [21]. The dynamics is
given by a Langevin equation with a conserved order parameter (model B) [19]

@tS.t; x/ D �r2
x Œr2

xS.t; x/C z.t/S.t; x/C h.t; x/�C �.t; x/

h�.t; x/�.t 0; x0/i D �2Tcr2
xı.t � t 0/ı.x � x0/: (4.21)

This is a simple but physically reasonable model (since z.t/ � 1=t for t ! 1)
for the kinetics of phase-separation (for example in alloys). A simple variant is
the Mullins-Herring/Wolf-Villain model, where one fixes the Lagrange multiplier
z.t/ D 0, and which describes the growth of interfaces on a substrate with a
conservation of particles along the interface [27, 35]. The correlators and response
are studied in detail [3, 10, 22, 24, 31]. Recall the full time-space response in the
conserved spherical model for d > 4, or equivalently in the Mullins-Herring model
for any d
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R.t; sI r/ D
p
�

23d=2�d=2� .d=4/
.t � s/�.dC2/=4

�
0F2

�
1

2
;
d

4
I r4

256.t � s/
�

� 8

d

� .d
4

C 1/

� .d
4

C 1
2
/

�
r2

16
p
t � s

�
0F2

�
3

2
;
d

4
C 1

2
I r4

256.t � s/
�#

;

(4.22)

which we want to compare with the age.d/-covariant two-point function, obtained
above from the non-local representation (3.17) with z D 4.

In order to do this, adapt, to the present non-local case, the standard methods of
Janssen-de Dominicis theory in non-equilibrium field theory [3], to find a relation
between a dynamical symmetry of a deterministic equation with the properties of a
solution of a stochastic Langevin equation. The Langevin equation

@t� D � 1

4�
r2

r

��r2
r� C v.t/� C h.t; r/

�C � (4.23)

h�.t; r/�.t 0; r0/i D � Tc

2�
r2

r ı.t � t 0/ı.r � r0/

can be viewed as equation of motion of the Janssen-de Dominicis action, decom-
posed into deterministic and stochastic parts J .�; Q�/ D J0.�; Q�/C J�. Q�/

J0.�; Q�/ D
Z

dudR
�

Q�
�
@u � 1

4�
r2

R.r2
R � v.u//

�
� C hr2

R
Q�
�

(4.24)

J�. Q�/ D T

4�

Z
dudR Q�.u;R/.r2 Q�.u;R//C Jini t : (4.25)

The averages of an observable A is given by the functional integral:

hAi D
Z

DŒ��DŒ Q��AŒ�� exp.�J .�; Q�// DW hA exp.�J�/i0: (4.26)

In particular for the linear response function we obtain3

R.t; sI x � y/ WD h�.t; x/i
ıh.s; y/

ˇ̌
ˇ̌
hD0

D h�.t; x/r2
y

Q�.s; y/ exp.�J�/i0

D r2
y h�.t; x/ Q�.s; y/ exp.�J�/i0 D r2

rF
.2/.t; sI x � y/;

3In order to compute response function, we must introduce small perturbation h (conjugate
magnetic field) in the right-hand side of the Eq. (4.23), which respects the conservation law.
This generates respectively an additional term in the Janssen-de Dominicis action, which we have
written explicitly (4.24).
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where F .2/.t; sI r/ is the two-point function, found in Sect. 3 with identification
� D ��;x;� as order parameter and Q� D ���;Qx;Q� as response field. In the last line
we have used the Bargmann super-selection rule [1], which holds in terms of the
“mass” parameter �, that is h�1.t1; r1/ : : : �n.tn; rn/i0 D 0 unless �1 C : : : �n D 0.
It is enough to consider the case v D 0 which gives rise to conserved spherical
model for d > 4 and Mullins-Herring model for any d .

We see that the deterministic part of Eq. (4.23) coïncides with “Schrödinger
equation” for z D 4, if in addition the time-translation invariance is taken into
account (i.e. z.t/ D 0), that is the parameters of non-local representation of the
ageing algebra must satisfy x C � D Qx C Q� D .d C 2/=2. Then

R.t; sI r/ D .t � s/�d=4r2
rf

�
r4

t � s
�

D .t � s/�.dC2/=4�pf .p/

D 4.t � s/�.dC2/=4..d C 2/p
1
2 @p C 4p

3
2 @2p/f .p/

D .t � s/�.dC2/=4 �

�
�
f 01 0F2

�
1

2
;
d

4
I ��p

64

�
C f 00 p1=2 0F2

�
3

2
;
d

4
C 1

2
I ��p

64

�

C f 02 p1�d=4 0F2
�
3

2
� d

4
; 2 � d

4
I ��p

64

��
: (4.27)

Since the response function must be regular at r D 0 and vanish for jrj ! 1,
the third term is eliminated, viz. f 02 D 0. The constants f 00 and f 01 can be related
by the known long-term behaviour of the hyper-geometric function [17, 36]. Hence
one reproduces the exact result (4.22), but now from the covariance under non-local
representation of ageing algebra with dynamical exponent z D 4.

Conclusions
When trying to construct a closed Lie algebra for generalised scale-
transformations with an arbitrary dynamical exponent z 2 R, we have been
led to consider non-local representations of the ageing algebra age.d/, for
general d 	 1 [17, 18].

It was necessary to slightly extend the usual definition of the notion
of dynamical symmetry. Conventionally, the infinitesimal generator X of
a dynamical symmetry of the equation of motion OS� D 0 must satisfy
Œ OS;X� D �X OS as an operator, where �X should be a scalar or a function.
Here, �X may be an operator itself. The Lie algebra closes on the quotient
space with respect to OS� D 0.

(continued)
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Several details depend on the value of z :

1. For an odd dynamical exponent z 	 2, the generalisation from the
one-dimensional case requires the explicit introduction of some kind of
fractional derivative. For our purposes, the Riesz fractional derivative
turned out to have the required algebraic properties. In addition, the result
derived for the covariant two-point function is compatible with the directly
treatable case when z is even, but we are not aware of confirmed physical
applications in this case.

2. For z even, the algebra (2.13) contains d C 1 non-local generators of gen-
eralised Galilei-transformation and special transformations, constructed
with linear differential operators of order z � 1. By analogy with the
1D case [17], we suspect that these might be interpreted as generating
transformation of distribution functions of the positions, rather than bona
fide coordinate transformations. The example studied here (conserved
spherical model for d > 4 or equivalently in the Mullins-Herring equation
for any d ) might be the first step towards an understanding how to use such
non-local transformations in applications to the non-equilibrium physics of
strongly interacting particles.

Extensions to more general representations may be of interest [26].
Recall that in the context of interface growth with conserved dynamics,

exactly the kind of non-local generalised Galilei-transformation we have
studied here has already been introduced in analysing the stochastic equation
(related to molecular beam epitaxy (MBE)), with constants �, � and a white
noise �

@t� D �r2

�
�r2� C �

2
.r�/2

�
C � (4.28)

It can be shown that Galilei-invariance leads to a non-trivial hyper-scaling
relation, expected to be exact [33]. In particular, they obtain z D 4 in
d D 2 space dimensions. We hope to return to a symmetry analysis of
these non-linear equations in the future. In any case, the available evidence
that generalised Galilei-invariance could survive the loop expansion is very
encouraging.
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The Quantum Closet

Alon E. Faraggi

Abstract The equivalence postulate approach to quantum mechanics entails a
derivation of quantum mechanics from a fundamental geometrical principle. Under-
lying the formalism there exists a basic cocycle condition, which is invariant
under D-dimensional finite Möbius transformations. The invariance of the cocycle
condition under finite Möbius transformations implies that space is compact.
Additionally, it implies energy quantisation and the undefinability of quantum
trajectories. I argue that the decompactification limit coincides with the classical
limit. Evidence for the compactness of the universe may exist in the Cosmic
Microwave Background Radiation.

1 Introduction

The synthesis of quantum mechanics and general relativity continues to pose an
important challenge in the basic understanding of physics. While quantum mechan-
ics accounts with astonishing success for physical observations at the smallest
distance scales, general relativity accomplishes a similar feat at the largest. Yet these
two mathematical modellings of the observed data are mutually incompatible. This
is seen most clearly in relation to the vacuum. The first predicts a value that is off
by orders of magnitude from the observed value, which is determined by using the
second. To date there is no solution to this problem. In view of this calamity it seems
prudent to explore the foundations of each of these theories, and the fundamental
principles that underly them. General relativity follows from a basic geometrical
principle, the equivalence principle, whereas the basic tenant of quantum mechanics
is the probability interpretation of the wave function.

The question arises whether quantum mechanics can follow from a basic geomet-
rical principle, akin to the geometrical principle that underlies relativity. Starting in
[1] we embarked on a rigorous derivation of quantum mechanics from a geometrical
principle. The equivalence postulate of quantum mechanics hypothesises that any
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two physical states can be connected by a coordinate transformation. This includes
states which arise under different potentials. In particular, any state may be
transformed so as to correspond to that of a free particle at rest. This bears close
resemblance to Einstein’s equivalence principle that underlies general relativity
with an important caveat. While in the case of Einstein’s equivalence principle it
is the gravitational field which is “locally balanced” by a coordinate transformation,
in the equivalence postulate approach to quantum mechanics it is an arbitrary
external potential which is “globally balanced” by a coordinate transformation.
The equivalence postulate of quantum mechanics is naturally formulated in the
framework of Hamilton–Jacobi theory.

The implementation of the equivalence postulate in the context of the Hamilton–
Jacobi theory yields a Quantum Hamilton–Jacobi equation. The Classical
Hamilton–Jacobi Equation is obtained by requiring the existence of a canonical
transformation from one set of phase space variables to a second set of phase space
variable such that the Hamiltonian is mapped to a trivial Hamiltonian. Consequently,
the new phase-space variable are constants of the motion, i.e.

H.q; p/ �! K.Q;P / � 0 H) PQ D @K

@P
� 0 ; PP D � @K

@Q
� 0:

(1)

The solution to this problem is given by the Classical Hamilton–Jacobi equation
(CHJE). Since the transformations are canonical the phase space variables are taken
as independent variables and their functional dependence is only extracted from the
solution of the CHJE via the functional relation

p D @S.q/

@q
; (2)

where S.q/ is Hamilton’s principal function. The fundamental uncertainty relations
of quantum mechanics imply that the phase-space variables are not independent.
The equivalence postulate of quantum mechanics therefore requires the existence of
trivialising coordinate transformations for any physical system, but the phase-space
variables are not independent in the application of the trivialising transformations.
They are related by a generating function, via (2), which transforms as a scalar
function under the transformations. That is,

. q ; S0.q/ ; p D @S0

@q
/ �! . qv ; S v

0 .q
v/ ; pv D @S v

0

@qv
/; (3)

where S0.q/ is the generating function in the stationary case. It is instrumental
to study the stationary case in order to see the symmetry structure that underlies
quantum mechanics. The consistency of the equivalence hypothesis implies that
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the Hamilton–Jacobi equation retains its form under coordinate transformations.
However, this cannot be implemented in classical mechanics. The CSHJE for a
particle moving under the influence of a velocity independent potential V.q/ is
given by

1

2m

NX
iD1

�
@S

@qi

�2
C W.q/ D 0; (4)

where W.q/ � V.q/�E. Under a change of coordinates q ! qv we have (by (3))

@S v.qv/

@qv
j

D @S.q/

@qv
j

D
X
i

@S.q/

@qi

@qi

@qv
j

; (5)

which we can write as pv D Jvp;where J v
ij D @qi

@qv
j

is the Jacobian matrix connecting

the coordinate systems q and qv, and where, pi D @S
@qi

. Then

X
j

 
@S v

@qv
j

!2
D jpvj2 D

� jpvj2
jpj2

�
jpj2 D .pvjp/jpj2; (6)

where we have defined

.pvjp/ � jpvj2
jpj2 D pvTpv

pTp
D pTJvTJvp

pTp
: (7)

It is seen that the first term in Eq. (4) transforms as a quadratic differential under the
v-map Eq. (3). Since S v

0 .q
v/ must satisfy the CSHJE, covariance of the HJ equation

under the v-transformations implies that the second term in Eq. (4) transforms as a
quadratic differential. That is

Wv.qv/ D .pvjp/W.q/: (8)

In particular, for the W0.q0/ � 0 state we have,

W0.q0/ �! Wv.qv/ D .pvjp0/W0.q0/ D 0: (9)

This means that W0 is a fixed point under v-maps, i.e. it cannot be connected to other
states. Hence, we conclude that the equivalence postulate cannot be implemented
consistently in classical mechanics.
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2 The Cocycle Condition

Consistent implementation of the equivalence postulate necessitates the modi-
fication of classical mechanics, which entails adding a yet to be determined
function, Q.q/, to the CSHJE. This augmentation produces the Quantum Stationary
Hamilton–Jacobi Equation (QSHJE)

1

2m

�
@S.q/

@q

�2
C W.q/C Q.q/ D 0 ; (10)

where W.q/ D V.q/�E. It is noted that the combination W.q/CQ.q/ transforms
as a quadratic differential under coordinate transformations, whereas each of the
functions W.q/ and Q.q/ transforms as a quadratic differential up to an additive
term, i.e. under qa ! qv.q/ we have,

Wa.qa/ ! Wv.qv/ D .pvjpa/Wa.qa/C .qaI qv/

Qa.qa/ ! Qv.qv/ D .pvjpa/Qa.qa/ � .qaI qv/:

and

.W.qa/C Q.qa// ! .Wv.qv/C Qv.qv// D .pvjpa/ .Wa.qa/C Qa.qa//

(11)

All physical states with a non-trivial W.q/ then arise from the inhomogeneous
part in the transformation of the trivial state W0.q0/ � 0, i.e. W.q/ D .q0I q/.
Considering the transformation qa ! qb ! qc versus qa ! qc gives rise to the
cocycle condition on the inhomogeneous term

.qaI qc/ D �
pc jpb� �.qaI qb/ � .qc I qb/	 : (12)

The cocycle condition Eq. (12) embodies the essence of quantum mechanics in
the equivalence postulate approach. Furthermore, it reveals the basic symmetry
properties that underly quantum mechanics. It is proven [1, 2] that the cocycle
condition is invariant under D-dimensional Möbius transformations, which include
translations, dilatations, rotations and, most crucially, inversions, or reflections, in
the unit sphere. The Möbius transformations are, hence, defined on the compactified
space ORD D R

D [ f1g. Whereas translations, dilatation and rotations map 1
to itself, inversions exchange 0 $ 1. We argue that energy quantisation and
the existence of a fundamental length scale in the formalism, together with the
invariance of the cocycle condition Eq. (12) under the Möbius group M. ORD/ of
transformations, implies that space is compact. The more general situation may be
considered in the decompactification limit.

The cocycle condition fixes the functional form of the quantum potential Q.q/.
In one dimension the cocycle condition (12) fixes the inhomogeneous term

.qaI qb/ D �ˇ2fqa; qbg=4m;
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where ff; qg D f 000=f 0�3.f 00=f 0/2=2 the Schwarzian derivative and ˇ is a constant
with the dimension of an action. In one dimension the Quantum Hamilton–Jacobi
equation is given in terms of a basic Schwarzian identity,

�
@S.q/

@q

�2
D ˇ2

2


n
e
2iˇS
; q

o
� fS; qg

�
(13)

Making the identification

W.q/ D V.q/ �E D � ˇ2

4m

�
e
.i2S0/
ˇ ; q



; (14)

and

Q.q/ D ˇ2

4m
fS0; qg ; (15)

we have that S0 is the solution of the Quantum Stationary Hamilton–Jacobi equation
(QSHJE),

1

2m

�
@S0

@q

�2
C V.q/ �E C „2

4m
fS0; qg D 0: (16)

The Schwarzian identity, Eq. (13), is generalised in higher dimensions by the basic
quadratic identity

˛2.rS0/2 D �.Re˛S0/

Re˛S0
� �R

R
� ˛

R2
r � .R2rS0/; (17)

which holds for any constant ˛ and any functions R and S0. Then, if R satisfies the
continuity equation r � .R2rS0/ D 0; and setting ˛ D i=„, we have

1

2m
.rS0/2 D � „2

2m

�.Re
i
„
S0/

Re
i
„
S0

C „2
2m

�R

R
: (18)

In analogy with the one dimensional case we make identifications,

W.q/ D V.q/ �E D „2
2m

�.Re
i
„
S0/

Re
i
„
S0

; (19)

Q.q/ D � „2
2m

�R

R
: (20)

Equation (19) implies the D-dimensional Schrödinger equation

�
� „2
2m

�C V.q/

�
� D E�: (21)
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and the general solution

� D R.q/


Ae

i
„
S0 C Be� i

„
S0
�
: (22)

We note that consistency of the equivalence postulate formalism necessitates that
the two solutions of the second order Schrödinger equation are retained. This
is reminiscent of relativistic quantum mechanics in which both the positive and
negative energy solutions are retained. We can replace the gradient in Eq. (17) by a
four vector derivative in Minkowski space. This produces the generalisation of the
formalism to the relativistic case and the Schrödinger equation, Eq. (21), is replaced
by the Klein–Gordon equation. The time-dependent Schrödinger equation arises in
the limit c ! 1. Similarly, the cocycle condition Eq. (12) generalises to Minkowski
space by replacing the Euclidean metric with the Minkowski metric. It is important
to emphasize that the equivalence postulate approach to quantum mechanics
does not represent a modification or interpretation of quantum mechanics but its
derivation from a basic geometrical principle. As such it reveals the geometrical
structures underlying quantum mechanics and in that respect provides an intrinsic
framework to explore the quantum space-time. It is further noted that the cocycle
condition, Eq. (12), is completely universal. Hence, its generalisation to curved
space provides a background independent approach to quantum gravity. In this
respect the equivalence postulate approach reveals the interplay between quantum
variables, encoded R.q/ and S.q/, versus the classical background parameters.
For example, in [3] we showed that the QHJE does not admit a consistent time
parameterisation of quantum trajectories. In this respect, therefore, time cannot be
defined as a quantum observable, but is merely a classical background parameter.
Generalising this observation to relativistic space-time entails that space-time
cannot be consistently defined as a quantum observable. Instead, the quantum
data is encoded in the cocycle condition and the corresponding quadric identity
in the relevant domain, i.e. in curved space-time. In this respect, we note that the
inhomogeneous term can be written in the general form [2],

.qaI qb/ D .pbjpa/Qa.qa/ � Qb.qb/ D � „2
2m

�
.pbjpa/�

aRa

Ra
� �bRb

Rb

�
;

(23)

which shows how the information on the inhomogeneous term is encoded in the
functions R.q/ and S.q/.

3 The Quantum Closet

The invariance of the cocycle condition under Möbius transformations implies that
space is compact. Let us gather the evidence for this claim. In the one dimensional
case we see from Eq. (19) that the QSHJE is equivalent to the equation fw; qg D
�4m.V.q/ � E/=„2 where w is the ratio of the two solutions of the Schrödinger
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equation. It follows from the Möbius invariance of the cocycle condition that w ¤
const , w 2 C2. OR/ with w00 differentiable on R, where OR D R [ f1g, and

w.�1/ D
� Cw.C1/ if w.�1/ ¤ ˙1 ;

�w.C1/ if w.�1/ D ˙1 :
(24)

Furthermore, denoting by q� (qC) the lowest (highest) q for which V.q/ � E

changes sign, we prove the general theorem [1],
If

V.q/ �E 	
�
P 2� > 0 ; q < q� ;
P 2C > 0 ; q > qC ;

(25)

then w D  D= is a local self-homeomorphism of OR iff the Schrödinger equation
has an L2.R/ solution.

Since the QSHJE is defined if and only if w is a local self-homeomorphism of OR,
this theorem implies that energy quantisation directly follows from the geometrical
gluing conditions of w at q D ˙1, as implied by the equivalence postulate, which
in turn imply that the one dimensional space is compact. In turn the compactness
of space implies that the energy of the free quantum particle is quantised and
that time parameterisation of trajectories is ill defined either via Bohm–de Broglie
mechanical definition, or via Floyd’s definition by using Jacobi’s theorem [4]. The
Möbius invariance of the cocycle condition inD dimensions then implies that theD
dimensional space is compact.

Generalisation of the cocycle condition to curved space suggests a background
independent approach to quantum gravity. The connection with gravity and with
an internal structure of elementary particles is implied due to the existence of
an intrinsic fundamental length scale in the formalism, and the association of the
quantum potential, Q.q/, with a curvature term [1,5,6]. To see the origin of that we
can again examine the stationary one dimensional case with W0.q0/ � 0. In this
case the Schrödinger equation takes the form

@2

@q2
 D 0;

with the two linearly independent solutions being  D D q0 and  D const . Con-
sistency of the equivalence postulate dictates that both solutions of the Schrödinger
equation must be retained. The solution of the corresponding QHJE is given by [1]

e
2i
„
S00 D ei˛

q0 C i Ǹ
0

q0 � i`0 ;

where `0 is a constant with the dimension of length [1], and the conjugate
momentum p0 D @q0S

0
0 takes the form
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p0 D ˙ „.`0 C Ǹ
0/

2jq0 � i`0j2 : (26)

It is seen that p0 vanishes only for q0 ! ˙1. The requirement that in the classical
limit lim„!0 p0 D 0 implies that we can set [1]

Re `0 D �p D
r

„G
c3
; (27)

i.e. we identify Re `0 with the Planck length. The interpretation of the quantum
potential as a curvature term [1, 6] implies that elementary particles possess
an internal structure, i.e. points do not have curvatures. This suggests possible
connection with theories of extended objects.

If the universe is compact it would imply the existence of an intrinsic energy scale
reminiscent of the Casimir effect. Taking the present size of the observable universe
would imply a very small energy scale, which is essentially unobservable [6].
However, given the indication of a larger energy scale in the Cosmic Microwave
Background (CMB) Radiation suggests the possibility of observing the imprints
of compactness of the universe in the CMB in the current [7] or future CMB
observatories. Indeed, the possibility of signatures of a non-trivial topology in the
CMB has been of recent interest [8]. Additional experimental evidence for the
equivalence postulate approach to quantum mechanics may arise from modifications
of the relativistic energy-momentum relation [9], which affects the propagation of
light from gamma ray bursts [10].

4 The Decompactification Limit

The Möbius invariance of cocycle condition may only be implemented if space is
compact. We may contemplate that the decompactification limit represents the case
when the spectrum of the free quantum particle becomes continuous. In that case
time parameterisation of quantum trajectories is consistent with the definition of
time by using Jacobi’s theorem [1,3,4]. However, I argue that the decompactification
limit in fact concides with the classical limit. To see that this may be the case we
examine again the case of the free particle in one dimension. The quantum potential
associated with the state W 0 � 0 is given by

Q0 D „2
4m

fS00 ; q0g D �„2.Re `0/2

2m

1

jq0 � i`0j4 : (28)

We note that the limit q0 ! 1 concides with the limit Q0 ! 0, i.e. with the
classical limit.
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Conclusions
Heisenberg’s uncertainty principle mandates that the phase-space variables
cannot be treated as independent variables. The classical Hamilton–Jacobi
trivialising transformations are in direct conflict with this fact. Reconciling
the Hamilton–Jacobi theory to quantum mechanics leads to the quantum
Hamilton–Jacobi equation (QHJE). In turn, the QHJE implies a basic cocycle
condition that underlies quantum mechanics. The cocycle condition holds in
any background and provides a framework for the background independent
formulation of quantum gravity. The cocycle condition is invariant under
D-dimensional finite Möbius transformations with respect to the Euclidean or
Minkowski metrics. Its invariance under D-dimensional Möbius transforma-
tions implies that space is compact, which may have an imprint in the cosmic
microwave background radiation.
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Shape-Invariant Orbits
and Their Laplace-Runge-Lenz
Vectors for a Class of “Double Potentials”

Jamil Daboul

Abstract We derive exact E D 0 classical solutions for the following class of
Hamiltonians with “double potentials”

HD WD p2

2m
C VD. r/;

where

VD WD � �

r2C2�
C �

r2C4�
; 8 0 ¤ � 2 R:

For � D �1=2 and � D �1 the HD yields the Kepler and oscillator systems
for E ¤ 0, respectively. The classical orbits of HD are shape invariant for a
wide range of � and �, in the sense that each maximum of their orbits r.'/ is
followed by a minimum after an angular shift of �' D �=2�. We map the LRL
vector M WD .M1;M2/ of the Kepler problem to a complex expression M� 2 C,
which is conserved for every �. We use M� to derive a general expression for the
orbit r.'; �I �; �/ for all � ¤ 0. We also contrast the limit of the above orbits as
� ! 0 with those considered by Daboul and Nieto for the power-law potentials
VP WD ��=r2C2�.

1 Introduction

Levi-Civita [1] in 1920 mapped the 2-dim harmonic-oscillator system with positive
energies Eosc onto a 2-dim Kepler system with negative energies. This map can be
formulated by using 2�2matrices and real variables. All attempts to generalize this
map to three dimensions did not succeed.

In the present paper we use complex variables to define a canonical transforma-
tion which maps the Kepler Hamiltonian in two dimensions with arbitrary energy
Ekep to Hamiltonians with the following class of potentials
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VD.r/ WD � �

r2C2�
C �

r2C4�
; 8 0 ¤ � 2 R; (1)

but for zero energy, ED D 0. The only exception is for � D �1, where the first
potential, ��=r2C2�, becomes a constant equal to �� . By interpreting � as the
energy of the oscillator Eosc , the Levi-Civita map [1] follows as a special case.
The potentials in (1) will be called “double potentials”, since they are sums of two
power potentials.

In principle, we can now study the following Hamiltonian with the double
potential classically and quantum mechanically for any dimension, and not just for
two dimensions, and for any energy ED:

HD WD p2

2m
� �

r2C2�
C �

r2C4�
; 8 0 ¤ � 2 R: (2)

Since the potential in (2) is spherical, VD D VD.r/, the classical orbits take place in
a 2-dim plane, which we choose as the .x1; x2/ plane. Therefore, the orbits r.'; �/
of (2) in two and higher dimensions will look the same as those of two dimensions.
We shall determine these orbits by using the conserved image M� of the Laplace-
Runge-Lenz (LRL) vector M�1=2 of the Kepler orbit.

2 Complex Canonical Transformations
and Mapping of Hamiltonians

In this section I describe a canonical transformation which enables us to transform
a Hamiltonian system defined in two dimensions H.w; �/ D �2=2m C Vw.w/ for
arbitrary energy E to a system with an additional potential, but for zero energy
E D 0.

It is useful to use complex canonical variables,

z WD x1 C ix2 and p WD p1 C ip2; (3)

for dealing with 2-dim Hamiltonian problems.
The usual commutation relations

fxi ; xj g D fpi ; pj g D 0; and fxi ; pj g D ıi;j (4)

become

fz; Npg D fx1 C ix2; p1 � ip2g D 2; so that fz; pg D 0:
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2.1 Complex Canonical Transformation

Let

w D f .z/ ; w; z 2 C ; (5)

be a complex map. To complete this map to a canonical transformation .w; �/ !
.z; p/, we use Poisson brackets

fA;Bgz;p D fA;Bgw;� :

Calculating fz; pgw;� yields

@ Np
@ N� D dw

d z
; so that � D p

d Nz
d Nw : (6)

2.2 Transformation of General Hamiltonians

We now transform the Hamiltonians by using (6), as follows

0 D Hw �Ew D j�j2
2m

C Vw.w/ �Ew

D
ˇ̌
ˇ̌ d z

dw

ˇ̌
ˇ̌2
 

jpj2
2m

C
ˇ̌
ˇ̌dw

d z

ˇ̌
ˇ̌2 .Vw.w/ �Ew/

!
DW
ˇ̌
ˇ̌ d z

dw

ˇ̌
ˇ̌2 Hz: (7)

The Hz in (7) is a new Hamiltonian

Hz WD jpj2
2m

C Vz.z/; where Vz.z/ D
ˇ̌
ˇ̌dw

d z

ˇ̌
ˇ̌2 .Vw.w/ �Ew/ (8)

Note that Vw.w/ in (7) need not be a central potential. Moreover,
ˇ̌
ˇ dw
d z

ˇ̌
ˇ2 for a general

map w D f .z/ need not be a function of jzj only.
However, if the complex transformation f .z/ is a power of z, as in (9) below,

then
ˇ̌
ˇ dw
d z

ˇ̌
ˇ2 becomes a function of jzj only. In this case, the map in (7) transforms a

Hamiltonian with a central potential Vw.jwj/ to a Hamiltonian Hz, also with central
potential Vz.jzj/.
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2.3 Derivation of the Double Potential
VD from the Kepler Potential

In this subsection I shall derive the Hamiltonian HD in (2), by applying (7) to map
the Kepler potential Vw.jwj/ D �˛=jwj and Ew D Ekep: Starting with

w D f .z/ WD c

z2�
; (9)

where c is a dimensional constant, which is helpful to check formulas. Its dimension
is Œc� D Œlength�2�C1. Differentiating, we obtain

dw

d z
D �2� c

z2�C1
D �2�w

z
: (10)

Substituting (10) in (8), we obtain the following double potential

VD.r/ D Vz.jzj/ D
ˇ̌
ˇ̌dw

d z

ˇ̌
ˇ̌2 .Vkep.jwj/ �Ew/ D 4�2jwj2

jzj2 .� ˛

jwj �Ekep/

D � �

r2C2�
C �

r2C4�
; (11)

where

� WD 4�2c ˛ ; and � WD �4�2c2 Ekep : (12)

2.4 The Classical Orbits of the Hamiltonian HD

In the last section we derived a new Hamiltonian Hz with an new potential Vz.
We can solve this system for any energy ED . In general, this can be done mainly by
numerical calculations. However, the solutions for ED D 0 can be obtained directly
as images of the solutions of the original system Hw.

3 “Generalized” Laplace-Runge-Lenz “Vector”
for the Double Potentials VD and all �

It is well known that the N-dimensional Kepler problem and the spherical harmonic
oscillator have dynamical symmetry of so.N; 1/ and su.N / respectively. The
generators of these symmetries can be expressed in terms of vectors and tensors
in N-dimensions.
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However for the double potential VD I do not know what these symmetries are
for general � and whether it is possible to write the generators in matrix or tensor
form.

What I shall do in the following is to write the LRL vector of the Kepler problem
as a complex variable and then write it in terms of the canonical .z; p/-variables.

3.1 A Complex Expression M� for the LRL of VD

The LRL vector of the 3-dim Kepler problem is given by

Mkep D p � L �m˛Or : (13)

Mkep vector lies in the plane of motion, which we define as the .w1;w2/ plane. This
enables us to write it as a complex variable Mkep D .M1 C iM2/ in a complex
w-plane, as follows

Mkep.w; �/ D �i�Lkep �m˛ w

jwj : (14)

We now write the Mkep in (14) as a function of the new canonical variables .z; p/:
By substituting dw=d z D �2�c=z2�C1 from (10) in Eq. (6) for � , we obtain

� D p
d Nz
d Nw D � p

2�c
Nz2�C1 D � p

2�

Nz
Nw ; (15)

so that

Lkep WD w1�2 � w2�1 D Im . Nw�/ D � 1

2�
Im .Nzp/ D � 1

2�
L� : (16)

Substituting (16) and (15) into (14) and noting the equality ˛ D �=.4�2c/ in (12),
we obtain a complex expression M� 2 C for the LRL of the HD-system:

M� W D f .Mkep/ D �i L�
4�2c

pNz.1C2�/ �m˛
�

z

jzj
��2�

(17a)

D �m˛
�
ipNzL�
m�

r2� C 1

�
e�i 2�' (17b)

D �m˛
�
.ir � p � L�/L�

m�
r2� C 1

�
e�i 2�' ; (17c)

where we first used (12) and then ip Nz D ir � p � L� .
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3.2 Derivation of the E D 0 Orbits Using LRL Vector

From now on we shall often use M � M� for simplicity. Instead of obtaining the
orbits of HD by solving differential equations, it is more interesting to use the LRL
M in (17c): Let 'M denotes the phase of M , i.e.

M � M� DW jM�j expŒi'M � : (18)

By multiplying M in (17c) by expŒ2i�'� , we obtain

jM j expŒi.2�' C 'M /� D �m˛
�
.ir � p � L�/L�

m�
r2� C 1

�
: (19)

By taking the real part of (19), we immediately obtain a general expression for the
ED D 0 orbits of the double-potential system

r2�.'/ D m�

L2�
Œ1C� cos.2�'C'M /� D m�

L2�
Œ1C� cos 2�.'�'0/� ; '0 WD �'M

2�
;

so that

r.'; �/ D
 
m�

L2�
Œ1C � cos 2�.' � '0/�

!1=2�
; with � WD jM j

m˛
: (20)

3.3 Calculating � D jM j=m˛ in Terms of L2; � and 	

We now calculate � D jM j=m˛ in (20). Using ja C bj2 D jaj2 C jbj2 C 2Re.a Nb/,
we obtain from (17b)

�2 D jM j2
m2˛2

D 1C 1

.m�/2

�
L2jzj2C4�jpj2 C 2m�L Re

�
i Nz2�C1� z�

Nz�
��

D 1C 2L2

m�2
r2C4�

� jpj2
2m

� �

r2C2�

�
D 1C 2L2

m�2
r2C4�

�
ED � �

r2C4�

�

D 1C 2L2

m�2

�
ED r

2C4� � �� ) 1 � 2�L2

m�2
.for ED D 0/ : (21)

Note that jM j; 'M and thus � D jM j=m˛ are constants of motion only for ED D 0.
By noting that for the Kepler problem (� D �1=2) we obtain � D �Ekep

whereas for the oscillator (� D �1) we obtain � D Eosc and �r2 is the potential of
the spherical oscillator. Hence, for the above two cases � becomes
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� D
s
1 � 2�L2

m�2
D

8̂
<
:̂

q
1C 2EkepL2

m�2
for Kepler

q
1 � 2�L2

mE2osc
for oscillator

(22)

4 Limit of the Orbits for ED D 0 as 	 ! 0

From (21) we see that for ED D 0 and � ! 0, we obtain � ! 1. Hence, by
substituting 1 C � cos 2' ! 1 C cos 2' D 2 cos2 ' into (20), the orbit r.'; �/
becomes

rh.'; �/ D .
m�

L2�
Œ1C cos 2�.' � '0/�/1=2� D

�p
2m�

L�
j cos�.' � '0/j

�1=�
:

(23)
The limit orbits rh.'; �/ WD lim�!0 r.'; �I�/ in (23) will be called hard orbits,
since for � > 0 they are produced by elastic collision with the infinite repulsive
potential �=r2C4� at the origin. These orbits are illustrated in Fig. 1 for � D 3.
Note that rh.��; '/ D 1=rh.�; '/, so that if an orbit is bound for a given �, it is
infinite for �� .

In contrast, the orbits rs.'/ illustrated in Fig. 2 will be called soft orbits, because
they were obtained for a single power-law potential VP .r/ D ��=r2C2�, without
imposing any repulsive potential [2, 3]. Daboul and Nieto argued that for � > 0

the particle is attracted to the origin r D 0, and since L D rp D const. it passes
by the origin in a straight line with infinite speed. And since VP .r/ is a central

Fig. 1 Orbit r.'; 3/ of
VD D ��=r8 C �=r14
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Fig. 2 Soft orbit rs.'; 3/ of
VP D ��=r8

potential, the angular momentum L does not change its direction, so that direction
of motion (clockwise or counter-clockwise) should remain the same. This argument
leads to the soft orbits, defined such that the momentum ps.'/ keeps its direction
when it passes by the origin. Thus, if the orbit rs.'/ enters into the origin at an
angle 'in D 'n, then it comes out on the opposite side at 'out D 'n C � . The orbits
rs.'; �/ are illustrated in Fig. 2. For more details, see [2, 3].

Clearly, for ED ¤ 0 the LRL vectorM� in (17) changes its direction, and with it
the hard rh.'/ and soft orbits rs.'/ precess accordingly, as we verified numerically.

5 The ED D 0 Quantum Solutions for Double Potential VD

In the present section I briefly report on preliminary results on the quantum solutions
of the Hamiltonian HD in three dimensions:

 lm.r; �/ D const. Rl.r; �/Ylm.
; '/ ; (24)

where the radial function Rl.r; �I �; �/ reproduces the well-known solutions Kepler
and the spherical oscillator for � D �1=2 and � D �1, respectively.

Moreover, the limit of the quantum solutions in (24) for � ! 0 yield those for
VP .r/ D ��=r2C2� in [3, 5]. This indicates that the later solutions correspond to
the hard orbits rh.'; �/ (23), and not to the soft orbits rs.'; �/, which are illustrated
in Fig. 2. It is not even clear whether quantum solutions exist which correspond to



Shape-Invariant Orbits 559

Fig. 3 Image of the probability density j��;N .r; '/j2 of the coherent state in Eq. (22) in [4] and
the closed classical orbit (solid white curve; more clear in color) for VP .r/ D ��=r12, i.e. for
� D 5

the soft orbits rs.'/. Perhaps the quantum-classical correspondence can be resolved
by using coherent states, as was done by Xin and Liang [4] (see Fig. 3).

6 Summary

I derived in Sect. 3.2 the orbits r.'; �/ for all � by using the conserved LRL vector.
In my oral presentation I presented a calculation on the rotation of the LBL vector

for E ¤ 0 and showed numerically that the orbits precess accordingly.
Even though the double potential VD.r/ in (1) was derived by a two dimensional

complex map (9), the quantum solutions of the HamiltonianHD WD p2=2mCVD.z/
in (2) can be obtained analytically for ED D 0, for every d -dimensions.

Thus, a general complex map in two dimensions, as in (5), acts as a bridge which
connects the quantum solutions of Hamiltonians Hw and Hz for any dimension.

References

1. Levi-Civita, T.: Acta Math. 42, 99–144 (1920)
2. Daboul, J., Nieto, M.M.: Phys. Rev. E52, 4430–4440 (1995). hep-th/9408057
3. Nieto, M.M., Daboul, J.: Exact, E=0, classical and quantum solutions for general power-law

oscillators. In: Proceedings of the Second International Workshop on Harmonic Oscillators,
Cocoyoc, 23–25 March 1994; In: Han, D., Wolf, K.B. (eds.) Nasa Conference Publications, vol.
3286, pp. 13–24 (1995). hep-th/9406088

4. Xin, J.-L., Liang, J.-Q.: Chin. Phys. B21, 040303 (2012). doi:10.1088/1674-1056/21/4/040303;
hep-th/1010.4352 contains more clear colored pictures than in the journal

5. Daboul, J., Nieto, M.M.: Phys. Lett. A190, 357–362 (1995). hep-th/9405154; Daboul, J., Nieto,
M.M.: Int. J. Mod. Phys. A11,3801–3817 (1996). hep-th/9408058



Quantization on Co-adjoint Group Orbits
and Second Class Constraints

Michail Stoilov

Abstract We make a comparison between two schemes for quantization of
dynamical systems with non-trivial phase space—the geometric quantization based
on co-adjoint group orbits and second class constraints method. It is shown that the
Hilbert space of a system with second class constraints always has, contrary to the
geometric quantization, infinite dimension.

1 Introduction

During the years the co-adjoint orbit method [1] proved to be a powerful and unified
method for quantization of systems with complex symplectic structure. The same
can be said for the approach based on second class constraints [2]. It is shown [3]
that for the orthogonal and unitary groups the symplectic form defined on the co-
adjoint groups orbits can be constructed using a system of first and second class
constraints. However some singular orbit’s points have to be excluded in order the
procedure to be correct. This suggests that the two methods are not equivalent.
Here we shall prove this conjecture using the dimension of the Hilbert space of
the quantized system as a probe. It turns out that the Hilbert space is always infinite
dimensional for systems with second class constraints while it can be with finite
dimension in the co-adjoint orbit approach.

2 Co-adjoint Group Orbits

The power of the co-adjoint group orbits is due to a theorem for the universality of
the co-adjoint orbits: Any co-adjoint Lie group orbit is a homogeneous symplectic
space and vise versa provided some global criteria are satisfied. In addition the
method offers a different approach to the physics. Usually we start with the model
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Lagrangian, then we determine its symmetries and finally we quantize it. The co-
adjoint orbits method allows to start directly from the symmetry and to obtain
automatically the corresponding Lagrangian and quantization. However, the method
has not to be overestimated: All interesting examples of the quantization on co-
adjoint orbits have been solved without using this method.

Here we use only some basic results of the co-adjoint orbits method. Suppose
we have a Lie group G and its algebra g. Having these two objects we can define
the adjoint group action Ad.g/ on the algebra (Ad.g/a D gag�1 in the case of
matrix groups). Let us introduce the space g� of linear functionals over g. Now we
can define the co-adjoint group representation Ad�.g/ with the following relation

hAd�.g/˛; ai D h˛;Ad.g�1/ai: (1)

It turns out that the group orbits in g� are symplectic manifolds: On each group orbit
˝˛ there is a G-invariant symplectic form � such that

�.˛/.p˛�.a/; p˛�.b// D h˛; Œa; b�i: (2)

Here p˛ is the projection from the group to the orbit through ˛ and p� is the
corresponding algebra projection (in fact, it is the ad� action). A basic theorem
states that

p�̨.�/ D �d h˛;
i; 
 D g�1dg; (3)

where p� is the pull back of p and 
 is the Maurer–Cartan one form.
Using the symplectic form on the group orbits and an appropriate vacuum and

coherent states based on it, we can construct the Lagrangian of the model with
the symmetry in question and to write down the corresponding path integral, i.e.
to quantize the model. Some nice examples of the outlined procedure, including
relativistic particle, string, Chern–Simon and many more can be found in [4].

In what follows we need the notion of Poisson manifold as well. The Poisson
manifold is a pair fM; cg of manifold M and bi-vector c; c D cij @i ^ @j such that
the Poisson bracket ff; gg D c.f; g/ defines a Lie algebra structure on C1.M/.
The following three theorems give the global structure of any Poisson manifold as a
foliation into disjoint union. They are in the core of our consideration.

Theorem 1. fM; cg D P
ifMi; cig where fMi; c

�1
i g are symplectic and

ff; gg.mi / D ff jMi ; gjMi gi .mi / for mi 2 Mi .

Theorem 2. fg�; ckijXk@i ^ @j g where ckij are the g structure constants in the basis
fXig is a Poisson manifold. (note that linear functions on g� form an algebra
isomorphic to g.)

Theorem 3. The symplectic leaves of fg�; ckijXk@i ^ @j g are coadjoint orbits.



Co-adjoint Orbits and Second Class Constraints 563

3 Dynamical Systems with Second Class Constraints

The constraints in a dynamical model are some identities which are due to the
definition of the momenta in it. Basically the constraints are first and second class
and we are interested here by the latter ones because they change the Poisson
structure. Suppose we have a dynamical model with 2n-dimensional phase space
and suppose we have identified the constraints �a D 0; a D 1; : : : ; k in it. They are
second class if

det
�f�a; �bgj�D0� ¤ 0: (4)

As a consequence the second class constraints are always even number k D 2m. The
case m D n corresponds to a trivial system with no dynamical degrees of freedom
at all. In the models with second class constraints the Poisson bracket is replaced by
the so called Dirac bracket

ff; ggD D ff; gg � ff; �ag��1ab f�b; gg: (5)

Here �ab D f�a; �bg: Note that � is by definition invertible.
The Dirac bracket can be very simple in some cases and very complicated in

others. The example �1 D p1; �2 D x1 describes phase space reduction. The
example �1 D xix

i � r2I �2 D pix
i describes a model with compact configuration

space. A natural question arise at this point: Can we represent any dynamical system
as a system with second class constraints?

4 Quantization

The quantization of a classical dynamical system, considered as a mathematical
problem, is a map from the real functions on the system phase space to self-adjoin
operators in some Hilbert space. The Hilbert space can be with finite or infinite
dimension depending on the model we quantize. For example, if we have a flat
phase space with globally separated coordinates and momenta then the resulting
Hilbert space is infinite dimensional. On the other hand, if we have a compact phase
space, then the Hilbert space is finite dimensional [5].

During the quantization we cannot map consistently all functions on the phase
space to self-adjoint operators in a Hilbert space. But we can a map a set of
functions ff g, which is as large as possible to a set f Of g of self-adjoint operators.
The functions ff g are called primary quantities and the correspondence f ! Of
has the following properties:

1. ff g forms a closed algebra under Poisson brackets
2. The constants are primary quantities and 1 ! I where I is the identity operator

in the Hilbert space.
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3. The operator image of the Poisson bracket is the commutator of the correspond-
ing operators:

1ff; gg D i„Œ Of ; Og�; (6)

As a result f Of g is a Lie algebra representation of ff g.
Here we give a simple demonstration how one can deduce whether the dimension

of the Hilbert space is finite or infinite depending on the quantized system.
Consider a model with flat phase space R2n. Let xi ; i D 1; : : : ; n are the

coordinates and pi ; i D 1; : : : ; n are corresponding momenta. Let ! D P
i dxi ^

dpi is the canonical symplectic form on R2n. Using this form we define the Poisson
bracket between .C1/ functions on the phase space

ff .x; p/; g.x; p/g D @f

@xi

@g

@pi
� @f

@pi

@g

@xi
: (7)

In particular from Eq. (7) we have

fxi ; pj g D ıij : (8)

In the classical case Eqs. (7) and (8) are equivalent. It is not the same when we
quantize the system.

In the flat phase space example which we are considering now the primary
quantities can be either linear functions of momenta and arbitrary functions of
coordinates [1], or quadratic polynomials of coordinates and momenta [6]. In both
cases we have

Œ Oxi ; Opj � D i„ıijI (9)

plus other commutation relations depending on what is our choice for ff g. So,
according to Eq. (9), we have a representation of the Heisenberg algebra in the
Hilbert space. This fact allows us to demonstrate that the Hilbert space is with
infinite dimension. Indeed, if it is with finite dimension D then, taking the trace
of both sides of Eq. (9) we will obtain a contradiction 0 D i„ıijD.

Consider now a dynamical system which is symmetric with respect to the action
of some Lie group. The symmetry acts by definition as canonical transformations
and its algebra has a representation in the functions on the phase space which is
closed under time evolution, i.e.

fga; gbg D cabcgc (10)

fga;H g D habgb; (11)

where ga are the generators of the Lie algebra and H is the Hamiltonian of the
system. Usually the Hamiltonian is a combination of the symmetry generators
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and we can skip the second equation in this case. Even if the Hamiltonian is an
independent generator Eqs. (10, 11) guarantee that all generators together form a
closed Lie algebra. But as we have seen already we can realize any matrix Lie
algebra with linear functions over a suitable Poisson manifold. In this manifold
the linear functions which correspond to the symmetry generators are the primary
quantities. Therefore the quantization of Eqs. (10, 11) look as follows

Œ Oga; Ogb� D i„cabc Ogc (12)h
Oga; OH

i
D i„hab Ogb: (13)

If the symmetry algebra can be represented with trace-less matrices, e.g. it is a
simple Lie algebra, then the same arguments which show that the representations
of the Heisenberg algebra are infinite dimensional lead us to the conclusion that a
system which primary quantities satisfy Eqs. (12, 13) can have a finite dimensional
Hilbert space. In this case the primary quantities are mapped into constant matrices.
This is exactly the reason why we can use Pauli matrices as the electron spin
operators.

5 Results

Here we consider the quantization of systems with second class constraints. Any
system of this type exhibits properties which allow us to think that it can interpolate
between models with flat and compact phase spaces: it is defined on a flat phase
space but this space is larger than the real one; the real phase space can be very
complicated and with highly non trivial analog of the Poisson bracket on it thus
resembling a system with compact phase space.

The quantization of systems with second class constraints follows the same rules
as standard quantization, but now everywhere the Poisson brackets are replaced by
Dirac ones. We make a very mild assumption that the linear functions on the initial
phase space are primary quantities and so there Dirac brackets have to be mapped
into commutators. In order to determine the dimension of the Hilbert space of a
quantized system with second class constraints we consider the quantity fxi ; pigD .
Using the identity f�b; pigfxi ; �ag D @�b=@xi@�a=@p

i and the skew-symmetry of
the matrix � we get

fxi ; pigD D n � f�b; pigfxi ; �ag��1ab D n �m (14)

Corollary 1. There is always a Heisenberg subalgebra in the algebra of the
primary quantities of any system with second class constraints. In this way we have
proved the following Lemma:
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Lemma 1. The Hilbert space of any Bose-Einstein quantized dynamical system
with second class constraints is infinite dimensional.

Conclusions
Our considerations show that we can use second class constraints only
to construct local Darboux coordinates in the case of compact symplectic
manifolds. As in the U.n/ and O.n/ examples considered in [3] there is
no global construction and always some point in the group orbit has to be
removed in order to view the orbit as a phase space of a system with second
class constraints.
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Some Kind of Stabilities and Instabilities
of Energies of Maps Between Kähler Manifolds

Tetsuya Taniguchi and Seiichi Udagawa

Abstract We treat the variational problem of the energy of the map between two
Riemannian manifolds. It is known that any holomorphic or anti-holomorphic map
f WM ! N between compact Kähler manifolds is stable for the variation ft of f
with fixed Kähler metrics compatible with the holomorphic structures. Is this also
stable for the variation gt of the metric g of M with fixed volume of M and fixed
isometric map f ? In this paper, we show that the answer is no if the dimension
of M is no less than 3. This paper is a expositary note of Taniguchi and Udagawa
(Characterizations of Ricci flat metrics and Lagrangian submanifolds in terms of the
variational problem. To appear in Glasgow Math. J).

1 Harmonic Maps

The geometric variational problems in Riemannian geometry have the long history.
For example, the minimum path between two points on the earth is obtained by
minimizing the length of arbitrary paths between them. It is a subset of a great
circle going through the two points. It is called a geodesic. This is a solution for the
variational problem of the length function. Solutions for the variational problem of
the area function is called minimal surfaces. The concept of these two variational
problems are extended to that of the variational problem of the energy of the map
between two Riemannian manifolds. Solutions for it are called harmonic maps.
In Appendix, we introduce a new variational problem on the space of the tensor
product of symmetric (0, 2)-tensors and positive-definite symmetric (0, 2)-tensors.
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In particular, we review the first and second variational formulaes for the new
variational problem. In Sect. 2, by applying the variational formulaes, we shall get
some stabilities and instabilities of maps between Kähler manifolds.

Next, we review the definition of harmonic maps.
Let f W .M; g/ �! .N; h/ be a smooth map from an m-dimensional Riemannian
manifold into an n-dimensional Riemannian manifold. Choose a local coordinates
.x1; x2; � � � ; xm/ forM and .y1; y2; � � � ; yn/ forN . Then, both Riemannian metrics

are expressed as g D
mX

i;jD1
gij dx

idxj and h D
nX

˛;ˇD1
h˛ˇdy

˛dyˇ . The energy of the

map f is given by

E.f / D
Z
M

1

2

mX
i;jD1

nX
˛;ˇD1

gij h˛ˇ.f /f
˛
i f

ˇ
j d�g; (1)

where gij is the component of the inverse matrix of the matrix .gij / and f ˛
i is the

component of the differential df of f , i.e., df D
mX
iD1

nX
˛D1

f ˛
i dx

i ˝ @

@y˛
and d�g

is the volume element of .M; g/ given by d�g D p
det.gij / dx1dx2 � � � dxm: Let

R and QR be the curvature tensors of .M; g/ and .N; h/, respectively. In terms of the
local coordinates, they are expressed as

R D
mX

i;j;k;lD1
Rlijkdx

i ˝ dxj ˝ dxk ˝ @

@xl
;

QR D
nX

˛;ˇ;�;ıD1
QRı˛ˇ�dy˛ ˝ dyˇ ˝ dy� ˝ @

@yı

We write R.X; Y /Z D
mX

i;j;k;lD1
Rlijk�

j �k� i
@

@xl
for X D

mX
jD1

�j
@

@xj
, Y D

mX
kD1

�k
@

@xk
, Z D

mX
iD1

� i
@

@xi
. Similarly, QR. QX; QY / QZ is defined. It is well-known

that when one fixes both metrics g and h and vary the map f , the 1st variational
formulae of the variation fftg with f0 D f is given by d

dt
E.ft /

ˇ̌
tD0 D

� R
M
h .�.f /; V / d�g; where V is the variational vector field given by

V D
nX

˛D1

@f ˛
t

@t

ˇ̌
ˇ̌
ˇ
tD0

�
@

@y˛
ı f

�
2 C1.f �1TN /;
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and �.f / is the tension field along f given by

8̂
ˆ̂̂<
ˆ̂̂̂
:

�.f / D
nX

˛D1

mX
i;jD1

gij f ˛
ij

�
@

@y˛
ı f

�
2 C1.f �1TN /;

f ˛
ij D @

@xi
f ˛
j C

mX
kD1

� k
ij f

˛
k �

nX
ˇ;�D1

f
ˇ
i f

�
j

Q� ˛
ˇ� .f /;

(2)

where � k
ij and Q� ˛

ˇ� are the Christoffel symbols for .M; g/ and .N; h/, respectively.

We remark that %f ˛ WD
mX

i;jD1
gij f ˛

ij is called the non-linear Laplacian of f . The

Euler-Lagrange equation of the variation coincides with the equation �.f / D 0

which the critical point of the variation satisfies. This equation is called harmonic
map equation and f is called harmonic map. When f is a harmonic map, the second
variational formulae is given by

d2

dt2
E.ft /

ˇ̌
ˇ̌
tD0

D
Z
M

mX
i;jD1

gij
�
h.r @

@xi
V;r @

@xj
V / � h. QR.df . @

@xi
/; V /V; df .

@

@xj
/

�
d�g:

In particular, if .N; h/ is of non-positive sectional curvature then any harmonic map
into .N; h/ is (weakly) stable. Note that any holomorphic or anti-holomorphic map
between compact Kähler manifolds is energy-minimizing map with respect any
Kähler metrics compatible with the holomorphic structures in its homotopy class,
whence it is a stable harmonic map. With reference to these facts, we may consider
the problem “When is a stable harmonic map holomorphic or anti-holomorphic ?
For the related results on this problem, see [1–4].

2 Instabilities of Holomorphic or Anti-Holomorphic
Maps Between Kähler Manifolds

In this section, we discuss some stabilities and instabilities. In Sect. 1, a energy is
defined for a smooth map f W .M; g/ ! .N; h/. Note that, the energy is also depend
on the metric g. From now on, fixing f , we consider the energy as a functional
E.g/ on the space T0C

2 of Riemannian metrics on M with fixed volume.

Theorem 1. Let f be a holomorphic or anti-holomorphic map from a Riemann
surface .M; g/ to a Kähler manifold .N; h/. Here g is compatible with the
holomorphic structure of M . Then g is a critical point of E. Moreover g is stable.

In contrast with it, we have the following theorem:
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Theorem 2. Let f be a isometric holomorphic or anti-holomorphic map from a
Kähler manifold .M; g/ to a Kähler manifold .N; h/ andm 	 3. Then g is a critical
point of E. Moreover g is unstable.

We first prove Theorem 1.

Proof. Set P D f �h and � D g. Since f is holomorphic or anti-holomorphic,
f is, in particular, conformal. So, there exists a function � 2 C1.M/ such that
P D �� and hence P D p�, where p is as in Theorem 3. From Theorem 4, we see
that ıI.�/ D 0. Since 2E.�/ D V .m�2/=mI.�/, ıI.�/ D 0 implies that ıE.g/ D 0

for the variation on T0C
2 . Using Theorem 5, it is straightforward to see that g is

stable. ut
Next, we prove Theorem 2.

Proof. Set P D f �h and � D g. Since f is isometric, P D �. Hence P D 2p�=m,
where p is as in Theorem 3. From Theorem 4, we see that ıI.�/ D 0. We can also
see that g is a critical point of E in the same way as Theorem 1. Note that p 6D 0

because f is isometric. By using the conditions p 6D 0 and m 	 3 and applying
Theorem 6, we see that I is unstable at � D g. Since I is invariant under the
homothetic transformation, the instability of I implies that of E. ut

Appendix

We recall a weak form of results in [5]. Let F0
2 be the set of all smooth symmetric

.0; 2/-tensors on M . Denote by F0C
2 the subset of all smooth positive definite

symmetric .0; 2/-tensors. Define a function I on F0
2 � F0C

2 by

I.P; �/ D
Z
M

mX
i;jD1

Pij �
ij d�� for .P; �/ 2 F0

2 � F0C
2 : (3)

We normalize I so that it is invariant under the homothetic transformation. Next,
fixing P 2 F0

2, we define I.�/ by

I.�/ WD

Z
M

mX
i;jD1

Pij �
ij d��

�Z
M

d��

�m�2
m

(4)
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Theorem 3 (1st Variation Formula). ıI.�/ D 1

V cC1
hhV .p� � P /� cU�; ı�ii;

where V D
Z
M

d��; p D 1

2

mX
i;jD1

Pij �
j i ; U D

Z
M

p d��; c D m � 2
m

;

< p; q > D
mX

i;j;k;lD1
pij �

jkqkl�
li ;

hhp; qii D
Z
M

< p; q > d��; .p; q 2 F0
2/:

Theorem 4. ıI.�/ D 0 if and only if P D 2p�=m. Moreover p is constant if
ıI.�/ D 0 and m 6D 2.

Theorem 5 (2nd Variation Formula). Assume that ıI.�/ D 0. Then,

ı2I.�/ D 1

V cC1

�
m � 2
m2V

hhpiihhtrace�ı�ii2 � V

m
hhp.trace�ı�/

2ii C

C 2V

m
hhpı�; ı�ii



: (5)

In particular, ifm D 1; 2 and p is a non-negative(resp. non-positive) then ı2I.�/	 0
(resp. ı2I.�/ � 0) holds.

Theorem 6. Assume thatm 	 3 and the critical point � of I is stable. Then p D 0.
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