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    Chapter 5   
 Coral Spawning Behavior and Timing 

             Michal     Sorek     and     Oren     Levy    

    Abstract     One of the most prominent examples of synchronized behavior in corals 
is spawning, the enormous reproduction event known as the “spawning event,” 
where the moon choreographs sex among many coral species at the same night, 
once a year. The timing of annual coral spawning varies geographically around the 
earth but is consistent and predictable at each location. Several environmental fac-
tors such as sea temperature, salinity, tidal periodicity, and daylength have been 
suggested as inducers for gametogenesis and spawning in reef-building corals, 
whereas the actual spawning event appears to be triggered by the level of lunar irra-
diance. The repeated episodes, associated with broadcast spawning year after year, 
is a classic periodic biological rhythm, which is controled by exogenous  zeitgebers  and by 
an endogenous biological clock. A key imperative cue is the moon phase and moon-
light. Nevertheless, the specifi c cellular mechanisms mediating this annual synchro-
nization of behavior by reef-building corals has remained elusive, and the fact that 
cryptochromes may be involved in this process may suggest a role for the circadian 
clock in this unique phenomenon. Sexual reproduction is one of the most important 
processes for the persistence of reefs, yet worldwide reef systems are being rapidly 
degraded and face a multitude of threats, including global climate change and the 
anthropogenic stressors of artifi cial light pollution.  

  Keywords     Circadian clock   •   Circadian masking   •   Coral reproduction   •   Cryptochromes   
•   Mass spawning event   •   Moonlight  

5.1         Coral Reefs 

 Coral reefs are one of the most impressive natural ecosystems in the world and are 
home to one quarter of the world’s marine biodiversity (   Reaka-Kudla et al.  1997 ). 
In addition, coral reefs have an extremely important ecological role in the marine 
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habitat. They are considered one of the most productive ecosystems on earth. 
Scleractinians (stony corals) are the major reef-building species and are classifi ed 
ecologically as hermatypic corals (reef-building corals). These corals are the basis 
and framework for the entire ecosystem. They are responsible for the calcifi cation 
process, which contributes calcium carbonate to the reef. Stony corals create homes 
for a wide variety of organisms and provide other important resources, such as shel-
ter and food, for thousands of species of fi sh and invertebrates. 

5.1.1     Coral Biology 

 Corals, class Anthozoa within the phylum Cnidaria, exist as solitary polyps or, more 
commonly, as colonies of many identical individuals. Each polyp consists of the 
following three basic tissue layers: the epidermis, which is the outer layer; an inner 
layer of cells lining the gastrovascular cavity, which acts as an internal space for 
digestion; and the mesoglea layer, which is located between the outer and inner lay-
ers (Barnes  1987 ). Scleractinian corals fi rst appeared during the Triassic period in 
tropical shallow waters; however, the origin of these coral groups has remained an 
unsolved mystery of paleontology (Stanley  2003 ). Corals are known to be preda-
tors, and they use their tentacles to trap prey, such as zooplankton and small inver-
tebrates, with stinging cells or nematocysts. However, the majority of their food is 
supplied by their symbiotic counterparts, endosymbiotic dinofl agellates (Fig.  5.1 ). 
The coevolution of corals with endosymbiotic algae, which are also known by the 
common name zooxanthellae, is responsible for the domination of reefs by corals. 
This symbiosis is primarily based on metabolic requirements in which the algae 
provide the corals with photosynthetic products and energy for the rapid calcifi ca-
tion of the corals. In return, the algae obtain essential nutrients and shelter provided 
by the coral hosts. The coral life cycle is simple and includes a long sessile stage in 
which the coral colony is attached to the substrate and a short planktonic stage con-
sisting of planulae or larvae. After several days, the planula eventually attaches and 
settles permanently on a hard substratum. It then metamorphoses from the larval 
form into a juvenile polyp, which produces a skeleton composed of calcium carbon-
ate. Subsequent growth during the juvenile stage leads to the adult form, which can 
reproduce sexually. This form completes the life cycle (Harrison and Wallace  1990 ).   

5.1.2     Coral Reefs Situation 

 During the past three decades, coral reefs have been under increasing pressure as a 
result of dramatic environmental changes (Gardner et al.  2003 ; Hughes et al.  2003 ). 
Acute global climate changes, ocean acidifi cation, temperature increase in the 
marine environment, disease, and human activities, such as overfi shing and coastal 
development, have destroyed 20 % of the world’s 285,000 km 2  of known reefs 
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(Pennisi  2007 ). This worldwide decline in coral reefs has raised major concerns 
regarding the future of these marine ecosystems and has encouraged additional 
research to provide a better understanding of coral biology and the conservation of 
this unique environment. The coral reproductive process holds the key for adjust-
ment to these dramatic global changes, because it appears that coral populations 
depend almost entirely on the formation of sex cells or gametes along with DNA 
recombination to form more thermally tolerant genotypes that can adapt to warming 
ocean waters (van Woesik  2010 ).   

5.2     Coral Reproduction 

 Coral reproduction has been a major research topic for many years. Much research 
has attempted to characterize the processes and modes of reproduction for different 
coral species in a wide variety of geographic locations. Corals are primarily classi-
fi ed based on their sex. They are classifi ed as hermaphroditic, either simultaneous 
or sequential, with males and females in the same colony, or gonochoric, with all 
polyps being unisex, either female or male. Hermaphroditism is considered advan-
tageous over gonochorism if the probability of fi nding members of the opposite sex 

  Fig. 5.1    Symbiotic coral  Pocillopora damicornis  polyps, photographed in the laboratory, using a 
long working distance high-magnifi cation fl uorescence imaging setup. (Picture by © Tali Treibitz, 
Andy Mullen, Jules Jaffe, UC San Diego)       

 

5 Coral Spawning Behavior and Timing



84

is low and self-fertilization is possible. Corals are further classifi ed based on two 
reproductive modes. The fi rst mode is broadcast spawning, in which external fertil-
ization occurs in the water column after the gametes are shed. The second mode is 
brooding, in which fertilization occurs in the maternal colony (Harrison and Wallace 
 1990 ; Richmond and Hunter  1990 ). The four main patterns of sexuality in corals are 
hermaphroditic broadcast spawners, hermaphroditic brooders, gonochoristic broad-
cast spawners, and gonochoristic brooders. Information on sexual reproduction in 
more than 400 scleractinian species confi rms previous data suggesting that her-
maphroditic broadcast spawning is the dominant pattern among coral species, 
whereas there are relatively few hermaphroditic or gonochoric brooding species 
(Harrison  2011 ). Characteristics of sexuality are primarily conserved within spe-
cies, genera, and even families, although exceptions occur for different locations 
and species. However, not all coral species are readily classifi ed into these four 
basic patterns because mixed sexual patterns or mixed modes of sexual develop-
ment have been observed for certain species (Harrison  2011 ). 

 Corals can reproduce both asexually and sexually. Asexual reproduction in corals 
produces genetically identical modules of the original colony and can occur through 
fragmentation (Highsmith  1982 ) resulting from storm and wave impacts or other 
damage to corals; polyp bailout (Sammarco  1982 ), which occurs when new clonal 
polyps bud off from the parent polyps after they reach a certain size and expand or 
begin new colonies (Sumich  1996 ); or the asexual production of planulae (Stoddart 
 1983 ), which may occur during periods when sexual reproduction has ceased 
(Nakano and Yamazoto  1992 ; Lam  2000 ). This process continues throughout the life 
of the organism (Barnes and Hughes  1999 ) and primarily occurs when the environ-
ment is unable to support sexual reproduction. Another advantage of asexual repro-
duction is that the increased size of the initial stage reduces the risk of juvenile 
mortality. Also, this initial stage occupies substantial space on the reefs. 
In certain cases, this stage may disperse widely and preserve the original genotype. 

 Sexual reproduction involves the production of gametes, fertilization, embryo 
development, and a larval phase that is usually planktonic (Harrison and Wallace 
 1990 ). Fertilization may occur either within the maternal polyp (brooding) or exter-
nally in the water column after the gametes are shed (broadcast spawning). Sexual 
reproduction in corals may occur yearly, seasonally, monthly, or not at all. The tim-
ing of coral sexual reproduction depends on the species and environmental condi-
tions. Sexual reproduction occurs when female gametes and male gametes combine 
to create fertilized eggs. Two different methods of sexual reproduction exist in cor-
als. The fi rst method is spawning, in which two parents of different sexes release 
their gametes into the water and fertilization occurs. The second method is brood-
ing. This method of sexual reproduction is characterized by the presence of embryos 
and planula larvae within the coelenteron or expanded tentacles of the coral. In this 
case, the release of the planulae occurs during an advanced stage of larval develop-
ment. In addition to brooding, corals can also spawn sperm, which fertilizes either 
the same colony or another colony nearby (Gleason et al.  2001 ; Okubo et al.  2007 ; 
Ayre and Miller  2006 ). The planulae released from brooding corals into the water 
column settle within a few hours after release. One important advantage of sexual 
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reproduction in corals is the ability to broadcast gametes, particularly during mass 
spawning events. This process may promote hybridization among parallel or different 
pairings. If hybridization is an important feature of coral reproduction, then popula-
tion-level consequences could rapidly generate new genetic combinations with the 
potential for increasing the diversity of responses to environmental change. Also, 
our ideas about the integrity of coral species might be radically altered because 
experimental laboratory studies of corals have demonstrated that hybrids can be 
formed (Richmond  1992 ; Willis et al.  1993 ,  1997 ). Sexual reproduction in corals is 
possibly the most important ecological process for the replenishment of degraded 
reefs. Sexual reproduction also maintains the coral population and supports evolu-
tionary processes, such as genetic recombination and the production of new coral 
genotypes, which may enhance fi tness.  

5.3     The Chronobiology of Coral Spawning and 
Its Variability in Different Geographic Locations 

 The phrase “Timing is everything” is often correct and accurate. For coral reproduc-
tion, timing can be the key to reproductive success for all reproductive phases. The 
most tightly synchronized stage of reproduction is the fi nal stage, that of fertiliza-
tion. If corals use broadcast spawning and release both eggs and sperm into the water 
column, timing and synchronization are extremely important to ensure successful 
fertilization. Eggs that are released into the water are available for fertilization for 
only seconds to minutes before they drift away. For brooding corals, the precise tim-
ing of planulae release into the water column may be crucial in that it allows the 
planulae to fi nd a suitable place to settle. The mechanism by which corals fi ne tune 
their spawning and the planulae release times remains unknown. Many environmen-
tal factors and stimuli are known to infl uence the reproductive timing of corals. The 
key factors are the sea surface temperature, the moon phase, and the daily light 
cycle. All three factors have been suggested as inducers for gametogenesis and 
spawning in reef-building corals (Harrison et al.  1984 ; Babcock et al.  1986 ,  1994 ). 

 These factors are apparently involved in three or more reproduction cycle 
 patterns. The fi rst pattern, the seasonal or annual rhythm, is related to the seasonal 
variation in sea temperature. Changes in sea temperature are most likely involved in 
triggering the maturation of eggs and sperm inside the adult (Yonge  1940 ; Kojis and 
Quinn  1981 ; Harrison et al.  1984 ; Stoddart and Black  1985 ; Willis et al.  1985 ; 
Babcock et al;  1986 ). The second cycle is the lunar or monthly rhythm, which coor-
dinates the timing of mass spawning. The tidal cycles are important, and it is com-
mon for corals to spawn during low-amplitude neap tides (Oliver et al.  1988 ; 
Simpson  1991 ; Babcock  1995 ; Mendes and Woodley  2002 ). Spawning during neap 
tides is an advantageous strategy that reduces gamete dilution because the amount of 
water movement is low. Related to predicting neap tide, another important cue for 
corals is the moon phase and moonlight (Jokiel  1985 ). It is probable that these cues 
have the largest monthly infl uence. The third cycle pattern involving the timing of 
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gamete release is the diel light cycle, which is thought to trigger spawning after a 
precise period of darkness (Harrison and Wallace  1990 ). An endogenous circadian 
clock is known to control and entrain several diel phenomena in certain coral 
species. These phenomena include calcifi cation (Chalker  1977 ; Chalker and Taylor 
 1978 ) and tentacle diel behavior (Sweeney  1976 ; Sebens and Deriemer  1977 ; Lasker 
 1979 ). However, whether an endogenous circadian clock governs coral reproduction 
has not yet been clearly demonstrated. The fi ne tuning that results from the three 
major cycle patterns is highly important. Although many coral species spawn on the 
same night, the fi nal spawning time can differ between species. It is possible that 
these differences in spawning time act as temporal barriers to avoid hybridization 
between closely related species (Szmant et al.  1997 ). Corals that occupy different 
habitats in areas with different climate conditions and latitudes show different life 
cycles, reproduction modes, and reproductive timing. Currently, it remains impos-
sible to defi ne a universal factor that can provide a good single explanation for the 
differences in reproductive timing between different geographic localities. 

 The majority of the data concerning coral reproduction modes, synchronization, 
and timing come from the tropical Pacifi c. The sources of these data include the 
Great Barrier Reef in Australia and reefs in Western Australia. Data also exist for 
Guam, Palau, Hawaii, Okinawa, and Panama, as well as the Red Sea and Caribbean. 
The timing and synchronization of coral reproduction have been most often studied 
for the Great Barrier Reef. These studies represent an adequate source for under-
standing the timing of coral reproduction. The major pattern observed in the Great 
Barrier Reef studies is the remarkable similarity and synchronization of reproduc-
tive activity among coral species. The majority (90 %) of species studied broadcast 
spawn gametes annually during the week following the full moon during the spring 
(Harrison et al.  1984 ; Willis et al.  1985 ). Many individuals of each broadcast spawn-
ing species release their gametes during a time window that is approximately 30 min 
long (Fig.  5.2 ). On the Great Barrier Reef, spawning synchronization is the most 
common reproductive mode and occurs for more than 140 species of coral. This 
type of massive synchronized spawning is familiar from the mass spawning events 

  Fig. 5.2     Acropora millepora  colonies before ( a ) and during ( b ) spawning time at Heron Island, 
Great Barrier Reef Australia. Spawning was documented around 21:30 during November 2011       
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that occur for certain reefs on the Great Barrier Reef (Willis et al.  1985 ; Harrison 
et al.  1983 ,  1984 ; Harrison  1993 ; Babcock et al.  1986 ; Wallace et al.  1986 ; Oliver 
et al.  1988 ; Harrison and Wallace  1990 ) and in western Australia during the austral 
autumn (Simpson  1985 ,  1991 ; Simpson et al.  1993 ; Babcock et al.  1994 ; Rosser and 
Gilmour  2008 ; Gilmour et al.  2009 ; Rosser and Baird  2009 ). These occurrences 
represent the largest scale synchronous mass spawning events of corals in the world, 
although the mass spawning that occurs in western Australia is smaller. Other 
smaller-scale synchronized spawning events involving fewer species or colonies of 
one or a few coral species have been reported primarily from the Gulf of Mexico 
and Caribbean region (Gittings et al.  1992 ; Hagman et al.  1998 ; Beaver et al.  2004 ; 
Bastidas et al.  2005 ). Several of these events were reported as mass spawning 
events, but most are considered multispecifi c spawning events (Harrison and Booth 
 2007 ) because they include a much lower number of species. More recently, many 
reefs in the Indo-Pacifi c region have been reported to exhibit coral spawning syn-
chronization on a medium scale. These locations include Japan, Taiwan, the 
Philippines, Singapore, Indonesia, Papua New Guinea, the Solomon Islands, French 
Polynesia, and the Egyptian Red Sea (reviewed in Harrison  2011 ).  

 In contrast to the synchronized spawning events on any scale, the major repro-
ductive activities of the most abundant species in the Red Sea occur during different 
seasons, different months, or different lunar phases within the same month 
(Shlesinger and Loya  1985 ; Rinkevich and Loya  1979 ). The coral species in the Red 
Sea exhibit temporal reproductive isolation. Broadcasting species release their gam-
etes during periods of up to six nights, once or twice a year, whereas brooders 
release their planulae for 3–7 months (Shlesinger and Loya  1985 ) when the tem-
perature rises or during the summer, when the water temperature is the warmest 
(Fadlallah  1984 ). Asynchronous reproduction is also exhibited by most coral spe-
cies in the Central Pacifi c, primarily in Okinawa and Hawaii. For the latter corals, 
the spawning period peaks during the summer months, but spawning continues year 
round (Kolinski and Cox  2003 ) for certain brooders. More recently, a reproductive 
period of 9 months has been reported for a few  Acropora  species in Kenya 
(Mangubhai and Harrison  2006 ,  2009 ; Mangubhai  2009 ). This lack of synchrony 
was attributed to a reduction in environmental seasonality and low variability in the 
ranges of certain environmental parameters (Richmond and Hunter  1990 ), particu-
larly annual sea surface temperatures and tidal amplitudes (Oliver et al.  1988 ). 

 Several observations show differences in reproductive timing patterns within the 
same species in different locations. For example,  Stylophora pistillata , the most 
dominant stony coral on the reefs of the Red Sea, was found not to be controlled by 
the lunar periodicity in this area (   Rinkevich and Loya  1979 ), although later research 
(Zakai et al.  2006 ) indicated a degree of lunar cycle infl uence on planulae release. 
This same species was controlled by the lunar periodicity of planulation in Palau 
(Atoda  1947 ). Another example of different timing of planulae release in  S. pistillata  
within the Great Barrier Reef was found on Heron and Lizard Islands. This species 
releases planulae during the summer, the timing of which does not follow the lunar 
cycle for planulation (Tanner  1996 ; Loya  1983 ). Recent reports from the Egyptian 
Red Sea have described the highly synchronous maturation of gametes among many 
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 Acropora  species (Hanafy et al.  2010 ) with multispecifi c spawning on a medium 
scale, whereas  Acropora  in the northern part of the Red Sea, for example, in Eilat, 
does not show a similar pattern (Shlesinger and Loya  1985 ; Shlesinger et al.  1998 ). 
These two examples of  S. pistillata  coral and the  Acropora  corals demonstrate vari-
ations in reproductive timing modes at different locations. Differences in timing 
among allopatric populations of a species may represent adaptations to both local 
environmental factors and specifi c cues (Richmond and Hunter  1990 ). Differences 
between the synchronized and unsynchronized timing of spawning among corals at 
the equator compared to high and low latitudes may be caused by a lower variability 
in temperature close to the equator. Analyzing the existing data regarding latitudinal 
trends may explain the differences in timing behavior among the same species in 
different locations for some but not all reefs. 

 During recent years, global changes have affected coral reef conditions dramati-
cally. The decline in the condition of the environment has produced accelerated 
research into coral reproductive behavior and timing. The current information on 
this subject is based on more than 400 corals from many different locations and 
includes new sites and research topics.  

5.4     Environmental Factors Affecting Synchronized 
Coral Reproduction 

 We have shown that an important feature of coral reproduction is synchronization. 
Many proximate factors have been hypothesized to infl uence spawning and planu-
lae release at different levels and times, including the aforementioned key factors of 
sea temperature (Glynn et al.  1991 ; Hayashibara et al.  1993 ), tidal regime (Wyers 
et al.  1991 ) and lunar phase (Guest et al  2002 ), and onset of darkness (Harriott  1983 ; 
Babcock et al.  1986 ; Hunter  1989 ). Additionally suggested factors include a near- 
zero solar insolation derivative (van Woesik et al.  2006 ), the duration of regional 
calm periods of wind that may enhance fertilization and synchronization (van 
Woesik  2010 ), food availability (Fadlallah  1981 ), the amount of rainfall combined 
with temperature (Mendes and Woodley  2002 ), twilight chromaticity (Sweeney 
et al.  2011 ), and salinity (Jokiel  1985 ). It is not yet clear whether and how all these 
factors work with each other or with internal components of the endogenous clock 
in corals, serving as input signals from external stimuli during synchronization. 

 The most common hypothesis (Glynn et al.  1991 ; Babcock et al.  1986 ) points to 
water temperature as the most infl uential factor, with rising temperatures stimulating 
the production and maturation of gametes in many invertebrates. The second cue is 
the full moon, with the process of spawning occurring primarily a few days after the 
full moon at a precise time after sunset, which is considered the third cue. However, 
the principal diffi culty with this hypothesis is that it cannot provide a good explana-
tion for any reef in any region. For years, attention was centered on reefs in the mid-
latitudes, where changes in temperature are signifi cant and can provide a good 
explanation for the determination of the timing of spawning. In the tropics, however, 
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the temperature varies very little and cannot be considered a major cue for coral 
spawning. On certain reefs, coral spawning does not occur when the water is the 
warmest. For example, the corals on the west coast of Australia reproduce during the 
late summer and autumn (Simpson  1985 ,  1991 ; Simpson et al.  1993 ; Babcock et al. 
 1994 ), whereas reproduction of the corals on the east coast occurs during the spring. 
However, the water temperature begins to increase in both regions during the sum-
mer. Richmond and Hunter ( 1990 ) have demonstrated a correlation between the 
percentage of synchronized coral species and the annual variation in the seawater 
temperature, although there are exceptions. The attempt to fi nd the ultimate cue for 
synchronization has revealed many differences between corals at high and low lati-
tudes, with corals in the lower latitudes showing spawning synchrony that appears to 
be weaker compared to corals at high latitudes (Richmond and Hunter  1990 ).  

5.5     Experiments Under Controlled Laboratory Conditions 

 Over the years, many researchers have classifi ed and characterized areas of coral 
reefs for timing and synchronization of reproduction characteristics. To understand 
the mechanism of reproductive timing, corals were subsequently studied under con-
trolled laboratory conditions. Under laboratory conditions, it is possible to isolate 
specifi c factors and to determine the infl uence of each factor on reproductive timing 
in corals. It is also possible to determine the infl uence of these factors on different 
cycle periods. Several researchers have attempted to determine whether spawning 
and planulae release in corals is a circadian behavior or is controlled directly by 
light. Manipulation of daylight and moonlight in the coral  Pocillopora damicornis  
was conducted by Jokiel ( 1985 ) to investigate the infl uence of light on the timing of 
coral spawning. Corals were kept under natural light during the day. By night, one 
part of the experiment corresponded to artifi cial full moon light and another to new 
moon light (darkness). Corals in both treatments showed a loss of synchrony in 
monthly larval production. These results showed that spawning is synchronized by 
night irradiance cues that are essential for synchronization. Published evidence 
(Babcock  1984 ,  1988 ;    Hunter  1989 ) indicates that coral spawning timing can be 
shifted by an early artifi cial sunset a few days before spawning occurs. This fi nding 
demonstrates two important principles. The fi rst is that the light–dark (LD) cycle is 
responsible for the fi ne tuning of spawning at the level of hours and minutes, and the 
second is that light (not particular endogenous components that measure time) regu-
lates the timing of spawning. Brady et al. ( 2009 ) demonstrated earlier spawning in 
 Montastraea franksi  under an earlier artifi cial sunset on the day of spawning. These 
results indicate that in this case either that the timing of spawning is directly con-
trolled by the local solar light cycle, at least for the precise tuning of the hours of 
spawning, or that light masks an endogenous circadian rhythm. In support of the 
idea of weak circadian clocks, Levy et al. ( 2007 ) showed that the expression of two 
circadian clock genes ( cry1  and  cry2 ) did not show sustained circadian rhythms 
under continuous darkness (Fig.  5.3 ) (see following).  
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  Fig. 5.3    Temporal expression patterns of  cry1  and  cry2  in  A. millepora  under light–dark (LD) 
( open squares ) and DD ( fi lled circles ) cycles using quantitative polymerase chain reaction (PCR). 
( a ,  b ) A 32-h cycle with sampling intervals of 4 h. ( a ) Quantitative analysis of  cry1  revealed a 
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 Boch et al. ( 2011 ) analyzed the contributions of separate components of light 
dynamics because the effects of twilight and lunar light on coral spawning syn-
chrony have previously been confl ated. The alternative hypothesis, so far untested, 
was that twilight and lunar light have differential contributions as proximate cues. 
Boch et al. ( 2011 ) showed that under controlled conditions lunar photoperiod cues 
are most likely the major driver of spawning synchrony on a given night of the lunar 
cycle and at a specifi c time of night. The differences in spectral dynamics have sec-
ondary effects on spawning. Petersen et al. ( 2007 ) identifi ed specifi c differences 
between broadcast and brooding corals. Twenty-four coral species from nine fami-
lies under artifi cial conditions in an aquarium system were observed to show repro-
ductive behavior. Broadcast spawners reproduced primarily in open systems under 
natural light conditions, whereas brooders showed less sensitivity toward certain 
environmental factors that are known to trigger reproduction in fi eld populations, 
such as moonlight and temperature fl uctuations. It has been suggested that spectral 
light composition affects the timing of gamete release, particularly during twilight. 
Under laboratory conditions, when the daylength was artifi cially extended by 6 h 
for two coral species,  Acropora millepora  and  Acropora aspera , from the Great 
Barrier Reef, the corals demonstrated a phase shift in their spawning time. Coral 
colonies that were illuminated by red light did not show any delay in the spawning 
time compared to the same species under natural conditions in situ. In contrast, 
colonies irradiated by blue, green, and white (PAR) light spectra had a phase shift 
in their spawning time relative to the spawning time of the control colonies and cor-
als of the same species found on the reef. These fi ndings suggest that artifi cial light 
contamination in the blue and green spectral regions can mismatch and delay 
spawning, whereas red light has no effect on spawning behavior (Levy et al., unpub-
lished data). These results suggest the presence of blue-light photoreceptors known 
as cryptochromes that could mediate this spawning behavior (Levy et al.  2007 ). 

 These fi ndings could improve the understanding of the threats to coral reefs. 
Sexual reproduction is one of the most important processes for the persistence of 
reefs; yet worldwide coral reef systems are being rapidly degraded and face a 
 multitude of threats. The interplay between an endogenous clock and external light 
cues for the timing of reproduction may be compromised in the era of industrializa-
tion and global change, where the moon is not the only source of light at night. 
Buildings, street lamps, lighthouses, cars, boats, and oil platforms provide obvious 
evident examples of artifi cial sources of light at night that can eventually affect 
reproductive timing and fertilization success in broadcasting species.  

Fig. 5.3 (continued) signifi cant effect of light ( L ) and dark ( D ) (L/D,  P  = 0.035), as well as a 
 signifi cant effect of  ‘sampling time’ (time,  P  < 0.001). ( b ) Expression of  cry2  (L/D,  P  = 0.026, time 
 P  < 0.001). Each value was normalized to β-actin and converted to percentage of maximal level for 
each gene. Values (mean ± SE) were tested by ANOVA with linear contrast method within groups to 
distinguish between the LD/DD rhythm amplitude of  cry1  and  cry2. cry1  DD ( P  > 0.01),  cry1  LD 
( P  < 0.01).  cry2  DD ( P  > 0.05), LD ( P  < 0.01). Time points with asterisks are signifi cantly different 
( grey  asterisks  LD,  black asterisks  DD; *  P  < 0.05, **  P  < 0.01, ***  P  < 0.001). Sample size = 3. 
(From Levy et al.  2007 )       
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5.6     What Do We Know About Molecular Aspects 
of Reproductive Timing? 

 The phenomenon of synchronized spawning of corals in different locations, species, 
and scales, particularly in the context of unique large-scale mass spawning events, 
remains an issue with many unanswered questions. It is not yet known whether and 
how corals sense the environment and how internal components of the endogenous 
clock assist the timing and synchronization of external stimuli. Continuous progress 
in molecular methods for studying corals is very important for understanding the 
timing of coral reproduction. Understanding the molecular mechanism will contrib-
ute to our knowledge of reproductive chronobiology and will provide a general 
mechanism for many reefs throughout the world. Gorbunov and Falkowski ( 2002 ) 
have suggested that detection of the blue region of moonlight by corals may cue the 
specifi c night of spawning because several species of corals are extremely sensitive 
to the blue region of the light spectrum. Molecular research based on the coral 
 A. millepora  has identifi ed the central gene components of corals that are part of the 
central clock loops. The major photoreceptor genes known as cryptochromes ( cry ) 
have also been identifi ed and are hypothesized to mediate the moonlight signal in 
the environment for reception by the central clock (Levy et al.  2007 ). As shown 
above Fig.  5.3 ,  cry1  and  cry2  genes were found to be rhythmic under light–dark 
conditions but not under constant darkness.  cry2  may entrain the intrinsic clock on 
a monthly basis because its expression increases massively on full moon nights 
compared to new moon nights (Levy et al.  2007 ; Fig  5.4 ). However, the expression 
of this gene has not yet been determined during mass spawning events.  

 Sweeney et al. ( 2011 ) have also determined that shifts in twilight color and inten-
sity during nighttime and between nights immediately before and after the full 
moon, as well as an increase in the blue-light spectrum underwater during twilight 
after the night of the full moon, correlated signifi cantly with observations of spawn-
ing in corals. In contrast, molecular studies of the coral  Favia fragum  regarding the 
 cry1 ,  cry2 ,  clock , and  cycle  genes showed a diel oscillation for  cry1  and  cry2  but did 
not identify any relationship between the elevated expression of one of the  cry  genes 
and a monthly cycle specifi cally connected to the day of spawning (Hoadley et al. 
 2011 ). This fi nding suggests that the  cry  genes are not involved in the entrainment 
of reproductive cycles to lunar light cycles in  F. fragum . Because of the ongoing 
debate and the defi ciency of solid data related to the role of circadian clock in  cueing 
broadcast spawning synchronization, as an alternative option “masking” should also 
be investigated. The term “masking” (Aschoff and Vongoetz  1989 ) describes an 
immediate effect of a stimulus that overrides the expression of an animal’s endog-
enous clock. Under natural conditions, masking has the adaptive value of confi ning 
animals to their appropriate temporal niche and may complement the circadian 
clock in fi ne-tuning activity patterns in response to environmental stimuli (Redlin 
 2001 ). Thus, masking might be an important mechanism in the response of species 
to moonlight. The possible detection of a masking response under fi eld conditions 
will provide evolutionary insights into its true adaptive value, which may or may not 
occur in coral reef spawning events. To defi ne endogenous rhythms, the rhythm 
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itself must continue under constant conditions in the absence of stimuli. The pub-
lished molecular studies regarding lunar rhythms, so far, cannot necessarily be 
attributed to an endogenous biological clock. Whether the phenomenon of synchro-
nized spawning is environmentally triggered or controlled by endogenous mecha-
nisms remains an unanswered question. Understanding how corals perceive and 
integrate information regarding environmental cues to regulate their reproductive 
cycles may solve one of earth’s biggest mysteries and help maintain the coral reef 
environment in marine ecosystems.     
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