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    Chapter 4   
 Circatidal and Circadian Rhythms 
in Crustacean Swimming Behavior 

             Tadashi     Akiyama    

    Abstract     Marine animals occasionally exhibit complicated temporal activity  patterns, 
which are affected by both tidal and solar day cycles. The cumacean  Dimorphostylis 
asiatica  (Crustacea, Peracarida) swims up in the water column around nocturnal high 
tides. In the laboratory, the animals show a circatidal swimming rhythm, entrained by 
hydrostatic pressure stimulus. During recording, the daily bimodal circatidal rhyth-
micity spontaneously changes to a circadian daily unimodal light-entrained rhythm.  

  Keywords     Circadian   •   Circatidal   •   Entrainment   •   Splitting   •   Swimming activity rhythm  

4.1         Introduction 

 Outputs of endogenous biological rhythms entrained by environmental tidal cycles, 
that is, circatidal rhythms, have been reported in many marine and semiterrestrial 
organisms (Neumann  1981 ; Morgan  1991 ; Palmer  1995 ; Naylor  2010 ). Occasionally, 
circatidal rhythms exhibit a rather complicated temporal pattern corresponding to 
environmental tidal and solar day periodicities. 

 The swimming activity rhythm of two sand beach peracarid crustaceans, the 
amphipod  Synchelidium  sp. and the isopod  Excirolana chiltoni , has a bimodal activ-
ity pattern, and the two activities are conjugated (i.e., free-run together). The ampli-
tudes of the conjugated activities are unequal; that is, one of two activity bouts on a 
single day is more intensive or longer lasting than the other. The rhythm occasion-
ally changes between daily bimodal and daily unimodal patterns spontaneously, 
which was explained as environmental adaptation of the rhythmicity to the mixed 
semidiurnal tide that gradually changes according to the lunar phase (Enright  1962 , 
 1972 ,  1976 ; Klapow  1972 ). Similar daily bimodal circatidal rhythms with unequal 
amplitudes have been reported in a few marine animals (Holmström and Morgan 
 1983a ; Palmer and Williams  1986a ; Northcott  1991 ; Sato et al.  2008 ). 
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 Marine animals are exposed to solar day cycles as well as to tidal cycles. As a 
result, their activity rhythms occasionally exhibit complicated temporal patterns 
including tidally synchronized and solar day-synchronized rhythmic components, 
other than the only tide-synchronized complicated rhythmic patterns already men-
tioned (Barnwell  1966 ; Stillman and Barnwell  2004 ; Zann  1973 ; Barlow et al. 
 1986 ). In the terrestrial crab  Sesarma , timing of larval release, synchronized with 
the night high tide, is entrained by solar day cycles as well as moonlight cycles 
(Saigusa  1986 ,  1988 ). In the shore crab  Carcinus  and some fi shes kept under non-
tidal conditions, their daily bimodal circatidal locomotor rhythm changes to daily 
unimodal circadian rhythm (Naylor  1958 ; Gibson  1971 ,  1973 ). In the daily bimodal 
circatidal locomotor rhythm of the mangrove cricket  Apteronemobius asahinai , the 
uneven amplitude of the conjugated activity is thought to be generated by a circa-
dian component of the underlying pacemaker (Takekata et al.  2012 ). 

 Studies of the complicated rhythmicity as just mentioned, may provide some 
new insights into the evolutionary trait of circatidal clocks as well as their current 
divergence. In this chapter, I describe the spontaneous change of swimming activity 
rhythm between circatidal and circadian in the cumacean  Dimorphostylis asiatica  
(Crustacea, Peracarida) from the Seto Inland Sea of Japan.  

4.2     Temporal Emergence Pattern in the Field 
and Its Seasonal Variation 

 Planktonic animals show diurnal vertical migration, based on swimming upward in 
the water column (Pearcy  1970 ; Enright  1977 ). Tidal planktonic animals may per-
form similar movements. Cumaceans, consisting of about 1,500 species, live in the 
surface of sandy or muddy sea bottoms, from the intertidal to the hadal zone. The 
genus  Dimorphostylis , consisting of 29 species, lives in shallow water in the Western 
Pacifi c and Indian Ocean, currently with only one deep-sea species (Băcescu  1988 ; 
Gamô  1968 ; Akiyama  2011 ). Field studies on shore and shallow-water cumacean 
species have also shown diurnal vertical migration, based on their nocturnal upward 
swimming (Corey  1970 ; Yoda and Aoki  2002 ). The temporal emergence pattern of 
 D. asiatica  from the Seto Inland Sea, at 1–3 m depth, where a mixed semidiurnal 
tide about 1.5–3.5 m in amplitude recurs, was investigated using an electric torch 
lamp attracting male specimens (Akiyama and Yoshida  1990 ). The emergence pat-
tern in the fi eld shows rather complicated rhythmicity, which varies with seasons 
(Fig.  4.1 ). In winter and spring, the animals emerge around the time of the night 
high tide every day, showing a daily unimodal tidal rhythm with a period of about 
24.8 h (Fig.  4.1a ). A similar emergence pattern in shallow-water habitats has been 
reported in other tiny crustaceans such as a cladoceran, a copepod, an amphipod, 
and a few crab larvae (Saigusa and Oishi  2000 ; Saigusa  2001 ).  

 In contrast to the emergence pattern in winter, which shows close synchrony with 
night high tides, in autumn the emergence mainly occurred within 1 h just after sun-
set (Fig.  4.1b ), showing solar day synchronized rhythmicity. Small portions of the 

T. Akiyama



67

animals emerge during ebb (between 30 September and 4 October in Fig.  4.1b ) or 
fl ow tides (5–7 October in Fig.  4.1b ). Seasonal variation of tide-synchronized emer-
gence rhythm between day and night in the fi eld was also reported in the emergence 
rhythm of the marine midge  Clunio tsushimensis  (Oka and Hashimoto  1959 ; Saigusa 
and Akiyama  1995 ). In this case, the seasonal change of the temporal emergence 

  Fig. 4.1    Temporal emergence pattern of  Dimorphostylis asiatica . Emergence during each time 
interval was indicated as number of adult male animals collected with an electric torch lamp for 
30 min. ( a ) Emergence pattern in winter.  HW  high water,  LW  low water,  SS  sunset,  SR  sunrise; 
 open circle  full moon,  closed circle  new moon (Akiyama  1995 ). ( b ) Emergence pattern in autumn. 
(From Akiyama and Yoshida  1990 ; reproduced by courtesy of The Marine Biological Laboratory, 
Woods Hole, Massachusetts)       
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pattern was related to the seasonal change of temporal tidal pattern. The height of 
the daytime low tide is lower than the height of the night low tide in late spring and 
summer, whereas in winter the opposite tidal pattern occurs at the sampling site.  

4.3     Free-Running Activity Rhythm and Temperature 
Compensation 

 Diurnal vertical migration of many marine organisms based on their swimming 
activity shows circadian rhythmicity in the laboratory (Enright and Hamner  1967 ). 
Male specimens of  D. asiatica  show a clear swimming activity rhythm in constant 
darkness, indicating that this behavior is also governed by endogenous clocks 
(Fig.  4.2 ). In this species, the rhythmicity is regarded as circatidal but not circadian, 
which is based on the observations that in the presence of tidal periodicity (1) the 
daily bimodal activity pattern has a period length close to the environmental tidal 
period (12.4 h) and (2) the onset of activities coincides with the expected high tide 
on the fi rst day of the recording.  

 The calculated free-running period of the daily bimodal rhythm was approxi-
mately 11.5 h on average, 1 h shorter than the environmental tidal cycle (Fig.  4.2a ). 
Coincidence of the endogenous swimming activity with the expected high tide was 
rapidly lost during the fi rst 1 or 2 days of the recording. Previous studies on the 
circatidal rhythms have focused on close similarity of the free-running periods to 
environmental tidal periods (Palmer  1995 ; Naylor  2010 ). As an extreme case, the 
sandy beach isopod  Excirolana  shows a temporal free-running activity pattern that 
is very similar to the complicated environmental tidal pattern (Enright  1972 ). The 
rather short free-running period of  D. asiatica  in its daily bimodal rhythm shown in 
my study may be a generic characteristic. An estuarine  Dimorphostylis  sp. from the 
Seto Inland Sea of Japan, kept in seawater at 15 ‰ salinity in the laboratory, exhib-
ited a daily bimodal free-running rhythm with a period shorter than 24 h, which was 
similar to that of  D. asiatica  (T. Akiyama, unpublished data). 

 The specimens collected in all seasons exhibit distinct daily bimodal activity 
rhythms, at least during the early days of recording, and onsets of the fi rst batch of 
activity on the fi rst day of recording occur about 0.5 h before the expected high tide 
throughout a year (Akiyama  2004 ), which suggests that the circatidal clock of the 
animals operates in the fi eld in all seasons. Therefore, the seasonal variation of 
emergence pattern in the fi eld (shown in Fig.  4.1 ) should be caused by the environ-
mental factors that directly affect their swimming behavior, not via endogenous 
clocks of the animals. In another peracarid crustacean,  Corophium voltator , sea-
sonal variation of circatidal activity rhythm was also observed in the laboratory 
(Holmström and Morgan  1983a ). 

 Although the environmental tide in the Pacifi c Coast of southern Japan is a 
mixed semidiurnal tide, the bimodal circatidal swimming rhythm of most speci-
mens is characterized by equal amplitude of two conjugated activities (Fig.  4.2a ). 
A small portion of the specimens exhibit daily bimodal rhythms with unequal 
amplitude of conjugated activities. However, this phenomenon would not necessarily 
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be related to the environmental tidal pattern. In the mangrove cricket, a daily 
bimodal rhythm with unequal amplitude is explained as modifi cation of the circa-
tidal rhythm by a circadian pacemaker (Takekata et al.  2012 ). 

  Fig. 4.2    Free-running 
swimming activity rhythm 
of two specimens of 
 Dimorphostylis asiatica  
under constant darkness 
(Akiyama  1995 ). 
( a ) A specimen that retained 
daily bimodal activity pattern 
throughout 20 days of 
recording. ( b ) A specimen 
whose activity pattern 
changed from daily bimodal 
to unimodal on days 10–12. 
 Arrowheads  indicate times 
of high water at the 
sampling site       
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 In  D. asiatica , the daily bimodal activity rhythm in about 90 % of the specimens 
examined spontaneously changed to the daily unimodal rhythm, within 10 days 
(it took 11–12 days in the specimen shown in Fig.  4.2b ). In contrast to that just 
described for  Excirolana , the change of the rhythmic pattern does not seem to be 
related to the environmental tidal pattern because the bimodal rhythms with equal 
amplitude of conjugated activity occur in most specimens in spite of the mixed 
semidiurnal tide at the collection site. 

 As in circadian rhythms, the free-running period of circatidal rhythms shows 
relatively small change according to change of ambient temperature (Naylor  2010 ). 
The free-running period of the daily bimodal rhythms in  D. asiatica  is 23.1 ± 1.6 and 
22.9 ± 1.1 h at 10 and 15 °C, respectively. In the daily unimodal rhythm, the period 
is 25.5 ± 1.8 and 23.8 ± 0.6 h at 10 and 15 °C, respectively (Akiyama  1995 ). 
Temperature compensation was shown in the free-running periods of the daily 
bimodal and unimodal rhythms; Q 10  values were 1.02 and 1.15, respectively, even 
though the latter value is slightly larger than values for circadian and circatidal 
rhythms of other animals. The difference in the compensation between the daily 
bimodal and unimodal free-running rhythms suggests that these rhythms are gov-
erned by pacemakers with different molecular oscillation systems. Otherwise, if 
identical pacemaker(s) govern the different forms of rhythmicity, neural compo-
nents other than the molecular oscillation system may generate different periodicity. 
Unfortunately, previous studies on circadian and circatidal rhythms have not focused 
on comparison of temperature compensation accompanied by change of rhythmic-
ity between daily unimodal and daily bimodal in a single species.  

4.4     Administration of Hydrostatic Pressure Stimulus 

 Although circadian rhythms are dominantly entrained by sunlight (Binkley  1990 ), 
circatidal rhythms are phased by various kinds of time cues, such as mechanical 
agitation caused by water fl ow and wave action (Enright  1965 ,  1976 ; Klapow  1972 ; 
Hastings  1981    ; Morgan and Cordiner  1994 ), change of ambient temperature 
(Holmström and Morgan  1983b ,  c ; Bolt et al.  1989 ), salinity change (Taylor and 
Naylor  1977 ; Bolt and Naylor  1985 ; Bolt et al.  1989 ), and periodic inundation of 
intertidal habitat (Holmström and Morgan  1983c ; Yoshioka  1989 ; Chabot et al. 
 2008 ; Sato et al.  2009 ). Tide-synchronized larval release of a few species of terres-
trial and semiterrestrial crabs is additionally phased by moonlight cycles or solar 
day sunlight cycles (Saigusa  1986 ,  1988 ,  1992 ). 

 For marine animals living in shallow, calm habitats, including  D. asiatica  from 
the Seto Inland Sea of Japan, periodic change of hydrostatic pressure stimulus 
caused by gradual fl uctuation of tidal height would be a reliable tidal time cue for 
their circatidal clocks. The swimming behavior of tiny crustaceans responds to sud-
den change of hydrostatic pressure (Enright  1961 ; Digby  1972 ; Morgan  1984 ). 
Successful entrainment by a 12.5-h cycle of sinusoidal change of hydrostatic pres-
sure was reported for the swimming behavior of an estuarine amphipod,  Corophium  
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(Morgan  1965 ). Thereafter, entraining effects by hydrostatic pressure cycles on 
circatidal rhythms have been reported in the shore crab  Cacinus  (Naylor and 
Atkinson  1972 ), the horseshoe crab  Limulus  (Chabot and Watson  2010 ), and a few 
fi sh species (Gibson  1971 ,  1984 ; Northcott  1991 ; Northcott et al.  1991a ,  b ). 

 A 12.5-h cycle of sinusoidal change of hydrostatic pressure of 0.3 atm, equiva-
lent to 3-m amplitude of tidal height, entrains the circatidal swimming rhythm of  
D. asiatica  (Akiyama  2004 ). Most specimens ( N  = 41) examined displayed daily 
bimodal activity with periods of 24.9 ± 0.6 h, as shown on days 1–10 in Fig.  4.3a, b , 

  Fig. 4.3    Three  Dimorphostylis asiatica  specimens exposed to a 12.5-h cycle of sinusoidal change 
of hydrostatic pressure with 0.3-atm amplitude, under constant darkness.  Oblique lines  indicate 
times of maximum hydrostatic pressure (Akiyama  2004 ). ( a ,  b ) Specimens exhibiting daily 
bimodal rhythmicity. ( c ) Specimen exhibiting daily unimodal rhythmicity       
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which is about 2 h longer than the free-running period of the daily bimodal rhythm. 
The activity onsets of the animals occur shortly before the time of the maximum 
hydrostatic pressure. Correspondingly, the onset of the fi rst bout of activity in the 
free-running rhythm occurs 0.5 ± 2.1 h before the expected high tide in all seasons 
(Akiyama  2004 ). Thus, a hydrostatic pressure cycle can clearly entrain the circa-
tidal rhythm of this species. It therefore appears that the entrained bimodal activity 
pattern is characterized by simple 12.5-h rhythmicity, with roughly equal amplitude 
and duration of the two conjugated activity bouts.  

 A small portion of individuals exhibit a daily unimodal activity rhythm while 
they are exposed to the hydrostatic pressure cycles (Fig.  4.3c ). The activity period 
is 25.9 ± 1.6 h ( N  = 11), which is close to the free-running period at 10 °C, suggest-
ing that the pacemaker that governs the unimodal activity pattern is not phased by 
hydrostatic pressure stimulus. 

 Phase responsiveness of circatidal rhythms to single pulses of zeitgebers has 
been examined and summarized as phase-response curves (PRCs) in an isopod 
 Excirolana  (Enright  1976 ), an estuarine amphipod  Corophium  (Holmström and 
Morgan  1983b ), the rocky shore crab (Naylor and Williams  1984 ), a shore fi sh 
(   Northcott et al.  1991b ), the mangrove cricket (Sato et al.  2009 ), and a few addi-
tional marine species. The results seem to be rather simple; that is, PRCs of circa-
tidal rhythms are similar to those of circadian rhythms, but on a 12.4-h time base. 

 In  D. asiatica , phase responsiveness of the swimming rhythm to a 4-h hydro-
static pressure pulse (sudden increase and decrease of hydrostatic pressure of 
0.3- atm amplitude) was examined. A unique characteristic of the phase responsive-
ness was that two conjugated activity bouts occasionally respond to the 4-h pulse of 
the hydrostatic pressure stimulus differently. The specimen shown in Fig.  4.4a  
shows a different magnitude of phase delay, and another specimen (Fig.  4.4b ) shows 
phase advance and phase delay for each conjugated activity bout, respectively. 
These data suggest that the approximately 12-h rhythm, in appearance, of  D. asiat-
ica  is composed of two 24-h pacemaker components (Fig.  4.4b ).  

 PRCs of  D. asiatica  specimens (indicated on a 24-h time base; the onsets of 
daytime activity on the fi rst day of recording are determined as circadian time 12), 
in which daily bimodal rhythm persisted after administration of a hydrostatic pres-
sure stimulus have an obscure form (Fig.  4.4e ). Both phase advance and delay occur 
around circatidal times 8 and 20, in contrast with the entraining ability of 12.5-h 
cycles of ‘sinusoidal’ change of hydrostatic pressure on the daily bimodal rhythm 
within 1–2 days of treatment (Fig.  4.3a ). Apparently, the animals perceive a gradual 
increase or decrease of hydrostatic pressure as the dominant tidal time cue. Thus, 
the obscure PRC pattern may be a consequence of the sudden increase or decrease 
of hydrostatic pressure in this experiment. 

 Another possible factor causing the obscure form of the PRC is the unstable 
phase relationship between the entrained activity and the hydrostatic pressure pres-
sure cycle: some specimens entrain the swimming activity to the phase of increasing 
pressure, whereas other specimens entrain to the phase of decreasing pressure, and 
rarely were both phase relationships observed sequentially in a single specimen 
(Fig.  4.3b ). Such a fl exible phase relationship between entrained rhythmicity and 
environmental cycles is also possibly attributed to the weak phase-setting effect of 
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the hydrostatic pressure stimulus, as reported in the diurnal–nocturnal conversion of 
the circadian rhythm of fi shes (Sánchez-Vázquez et al.  1995 ; Iigo and Tabata  1996 ). 

 In nearly half the treated specimens, daily bimodal activity rhythms changed to 
daily unimodal patterns immediately after administration of hydrostatic pressure 
pulses (Fig.  4.4c, d ). For these specimens, phase advance and delay occur around 
circadian times 8 and 18 (Fig.  4.4f ), respectively, showing that the PRC form is on 

     Fig. 4.4    Phase-setting effect of a 4-h pulse of hydrostatic pressure with 0.3-atm amplitude on the 
swimming activity rhythm of  Dimorphostylis asiatica  (Akiyama  1997 ). ( a – d ) Activity pattern of 
four specimens.  Rectangles  indicate times of treatment.  Oblique lines  are linear regression lines on 
the successive onsets of swimming activities. ( e ,  f ) Phase–response curves ( PRCs ) of the daily 
bimodal rhythms to the hydrostatic pressure pulses. CT circadian time. Time of activity onsets near 
the time of treatments was determined as CT12. ( e ) PRC of specimens that retained a daily bimodal 
rhythm after treatment ( a ,  b ). ( f)  PRC of specimens that exhibited a daily unimodal rhythm after 
treatment ( c ,  d )       
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a 24-h time base (Fig.  4.4f ). A similar change of activity between daily unimodal 
and bimodal patterns, associated with treatment with a single pulse of tidal time cue, 
was also observed in  Excirolana . However, in  Excirolana  the PRC pattern was sim-
ply 12.4-h intervals (Enright  1976 ). The PRC form of  D. asiatica  may be the fi rst 
case of a PRC pattern of circatidal rhythm on a 24-h time base, suggesting that the 
animals recognize daytime or nighttime high water, even when the animals are 
exhibiting only circatidal rhythms. In view of adaptive signifi cance, the PRC of the 
24-h time base suggests that the animals recognize ‘daytime’ high tides as the more 
reliable time cue. During nighttime, swimming in the water and settling on the sea 
bottom at different depths would result in sudden change of environmental hydro-
static pressure, which would disturb the sensing of tidal time cue(s). 

 In conclusion, in contrast to the daily bimodal activity rhythm, the daily uni-
modal rhythm is not entrained by a single pulse of a 4-h hydrostatic pressure stimu-
lus, which agrees with the fact that the unimodal rhythms are not entrained by 
12.5-h hydrostatic pressure cycles (Akiyama  1997 ).  

4.5     Administration of Light Stimulus 

 Current knowledge on phase-setting effects of light stimuli on circatidal pacemak-
ers is limited, except for a few species. In the horseshoe crab  Limulus , light–dark 
cycles entrained the daily bimodal circadian rhythm in a small portion of specimens 
(Chabot et al.  2007 ; Chabot and Watson  2010 ). Shift of light cycles causes phase 
shift of the larval release rhythm in the terrestrial crab  Sesarma  (Saigusa  1986 , 
 1988 ), and this phenomenon is possibly related to their nontidal habitat, where the 
phase relationship of moonlight and solar day cycles can be a useful time cues. 

 Many  D. asiatica  specimens kept under light–dark (LD) cycles of LD 12:12 
(about 1,000 lx for light phase; complete darkness for dark phase) exhibit daily 
unimodal activities during the dark phase, even during the fi rst few days of record-
ings (Akiyama  2004 ). In contrast, the temporal activity pattern of the specimens 
kept under light cycles with a shorter photoperiod, such as LD 6:18, shows that the 
daily bimodal activity free-runs with periodicities shorter than 24 h. In the specimen 
shown in Fig.  4.5a , the activity rhythm free-ran on days 1–10, and entrained to the 
hydrostatic pressure cycle thereafter, with inhibition of activities during light phase 
throughout the recording. Thus, the unimodal activity pattern under LD 12:12 is the 
result of a masking effect that is caused by direct inhibition of activity by light. 
Specimens exposed to the 12.5-h hydrostatic pressure cycles and light cycles with 
longer photoperiod, such as LD 12:12, exhibit a temporal activity pattern similar to 
the tide-synchronized emergence pattern in the fi eld, suggesting that the animals use 
these two cycles as important time cues in the fi eld. Small bursts of activity shortly 
after lights off (on days 7–15 in Fig.  4.5b , also seen in Fig.  4.5a ) also agree with the 
emergence just after sunset in the fi eld (Fig.  4.1b ).  

 The masking effect by light has been well documented in circadian rhythms 
(Page  1989 ). Nocturnal activity by direct suppression of the swimming activity by 
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light stimuli during daytime is also observed in the diurnal vertical migration in 
shallow-water planktonic animals (Enright and Hamner  1967 ). 

 A problem in studies on circatidal rhythms is their noisy, short-life nature 
(Neumann  1981 ). Such noisiness may not refl ect the output of an inferior clock 
mechanism but rather internal desynchronization of clock components in single 
specimens. In the eel pout  Zoarces viviparus , desynchronized, arrhythmic swim-
ming activity spontaneously changes to rhythmic daily unimodal or bimodal activity 
(Cummings and Morgan  2001 ). Tide-synchronized endogenous pacemakers in 
some species may have evolved by reorganizing such independent, desynchronized 
clock components. 

 For the daily bimodal rhythm in  D. asiatica , no phase-setting effect of a single 
4-h light pulse was observed (Akiyama  1997 ). Administration of the light pulses did 
not cause a change of the activity pattern into daily unimodal, which was occasion-
ally observed by administration of the hydrostatic pressure pulses. 

 In contrast to the daily bimodal rhythm, a single 4-h light pulse administered to 
the specimens exhibiting a daily unimodal activity rhythm produces distinct phase 
advances (Fig.  4.6a ) and delays (Fig.  4.6a, b ). The PRC pattern (Fig.  4.6c ) indicates 
that the 4-h light pulse completely reset the rhythm so that the onset of the activities 
occurred just after lights-off of each pulse. Considering no phase-resetting ability of 
hydrostatic pressure stimuli, the  D. asiatica  daily unimodal rhythm is defi nitely a 
circadian, light-phased rhythm. Occurrence of the unimodal circadian rhythms 
under nontidal conditions is similar to that in the shore crab  Carcinus  (Naylor  1958 ). 
However, the underlying pacemaker structure of these species would be rather dif-
ferent (see Sect.  4.6 ).  

 When the specimens were exposed to the hydrostatic pressure cycle under light–
dark cycles (LD 6:18, 12:12), an increased number of specimens were active during 

  Fig. 4.5    Activity records of  Dimorphostylis asiatica  exposed to different light cycles and the 
12.5-h hydrostatic pressure cycle. ( a ) A specimen kept under light regime LD 6:18; on day 10, 
the hydrostatic Zeitgeber was added. ( b ) A specimen kept under LD 12:12.  Oblique lines  indicate 
the times of maximum hydrostatic pressure (Akiyama  2004 )       
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the pressure-increasing phase compared to the number of specimens kept under 
constant darkness (Akiyama  2004 ). This observation suggests that light also affects 
the  D. asiatica  circatidal rhythm, in addition to responsiveness to hydrostatic 
 pressure pulses, as indicated by the 24-h time base of the PRC (Fig.  4.4f ).  

4.6      Tidally Synchronized Circadian Rhythm? 

 The periodicity of circatidal clocks is closely related to that of circadian, solar day 
clocks. In addition, circadian clocks are occasionally phased by time cues other than 
light–dark cycles. Enright ( 1976 ) proposed that the locomotor activity rhythm of 

  Fig. 4.6    Phase-setting effect of a 4-h light pulse on the daily unimodal swimming rhythm of 
 Dimorphostylis asiatica  kept in constant darkness.  (a ,  b)  Activity records of two specimens. 
 Rectangles  indicate time of treatment.  Oblique lines  are linear regression lines on the successive 
onsets of swimming activities. ( c ) Phase-response curve of the daily unimodal swimming rhythm 
to 4-h light pulses (Akiyama  1997 )       
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 Excirolana  is “a tidally-synchronized circadian rhythm,” because the “locomotor 
activities repeat with circadian intervals.” Thereafter, few studies have focused on 
this hypothesis. 

 The ‘splitting’ phenomenon, that is, a gradual change of circadian temporal 
activity between daily unimodal and bimodal rhythms, has been reported for circa-
dian rhythms of some terrestrial animals (Pittendrigh and Daan  1976 ; Underwood 
 1977 ). In these cases, the split and fused rhythms are governed by identical 
pacemaker(s) with a different phase relationship. In circatidal rhythms, a few genera 
of intertidal crabs,  Helice ,  Macrophthalmuas , and  Uca , and the horseshoe crab 
 Limulus , showed two (or more) conjugated activities. Their free-running periods 
were slightly different from each other, and occasionally fused or split (Palmer and 
Williams  1986a ,  b ,  1988 ; Chabot and Watson  2010 ). Interpreting the splitting 
in locomotor rhythms, Palmer and Williams ( 1988 ) explained that these rhythms 
were governed by two (or more) coupled pacemaker(s) with about a 24.8-h period, 
rather than a 12.4-h period, and the periodicity was called ‘circalunidian.’ Although 
the approximately 24-h period of the ‘circalunidian’ clocks is the same as the period 
of circadian clocks, evolutionary relationships of these clocks have not been inves-
tigated or discussed suffi ciently. 

 Naylor and colleagues demonstrated that independent circatidal and circadian 
clocks govern locomotor rhythms in the shore crab  Carcinus  (Reid and Naylor 
 1989 ; Naylor  2010 ). The essential period of the tidal pacemaker was supposed to be 
simply 12.4 h. The rigid 12.4-h periodicity may be partly related to the regular semi-
diurnal tide of their habitat in the eastern North Atlantic (Barnwell  1976 ). Further 
comparative studies of circatidal rhythms with various environmental tidal patterns, 
including animals distributed in the geographic regions characterized by diurnal 
tide, would be helpful to reveal the rigidness of rhythmicity and the underlying 
mechanisms of circatidal rhythms. 

 In the swimming activity of  D. asiatica , circatidal and circadian rhythms do not 
occur simultaneously. In addition, the daily bimodal, circatidal rhythm composed of 
two pacemaker components of about 24 h occasionally fuse to become one daily 
unimodal circadian rhythm for a few or several days (Fig.  4.6b ). Rarely, the uni-
modal rhythms further split again to become a daily bimodal rhythm (Akiyama 
 2004 ). It is plausible that those two rhythms are governed by identical pacemaker(s), 
as well as in the cases of splitting in rodents and crabs, suggesting that  D. asiatica  
has developed a ‘tidally synchronized circadian clock’ or ‘solar day-synchronized 
circatidal clock.’ 

 Diurnal vertical migration of marine organisms dominantly exhibits solar day- 
synchronized rhythmicity rather than tide-synchronized rhythmicity. In cumaceans, 
habitats of most species are rather deep, exceeding 100 m in depth (Băcescu  1988 , 
 1992 ). However, certain genera such as  Dimorphostylis  might have been adapted to 
their life to shallow, tide-affected area. Thus, considering cumacean habitats, the 
biological clock of  D. asiatica  seems to be a ‘tidally synchronized circadian clock.’ 

 Recently, molecular analysis, using RNAi of the  per  gene, on the locomotor activ-
ity rhythm of the mangrove cricket composed of both circatidal and circadian compo-
nents, revealed that the molecular oscillation system of the cricket’s 12.5-h recurring 
circatidal clock does not include  per  products, showing that it is different from the 
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general insect circadian clock (Takekata et al.  2012 ). This fi nding and succeeding 
results on the circatidal rhythm of mangrove crickets (Takekata et al.  2014 ) suggest 
that at least some marine organisms may have developed a 12.5-h period clock sys-
tem, composed of molecular parts that are different from circadian clocks. However, 
considering various temporal patterns of environmental tidal cycles, and circatidal 
rhythms synchronized with those complicated time cues, further studies should be 
necessary to elucidate the evolution of traits and the divergence of circatidal clocks.     
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