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    Chapter 5   
 Polyol Metabolism and Stress Tolerance 
in Horticultural Plants 

             Yasuo     Suzuki    

    Abstract     Various horticultural plants synthesize polyols as major products of 
 photosynthesis in addition to sucrose and starch and use polyols and sucrose 
as translocated sugars. The parallel presence of two translocated sugars and their 
 metabolic pathway is specifi c and complicates the comprehension of their roles in 
physiology and response to stress. This review fi rst describes the metabolism of 
sorbitol, focusing on sorbitol-specifi c metabolizing proteins and their physiological 
roles in Rosaceae fruit trees. In addition, research on sorbitol as a signal molecule 
and sorbitol- metabolizing proteins regulated by sugar is discussed. A series of studies 
regarding various Rosaceae fruit trees has revealed the relationship of sorbitol accu-
mulation with abiotic stresses, including drought, salt, cold, and micronutrient defi -
ciency stresses. On the basis of acknowledging the metabolism of sorbitol, the 
biochemical mechanism of sorbitol accumulation in response to abiotic stress 
has been investigated. Furthermore, recent molecular analyses are providing direct 
evidence of the correlation of the proteins.  

  Keywords     Abiotic stress   •   Compatible solute   •   Polyol   •   Rosaceae   •   Sorbitol   •   Sugar 
signaling  

5.1         Introduction 

 Typically, most plant species synthesize sucrose and starch as major products of 
photosynthesis and use sucrose as a translocated sugar. However, various horticul-
tural plants synthesize polyols as the major products in addition to sucrose and 
starch and use polyol and sucrose as translocated sugars. For examples of such 
polyols, sorbitol is synthesized and transported in the Rosaceae, mannitol in the 
Apiaceae, Combretaceae, Oleaceae, and Rubiaceae, and galactitol in the Celastraceae 
(Loescher and Everard  1996 ; Zimmermann and Ziegler  1975 ). The parallel pres-
ence of two translocated sugars and their metabolic pathway complicates the 

        Y.   Suzuki      (*) 
  Graduate School of Agricultural Science, Kobe University ,   Kobe ,  Japan   
 e-mail: ysuzuki@kobe-u.ac.jp  

mailto: ysuzuki@kobe-u.ac.jp


60

comprehension of their roles in physiology and response to stress and regulation of 
the metabolism. Research on clarifi cation must advance because the plants are 
economically important. This review focuses on a series of studies on the metabo-
lism of sorbitol in Rosaceae fruit trees and its role in abiotic stress tolerance.  

5.2     Metabolism of Sorbitol 

 Sorbitol is a major product of photosynthesis and a primary translocated sugar in 
Rosaceae fruit trees. Sorbitol accounts for more than 80 % of newly fi xed carbohy-
drates during the light period in apples (Wang et al.  1997 ). It also accounts for 60 % 
to 90 % of the carbon exported from source leaves (Loescher  1987 ), and its concen-
tration in phloem sap reaches approximately 560 mM, whereas that of sucrose is 
about 140 mM (Moing et al.  1997 ). A sorbitol-specifi c metabolism is mainly the 
result of four proteins, including sorbitol-6-phosphate dehydrogenase (S6PDH), 
sorbitol-6-phosphate phosphatase (S6PP), sorbitol transporter (SOT), and sorbitol 
dehydrogenase (SDH). Briefl y, sorbitol is synthesized by S6PDH and S6PP in 
source leaves, translocated through phloem, and catabolized by SDH in fruit. SOT 
functions in the translocation of sorbitol across the plasma membrane in these pro-
cesses. Recently, apple genomic information of these proteins has been shown; 
it has been reported that there are 16  S6PDH  or  S6PDH - like  genes, 17  SDH  or 
 SDH - like     genes, and 38  SOT  or  SOT - like  genes (Velasco et al.  2010 ). Also, genomic 
information is available for the peach; manual annotation has identifi ed two  S6PDH , 
seven  SDH , and ten  SOT  (International Peach Genome Initiative  2013 ). Genomic 
information shows that those of apple and peach comprise large gene families, sug-
gesting the importance of the specifi c sorbitol metabolism in Rosaceae fruit trees. 

5.2.1     Sorbitol-Metabolizing Proteins 

5.2.1.1     NADP-Sorbitol-6-Phosphate Dehydrogenase (S6PDH) 
(EC 1.1.1.200) 

 S6PDH is a key enzyme in the process of synthesizing sorbitol in source organs 
(Hirai  1981 ; Loescher et al.  1982 ; Yamaki and Ishikawa  1986 ). It synthesizes 
sorbitol- 6-phosphate (S6P) via reduction of glucose-6-phosphate (G6P), which is 
also a precursor of sucrose as another photosynthetic product. S6PDH has been 
purifi ed and characterized from mature leaves of loquat and apple seedlings (Hirai 
 1981 ; Kanayama and Yamaki  1993 ). S6PDH activity is in both directions, reduction 
of G6P and oxidation of S6P (Kanayama and Yamaki  1993 ). The maximum velocity 
of the former is much higher than that of the latter, and the oxidation of S6P pro-
ceeds very slowly at a neutral pH. These biochemical results support the belief that 
S6PDH has a major function in the biosynthesis of sorbitol. 
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 The cDNA encoding  S6PDH  is fi rst cloned from apple seedlings (Kanayama 
et al.  1992 ). It has been shown that in peach and pear the level of  S6PDH  mRNA is 
higher in source mature leaves than in sink young leaves, concomitant with the alter-
ation of enzyme activity and protein level (Sakanishi et al.  1998 ; Suzue et al.  2006 ). 
Tobacco, which does not have the potential to produce sorbitol, when transformed 
with apple cDNA encoding  S6PDH  synthesizes sorbitol (Tao et al.  1995 ), and, in 
transgenic apple plants silenced for  S6PDH , the sorbitol content in leaves drastically 
decreases (Kanamaru et al.  2004 ; Teo et al.  2006 ). These results confi rm that S6PDH 
is a key enzyme in the sorbitol biosynthetic pathway in Rosaceae fruit trees. 

 Subcellular localization of S6PDH was revealed in apple cotyledons using 
 differential centrifugation and linear sucrose density gradient centrifugation; it is 
localized in both cytosol and chloroplast (Yamaki  1981 ). Immunogold electron 
microscopy analysis confi rms the localization of S6PDH in apple mature leaves 
(Liang et al.  2012 ). These results are consistent with S6PDH localized in source 
organs, including mature leaves, primarily being synthesizers of sorbitol as a major 
product of photosynthesis. 

 The roles of S6PDH in apple trees and fruit have defi nitely been revealed using 
apple transformed with  S6PDH  (Teo et al.  2006 ).  S6PDH -suppressed apples show 
a decrease in the vegetative growth and acid content of fruit and an increase in the 
total soluble solid content of fruit, whereas  S6PDH  overexpression shows the oppo-
site result. Thus, S6PDH is a critical enzyme for determining the vegetative growth 
and fruit quality through the degree of sorbitol synthesis.  

5.2.1.2     Sorbitol-6-Phosphate Phosphatase (S6PP) (EC 3.1.3.50) 

 S6PP synthesizes sorbitol via dephosphorylation of S6P, which is the fi nal step in 
synthesizing sorbitol. Although Grant and ap Rees ( 1981 ) fi rst suggested the pres-
ence of S6PP in leaves of apple seedlings, it had remained undetermined. The 
necessity of the enzyme for synthesizing sorbitol was questionable because there 
are nonspecifi c phosphatases in cells and it could dephosphorylate S6P to sorbitol. 
Actually, transgenic plants, which do not have the potential to produce sorbitol, 
introduced for the  S6PDH  gene, including tobacco and persimmon, can synthesize 
sorbitol without the  S6PP  gene (Gao et al.  2001 ; Sheveleva et al.  1998 ; Tao et al. 
 1995 ). Zhou et al. ( 2003 ) purifi ed and characterized S6PP from mature apple leaves, 
which confi rms the presence and the necessity of S6PP. S6PP is highly specifi c for 
S6P and is regulated by sorbitol through negative feedback inhibition.  

5.2.1.3     Sorbitol Transporter (SOT) 

 A sugar transporter is necessary for the functional transport of sugars across mem-
branes. SOT has important roles in unloading sorbitol in sink organs, including 
fruit, young leaves, and fl owers (Gao et al.  2003 ,  2005 ). cDNAs of  SOT  were 
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fi rst isolated from sour cherry fruit:  PcSOT1  and  PcSOT2 . Using heterologous 
expression of the genes in yeast, it has been proved that sorbitol transporters actu-
ally act as plasma membrane sorbitol/H +  symporters. The expression of  PcSOT1  
during the development of fruit is high when the growth and sugar accumulation 
rates of fruit are high, suggesting the sorbitol transporter is important in sugar accu-
mulation and sink strength. On the other hand,  PcSOT2  is mainly expressed only 
early in fruit development, suggesting that isogenes seem to all have their own role 
in the development of fruit such as apples (Li et al.  2012c ; Teo et al.  2006 ). In addi-
tion, the genes are also expressed in young leaves and are low in mature leaves. 
These facts show that SOT works in sink organs (Gao et al.  2003 ). SOT is also 
 suggested to be related to the occurrence of a watercore in apples. Expressions of 
 MdSOT1  and  MdSOT2  are typically high in sink tissues but low in watercore-
affected fruit tissues. Decreased ability to transport sorbitol into fruit parenchyma 
tissues because of the decreased expression would result in sorbitol accumulation in 
the intercellular space and occurrence of watercore (Gao et al.  2005 ). In apple 
source leaves, the expression of  MdSOT3 ,  MdSOT4 , and  MdSOT5  has been identi-
fi ed, suggesting that these MdSOTs have different functions (Watari et al.  2004 ).  

5.2.1.4     NAD-Sorbitol Dehydrogenase (SDH) (EC 1.1.1.14) 

 SDH is a key enzyme of sorbitol catabolism in sink organs, including the fruit and 
immature leaves, which converts sorbitol to fructose (Loescher et al.  1982 ; Yamaki 
and Ishikawa  1986 ; Yamaki and Moriguchi  1989 ). It has been shown that the  activity 
of SDH is positively correlated with sink strength of fruit throughout the develop-
ment of peaches (Lo Bianco and Rieger  2002 ). SDH has been purifi ed to homogeneity 
and characterized from Japanese pear (Oura et al.  2000 ). The  K  m  values for sorbitol 
are much lower than for fructose. This biochemical result supports the belief that 
SDH favors the conversion of sorbitol to fructose. 

 cDNA-encoding  SDH  has been cloned from fruit of Rosaceae fruit trees, 
including loquats, peaches, pears, plums, and apples (Bantog et al.  2000 ; Guo 
et al.  2012 ; Yamada et al.  1998 ,  2001 ,  2006 ). Expression analyses of  SDH  during 
fruit development show that the activity is regulated at the transcriptional level 
because the gene expression pattern corresponds to the SDH activity and confi rms 
that SDH is important in fruit maturation and sugar accumulation (Bantog et al. 
 2000 ; Yamada et al.  2001 ,  2006 ). SDH is important in fruit set and early fruit 
development as well as maturation in apples (Nosarzewski et al.  2004 ). In those 
cases, SDH is expressed not only in the cortex but also in the seeds and is derived 
from  SDH  genes, which are differentially expressed in seeds and the cortex 
(Nosarzewski and Archbold  2007 ). In other sink organs, young leaves of pear, the 
expression of the  SDH  mRNA level is not coincident with the activity, although 
the activity is high (Suzue et al.  2006 ). 
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 In source leaves of apples, expression of the  SDH  isogene,  MdSDH1 , has also 
been detected (Nosarzewski et al.  2004 ; Park et al.  2002 ). Immunohistochemical 
analysis shows that SDH is distributed both in the fl esh and in the vascular tissue of 
the fruit and in the vascular tissue and mesophyll tissue of the young and old leaves 
(Wang et al.  2009 ), suggesting that SDH is localized not only in sink organs but also 
in source organs. Immunogold electron microscopy analysis revealed the subcellu-
lar localization of SDH. It is localized mainly in the cytoplasm and chloroplast of 
the fruit and leaves, although, interestingly, SDH is also localized in vacuoles in 
young and mature leaves (Wang et al.  2009 ). The fact that sorbitol is a primary 
soluble carbohydrate that can be widely metabolized strongly supports the impor-
tance of sorbitol in Rosaceae fruit trees. 

 The importance of SDH in sink organs is directly confi rmed using transgenic 
apple trees with reduced SDH activity, which show vegetative disorders, such as 
shorter growth, precocious spring leaf loss, loss of apical dominance, and excessive 
growth of axillary shoots close to the apex because of an altered fructose:sorbitol 
ratio in immature leaves. These results suggest that reduced SDH activity in imma-
ture leaves, a sink organ, could affect sugar partitioning and, as a result, vegetative 
growth (Martinelli et al.  2011 ).   

5.2.2     Phloem Loading and Unloading 

 Loading strategies into the minor vein in plants are categorized in three pathways 
and mechanisms: passive loading, polymer trapping, and active transport (Rennie 
and Turgeon  2009 ). In apples, which use sorbitol and sucrose as translocated sugars, 
there are abundant plasmodesmata at all interfaces in the minor vein phloem (Rennie 
and Turgeon  2009 ) and much higher concentrations of sorbitol and sucrose in leaves 
(Cheng et al.  2005 ). Radiolabeled sorbitol, sucrose, or CO 2  is not detected in the 
minor veins when apple leaf tissues are exposed to them because of ready diffusion. 
These facts show that the movement of sugar alcohol from the mesophyll into the 
phloem in apples is symplastic and passive (Reidel et al.  2009 ). Additionally, Reidel 
et al. ( 2009 ) point out that the presence of an active uptake mechanism for a solute 
in the phloem does not, in itself, prove that the phloem-loading route is apoplastic 
and that sorbitol transporters in apple leaves are involved in retrieving sorbitol that 
leaks from phloem cells into the apoplast. 

 In the fruit of apples, the presence of plasmodesmata between the sieve element and 
the companion cell and between parenchyma cells but not between the companion and 
parenchyma cells suggests that phloem unloading of sorbitol and sucrose is related 
with an apoplastic step between the sieve element–companion cell complex and paren-
chyma cells (Zhang et al.  2004 ). The presence of a sorbitol transporter on the plasma 
membrane, which transports sorbitol into the cytosol of parenchyma cells using the 
proton motive force, also supports apoplastic unloading (Gao et al.  2003 ,  2005 ).   
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5.3     Regulation of Sorbitol Metabolism 

5.3.1     Regulation of Sorbitol Metabolism 
by Environmental Factors 

 Partitioning of photoassimilates into sorbitol is dependent on environmental condi-
tions that affect photosynthesis, including the concentration of CO 2  and light 
 intensity. In mature apple leaves, when photosynthesis increases with an increase in 
CO 2 , sorbitol and starch concentrations increase, but sucrose concentrations are 
stable; this means that the photoassimilate is partitioned into sorbitol rather than 
sucrose (Pan et al.  1998 ; Wang et al.  1999 ). In contrast, in mature peach leaves, 
when photosynthesis increases with an increase in light intensity, sucrose and starch 
concentrations increase more drastically than does that of sorbitol. In this case, the 
photoassimilate seems to be partitioned into sucrose rather than sorbitol (Escobar- 
Gutiérrez and Gaudillèr  1997 ). The photoperiod affects carbon partitioning in 
Rosaceae fruit trees. In mature apple leaves, as the photoperiod increases, sorbitol 
concentrations increase concomitant with glucose, fructose, and starch concentra-
tions, and the relative partitioning of  14 C into only sorbitol increases. However, 
sucrose concentrations and that into sucrose decrease. It is suggested that longer 
photoperiods favor sorbitol over sucrose accumulation whereas shorter photoperiods 
favor sucrose over sorbitol synthesis (Wang et al.  1997 ). These changes affect other 
organs, including sink leaves, stems, and roots, as a result of the transport of trans-
located sugars from the source leaves (Wang et al.  1998 ). Sorbitol and starch con-
tent show diurnal changes at regular intervals throughout a natural day–night cycle. 
S6PDH activity also shows diurnal changes; these changes seem to be related to 
endogenous rhythms, although sucrose phosphate synthase (SPS) activity is not 
(Zhou et al.  2001 ).  

5.3.2     Sugar Signaling in Rosaceae Fruit Trees 

 In plants, sugars not only are a carbon resource but also function as signal  molecules; 
they modulate gene expression, in which way they could play roles in development, 
growth, and differentiation (Koch  1996 ; Rolland et al.  2006 ; Smeekens  2000 ). 
However, most research has focused on sucrose and hexoses, although research on 
polyols and the plants using them as translocated sugars is limited. 

5.3.2.1     Regulation by Sorbitol 

 SDH activity is decreased by girdling treatment, which interrupts the assimilate 
supply in fruit (Berüter and Studer Feusi  1997 ; Morandi et al.  2008 ), whereas SDH 
activity of fruit cortex sections from the fruit treated with defoliation and girdling is 
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increased by incubating in a sorbitol solution (Archbold  1999 ). In transgenic apple 
trees with decreased sorbitol synthesis, both SDH activity and transcripts are 
decreased in shoot tips and fruit (Teo et al.  2006 ; Zhou et al.  2006 ). Conversely, by 
exogenously feeding sorbitol to shoot tips, both  SDH  transcription and activity are 
stimulated (Zhou et al.  2006 ). Partial defoliation treatments, which cause more 
 carbohydrate demand upon the remaining source leaves, increase S6PDH activity, 
although girdling treatment does not affect it (Zhou and Quebedeaux  2003 ). 
Furthermore, exogenously feeding sorbitol does not affect the activity and tran-
scripts of sucrose synthase, a key enzyme of sucrose metabolism, in the shoot 
tips of apple trees (Zhou et al.  2006 ), whereas it decreases the transcript levels 
of  S6PDH ,  SPS , and  ADPGPPase large subunit  in mature leaf-petiole cuttings of 
loquats (Suzuki and Dandekar  2014a ). These facts indicate that sorbitol regulates 
gene expression as a signal molecule in Rosaceae fruit trees, and, as a result, sorbi-
tol affects vegetative growth and fruit quality. In fact, the effects have been revealed 
with analyses on transgenic apple plants silenced or upregulated for  S6PDH  
(Teo et al.  2006 ) and cDNA microarray analyses of fruit and leaves of transgenic 
apples; drastic changes in expression of various genes were shown (Dandekar et al. 
 2008 ; Suzuki and Dandekar  2014b ). Alteration of the phenotype thus could result 
from regulation of gene expression by sorbitol. 

 A mechanism for sorbitol uptake of sorbitol transporter, isolated from the apple, 
being regulated with sorbitol level around cells, has been revealed: interaction of the 
sorbitol transporter, MdSOT6, with cytochrome b5, MdCYB5, in response to low 
sorbitol supply leads to enhancing the affi nity of MdSOT6 to sorbitol, stimulating 
sorbitol uptake (Fan et al.  2009 ). Because the sugar regulation of sugar transporters 
has been reported to be at transcriptional level, this posttranslational regulation is 
proposed as a novel mechanism by Fan et al. ( 2009 ).  

5.3.2.2     Regulation of Sorbitol-Metabolizing Enzymes by Sugars 

 Sugars are metabolized to various sugars and their derivatives by enzymes in plants. 
For example, in sink organs of Rosaceae fruit trees, sorbitol could fi rst be converted 
to fructose by SDH, fructose to fructose-6-phospahte (F6P) by fructokinase, and 
then F6P to G6P, sucrose-6-phosphate, and fructose-1,6-phosphate by phosphoglu-
coisomerase, SPS, and phosphofructokinase, respectively, and then further metabo-
lized. Thus, gene expression regulated by sugars is complicated, and the regulation 
of sorbitol-metabolizing enzymes by various sugars has been researched to compre-
hend that. In apples,  SDH  transcripts in shoot tips are upregulated by sorbitol, 
downregulated by sucrose, and not affected by nonmetabolized sucrose analogues 
(palatinose and turanose), glucose, and fructose (Zhou et al.  2006 ), whereas those in 
sliced tissues of the fruit of Japanese pears are upregulated by sorbitol, glucose, 
sucrose, mannitol, and fructose (Iida et al.  2004 ). This inconsistency might be 
dependent on the differences of organ and physiological condition. In mature loquat 
leaves,  S6PDH  transcripts are, interestingly, increased by sucrose but decreased by 
sorbitol (Suzuki and Dandekar  2014a ). These trees might have mechanisms to 
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positively keep sorbitol as the dominant translocated sugar, suggesting that sorbitol 
has an important role in their survival strategy. In addition,  S6PDH  transcripts are 
increased by palatinose, a sucrose analogue, and mannose and 3- O -methylglucose, 
glucose analogues, but not by glucose, and are decreased by fructose. Understanding 
the function of sorbitol as a signal molecule and sugar-signaling system in Rosaceae 
fruit trees contributes to the improvement of fruit quality and stress tolerance.    

5.4     Sorbitol and Stress Tolerance 

 Compatible solutes, which are of low molecular weight, highly soluble, and non-
toxic at high concentrations, are accumulated in response to abiotic stress and 
include proline, betaine, and polyols (Chen and Murata  2002 ). A series of studies 
has revealed sorbitol accumulation in response to stress and the biochemical mecha-
nism of its accumulation in Rosaceae fruit trees. Furthermore, recent molecular 
analyses are providing direct evidence of the correlation of proteins. 

5.4.1     Drought Stress 

 In Rosaceae fruit trees, including apples, cherries, and peaches, sorbitol is the solu-
ble carbohydrate primarily accumulated in response to drought stress to decrease 
osmotic potential and maintain turgor pressure (Arndt et al.  2000 ; Escobar-Gutierrez 
et al.  1998 ; Lo Bianco et al.  2000 ; Ranney et al.  1991 ; Wang et al.  1995 ; Wang and 
Stutte  1992 ). Additionally, in mature leaves, increase in sorbitol concentration is 
observed in young leaves, stems, and roots. Although the increase does not occur in 
some cases, such as peach seedlings and the root of potted apple trees based on 
glasshouse experiments (Escobar-Gutierrez et al.  1998 ; Wang et al.  1995 ), research 
on fi eld-grown peach trees experiencing drought periods confi rmed that sorbitol is 
signifi cantly accumulated, resulting in active osmotic adjustment (Arndt et al.  2000 ). 
The contribution of sorbitol to osmotic adjustment is reported to be more than 50 % 
and from 60 % to 80 % in the mature leaves of apples and peaches, respectively 
(Lo Bianco et al.  2000 ; Wang and Stutte  1992 ). On the other hand, in response to 
drought stress, the roles of other sugars, including glucose, fructose, and sucrose, 
seem to be limited; increase of those concentrations is not necessarily observed, and 
the contribution to osmotic adjustment is small (Escobar-Gutierrez et al.  1998 ; Lo 
Bianco et al.  2000 ; Ranney et al.  1991 ). These results suggest that sorbitol has an 
important role in osmotic adjustment in Rosaceae fruit trees when they are exposed 
to drought stress. 

 It appears to be generally accepted that sorbitol accumulation in response to 
drought stress is principally caused by an increase in S6PDH activity because 
S6PDH is an essential enzyme of sorbitol synthesis. Sorbitol accumulation may 
result from the preferential conversion of glucose to sorbitol rather than to sucrose 
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and starch when the apple is under osmotic stress (Wang et al.  1996 ), suggesting 
that the accumulation is caused by S6PDH. In peach seedlings in response to short- 
term drought stress, S6PDH activity in mature leaves signifi cantly increases linearly 
with the severity of the stress and correlates with the increase in sorbitol content in 
the phloem sap (Escobar-Gutierrez et al.  1998 ). However, in micropropagated apple 
exposed to water stress and accumulating sorbitol in mature leaves, S6PDH activity 
increases; still, its positive effect on sorbitol accumulation is limited because the 
correlation between sorbitol content and the activity is not signifi cant. SDH has a 
direct effect on sorbitol accumulation in response to water stress because the nega-
tive correlation between sorbitol content and SDH activity is signifi cant (Li and Li 
 2005 ,  2007 ). In potted peaches exposed to drought stress, both S6PDH and SDH 
activities are reduced in both mature leaves and shoot tips, respectively, during 
drought, suggesting that osmotic adjustment via sorbitol accumulation results from 
the decrease in the metabolism of sorbitol by SDH in shoot tips, not the increase in 
sorbitol synthesis by S6PDH in the mature leaves (Lo Bianco et al.  2000 ). On the 
basis of these biochemical analyses, it is suggested that sorbitol accumulation is 
related not only to an increase in sorbitol synthesis by S6PDH but also to a decrease 
in sorbitol catabolism by SDH. 

 Molecular approaches provide evidence of the contribution of S6PDH to sorbitol 
accumulation in response to drought stress. In the leaves of micropropagated apples 
exposed to osmotic stress, the  S6PDH  gene is induced, and the level of expression 
of the  S6PDH  gene is positively correlated with the severity of the stress. The gene 
expression level almost coincides with the enzyme activity and sorbitol accumula-
tion, suggesting that S6PDH has an important role in the response of the apple to 
osmotic stress and that the regulation is at gene level. Furthermore, promoter analysis 
of the  S6PDH  gene shows that a positive regulatory region is present between −361 
and −221 and causes a key response to osmotic stress, which contains two ABA-
responsive elements and a putative MYB-recognition sequence (Zhang et al.  2011 ). 
In addition, it is suggested that SOTs are related to the response to drought stress. 
In micropropagated apple exposed to water stress, mRNAs of  SOTs  in roots, phloem 
tissues, and leaves are upregulated, and the sorbitol content is increased in those 
organs. Increased SOTs contribute to loading more sorbitol into the phloem and 
roots. The apple adapts to drought stress via increasing in sorbitol transport as well 
as sorbitol synthesis (Li et al.  2012b ). Truncation analysis reveals that  MdSOT3  and 
 MdSOT5  promoters contain a number of  cis -acting elements related to drought 
stress (Li et al.  2012a ), which also supports the contribution of the sorbitol trans-
porter to the response to drought stress.  

5.4.2     Salt Stress 

 The relationship between sorbitol accumulation and salt stress has been often 
 documented using  Plantago  (Ahmad et al.  1979 ; Gorham et al.  1981 ; Lambers et al. 
 1981 ). In apples, it is shown that leaf disks treated with high-salinity stresses 
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accumulate sorbitol and, concomitantly, the expression of the  S6PDH  gene increases 
(Kanayama et al.  2006 ). The Japanese persimmon, which does not have potential to 
produce sorbitol, when transformed with apple cDNA encoding  S6PDH  accumu-
lates sorbitol and shows enhanced tolerance of salt stress (Deguchi et al.  2004 ; Gao 
et al.  2001 ). These results indicate that sorbitol enhances salt stress tolerance and 
that the accumulation of sorbitol in response to salt stress in Rosaceae fruit trees is 
the result of transcriptional regulation of S6PDH. In addition, although tobacco 
transformed with apple cDNA encoding  S6PDH  accumulating sorbitol is growth 
inhibited with necrosis (Sheveleva et al.  1998 ), transgenic persimmons show dwarf-
ism; however, that is not severe, and has no necrosis, suggesting that persimmons 
seem to be tolerant to sorbitol and tolerance to sorbitol varied with plant species 
(Deguchi et al.  2004 ).  

5.4.3     Cold Stress 

 Total soluble carbohydrates are associated with increased cold hardiness in fruit 
trees (Palonen and Buszard  1997 ). As temperature decreases, sorbitol content 
increases in apples (Raese et al.  1978 ; Williams and Raese  1974 ) and loquats (Hirai 
 1983 ). The increase in sorbitol content in mature leaves of the loquat, which is an 
evergreen tree, in an orchard in winter is correlated with an increase in S6PDH 
activity (Hirai  1983 ). The increased activity is caused by the induction of 
 S6PDH  expression by low temperatures (Kanayama et al.  2006 ). Low-temperature 
treatment of apple leaf disks induces  S6PDH  expression and ABA content, which 
means that expression of  S6PDH  is under the control of ABA when the apple 
responds to cold stress (Kanayama et al.  2006 ). Similar induction by low tempera-
ture is observed in leaf disks of peaches and Japanese pears; the response of apples 
as described here is one of the common mechanisms to achieve cold hardiness in 
Rosaceae fruit trees (Deguchi et al.  2002a ,  b ). S6PDH induction by low temperature 
has been confi rmed by promoter analyses; the promoter region of apple S6PDH can 
be induced by cold and abscisic acid treatment, and the abscisic acid-responsive 
 cis -element has been identifi ed in the gene promoter (Liang et al.  2012 ).  

5.4.4     Micronutrient Defi ciency Stress 

 In peaches, iron (Fe)-defi ciency chlorosis largely reduces fruit yields and leads to 
fi rmer fruits with higher acidity, total phenolics, and carboxylates. In such a situa-
tion, the sorbitol content in the fruit increases, although the content of other major 
sugars, including sucrose, fructose, and glucose, does not change; this might be an 
adaptive response to Fe-defi ciency stress (Álvarez-Fernández et al.  2011 ). Sorbitol 
contributes to boron transport through the phloem in Rosaceae fruit trees by the 
formation of boron–sorbitol complexes (Brown and Hu  1996 ,  1998 ; Hu et al.  1997 ). 
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In transgenic apple silenced for the  S6PDH  gene, because of a lack of sorbitol, 
cracking and necrotic spot occurred in fruit and shoot growth was inhibited (Suzuki 
and Dandekar  2014b ). These facts suggest that sorbitol could potentially cause 
boron-defi ciency stress, if boron is inadequate.      
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