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    Chapter 14   
 RNA-Seq Data Analysis for Studying Abiotic 
Stress in Horticultural Plants 

             V.V.     Mironova     ,     C.     Weinholdt    , and     I.     Grosse    

    Abstract     Initiating the project on sequencing the  Arabidopsis thaliana L . genome 
at the end of the twentieth century, researchers one day wished to expand the accu-
mulated knowledge on  Arabidopsis  genetics to horticultural plants. The future 
arrived with the appearance of high-throughput sequencing technologies that 
allowed the investigation of transcriptomes of non-model plants at an unprecedented 
pace. RNA-seq experiments provide a unique opportunity of studying in depth the 
molecular- genetic basis for plant response to environmental cues.   Here we substan-
tiate the potential of RNA-seq experiments in applications to horticultural plants. 
The basic steps in RNA-seq data analysis and available software packages are pre-
sented in the fi rst section. Examples of RNA-seq data analyses, including studies of 
gene expression changes under various stresses in horticultural plants, and tran-
scriptome analyses of the tolerance to abiotic stresses in horticultural plants are 
given in the second section.  
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14.1          Introduction 

 The transcriptome is the full set of RNA molecules generated by a cell or a popula-
tion of cells. The transcriptome includes mRNAs, tRNAs, miRNAs, and other non-
coding RNAs. In contrast to the genome, the transcriptome varies signifi cantly with 
cell type, developmental stage, biotic and abiotic conditions. There are two sources 
of transcriptome variability: variability of the transcribed sequences and variability 
of expression levels (Wang et al.  2009 ). Several technologies have been developed 
for studying transcriptomes, but only the application of next-generation-sequencing 
methods to transcriptomes (RNA-seq) has provided the opportunity of studying 
both sources of variability simultaneously and with high resolution (McGettigan 
 2013 ). 

 RNA-seq experiments have shown that both the transcribed sequences and their 
expression levels vary signifi cantly under different biotic and abiotic stresses. 
Alternative splicing, alternative transcription start sites, alternative transcription 
stop sites, and RNA editing are widely present in transcriptomes of well-studied 
species (Zavolan et al.  2003 ; Trapnell et al.  2010 ). Moreover, a great variety of pre-
viously uncharacterized noncoding RNAs has been found by RNA-seq experiments, 
and sequencing of small RNAs (miRNA-seq) is nowadays as popular as standard 
sequencing of mRNAs (Motameny et al.  2010 ; Lee et al.  2010 ). 

 RNA-seq experiments provide additional benefi ts for species without sequenced 
genomes or with poor genome annotations. For horticultural plants, the availability 
of information about transcribed sequences has a fundamental impact on many 
areas of plant biology such as plant phylogenetics, reverse genetics, DNA fi nger-
printing, and marker-assisted selection. Here, we review applications of RNA-seq 
techniques to study abiotic stresses in horticultural plants. The review consists of 
two sections. The fi rst section describes technical aspects of handling RNA-seq 
data. The second section describes examples of applications of RNA-seq techniques 
to horticultural plants subjected to various abiotic stresses such as drought, salinity, 
fl ood, cold, and mineral defi ciency.  

14.2     Analysis of RNA-Seq Data 

 Different next-generation sequencing technologies exist that convert input RNA 
material into millions of short reads. Modern sequencing platforms are based on the 
sequencing-by-synthesis technology with either a DNA polymerase (e.g., Roche 
454, Illumina, Helicos, Pacifi c Biosciences) or a ligase (e.g., Life Technologies 
SOLiD, Complete Genomics) as a key component. The sequencing platforms can 
be further categorized as either  single - molecule - based  such as Helicos and Pacifi c 
Biosciences or  ensemble - based  such as Illumina and SOLiD (Metzker  2010 ). So far 
Illumina and SOLiD have the smallest error rates, less than 1 % per base, which is 
of special importance for the analysis of miRNAs. Both platforms are widely used 
because of their high sequencing capacity, which makes it possible to measure low- 
abundance transcripts (Metzker  2010 ). 
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 RNA-seq data analyses consist of a sequence of steps that must be adapted and 
optimized depending on the goal of the experiment, the RNA material, and the spe-
cies. The analysis can be divided in two main parts: (i) general steps that must be 
performed in each RNA-seq analysis (Sect.  14.2 ) and (ii) specifi c steps that vary 
from analysis to analysis for long RNAs (Sect.  14.2.2 ) and small RNAs (Sect.  14.2.3 ). 

14.2.1      General Steps of RNA-Seq Data Analysis 

 General steps of RNA-seq data analysis involve quality control and fi ltering of reads 
(Sect.  14.2.1.1 ) and assembling the fi ltered reads and connecting them with a refer-
ence genome or transcriptome by mapping or de novo assembly (Sect.  14.2.1.2 ). 

14.2.1.1      Quality Control and Filtering 

 Reads obtained from a sequencing platform must be quality controlled and fi ltered 
for possible sequencing errors, artifacts, or contaminations. Typically, the following 
three types of reads or sub-reads are eliminated: (i) low-quality reads or sub-reads 
including a high percentage of low-quality bases or a high percentage of uncalled 
bases; (ii) reads or sub-reads including sequencing artifacts such as duplicate reads, 
adapter sequences, barcodes, or a strong bias in the GC content; and (iii) reads or 
 sub-reads including DNA contamination or RNA contamination from other species. 

 The tool  fastQC  (  http://www.bioinformatics.babraham.ac.uk/projects/fastqc    ) 
can be used for visualizing the read qualities, the distribution of read-lengths, which 
is important for the analysis of RNA-seq data of small RNAs, or the GC content. An 
extensive comparison of methods addressing errors of Illumina data, published by 
Del Fabbro et al. ( 2013 ), shows that quality control and fi ltering reduce the need for 
disk space and computation time for subsequent mapping and de novo assembly 
steps. 

 Table  14.1  provides an overview of different tools for quality control and fi lter-
ing. Column 2 of Table  14.1  provides information about the underlying algorithmic 
approach such as the  running sum  approach utilized by Cutadapt (Martin  2011 ) or 
different  window-based  approaches utilized by other tools such as  FASTX quality 
trimmer  (hannonlab.cshl.edu/fastx_toolkit) , PRINSEQ ( Schmieder and Edwards 
 2011 ) , Trimmomatic  (Lohse et al.  2012 ), and  sickle  (github.com/najoshi/sickle). 
Column 3 provides information about the capability of handling paired-end reads. 
Here, tools such as  sickle  or  Trimmomatic  can process paired-end reads simultane-
ously, whereas  Cutadapt ,  FASTX quality trimmer , or  PRINSEQ  process the two read 
sets independently. Columns 4 and 5 provide information about the capability of 
handling color-space reads relevant for processing SOLiD data and about the capa-
bility of adapter removal. Clipping of sequencing adapters by tools such as  Cutadapt  
or  Trimmomatic  is indispensable for the analysis of RNA-seq data of small RNAs, 
because the typical read length of 50–200 bp is greater than the typical length of 
small RNAs so that adapters or barcodes are also sequenced.
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14.2.1.2         Assembly of Reads and Connecting them to a Reference 
Genome or Transcriptome 

 Three situations can occur when analyzing RNA-seq data of horticultural plants: (i) 
an annotated reference genome or transcriptome is available, (ii) a reference genome 
or transcriptome is available, but it is not annotated, and (iii) no reference genome 
or transcriptome is available. We address typical approaches for these three cases in 
the sections “Mapping Assembly,” “Transcriptome Assembly,” and “De Novo 
Transcriptome Assembly.” 

   Mapping Assembly 

 In case (i), in which both a reference genome or transcriptome and an annotation are 
available, mapping of quality-fi ltered and trimmed reads can be performed directly 
without additional preprocessing steps (Fig.  14.1 ). Mapping is the process of deter-
mining the position of each read in the reference genome or transcriptome. Hence, 
mapping is a fundamental step of each RNA-seq data analysis. To date more than 80 
mapping tools are available, which differ strongly in their algorithmic strategies and 
their mapping behavior (Fonseca et al.  2012 ). Mapping tools can be grouped by 
several criteria (Li and Homer  2010 ; Alamancos et al.  2014 ), and we concentrate on 
the following two criteria in this review.  

    Table 14.1    Selection of tools for quality control and fi ltering grouped by their algorithmic 
approach and other useful features   

 Tool 
 Algorithmic 
approach 

 Processing of 
paired-end reads 

 Processing of 
SOLiD data 

 Adapter 
removal 

 Cutadapt  Running sum  No  Yes  Yes 
 FASTX quality 
trimmer 

 Window based  No  Yes (for fi xed-
length trimming) 

 Yes (by FASTX 
Clipper) 

 PRINSEQ  Window based  No  No  No 
 Trimmomatic  Window based  Yes  No  Yes 
 Sickle  Window based  Yes  No  No 

  Fig. 14.1    Read mapping for case (i) where a reference genome or transcriptome and an annotation 
are available. Reads can be mapped to the reference genome or transcriptome using the annotation       
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 First, mapping tools can be grouped according to their algorithmic approach. 
They can be based on hash tables, such as  MAQ  (Li et al.  2008a ),  SOAP  (Li et al. 
 2008b ), and  SHRiMP  (Rumble et al.  2009 ), or on suffi x or prefi x tries, such as 
  Bowtie   (Langmead et al. 2009),  Bowtie 2  (Langmead and Salzberg  2012 ),  BWA  (Li 
and Durbin  2009 ),  segemehl  (Hoffmann et al.  2014 ), and  TopHat 2  (Trapnell et al. 
 2009 ) (Table  14.2 ).

   Second, mapping tools can be grouped by their capability of handling reads that 
span exon–exon junctions. Such reads, which are called split reads, can be neglected 
by  unspliced mappers  such as  PALMapper  (Jean et al.  2010 ), segemehl,  STAR  
(Dobin et al.  2013 ), or  TopHat 2  (Table  14.2 ).  Splice - aware  mappers make it pos-
sible to map reads to splicing junctions and thereby increase the number of map-
pable reads and provide helpful information for detecting novel isoforms. Mappers 
such as  TopHat 2  and  STAR  (Table  14.2 ) can optionally use the annotation for 
increasing the accuracy of mapping to known splice junctions.  

   Transcriptome Assembly 

 In case (ii), in which the reference genome or transcriptome is available but an anno-
tation is missing, read mapping can be performed as in section “Mapping Assembly”, 
but mapping tools cannot benefi t from the optional use of the annotation. However, 
an annotation can be generated by one of the following two approaches (Fig.  14.2 ).  

     Table 14.2    Selection of mapping tools from Li and Homer ( 2010 ) and Alamancos et al. ( 2014 )   

 Tools 
 Algorithmic 
approach 

 Alignments 
reported 

 SOLiD 
data 

 Splice- aware 
mapper 

 Use of 
annotation 

 MAQ  Hash table  B,R  Yes  No  – 
 SHRiMP  Hash table  B, U, S  Yes  No  – 
 SOAP  Hash table  B, R, S  No  No  – 
 Bowtie  Suffi x/prefi x tree  A, B, R, S  Yes  No  – 
 Bowtie 2  Suffi x/prefi x tree  A, B, R, S  No  No  – 
 BWA  Suffi x/prefi x tree  R, S  Yes  No  – 
 PALMapper  Suffi x/prefi x tree  A, B  Yes  Yes  No 
 segemehl  Suffi x/prefi x tree  A, B  No  Yes  No 
 STAR  Suffi x/prefi x tree  A, B, S  No  Yes  Yes 
 TopHat 2  Suffi x/prefi x tree  B, S  Yes  Yes  Yes 

  Mapping tools are grouped by their algorithmic approach (column 2), by their treatment of reads 
that map to multiple locations (column 3), and by their capability of handling color-space reads 
from SOLiD (column 4), handling split reads (column 5), and using the annotation (column 6) in 
case of splice-aware mapping tools. If a read maps to multiple locations (column 3), all alignments 
can be reported (A), only the best alignment can be reported (B), a randomly selected alignment 
can be reported (R), only unique alignments can be reported (U), or a user-defi ned number of 
alignments can be reported (S).  
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  Evidence - based  transcript prediction tools such as  mGene  (Schweikert et al. 
 2009 ) or  Augustus  (Keller et al.  2011 ) can be used for obtaining an annotation of 
transcripts or exon-intron structures.  Augustus  can integrate evidence from expressed 
sequence tags (EST), tandem mass spectrometry (MS/MS) data, protein alignments, 
and genomic alignments (Stanke et al.  2008 ) and is capable of identifying coding 
exons even from transcripts with very low abundance (Steijger et al.  2013 ). 

 Alternatively,  genome - guided  transcriptome assembly tools such as  Cuffl inks  
(Trapnell et al.  2010 ),  Scripture  (Guttman et al.  2010 ), and  GRIT  (Boley et al.  2014 ) 
use reads mapped by splice-aware mappers to a reference genome or transcriptome 
for identifying transcript models. One advantage of using genome-guided transcrip-
tome assembly tools is that these tools make it possible to discover novel transcripts 
and to assemble low-abundance transcripts (Martin and Wang  2011 ).  

   De Novo Transcriptome Assembly 

 In case (iii), in which a reference genome or transcriptome is not available, a refer-
ence transcriptome must fi rst be generated by a de novo assembly tool (Fig.  14.3 ). 
This step is often necessary when working with non-model species, and in this case 
it is advisable to have a suffi ciently high sequencing depth and to perform paired-
end sequencing.  

 Historically, de novo assembly tools such as  ABySS  (Birol et al.  2009 ),  SOAPdenov o 
(Luo et al.  2012 ), and  Velvet  (Zerbino and Birney  2008 ) were developed for assem-
bling genomes, but specialized tools for performing de novo assembly of transcrip-
tomes have also been developed in the meantime. Examples of de novo transcriptome 
assembly tools are  OASES  (Schulz et al. 2012),  Rnnotator  (Martin et al.  2010 ), and 
 SOAPdenovo-trans  (Xie et al.  2014 ),  Trans-ABySS  (Simpson et al. 2009), and  Trinity  
(Haas et al.  2013 ). 

 Table  14.3  shows several features of these fi ve de novo transcriptome assembly 
tools. Specifi cally, column 2 shows the algorithmic approach, column 3 the capabil-
ity of detecting alternative isoforms, and column 4 the capability of quantifying 
isoform-specifi c expression. From column 2 of Table  14.3  we see that  Trinity  has a 
k-mer size fi xed to k = 25 and that the k-mer sizes for the tools  Oases ,  Rnnotator , 
 SOAPdenovo - trans , and  Trans - AbySS  are variable. We see from column 3 that 

  Fig. 14.2    Missing annotation 
can be substituted by 
computational transcript 
prediction directly from the 
reads (A) or using the mapped 
reads for a genome-guided 
assembly of the genes (B)       
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 SOAPdenovo - trans ,  Trans - AbySS , and  Trinity  are capable of detecting alternative 
isoforms.  De novo  assembly tools can consume hundreds of gigabytes of RAM and 
can run for weeks even on a high-performance-computing cluster (Martin and Wang 
 2011 ). Rapaport et al. ( 2013 ) provides further details on and a comprehensive 
review of  de novo  transcriptome assemblers.

   Additionally, the tool  scaffold_builder  (Silva et al.  2013 ) has been developed for 
scaffolding preassembled contigs against a genome from an evolutionarily related 
species with a suffi ciently high degree of sequence similarity. 

 After  de novo  transcriptome assembly has been performed and a resulting 
 reference transcriptome is available, reads can be mapped to the  de novo  assembled 
reference transcriptome as described in section “Mapping Assembly” and illus-
trated by Figs.  14.1  and  14.2 . Additionally,  evidence-based  transcript prediction 
tools or genome-guided transcriptome assembly tools can be applied for annotating 
exons in the reference transcriptome (Fig.  14.2 ).    

  Fig. 14.3    The missing reference genome or transcriptome can be substituted by de novo transcrip-
tome assembly. Subsequent mapping to the de novo assembled reference transcriptome can be 
performed and the annotation can be predicted as described by (Fig.  14.2 )       

    Table 14.3    Selection of  de novo  transcriptome assembly tools   

 Tool  Algorithmic approach 
 Detection of 
alternative isoforms 

 Quantifi cation 
of isoforms 

 OASES  a    Variable k-mer  No  No 
  Rnnotator  a   Variable k-mer  No  No 
 SOAPdenovo-trans  Variable k-mer  Yes  No 
 Trans-Abyss  Variable k-mer  Yes  Isoform read coverage 
 Trinity  Single k-mer  Yes  Yes b  

   De novo  transcriptome assembly tools are grouped by their algorithmic approach (column 2) and 
by their capability of detecting alternative isoforms (column 3) and of quantifying isoform-specifi c 
expression (column 4) 
  a Uses  Velvet  for  de novo  transcriptome assembly 
  b Uses RSEM for calculating RKPM values (see Sect.  14.2.2.1 )  
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14.2.2       Specifi c Steps of RNA-Seq Data Analysis of Long RNAs 

 Mapped reads can be used for addressing numerous tasks such as detecting 
 differentially expressed transcripts (Sect.  14.2.2.1 ) or calling single-nucleotide 
polymorphisms (Sect.  14.2.2.2 ). 

14.2.2.1        Detecting Differentially Expressed Transcripts 

 In this section we describe the detection of differentially expressed transcripts, 
which consists of three steps called quantifi cation, normalization, and statistical 
testing (Fig.  14.4 ).  

   Quantifi cation 

 As starting point for the detection of differentially expressed transcripts, RNA abun-
dances corresponding to each transcript must be quantifi ed: this can be accom-
plished by (i)  count - based  approaches or by (ii)  model - based  approaches. 

 Count-based approaches simply quantify the relative RNA abundance per tran-
script by counting the number of mapped reads per annotated transcript. Count- 
based approaches can be divided in two groups. Only uniquely mapped reads are 
counted by tools of group (a), whereas all mapped reads are counted by tools of 
group (b). Examples for tools of group (a) are  HTSeq - count  (Anders et al.  2014 ) and 
 GenomicRanges  (Lawrence et al.  2013 ). Examples for tools of group (b) are  IRanges  
(Lawrence et al.  2013 ) and  BEDTools  (Quinlan and Hall  2010 ). 

 Several tools such as  featureCounts  (Liao et al.  2014 ) belong to both groups 
as they allow counting both uniquely mapped and all mapped reads. Approaches 
for quantifying the relative RNA abundance based on all mapped reads often lead 
to a biased quantifi cation from cross-mapping of reads from close homologs (Anders 
et al.  2013 ). whereas, approaches based on counting only uniquely mapped reads 

Differential Expression

Quantification

Normalization

Statistical test

  Fig. 14.4    Detection of 
differentially expressed 
transcripts. Current 
approaches for detecting 
differentially expressed 
transcripts consist of three 
steps quantifi cation, 
normalization, and statistical 
testing       

 

V.V. Mironova et al.



205

typically lead to a less biased quantifi cation of the relative RNA abundance and thus 
are preferable for detecting differentially expressed transcripts. 

 Model-based approaches such as  Cuffl inks  (Trapnell et al.  2010 ) and  RSEM  (Li 
and Dewey  2011 ) combine the quantifi cation step with the subsequent normaliza-
tion step. This combination leads to normalized values for relative RNA abundances 
per transcript. Examples are the RPKM normalization for single-end reads, where 
RPKM stands for  reads per kilobase of exon per million mapped reads  (Pang et al. 
 2013 ), or the FPKM normalization for paired-end reads, where FPKM stands for 
 fragments per kilobase of exon per million mapped reads  (Trapnell et al.  2010 ).  

   Normalization 

 Subsequent to the quantifi cation step, a normalization step is required for obtaining 
normalized values of relative RNA abundances that are comparable across different 
samples and different libraries. Raw counts obtained from count-based quantifi ca-
tion approaches should not be compared to each other without normalization for 
reasons of different library sizes, different technical biases of library preparation, 
and different nucleotide compositions (Kvam et al.  2012 ; Rapaport et al.  2013 ). 

 A comparison of several normalization approaches published by Dillies et al. 
( 2013 ) shows that RPKM normalization does typically not improve the results of 
count-based quantifi cation approaches and should thus be replaced by  upper quartile 
normalization ,  median  normalization (Bolstad et al.  2003 ),  DESeq  normalization 
(Anders et al.  2012 ), or  TMM  normalization (Robinson et al.  2010 ). According to 
Dillies et al. ( 2013 ), the normalization tools  DESeq  and  TMM  yield the most robust 
results with respect to different library sizes and different library compositions.  

   Statistical Testing 

 Pipelines for the detection of differentially expressed transcripts require normalized 
values of relative RNA abundances in at least two groups of samples as input, then 
compute some test statistics for each of the transcripts from these normalized input 
data, and fi nally rank the transcripts by their computed test statistics. 

 Popular software packages for the detection of differentially expressed tran-
scripts are  baySeq  (Hardcastle and Kelly  2010 ),  DESeq  (Anders and Huber  2010 ), 
 edgeR  (Robinson et al.  2010 ), and  PoissonSeq  (Li et al.  2012 ) (Table  14.4 ). Each of 
these software packages includes several normalization methods for which the sta-
tistical test is optimized. For example, the Bioconductor (Gentleman et al.  2004 ) 
packages  DESeq  and  edgeR  use a variation of Fisher’s exact test adapted to the 
negative binomial (NB) distribution for calculating the signifi cance of the change of 
the normalized relative RNA abundances between two conditions, whereas the soft-
ware package  PoissonSeq  uses a statistical test based on the Poisson distribution. 
 DEXseq  (Anders et al.  2012 ) is a special software package devoted to the detection 
of differentially expressed exons, and a detailed description of  DESeq  and  edegR  is 
published by Anders et al. ( 2013 ).
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   Soneson and Delorenzi ( 2013 ) compare 11 different software packages for 
detecting differentially expressed transcripts. They fi nd that different software pack-
ages are optimal for different situations and that the resulting sets of differentially 
expressed genes can differ strongly between the software packages. As a result, the 
authors recommend using more than one software package for detecting  differentially 
expressed transcripts. 

 An alternative approach for detecting differentially expressed transcripts is based 
on model-based methods for quantifi cation and normalization. One popular exam-
ple is the  Tuxedo suite  pipeline, which is composed of the mapping tool  TopHat 2 , 
the quantifi cation and normalizing tool  Cuffl inks , and the tool  Cuffdiff 2  for the 
detection of differentially expressed genes or isoforms (Trapnell et al.  2013 ). 
A detailed description of the TopHat-Cuffl inks pipeline has been published by 
Trapnell et al. ( 2010 ). 

    Table 14.4    Selection of software packages for detection of differentially expressed transcripts   

 Tools  Input  Normalization 
 Model 
distribution  Test statistic 

 Differential 
expression 

  DESeq   Gene counts  DESeq 
normalization 
(normalization 
factor by median 
of scaled counts) 

 NB  Adapted 
Fisher’s exact 
test for NB 

 Genes 

  edgeR   Gene counts  TMM (weighted 
trimmed mean of 
log expression 
ratios) 

 NB  Adapted 
two-sided 
Fisher’s exact 
(binomial test) 

 Genes 

 baySeq  Gene counts  TMM, Quantile  NB  Empirical Bayes 
approach 

 Genes 

 PoissonSeq  Gene counts  Quantile, TMM  Poisson  Score statistic 
on the basis of a 
Poisson 
log-linear model 

 Genes 

 EBSeq  Isoform/
gene counts 
or RSEM-
EBSeq 
pipeline 

 Median, Quantile  NB  Bayesian 
method: 
estimate 
posterior 
probability 

 Genes and 
isoform 

 DEXseq  Exon counts  DESeq  NB  NbinomTest  Exons 
 Cuffdiff 2  FPKM  FPKM  NB   t  test-like 

statistics for 
FPKM 

 Genes and 
isoforms 

  The software packages are grouped by the input data from the quantifi cation step (column 2), by 
the supported normalizations (column 3), by the statistical model for the normalized values of the 
relative RNA abundance (column 4), by the statistical test (column 5), and by the type of transcript 
that can be handled such as genes, exons, or isoforms  
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 Detecting differentially expressed transcripts in cases where no reference 
genome or transcriptome is available, but where a  de novo  transcriptome assembly 
is performed for generating a reference transcriptome, is an important task for the 
analysis of RNA-seq data of horticultural plants and other non-model species. 
In this case, the software package  RSEM  is often used, which provides the RSEM-
EBSeq pipeline and the tool  EBSeq  for the detection of differentially expressed 
transcripts (Leng et al.  2013 ) (Table  14.4 ).   

14.2.2.2      SNP Calling 

 Calling single-nucleotide polymorphisms (SNPs) is a very important task in many 
RNA-seq experiments including studies on plants. SNP calling can be performed 
directly on the sorted output of mapped reads (Sect.  14.2.1 ). One limitation of calling 
and analyzing SNPs from RNA-seq data is that only SNPs in exonic regions can be 
detected. Three popular SNP callers are  Freebayes  (  https://github.com/ekg/freebayes    ), 
 GATK  (DePristo et al.  2011 ), and  Samtool  (Li et al. 2009). An extended list of SNP 
callers can be found at   http://seqanswers.com/wiki/SNP_discovery    . The standard 
output format is the variant calling format (vcf), so most SNP callers write their 
output in vcf fi les. vcf fi les can then be fi ltered for signifi cant SNPs by  vcftools  
(Danecek et al.  2011 ), and their content can be visualized, for example, by the 
 Integrative Genomics Viewer  (IGV) (Thorvaldsdóttir et al.  2013 ).   

14.2.3      Specifi c Steps of RNAseq Data Analysis of Small RNAs 

 Mapped reads from a pool of small RNAs can be used for addressing numerous 
tasks such as detecting differentially expressed small RNAs, predicting novel miR-
NAs, or predicting miRNA targets, and we address these tasks in Sects.  14.2.3.1 –
 14.2.3.3 . Detailed reviews of RNA-seq data analyses of small RNAs have been 
published by Motameny et al. ( 2010 ) and Gomes et al. ( 2013 ). 

14.2.3.1      Detecting Differentially Expressed Small RNAs 

 One main task of the analysis of small RNA-seq data is the detection of differen-
tially expressed miRNAs, siRNAs, snoRNAs, tRNA, or rRNAs. This task can be 
accomplished by the same steps as described in Sect.  14.2.2.1  with the only addition 
that the reference genome or transcriptome or the annotation should be related to the 
class of small RNAs to be analyzed. In case of miRNAs, such information is avail-
able from the database  miRBase  (Kozomara and Griffi ths-Jones  2011 ), which 
allows using the miRNA hairpin structure as reference for mapping or using 
genome-related miRNA annotation fi les for quantifi cation.  
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14.2.3.2     Predicting Novel Plant miRNAs by  plantDARIO  

 The tool  plantDARIO  (  http://plantdario.bioinf.uni-leipzig.de/    ), an extension of the 
tool  DARIO  (Fasold et al.  2011 ), can be used for the prediction of novel miRNAs, 
tRNAs, C/D-box snoRNAs, and H/ACA-box snoRNAs in plants.  PlantDario  is spe-
cifi cally tailored to plants and uses the tool  NOVOMIR  (Teune and Steger  2010 ) for 
the prediction of novel miRNAs and the tool  SnoReport  (Hertel et al.  2008 ) for 
predicting novel snoRNAs.  PlantDARIO  provides basic features including quality 
control, quantifi cation, and normalization in addition to predicting novel small 
RNAs. Currently,  plantDARIO  allows analyses of small RNAs in  Arabidopsis thali-
ana ,  Beta vulgaris , and  Solanum lycopersicum .  

14.2.3.3      Predicting miRNA Targets 

 The prediction of miRNA targets in mammals is reviewed by Witkos et al. ( 2011 ). 
For plants, however, there are only a few tools available for the prediction of miRNA 
targets. Two noteworthy examples are  psRNATarget  (Witkos et al.  2011 ) and  TAPIR  
(Bonnet et al.  2010 ). Additionally, software packages for the analysis of miRNA 
such as  miRDeep - P  (Yang and Li  2011 ),  miREvo  (Wen et al.  2012 ),  MirTools 2.0  
(Wu et al.  2013 ),  seqBuster  (Pantano et al.  2010 ), or  miRanalyzer  (Hackenberg et al. 
 2011 ) can be used for the prediction of plant miRNA targets. These software pack-
ages can contain additional tools for predicting differentially expressed miRNAs 
(Table  14.5 , column 3), novel miRNAs (Table  14.5 , column 6), isoforms (isomiRs) 
(Table  14.5 , column 5), and point mutations (Motameny et al.  2010 ; Git et al.  2010 ).

     Table 14.5    Selection of software packages for the analysis of miRNAs   

 Tool  Quantifi cation 
 Differential 
expression 

 Prediction 
of miRNA 
targets 

 Prediction 
of miRNA 
isoforms 

 Prediction 
of novel 
miRNAs  Organism 

 miRanalyzer  Yes  Yes  Yes  Yes  Yes  A, P 
 MirTools 2.0  Yes  Yes  Yes  No  Yes  A, P 
 psRNATarget  Yes  No  Yes  No  No  P 
 TAPIR  Yes  No  Yes  No  No  P 
 miREvo  Yes  No  Yes  No  Yes  A, P 
 miRDeep-P  Yes  No  No  No  Yes  P 
 plantDARIO  Yes  No  No  No  Yes  P 
 SeqBuster  Yes  No  No  Yes  Yes  A, P 

  Several of these software packages are not tailored to plants. The software packages are grouped 
by their capability of quantifying relative miRNA abundance (column 2), of detecting differen-
tially expressed miRNAs (column 3), of predicting miRNA targets (column 4), miRNA isoforms 
(column 5), and novel miRNAs (column 6), and of analyzing animal (A) and/or plant (P) miRNAs 
(column 7)  

V.V. Mironova et al.

http://plantdario.bioinf.uni-leipzig.de/


209

14.3          RNA-Seq Data on Abiotic Stresses of Horticultural Plants 

 Although abiotic stresses in model plants have been studied mainly by microarray 
techniques, nowadays we observe a dramatic growth of transcriptome profi ling by 
RNA-seq experiments in non-model plants. Here we review recently published 
results on RNA-seq derived transcriptome data analyses for plants under abiotic 
stresses such as cold, drought, or salinity. One can classify the experiments in two 
groups: (i) the study of transcriptional response in horticultural plants and (ii) the 
study of transcriptomes of plants that are well adapted to abiotic stresses such as 
endemics or wild cultivars. Several studies have been also performed to investigate 
the molecular basis of adaptation under selection processes, for example, in wheat 
(Jia et al.  2013 ) and in tomato (Koenig et al.  2013 ). In some studies (Massa et al. 
 2013 ; O’Rourke et al.  2013 ), cross-species comparisons of stress-induced transcrip-
tomes have uncovered differentially expressed orthologs and defi ned evolutionary 
conserved genes. Using the example of cold-responsive transcriptome studies, we 
show which bioinformatics methods researchers have used for transcriptome assem-
bly and annotation and for the detection of differentially expressed genes 
(Table  14.6 ). For other abiotic stresses studies, we only give an overview of the 
RNA-seq data analysis tasks.

14.3.1       Cold 

 Recently, a number of studies have been published on the analysis of cold- responsive 
transcriptomes based on RNA-seq experiments. Two different questions that have 
been studied are (i) plant cold resistance and acclimation and (ii) the harmful effect 
of low temperatures. In the fi rst case, the transcriptomes of plants known for their 
adaptability to cold have been studied. Examples are  Ammopiptanthus mongolicus , 
an evergreen broadleaf legume shrub, distributed in Mid-Asia where the tempera-
ture can be as low as −30 °C during winter (Pang et al.  2013 ), the sheepgrass  Leymus 
chinensis , an important perennial forage grass across the Eurasian Steppe (Chen 
et al.  2013 ), or the extremophile Antarctic hairgrass  Deschampsia antarctica , the 
only natural grass species in the maritime Antarctic (Lee et al.  2013  ).  In the second 
case, researchers studied the transcriptomes of tropical or other cold-sensitive plants 
useful in biotechnology or horticulture. Among them has been  Jatropha curcas  L., 
an oil-rich tropical shrub with multiple uses, including biodiesel production (Wang 
et al.  2013b ),  Anthurium andraeanum , one of the most popular tropical fl owers 
(Tian et al.  2013 ), and the tea plant  Camellia sinensis  (Wang et al.  2013d ). 

 In the studies, the transcriptomes have been assembled de novo (Table  14.6 ). 
Standard transcriptome annotation included BLAST alignments against the NCBI 
 nonredundant (NR) database and the COG database as well as GO and KEGG anno-
tations. However, in some works an extensive annotation has been done also by 
alignments against EST databases (Wang et al.  2013b ,  d ; Lee et al.  2013 ), the 
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TAIR10 database (Wang et al.  2013d ), or the PlantGDB database (Chen et al.  2013 ). 
For  Leymus chinensis  and  Deschampsia antarctica , the transcriptome assembly 
allowed performing phylogenetic analyses (Chen et al.  2013 ; Lee et al.  2013 ). In 
each of these studies, thousands of genes were found to be differentially expressed 
under cold. Their functional annotation allowed revealing (i) pathways that were 
signifi cantly affected under cold and (ii) cold-sensitive genes which were specifi c 
for the analyzed species. Specifi c attention has been paid to cold-sensitive transcrip-
tion factors by Chen et al. ( 2013 ), Tian et al. ( 2013 ), and Wang et al. ( 2013d ). 

 An interesting study of the cold-induced mRNA degradome in  Brachypodium 
distachyon  has been performed based on RNA-seq experiments and a parallel anal-
ysis of RNA ends (PARE) in (Zhang et al.  2013a ). The authors identifi ed specifi c 
patterns of mRNA decay in cold response. Uncapped transcripts changed signifi -
cantly after cold treatment, whereas their transcript abundance remained unchanged. 
MiRNA- seq experiments of the similar samples showed some miRNA–mRNA 
pairs associated with cold response. In addition to miRNA-directed internal cleav-
age, the authors also revealed 90 transcripts that undergo an endogenous cleavage 
by an unknown mechanism through a specifi c and conserved motif.  

14.3.2     Drought 

 RNA-seq analysis has been used for identifying genes that mediate the tolerance to 
water-limiting environments, which in the long term will contribute to improvement 
of plant productivity under drought. Transcriptome profi les under drought response 
have been analyzed in horticultural plants that are vulnerable to drought such as 
potato ( Solanum tubersosum ) (Massa et al.  2013 ; Zhang et al.  2014 ), rice ( Oriza 
sativa ) (Zong et al.  2013 ), and common beans ( Phaseolus vulgaris ) (Müller et al. 
 2013 ). Similarly, several drought-tolerant species such as  Agave deserti  and  Agave 
tequilana  have been studied based on RNA-seq experiments (Gross et al.  2013 ). 
Two varieties of quinoa ( Chenopodium quinoa  Willd.), the allotetraploid grain crop 
with an impressive drought tolerance and nutritional content, have been studied by 
RNA-seq (Raney et al.  2014 ). 

 To identify differentially expressed genes under drought stress in cotton, RNA- 
seq experiments have been performed in the tetraploid  Gossypium hirsutum  cotton 
(Bowman et al.  2013 ) and the diploid  Gossypium arboretum  cotton (Zhang et al. 
 2013c ). RNA-seq experiments have also provided insight into transcriptional 
drought responsive in trees such as poplars (Cossu et al.  2013 ; Tang et al.  2013 ) and 
eucalyptus (Villar et al.  2011 ). 

 Drought stress during fl owering and grain-fi lling stages of growth contributes to 
serious yield loss in common bean (Kakumanu et al.  2012 ; Müller et al.  2013 ), and 
the dehydration stress response of the transcriptome of  Chrysanthemum  have been 
studied by Xu et al. ( 2013b ). 

 In some works, RNA-seq experiments have been performed for studying specifi c 
gene families that play an important role in drought response. Examples are studies 
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of expression patterns of ten AP2/EREB-like transcription factors in two soybean 
 genotypes (Marcolino-Gomes et al.  2013 ) or the detection and analysis of LEA 
 proteins in the tropical legume  Castanospermum austral  (Delahaie et al.  2013 ). 

 Comprehensive analyses of drought response mechanisms were performed for 
 Oryza sativa  by Zong et al. ( 2013 ). The authors have performed ChIP-seq and 
RNA-seq analyses for studying the relationships between epigenomic and transcrip-
tional regulation in response to drought and have been found  associations between 
the distribution pattern of histone H3K4-tri-methylation and gene expression 
profi les. 

 Drought- and salinity-responsive miRNAs have been analyzed for the emerging 
biofuel crop switchgrass ( Panicum virgatum ) by Xie et al. ( 2013 ). Differentially 
expressed miRNAs and their predicted targets have been functionally annotated and 
a number  of interesting targets have been selected to aid in designing next-genera-
tion switchgrass for biomass and biofuel.  

14.3.3     Heat and Light 

 In most cases, heat stress is associated with drought, but the study of heat stress defense 
mechanisms has a primary importance also for some of the cold-temperate species. 
For example, one of the most crucial factors that limits the cultivation of the Pacifi c 
Ocean kelp  Saccharina japonica  in China is its sensitivity to high temperature. The 
response of the  S. japonica  transcriptome to heat have been studied based on RNA-seq 
experiments (Liu et al.  2013 ), and the functional annotation of differentially expressed 
genes under primary heat response has showed that algae respond to heat stress by a 
complex network of genes rather than by a few specifi c stress- related genes. 

 The lack or excess of light can be also stressful for some plant species. An inter-
esting comparison of the transcriptomes of an allotetraploid  Glycine  and its diploid 
progenitors has been published by Coate et al. (  2013 ). Allopoliploidy is often asso-
ciated with increased photosynthetic capacity as well as enhanced stress tolerance. 
In this work it has been shown that, under chronic excess of light, a photoprotective 
mechanism was higher in an allopolyploid  Glycine dolichocarpa  than in its diploid 
progenitors  G. tomentella  and  G. syndetika .  

14.3.4     Soil Pollutants 

 Toxic heavy metals in the soil can be absorbed and accumulated by plant roots, 
signifi cantly suppressing their growth and making them a potential source for 
human health risks, especially in vegetables with edible roots. The radish response 
to lead stress has been studied based on RNA-seq experiments by Wang et al. 
( 2013e ). In this work, the radish transcriptome has been de novo assembled, and 
thousands of differentially expressed genes between control roots and roots 
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subjected to lead stress have been detected. Their functional annotation revealed 
that the upregulated genes have been predominately involved in defense responses 
in the cell wall and glutathione metabolism, whereas downregulated genes have 
been mainly related to carbohydrate metabolism pathways. 

 Al 3+  tolerance mechanisms in rice roots have been studied by Arenhart et al. 
( 2013 ). The central role of the ASR5 transcription factor for regulating the tran-
scriptional response to Al 3+  has been demonstrated by the fact that most of the genes 
differentially expressed under Al 3+  stress have not been differentially expressed in 
plants with suppressed ASR5. 

 Boron-induced transcriptomes in barley have been studied by Tombuloglu et al. 
( 2013 ), wherein the authors identifi ed critical boron-induced transcription factors of 
the MYB family, which are well-known regulators of stress response. Boron- 
induced transcriptome changes in barley have been also studied based on miRNA-
seq experiments by Ozhuner et al. ( 2013 ), whereby boron-induced miRNAs and 
their potential targets have been identifi ed and partially validated by quantitative 
polymerase chain reaction (qPCR).  

14.3.5     Mineral Defi ciency 

 Response to defi ciency of macro- and micronutrients has been also studied by RNA-
seq experiments in plants. One example is the study of the response to potassium 
starvation in two watermelon genotypes (Fan et al.  2014 ). 

 The response to phosphate defi ciency has been intensively studied by RNA-Seq 
experiments in plants. Plants utilize different morphological and physiological 
strategies to adapt to phosphate starvation in the soil. Studies of phosphate-defi cient 
transcriptomes or the transcriptomes of plants highly tolerant to the lack of phos-
phate may elucidate the molecular basis of the response to phosphate starvation, and 
such studies have been performed by RNA-seq experiments in four rice cultivars 
(Oono et al.  2013 ). As a result, a set of core transcripts responsive to phosphate 
defi ciency in the four rice cultivars has been identifi ed. 

 The response to phosphate defi ciency was studied in white lupin (O’Rourke et al. 
 2013 ), which has evolved unique adaptations for growth in phosphate-defi cient 
soils, including the development of cluster roots to increase the root surface area. As 
a result, 12 genes have been found differentially expressed in response to phosphate 
defi ciency in  Arabidopsis thaliana , potato, and white lupin, making these genes 
ideal candidates to monitor the phosphate status of plants. 

 The expression of mRNA of ribosomal proteins has been studied based on RNA-
seq experiments in phosphate- and iron-defi cient plants of  A. thaliana  (Wang et al. 
 2013c ), and three and 81 differentially expressed genes have been identifi ed, respec-
tively. At the protein level, many more ribosomal proteins were accumulated in 
response to phosphate than in response to iron, suggesting that phosphate and iron 
starvation provoke an altered composition of ribosomes and a biased translation, which 
can be an important mechanism of adaptation to changing environmental conditions.  
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14.3.6     Salinity 

 Salinity is one of the major abiotic factors affecting productivity of horticultural 
plants. Recently RNA-seq experiments have been performed for studying the 
response to salinity stress in lucerne (alfalfa) (Postnikova et al.  2013 ), potato (Massa 
et al.  2013 ), and barley (Ziemann et al.  2013 ). Among cereal crops, barley is con-
sidered as notably salt tolerant ,  but an interesting task is to analyze the transcrip-
tomes of halophytic plants. For example, global transcriptome profi ling has been 
performed in  Salicornia europaea , an edible plant well adapted to extreme saline 
environments (Ma et al.  2013 ). Among other halophytic plant species, RNA-seq 
experiments have been also performed on the desert poplar  Populus euphratica  
(Tang et al.  2013 ) and the Inner Mongolia endemic shrub  Reaumuria trigyna , which 
has unique morphological characteristics that allow it to tolerate stress imposed by 
semidesert saline soil (Dang et al.  2013 ). 

 Salinity stress has been also studied in wild halophyte relatives of horticultural 
plants such as  Porteresia coarctata,  a wild rice that is capable of tolerating high 
salinity and submergence (Garg et al.  2014 ), and  Gossypium  species with a remark-
able tolerance to saltwater immersion such as  Gossypium aridum  (Xu et al.  2013a ). 

 Effects of saline-alkaline soils have been studied by RNA-seq experiments in 
several plant species. Time series of transcriptomes of roots of the halophyte wood 
 Tamarix hispida  stressed by NaHCO 3  have been studied by Wang et al. ( 2013a ). 
Early transcriptomic adaptation to sodium carbonate in maize has been studied by 
Zhang et al. ( 2013b ), where the authors analyzed shared and distinctive targets in 
Na 2 CO 3  − , NaCl − , and high-pH-induced transcriptomes.      

  Acknowledgments   We thank A.V. Kochetov, I. Lemnian, and N.A. Omelyanchuk for fruitful 
discussions and Dynasty Foundation (grant for young biologists), DFG (grant no. GR 3523/2), 
RAS program 6.6, and RFBR Foundation (grant no. 12-04-33112) for fi nancial support.  

   References 

     Alamancos GP, Agirre E, Eyras E (2014) Methods to study splicing from high-throughput RNA 
sequencing data. Methods Mol Biol 1126:357–397. doi:  10.1007/978-1-62703-980-2_26      

    Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 
11:R106. doi:  10.1186/gb-2010-11-10-r106      

     Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. 
Genome Res 22:2008–2017. doi:  10.1101/gr.133744.111      

     Anders S, McCarthy DJ, Chen Y et al (2013) Count-based differential expression analysis of RNA 
sequencing data using R and bioconductor. Nat Protoc 8:1765–1786. doi:  10.1038/
nprot.2013.099      

   Anders S, Pyl PT, Huber W (2014) HTSeq A Python framework to work with high-throughput 
sequencing data. BioRxiv  doi:10.1101/002824  

    Arenhart RA, de Lima JC, Pedron M et al (2013) Involvement of ASR genes in aluminium toler-
ance mechanisms in rice. Plant Cell Environ 36:52–67. doi:  10.1111/j.1365-3040.2012.02553.x      

    Birol I, Jackman SD, Nielsen CB et al (2009) De novo transcriptome assembly with 
ABySS. Bioinformatics 25:2872–2877. doi:  10.1093/bioinformatics/btp367      

V.V. Mironova et al.

http://dx.doi.org/10.1007/978-1-62703-980-2_26
http://dx.doi.org/10.1186/gb-2010-11-10-r106
http://dx.doi.org/10.1101/gr.133744.111
http://dx.doi.org/10.1038/nprot.2013.099
http://dx.doi.org/10.1038/nprot.2013.099
http://dx.doi.org/10.1111/j.1365-3040.2012.02553.x
http://dx.doi.org/10.1093/bioinformatics/btp367


215

    Boley N, Stoiber MH, Booth BW et al (2014) Genome-guided transcript assembly by integrative 
analysis of RNA sequence data. Nat Biotechnol 32:341–346. doi:  10.1038/nbt.2850      

    Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of normalization methods 
for high density oligonucleotide array data based on variance and bias. Bioinformatics 
19:185–193  

    Bonnet E, He Y, Billiau K, Van de Peer Y (2010) TAPIR, a web server for the prediction of plant 
microRNA targets, including target mimics. Bioinformatics 26:1566–1568. doi:  10.1093/bioin-
formatics/btq233      

    Bowman MJ, Park W, Bauer PJ et al (2013) RNA-Seq transcriptome profi ling of upland cotton 
( Gossypium hirsutum  L.) root tissue under water-defi cit stress. PLoS One 8:e82634  

        Chen S, Huang X, Yan X et al (2013) Transcriptome analysis in sheepgrass ( Leymus chinensis ): a 
dominant perennial grass of the Eurasian Steppe. PLoS One 8:e67974. doi:  10.1371/journal.
pone.0067974      

    Coate JE, Powell AF, Owens TG, Doyle JJ (2013) Transgressive physiological and transcriptomic 
responses to light stress in allopolyploid  Glycine dolichocarpa  (Leguminosae). Heredity 
(Edinb) 110:160–170. doi:  10.1038/hdy.2012.77      

    Cossu RM, Giordani T, Cavallini A, Natali L (2013) High-throughput analysis of transcriptome 
variation during water defi cit in a poplar hybrid: a general overview. Tree Genet Genomes 
10:53–66. doi:  10.1007/s11295-013-0661-5      

    Danecek P, Auton A, Abecasis G et al (2011) The variant call format and VCF tools. Bioinformatics 
27:2156–2158. doi:  10.1093/bioinformatics/btr330      

   Dang Z, Zheng L, Wang J et al (2013) Transcriptomic profi ling of the salt-stress response in the wild 
recretohalophyte  Reaumuria trigyna . BMC Genomics 14:29 (doi:10.1186/1471-2164-14-29)  

    Del Fabbro C, Scalabrin S, Morgante M, Giorgi FM (2013) An extensive evaluation of read trim-
ming effects on Illumina NGS data analysis. PLoS One 8:e85024. doi:  10.1371/journal.
pone.0085024      

    Delahaie J, Hundertmark M, Bove J et al (2013) LEA polypeptide profi ling of recalcitrant and 
orthodox legume seeds reveals ABI3-regulated LEA protein abundance linked to desiccation 
tolerance. J Exp Bot 64:4559–4573. doi:  10.1093/jxb/ert274      

    DePristo MA, Banks E, Poplin R et al (2011) A framework for variation discovery and genotyping 
using next-generation DNA sequencing data. Nat Genet 43:491–498. doi:  10.1038/ng.806      

     Dillies M-A, Rau A, Aubert J et al (2013) A comprehensive evaluation of normalization methods 
for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 14:671–683. 
doi:  10.1093/bib/bbs046      

    Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. 
Bioinformatics 29:15–21. doi:  10.1093/bioinformatics/bts635      

    Fan M, Huang Y, Zhong Y et al (2014) Comparative transcriptome profi ling of potassium starva-
tion responsiveness in two contrasting watermelon genotypes. Planta (Berl) 239:397–410. 
doi:  10.1007/s00425-013-1976-z      

    Fasold M, Langenberger D, Binder H et al (2011) DARIO: a ncRNA detection and analysis tool 
for next-generation sequencing experiments. Nucleic Acids Res 39:W112–W117. doi:  10.1093/
nar/gkr357      

    Fonseca NA, Rung J, Brazma A, Marioni JC (2012) Tools for mapping high-throughput sequenc-
ing data. Bioinformatics 28:3169–3177. doi:  10.1093/bioinformatics/bts605      

    Garg R, Verma M, Agrawal S et al (2014) Deep transcriptome sequencing of wild halophyte rice, 
 Porteresia coarctata , provides novel insights into the salinity and submergence tolerance fac-
tors. DNA Res 21:69–84. doi:  10.1093/dnares/dst042      

    Gentleman RC, Carey VJ, Bates DM et al (2004) Bioconductor: open software development for 
computational biology and bioinformatics. Genome Biol 5:R80. doi:  10.1186/gb-2004-5-10-r80      

    Git A, Dvinge H, Salmon-Divon M et al (2010) Systematic comparison of microarray profi ling, 
real-time PCR, and next-generation sequencing technologies for measuring differential 
microRNA expression. RNA 16:991–1006. doi:  10.1261/rna.1947110      

    Gomes CPC, Cho J-H, Hood L et al (2013) A review of computational tools in microRNA discov-
ery. Front Genet 4:81. doi:  10.3389/fgene.2013.00081      

14 RNA-Seq Data Analysis for Studying Abiotic Stress in Horticultural Plants

http://dx.doi.org/10.1038/nbt.2850
http://dx.doi.org/10.1093/bioinformatics/btq233
http://dx.doi.org/10.1093/bioinformatics/btq233
http://dx.doi.org/10.1371/journal.pone.0067974
http://dx.doi.org/10.1371/journal.pone.0067974
http://dx.doi.org/10.1038/hdy.2012.77
http://dx.doi.org/10.1007/s11295-013-0661-5
http://dx.doi.org/10.1093/bioinformatics/btr330
http://dx.doi.org/10.1371/journal.pone.0085024
http://dx.doi.org/10.1371/journal.pone.0085024
http://dx.doi.org/10.1093/jxb/ert274
http://dx.doi.org/10.1038/ng.806
http://dx.doi.org/10.1093/bib/bbs046
http://dx.doi.org/10.1093/bioinformatics/bts635
http://dx.doi.org/10.1007/s00425-013-1976-z
http://dx.doi.org/10.1093/nar/gkr357
http://dx.doi.org/10.1093/nar/gkr357
http://dx.doi.org/10.1093/bioinformatics/bts605
http://dx.doi.org/10.1093/dnares/dst042
http://dx.doi.org/10.1186/gb-2004-5-10-r80
http://dx.doi.org/10.1261/rna.1947110
http://dx.doi.org/10.3389/fgene.2013.00081


216

    Gross SM, Martin JA, Simpson J et al (2013) De novo transcriptome assembly of drought 
 tolerant CAM plants,  Agave deserti  and  Agave tequilana . BMC Genomics 14:563. 
doi:  10.1186/1471-2164-14-563      

    Guttman M, Garber M, Levin JZ et al (2010) Ab initio reconstruction of cell type-specifi c tran-
scriptomes in mouse reveals the conserved multi-exonic structure of lincRNAs. Nat Biotechnol 
28:503–510. doi:  10.1038/nbt.1633      

    Haas BJ, Papanicolaou A, Yassour M et al (2013) De novo transcript sequence reconstruction from 
RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494–
1512. doi:  10.1038/nprot.2013.084      

    Hackenberg M, Rodríguez-Ezpeleta N, Aransay AM (2011) miRanalyzer: an update on the detec-
tion and analysis of microRNAs in high-throughput sequencing experiments. Nucleic Acids 
Res 39:W132–W138. doi:  10.1093/nar/gkr247      

    Hardcastle TJ, Kelly KA (2010) BaySeq: empirical Bayesian methods for identifying differential 
expression in sequence count data. BMC Bioinformatics 11:422. doi:  10.1186/1471-2105-11-422      

    Hertel J, Hofacker IL, Stadler PF (2008) SnoReport: computational identifi cation of snoRNAs 
with unknown targets. Bioinformatics 24:158–164. doi:  10.1093/bioinformatics/btm464      

    Hoffmann S, Otto C, Doose G et al (2014) A multi-split mapping algorithm for circular RNA, splic-
ing, trans-splicing, and fusion detection. Genome Biol 15:R34. doi:  10.1186/gb-2014-15-2-r34      

    Jean G, Kahles A, Sreedharan VT et al (2010) RNA-Seq read alignments with PALMapper. Curr 
Protoc Bioinformatics. doi:  10.1002/0471250953.bi1106s32      

    Jia J, Zhao S, Kong X et al (2013)  Aegilops tauschii  draft genome sequence reveals a gene reper-
toire for wheat adaptation. Nature (Lond) 496:91–95. doi:  10.1038/nature12028      

    Kakumanu A, Ambavaram MMR, Klumas C et al (2012) Effects of drought on gene expression in 
maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol 160:846–
867. doi:  10.1104/pp. 112.200444      

    Keller O, Kollmar M, Stanke M, Waack S (2011) A novel hybrid gene prediction method employ-
ing protein multiple sequence alignments. Bioinformatics 27:757–763. doi:  10.1093/bioinfor-
matics/btr010      

    Koenig D, Jiménez-Gómez JM, Kimura S et al (2013) Comparative transcriptomics reveals patterns 
of selection in domesticated and wild tomato. Proc Natl Acad Sci USA 110:E2655–E2662. 
doi:  10.1073/pnas.1309606110      

    Kozomara A, Griffi ths-Jones S (2011) miRBase: integrating microRNA annotation and deep- 
sequencing data. Nucleic Acids Res 39:D152–D157. doi:  10.1093/nar/gkq1027      

    Kvam VM, Liu P, Si Y (2012) A comparison of statistical methods for detecting differentially 
expressed genes from RNA-seq data. Am J Bot 99:248–256. doi:  10.3732/ajb.1100340      

    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–
359. doi:  10.1038/nmeth.1923      

     Lawrence M, Huber W, Pagès H et al (2013) Software for computing and annotating genomic 
ranges. PLoS Comput Biol 9:e1003118. doi:  10.1371/journal.pcbi.1003118      

    Lee LW, Zhang S, Etheridge A et al (2010) Complexity of the microRNA repertoire revealed by 
next-generation sequencing. RNA 16:2170–2180. doi:  10.1261/rna.2225110      

       Lee J, Noh EK, Choi H-S et al (2013) Transcriptome sequencing of the Antarctic vascular plant 
 Deschampsia antarctica  Desv. under abiotic stress. Planta (Berl) 237:823–836. doi:  10.1007/
s00425-012-1797-5      

    Leng N, Dawson JA, Thomson JA et al (2013) EBSeq: an empirical Bayes hierarchical model for 
inference in RNA-seq experiments. Bioinformatics 29:1035–1043. doi:  10.1093/bioinformat-
ics/btt087      

    Li B, Dewey CN (2011) RSEM: accurate transcript quantifi cation from RNA-Seq data with or 
without a reference genome. BMC Bioinformatics 12:323. doi:  10.1186/1471-2105-12-323      

    Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. 
Bioinformatics 25:1754–1760. doi:  10.1093/bioinformatics/btp324      

     Li H, Homer N (2010) A survey of sequence alignment algorithms for next-generation sequencing. 
Brief Bioinform 11:473–483. doi:  10.1093/bib/bbq015      

V.V. Mironova et al.

http://dx.doi.org/10.1186/1471-2164-14-563
http://dx.doi.org/10.1038/nbt.1633
http://dx.doi.org/10.1038/nprot.2013.084
http://dx.doi.org/10.1093/nar/gkr247
http://dx.doi.org/10.1186/1471-2105-11-422
http://dx.doi.org/10.1093/bioinformatics/btm464
http://dx.doi.org/10.1186/gb-2014-15-2-r34
http://dx.doi.org/10.1002/0471250953.bi1106s32
http://dx.doi.org/10.1038/nature12028
http://dx.doi.org/10.1104/pp. 112.200444
http://dx.doi.org/10.1093/bioinformatics/btr010
http://dx.doi.org/10.1093/bioinformatics/btr010
http://dx.doi.org/10.1073/pnas.1309606110
http://dx.doi.org/10.1093/nar/gkq1027
http://dx.doi.org/10.3732/ajb.1100340
http://dx.doi.org/10.1038/nmeth.1923
http://dx.doi.org/10.1371/journal.pcbi.1003118
http://dx.doi.org/10.1261/rna.2225110
http://dx.doi.org/10.1007/s00425-012-1797-5
http://dx.doi.org/10.1007/s00425-012-1797-5
http://dx.doi.org/10.1093/bioinformatics/btt087
http://dx.doi.org/10.1093/bioinformatics/btt087
http://dx.doi.org/10.1186/1471-2105-12-323
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1093/bib/bbq015


217

    Li H, Ruan J, Durbin R (2008a) Mapping short DNA sequencing reads and calling variants using 
mapping quality scores. Genome Res 18:1851–1858. doi:  10.1101/gr.078212.108      

    Li R, Li Y, Kristiansen K, Wang J (2008b) SOAP: short oligonucleotide alignment program. 
Bioinformatics 24:713–714. doi:  10.1093/bioinformatics/btn025      

    Li J, Witten DM, Johnstone IM, Tibshirani R (2012) Normalization, testing, and false discovery rate 
estimation for RNA-sequencing data. Biostatistics 13:523–538. doi:  10.1093/biostatistics/kxr031      

    Liao Y, Smyth GK, Shi W (2014) Feature counts: an effi cient general purpose program for assign-
ing sequence reads to genomic features. Bioinformatics 30:923–930. doi:  10.1093/bioinformat-
ics/btt656      

    Liu F, Wang W, Sun X et al (2013) RNA-Seq revealed complex response to heat stress on transcrip-
tomic level in  Saccharina japonica  (Laminariales, Phaeophyta). J Appl Phycol. doi:  10.1007/
s10811-013-0188-z      

    Lohse M, Bolger AM, Nagel A et al (2012) RobiNA: a user-friendly, integrated software solution for 
RNA-Seq-based transcriptomics. Nucleic Acids Res 40:W622–W627. doi:  10.1093/nar/gks540      

    Luo R, Liu B, Xie Y et al (2012) SOAPdenovo2: an empirically improved memory-effi cient short- 
read de novo assembler. Gigascience 1:18. doi:  10.1186/2047-217X-1-18      

    Ma J, Zhang M, Xiao X et al (2013) Global transcriptome profi ling of  Salicornia europaea  L. 
shoots under NaCl treatment. PLoS One 8:e65877  

    Marcolino-Gomes J, Rodrigues FA, Oliveira MCN et al (2013) Expression patterns of GmAP2/
EREB-like transcription factors involved in soybean responses to water defi cit. PLoS One 
8:e62294. doi:  10.1371/journal.pone.0062294      

   Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. 
EMBnet J 17:10. doi:10.14806/ej.17.1.200  

     Martin JA, Wang Z (2011) Next-generation transcriptome assembly. Nat Rev Genet 12:671–682. 
doi:  10.1038/nrg3068      

    Martin J, Bruno VM, Fang Z et al (2010) Rnnotator: an automated de novo transcriptome assembly 
pipeline from stranded RNA-Seq reads. BMC Genomics 11:663. doi:  10.1186/1471-2164-11-663      

      Massa AN, Childs KL, Buell CR (2013) Abiotic and biotic stress responses in group Phureja 
DM1-3 516 R44 as measured through whole transcriptome sequencing. Plant Genome 6:1–10. 
doi:  10.3835/plantgenome2013.05.0014      

    McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17:4–11. 
doi:  10.1016/j.cbpa.2012.12.008      

     Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46. 
doi:  10.1038/nrg2626      

      Motameny S, Wolters S, Nürnberg P, Schumacher B (2010) Next generation sequencing of miR-
NAs: strategies, resources and methods. Genes (Basel) 1:70–84. doi:  10.3390/genes1010070      

    Müller BSDF, Sakamoto T, Silveira RDD et al. (2013) Differentially expressed genes during 
 fl owering and grain fi lling in common bean ( Phaseolus vulgaris ) grown under drought stress 
conditions. Plant Mol Biol Rep 438–451. doi:10.1007/s11105-013-0651-7  

     O’Rourke JA, Yang SS, Miller SS et al (2013) An RNA-Seq transcriptome analysis of 
orthophosphate- defi cient white lupin reveals novel insights into phosphorus acclimation in 
plants. Plant Physiol 161:705–724. doi:  10.1104/pp. 112.209254      

    Oono Y, Kawahara Y, Yazawa T et al (2013) Diversity in the complexity of phosphate starvation 
transcriptomes among rice cultivars based on RNA-Seq profi les. Plant Mol Biol 83:523–537. 
doi:  10.1007/s11103-013-0106-4      

    Ozhuner E, Eldem V, Ipek A et al (2013) Boron stress responsive microRNAs and their targets in 
barley. PLoS One 8:e59543. doi:  10.1371/journal.pone.0059543      

      Pang T, Ye C-Y, Xia X, Yin W (2013) De novo sequencing and transcriptome analysis of the desert 
shrub,  Ammopiptanthus mongolicus , during cold acclimation using Illumina/Solexa. BMC 
Genomics 14:488. doi:  10.1186/1471-2164-14-488      

    Pantano L, Estivill X, Martí E (2010) SeqBuster, a bioinformatic tool for the processing and analy-
sis of small RNAs datasets, reveals ubiquitous miRNA modifi cations in human embryonic 
cells. Nucleic Acids Res 38:e34. doi:  10.1093/nar/gkp1127      

14 RNA-Seq Data Analysis for Studying Abiotic Stress in Horticultural Plants

http://dx.doi.org/10.1101/gr.078212.108
http://dx.doi.org/10.1093/bioinformatics/btn025
http://dx.doi.org/10.1093/biostatistics/kxr031
http://dx.doi.org/10.1093/bioinformatics/btt656
http://dx.doi.org/10.1093/bioinformatics/btt656
http://dx.doi.org/10.1007/s10811-013-0188-z
http://dx.doi.org/10.1007/s10811-013-0188-z
http://dx.doi.org/10.1093/nar/gks540
http://dx.doi.org/10.1186/2047-217X-1-18
http://dx.doi.org/10.1371/journal.pone.0062294
http://dx.doi.org/10.1038/nrg3068
http://dx.doi.org/10.1186/1471-2164-11-663
http://dx.doi.org/10.3835/plantgenome2013.05.0014
http://dx.doi.org/10.1016/j.cbpa.2012.12.008
http://dx.doi.org/10.1038/nrg2626
http://dx.doi.org/10.3390/genes1010070
http://dx.doi.org/10.1104/pp. 112.209254
http://dx.doi.org/10.1007/s11103-013-0106-4
http://dx.doi.org/10.1371/journal.pone.0059543
http://dx.doi.org/10.1186/1471-2164-14-488
http://dx.doi.org/10.1093/nar/gkp1127


218

    Pertea G, Huang X, Liang F et al (2003) TIGR Gene Indices clustering tools (TGICL): a software 
system for fast clustering of large EST datasets. Bioinformatics 19:651–652. doi:  10.1093/ 
bioinformatics/btg034      

    Postnikova OA, Shao J, Nemchinov LG (2013) Analysis of the alfalfa root transcriptome in 
response to salinity stress. Plant Cell Physiol 54:1041–1055. doi:  10.1093/pcp/pct056      

    Quinlan AR, Hall IM (2010) BEDTools: a fl exible suite of utilities for comparing genomic  features. 
Bioinformatics 26:841–842. doi:  10.1093/bioinformatics/btq033      

    Raney JA, Reynolds DJ, Elzinga DB et al (2014) Transcriptome analysis of drought-induced stress 
in  Chenopodium quinoa . Am J Plant Sci 2014:338–357  

     Rapaport F, Khanin R, Liang Y et al (2013) Comprehensive evaluation of differential gene expres-
sion analysis methods for RNA-seq data. Genome Biol 14:R95. doi:  10.1186/gb-2013-14-9-r95      

     Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential 
expression analysis of digital gene expression data. Bioinformatics 26:139–140. doi:  10.1093/
bioinformatics/btp616      

    Rumble SM, Lacroute P, Dalca AV et al (2009) SHRiMP: accurate mapping of short color-space 
reads. PLoS Comput Biol 5:e1000386. doi:  10.1371/journal.pcbi.1000386      

    Schmieder R, Edwards R (2011) Fast identifi cation and removal of sequence contamination from 
genomic and metagenomic datasets. PLoS One 6:e17288. doi:  10.1371/journal.pone.0017288      

    Schweikert G, Zien A, Zeller G et al (2009) mGene: accurate SVM-based gene fi nding with an 
application to nematode genomes. Genome Res 19:2133–2143. doi:  10.1101/gr.090597.108      

    Silva GG, Dutilh BE, Matthews TD et al (2013) Combining de novo and reference-guided assem-
bly with scaffold_builder. Source Code Biol Med 8:23. doi:  10.1186/1751-0473-8-23      

   Simpson JT, Wong K, Jackman SD et al (2009) ABySS: a parallel assembler for short read 
sequence data. Genome Res 19:1117–1123. doi:  10.1101/gr.089532.108      

   Smyth G (2005) Limma: linear models for microarray data. Bioinform Comput Biol Sol R 
Bioconductor. doi:  10.1007/0-387-29362-0      

    Soneson C, Delorenzi M (2013) A comparison of methods for differential expression analysis of 
RNA-seq data. BMC Bioinformatics 14:91. doi:  10.1186/1471-2105-14-91      

    Stanke M, Diekhans M, Baertsch R, Haussler D (2008) Using native and syntenically mapped 
cDNA alignments to improve de novo gene fi nding. Bioinformatics 24:637–644. doi:  10.1093/
bioinformatics/btn013      

    Steijger T, Abril JF, Engström PG et al (2013) Assessment of transcript reconstruction methods for 
RNA-seq. Nat Methods 10:1177–1184. doi:  10.1038/nmeth.2714      

     Tang S, Liang H, Yan D et al (2013)  Populus euphratica:  the transcriptomic response to drought 
stress. Plant Mol Biol 83:539–557. doi:  10.1007/s11103-013-0107-3      

    Teune J-H, Steger G (2010) NOVOMIR: de novo prediction of microRNA-coding regions in a 
single plant-genome. J Nucleic Acids. doi:  10.4061/2010/495904      

    Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative genomics viewer (IGV): high- 
performance genomics data visualization and exploration. Brief Bioinform 14:178–192. 
doi:  10.1093/bib/bbs017      

      Tian D-Q, Pan X-Y, Yu Y-M et al (2013) De novo characterization of the  Anthurium  transcriptome 
and analysis of its digital gene expression under cold stress. BMC Genomics 14:827. 
doi:  10.1186/1471-2164-14-827      

    Tombuloglu H, Kekec G, Sakcali MS, Unver T (2013) Transcriptome-wide identifi cation of R2R3- 
MYB transcription factors in barley with their boron responsive expression analysis. Mol 
Genet Genomics 288:141–155. doi:  10.1007/s00438-013-0740-1      

    Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. 
Bioinformatics 25:1105–1111. doi:  10.1093/bioinformatics/btp120      

        Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantifi cation by RNA- 
Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat 
Biotechnol 28:511–515. doi:  10.1038/nbt.1621      

    Trapnell C, Hendrickson DG, Sauvageau M et al (2013) Differential analysis of gene regulation at 
transcript resolution with RNA-seq. Nat Biotechnol 31:46–53. doi:  10.1038/nbt.2450      

V.V. Mironova et al.

http://dx.doi.org/10.1093/bioinformatics/btg034
http://dx.doi.org/10.1093/bioinformatics/btg034
http://dx.doi.org/10.1093/pcp/pct056
http://dx.doi.org/10.1093/bioinformatics/btq033
http://dx.doi.org/10.1186/gb-2013-14-9-r95
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1093/bioinformatics/btp616
http://dx.doi.org/10.1371/journal.pcbi.1000386
http://dx.doi.org/10.1371/journal.pone.0017288
http://dx.doi.org/10.1101/gr.090597.108
http://dx.doi.org/10.1186/1751-0473-8-23
http://dx.doi.org/10.1101/gr.089532.108
http://dx.doi.org/10.1007/0-387-29362-0
http://dx.doi.org/10.1186/1471-2105-14-91
http://dx.doi.org/10.1093/bioinformatics/btn013
http://dx.doi.org/10.1093/bioinformatics/btn013
http://dx.doi.org/10.1038/nmeth.2714
http://dx.doi.org/10.1007/s11103-013-0107-3
http://dx.doi.org/10.4061/2010/495904
http://dx.doi.org/10.1093/bib/bbs017
http://dx.doi.org/10.1186/1471-2164-14-827
http://dx.doi.org/10.1007/s00438-013-0740-1
http://dx.doi.org/10.1093/bioinformatics/btp120
http://dx.doi.org/10.1038/nbt.1621
http://dx.doi.org/10.1038/nbt.2450


219

    Villar E, Klopp C, Noirot C et al (2011) RNA-Seq reveals genotype-specifi c molecular responses 
to water defi cit in eucalyptus. BMC Genomics 12:538. doi:  10.1186/1471-2164-12-538      

    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev 
Genet 10:57–63  

   Wang C, Gao C, Wang L, et al. (2013a) Comprehensive transcriptional profi ling of NaHCO 3 - 
stressed  Tamarix hispida  roots reveals networks of responsive genes. Plant Mol Biol 84(1- 2):
145–157. doi: 10.1007/s11103-013-0124-2  

      Wang H, Zou Z, Wang S, Gong M (2013b) Global analysis of transcriptome responses and gene 
expression profi les to cold stress of  Jatropha curcas  L. PLoS One 8:e82817. doi:  10.1371/jour-
nal.pone.0082817      

    Wang J, Lan P, Gao H et al (2013c) Expression changes of ribosomal proteins in phosphate- and 
iron-defi cient  Arabidopsis  roots predict stress-specifi c alterations in ribosome composition. 
BMC Genomics 14:783. doi:  10.1186/1471-2164-14-783      

        Wang X-C, Zhao Q-Y, Ma C-L et al (2013d) Global transcriptome profi les of  Camellia sinensis  
during cold acclimation. BMC Genomics 14:415. doi:  10.1186/1471-2164-14-415      

    Wang Y, Xu L, Chen Y et al (2013e) Transcriptome profi ling of radish ( Raphanus sativus  L.) root 
and identifi cation of genes involved in response to lead (Pb) stress with next generation 
sequencing. PLoS One 8:e66539  

    Wen M, Shen Y, Shi S, Tang T (2012) MiREvo: an integrative microRNA evolutionary analysis 
platform for next-generation sequencing experiments. BMC Bioinformatics 13:140. 
doi:  10.1186/1471-2105-13-140      

     Witkos TM, Koscianska E, Krzyzosiak WJ (2011) Practical aspects of microRNA target predic-
tion. Curr Mol Med 11:93–109  

    Wu J, Liu Q, Wang X et al (2013) mirTools 2.0 for non-coding RNA discovery, profi ling, and 
functional annotation based on high-throughput sequencing. RNA Biol 10:1087–1092. 
doi:  10.4161/rna.25193      

    Xie F, Stewart CN, Taki FA et al (2013) High-throughput deep sequencing shows that microRNAs 
play important roles in switchgrass responses to drought and salinity stress. Plant Biotechnol J 
159:1–13. doi:  10.1111/pbi.12142      

    Xie Y, Wu G, Tang J et al (2014) SOAP denovo-trans: de novo transcriptome assembly with short 
RNA-Seq reads. Bioinformatics 30:1660–1666. doi:  10.1093/bioinformatics/btu077      

    Xu P, Liu Z, Fan X et al (2013a) De novo transcriptome sequencing and comparative analysis of 
differentially expressed genes in  Gossypium aridum  under salt stress. Gene (Amst) 525:26–34. 
doi:  10.1016/j.gene.2013.04.066      

    Xu Y, Gao S, Yang Y et al (2013b) Transcriptome sequencing and whole genome expression 
 profi ling of chrysanthemum under dehydration stress. BMC Genomics 14:662. 
doi:  10.1186/1471-2164-14-662      

    Yang X, Li L (2011) miRDeep-P: a computational tool for analyzing the microRNA transcriptome 
in plants. Bioinformatics 27:2614–2615. doi:  10.1093/bioinformatics/btr430      

    Zavolan M, Kondo S, Schonbach C et al (2003) Impact of alternative initiation, splicing, and ter-
mination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. 
Genome Res 13:1290–1300. doi:  10.1101/gr.1017303      

    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn 
graphs. Genome Res 18:821–829. doi:  10.1101/gr.074492.107      

    Zhang J, Mao Z, Chong K (2013a) A global profi ling of uncapped mRNAs under cold stress 
reveals specifi c decay patterns and endonucleolytic cleavages in  Brachypodium distachyon . 
Genome Biol 14:R92. doi:  10.1186/gb-2013-14-8-r92      

    Zhang L-M, Liu X-G, Qu X-N et al (2013b) Early transcriptomic adaptation to Na 2 CO 3  stress 
altered the expression of a quarter of the total genes in the maize genome and exhibited shared 
and distinctive profi les with NaCl and high pH stresses. J Integr Plant Biol 55:1147–1165. 
doi:  10.1111/jipb.12100      

    Zhang X, Yao D, Wang Q et al (2013c) mRNA-seq analysis of the  Gossypium arboreum  transcrip-
tome reveals tissue selective signaling in response to water stress during seedling stage. PLoS 
One 8:e54762. doi:  10.1371/journal.pone.0054762      

14 RNA-Seq Data Analysis for Studying Abiotic Stress in Horticultural Plants

http://dx.doi.org/10.1186/1471-2164-12-538
http://dx.doi.org/10.1371/journal.pone.0082817
http://dx.doi.org/10.1371/journal.pone.0082817
http://dx.doi.org/10.1186/1471-2164-14-783
http://dx.doi.org/10.1186/1471-2164-14-415
http://dx.doi.org/10.1186/1471-2105-13-140
http://dx.doi.org/10.4161/rna.25193
http://dx.doi.org/10.1111/pbi.12142
http://dx.doi.org/10.1093/bioinformatics/btu077
http://dx.doi.org/10.1016/j.gene.2013.04.066
http://dx.doi.org/10.1186/1471-2164-14-662
http://dx.doi.org/10.1093/bioinformatics/btr430
http://dx.doi.org/10.1101/gr.1017303
http://dx.doi.org/10.1101/gr.074492.107
http://dx.doi.org/10.1186/gb-2013-14-8-r92
http://dx.doi.org/10.1111/jipb.12100
http://dx.doi.org/10.1371/journal.pone.0054762


220

    Zhang N, Liu B, Ma C et al (2014) Transcriptome characterization and sequencing-based identifi -
cation of drought-responsive genes in potato. Mol Biol Rep 41:505–517. doi:  10.1007/
s11033-013-2886-7      

    Ziemann M, Kamboj A, Hove RM et al (2013) Analysis of the barley leaf transcriptome under salin-
ity stress using mRNA-Seq. Acta Physiol Plant 35:1915–1924. doi:  10.1007/s11738-013-1230-0      

     Zong W, Zhong X, You J, Xiong L (2013) Genome-wide profi ling of histone H3K4-tri-methylation 
and gene expression in rice under drought stress. Plant Mol Biol 81:175–188.  doi:  10.1007/
s11103-012-9990-2                  

V.V. Mironova et al.

http://dx.doi.org/10.1007/s11033-013-2886-7
http://dx.doi.org/10.1007/s11033-013-2886-7
http://dx.doi.org/10.1007/s11738-013-1230-0
http://dx.doi.org/10.1007/s11103-012-9990-2

	Chapter 14: RNA-Seq Data Analysis for Studying Abiotic Stress in Horticultural Plants
	14.1 Introduction
	14.2 Analysis of RNA-Seq Data
	14.2.1 General Steps of RNA-Seq Data Analysis
	14.2.1.1 Quality Control and Filtering
	14.2.1.2 Assembly of Reads and Connecting them to a Reference Genome or Transcriptome
	Mapping Assembly
	Transcriptome Assembly
	De Novo Transcriptome Assembly


	14.2.2 Specific Steps of RNA-Seq Data Analysis of Long RNAs
	14.2.2.1 Detecting Differentially Expressed Transcripts
	Quantification
	Normalization
	Statistical Testing

	14.2.2.2 SNP Calling

	14.2.3 Specific Steps of RNAseq Data Analysis of Small RNAs
	14.2.3.1 Detecting Differentially Expressed Small RNAs
	14.2.3.2 Predicting Novel Plant miRNAs by plantDARIO
	14.2.3.3 Predicting miRNA Targets


	14.3 RNA-Seq Data on Abiotic Stresses of Horticultural Plants
	14.3.1 Cold
	14.3.2 Drought
	14.3.3 Heat and Light
	14.3.4 Soil Pollutants
	14.3.5 Mineral Deficiency
	14.3.6 Salinity

	References


