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    Chapter 1   
 Effect of Salt Stress on the Growth and Fruit 
Quality of Tomato Plants 

             Takeshi     Saito      and     Chiaki     Matsukura    

    Abstract     During the past several decades, salt injury has arisen as one of the most 
serious problems in agriculture worldwide, especially in arid and semiarid areas. 
Generally, excessive exposure of crops to salinity stress leads to yield reduction and 
loss of quality. However, for tomato crops, moderate salt stress improves the fruit 
quality, increasing nutritional components but decreasing fruit yield. In the current 
Japanese market, such fruits are referred to as “fruit tomatoes” and are sold at a 
higher price compared with normally cultivated tomatoes because of their high Brix 
(sugar content) and excellent fl avor. Previously, the mechanism underlying this 
phenomenon was referred to as a “concentration effect” because fruit enlargement 
was suppressed by limited water uptake as a result of salt stress. However, recent 
studies have suggested that, in addition to the “concentration effect,” certain meta-
bolic and molecular genetic responses to salinity are also involved in the develop-
ment of fruit tomatoes. Here, we introduce metabolic alterations in major fruit 
components such as sugars, amino acids, organic acids, and carotenoids in high-
Brix fruit, and we describe the physiological changes observed in tomato plants 
exposed to salt stress. We also discuss possible molecular mechanisms underlying 
the production of fruit tomatoes.  
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1.1         Introduction 

 Tomato ( Solanum lycopersicum  L.) is one of the most important vegetable crops in 
agriculture, both domestically and worldwide. Because this vegetable can be adapted 
for cultivation in various environments ranging from tropical to nearly alpine regions, 
its production area is now expanding worldwide. On the other hand, in the traditional 
cultivation area, which is concentrated around the Mediterranean Sea and in the south-
ern and western parts of the United States (USA) because of the warm and dry climate 
that is favorable for tomato cultivation, yield loss from salt injury has arisen as a seri-
ous problem in 19.5 % of the irrigated land area and in the irrigation water (Flowers 
and Yeo  1995 ; Cuartero and Fernandez-Munoz  1999 ; Foolad  2004 ). Additionally, 
2 million hectares (ha), equivalent to 1 % of the world’s tomato cultivation areas, are 
lost every year because of environmental factors such as salinity, drought, and soil 
erosion. In some cases, poor cultivation techniques can also promote the damage 
caused by environmental stresses (Ashraf and Foolad  2007 ). 

 It has been suggested that moderate salinity and drought stress improve the 
 nutrient quality in tomato fruits by increasing sugars, amino acids, carotenoids, and 
other substances (Adams  1991 ; Gao et al.  1998 ; Ho et al.  1987 ; Krauss et al.  2006 ; 
Tal et al.  1979 ; De Pascale et al.  2001 ; Saito et al.  2008a ). Recently, these cultivation 
conditions have been introduced in hydroponic cultivation techniques such as the 
nutrient fi lm technique (NFT), and high-Brix tomatoes are being produced in Japan 
(Sakamoto et al.  1999 ; Saito et al.  2006 ) and in northern European countries (Adams 
 1991 ). Such high-Brix fruits are referred to as “fruit tomatoes” and have become 
popular in the Japanese consumer market because the fruit fl avor is much better than 
that of a tomato cultivated under ordinary conditions. Until recently, the develop-
ment of “fruit tomatoes” was thought to result from a “concentration effect” caused 
by the suppression of fruit size caused by salt stress (Ehret and Ho  1986 ; Ho et al. 
 1987 ; Sakamoto et al.  1999 ). However, evidence uncovered during the past decade 
indicates that other physiological and molecular alterations might be involved in 
this phenomenon. 

 This chapter describes the effects of salt stress on various aspects of tomato 
growth and on the content of the nutritive components of the fruit, with a specifi c 
focus on sugars, and discusses the possible mechanisms that are responsible for the 
formation of high-Brix fruit.  

1.2      Effect of Salinity on Plant Growth and Yield 

 In Mediterranean countries, tomatoes have also been studied as a model crop in 
salinized or dry land agriculture, and a large amount of data about the effects of 
salinity on the growth of tomato plants has been produced. Most commercial culti-
vars are moderately sensitive to salinity at all stages of plant development, including 
seed germination, vegetative growth, and fruit production (Ashraf and Foolad  2007 ). 
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Even at NaCl concentrations as low as 80 mM, salt stress suppresses seed germination 
(Cuartero and Fernandez-Munoz  1999 ), vegetative growth, leaf area, and root weight 
(Papadopoulos and Rendig  1983 ; Van Ieperen  1996 ). Predictably, fruit yield is also 
negatively affected by salt stress because of a decrease in average fruit weight or the 
number of fruits produced by a single plant (Cuartero and Fernandez-Munoz  1999 ). 
At relatively low electrical conductivity (EC), fruit weight rather than fruit number 
tends affect the fruit yield. In contrast, at an elevated EC, fruit yield is mainly affected 
by reduction in fruit number (Van Ieperen  1996 ). In salt-stressed fruit, fruit enlarge-
ment is suppressed during the cell expansion phase because water uptake into the 
fruit, which is the motive force for cellular expansion, is suppressed by the increased 
salinity (Ehret and Ho  1986 ). Regarding marketable yield, increased blossom-end 
rot (BER) hampers tomato production. It has been suggested that BER is a physio-
logical disorder caused by calcium defi ciency in certain parts of the fruit (Adams 
and Ho  1992 ; Chretien et al.  2000 ; Franco et al.  1994 ; Willumsen et al.  1996 ) because 
Ca 2+  uptake by the roots and its transport through the xylem to the fruits are both 
decreased under severe salt stress conditions (Belda et al.  1996 ; Ho et al.  1993 ). 
However, the detailed mechanism underlying BER is still unclear, and an effective 
method for combating BER has remained elusive.  

1.3      Effect of Salt Stress on Fruit Qualities 

 As described in Sect.  1.2 , salt stress has unfavorable effects on both plant growth 
and fruit enlargement in tomatoes. On the other hand, it has been reported that 
moderate salinity improves fruit quality by affecting the levels of soluble solids, 
such as sugars and acids, as well as the pH value; these are key factors in quality 
evaluations of fruit sold in markets, and salt stress generally improves fruit quality 
by increasing the content of those substances. This phenomenon has been attributed 
to a “concentration effect” that results from the suppression of fruit enlargement in 
plants exposed to salt stress. However, during the past decade, increasing evidence 
has indicated that alterations in assimilatory metabolism and the translocation of 
assimilates into the fruit are likely to be involved in the increase in soluble solids 
and other components. 

1.3.1     Organic Acids 

 Acids largely affect fruit fl avor by interacting with sugars and by creating acidity 
(Stevens et al.  1977 ), and organic acids account for approximately 13 % of the fruit 
dry matter (Davies and Hobson  1981 ). Malic acid and citric acid are the most abun-
dant organic acids in fruit (4 % malic acid and 9 % citric acid on a dry matter basis); 
citric acid is more important for the sour fl avor of the fruit than malic acid. Moderate 
salt stress (EC 8.0 dS m −1 ) enhances the accumulation of citric and malic acids by 

1 Effect of Salt Stress on the Growth and Fruit Quality of Tomato Plants



6

1.7- and 2.5 fold, respectively, compared to control conditions (EC 2.5 dS m −1 ) at 
the red-ripe stage (Saito et al.  2008a ). Transcriptional analyses showed that the 
expression of genes involved in organic acid metabolism, such as phosphoenolpyru-
vate carboxykinase (PEPCK), malate dehydrogenase (MDH), malic enzyme (ME), 
and pyruvate kinase (PK), is upregulated by both moderate (EC 8.0 dS m −1 ) and 
severe (EC 15.0 dS m −1 ) salt stress in ripening fruit (Saito et al.  2008a ; Yin et al. 
 2010a ). These results suggest that a shunt of the tricarboxylic acid (TCA) cycle 
(malate–oxaloacetate–PEP–pyruvate–citrate) is involved in organic acid metabo-
lism and is stimulated by salt stress. Davies ( 1964 ) suggested that the accumulation 
of organic acids in the fruit counterbalances excessive cations to maintain the fruit 
pH. The difference between the cation and anion level tends to be greater in salt- 
stressed fruits, which leads to a higher concentration of organic acids in these fruits 
(Cuartero and Fernandez-Munoz  1999 ).  

1.3.2     Carotenoids 

 Tomato fruits contain various carotenoids that are a major source of the antioxidant 
lycopene in the human diet, although the quantity, distribution, and antioxidant 
effects vary among cultivars (Minoggio et al.  2003 ). Fresh tomato fruit and its 
processed products provide approximately 85 % of the lycopene in the human 
daily diet (Canene-Adams et al.  2005 ). Tomatoes are also a notable source of other 
carotenoids, such as β-carotene, lutein, phytoene, phytofl uene, and ζ-carotene. 
Because the carotenoid content is an important trait of tomato, many studies have 
reported the effects of salinity on the carotenoid content in tomato fruits. Generally, 
salt stress enhances lycopene and β-carotene accumulation; however, some reports 
indicated that the increase was observed only on a fresh weight and not a dry 
weight basis. Thus, these authors concluded that the increase should be attributed 
to a concentration effect caused by the suppression of fruit expansion (Krauss et al. 
 2006 ; Dumas et al.  2003 ; Shi and Le Maguer  2000 ). On the other hand, De Pascale 
et al. ( 2001 ) reported that the total carotenoid and lycopene content increased on 
both a fresh weight and dry weight basis under moderate salt stress (EC 4.0 dS m −1 ) 
and suggested that metabolic alteration is involved in the increase along with the 
concentration effect. Our previous study also supports this observation. A key 
enzyme involved in carotenoid biosynthesis that is produced by the phytoene syn-
thase gene was upregulated by moderate salinity stress (Saito et al.  2008a ). Krauss 
et al. ( 2006 ) suggested that reduced leaf area caused by the growth suppression 
under salt stress and the increased exposure of fruit to sunlight resulted in increased 
carotenoid accumulation because carotenoid biosynthesis is regulated by light 
and increased exposure of the fruit to sunlight. Further investigation is required 
to elucidate the mechanisms underlying the effect of salinity on carotenoid 
accumulation.  
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1.3.3     Amino Acids 

 Tomato fruit fl avor largely depends on the types and quantity of free amino acids pres-
ent in the fruit. Several amino acids, such as glutamate, γ-aminobutyric acid (GABA), 
glutamine, and aspartic acid, account for approximately 80 % of the total free amino 
acids in the fruit (Kader et al.  1978 ). Among these amino acids, glutamate is the prin-
cipal free amino acid in red-ripe fruit in commercial cultivars and it confers the charac-
teristic “umami” fl avor to tomato (Sorrequieta et al.  2010 ). It has been reported that salt 
stress increases the total amino acid content in tomato fruit, and the effect of the stress 
is greater in the pericarp than in the columella tissue (Zushi and Matsuzoe  2006 ; 
Yin et al.  2010a ). Importantly, the proline content is increased markedly in both pericarp 
and columella tissue. Proline is a well-known indicator that responds to abiotic stresses 
such as salinity and drought in higher plants and most likely functions as an osmopro-
tectant in fruit exposed to salt stress (Ashton and Verma  1993 ; Claussen  2005 ). 

 Glutamate and GABA are the most abundant amino acids in tomato fruits (Inaba 
et al.  1980 ; Rolin et al.  2000 ). Tomato accumulates higher amounts of GABA in its 
edible parts than most other vegetable crops (Matsumoto et al.  1997 ). GABA is a 
four-carbon, nonprotein amino acid commonly found in diverse organisms, and it 
serves as a major inhibitory neurotransmitter in vertebrates (Zhang and Jackson 
 1993 ). It has been known to play a role in reducing blood pressure in the human body 
(Inoue et al.  2003 ). GABA is synthesized from glutamate by glutamate decarboxylase 
(GAD), which is activated by Ca 2+ /CaM (Aurisano et al.  1995 ; Snedden et al.  1995 ; 
Turano and Fang  1998 ) and acidic pH (Johnson et al.  1997 ; Snedden et al.  1996 ). Salt 
stress also enhances GABA accumulation in the fruit at the red stage (Saito et al. 
 2008a ,  b ). However, although salinity enhances fruit acidity and stimulates cellular 
Ca 2+  in plant cells (Sanders et al.  1999 ), we cannot determine whether these factors 
directly promote GABA accumulation in tomato fruit because our previous data 
showed that glutamic acid decarboxylase (GAD) activity was unchanged in salt-
stressed fruit; in fact, our data indicated that only the protein content increased 
(Yin et al.  2010a ). Consequently, substrate availability and an increased concentration 
of GAD would promote GABA accumulation in salt- stressed tomato fruit. In fact, the 
GABA metabolic pathway is TCA cycle shunt (Bouchè and Fromm  2004 ). GABA 
accumulation reaches a maximum in mature green fruit and is rapidly degraded dur-
ing fruit ripening (Rolin et al.  2000 ; Akihiro et al.  2008 ). Tracer analyses utilizing 
[ 14 C]-labeled GABA demonstrated that GABA in mature green fruit is converted to 
malate, citrate,  cis - aconitate , isocitrate, and 2-oxoglutarate in red-ripe fruit; further-
more, [ 14 C] was also detected in the CO 2  gas fraction during ripening (Yin et al. 
 2010a ). Those results indicate that dissimilated GABA fl ows back into the TCA 
cycle, is metabolized to organic acids, and is utilized as a substrate for respiration 
during climacteric ripening of fruit. 

 It was also reported that GABA accumulation in the fruit was enhanced 1.6- to 1.9 
fold during the postharvest storage of red-ripe fruit under anaerobic (low O 2 ) condi-
tions compared with normal air conditions, regardless of the CO 2  concentration 
(Mae et al.  2012 ). This increase was caused by increased GAD activity and decreased 
GABA transaminase (GABA-T) activity.  
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1.3.4     Ascorbic Acid 

 Ascorbic acid (ASA), which is present in tomato fruit, has an important role in the 
maintenance of human health by serving as an antioxidant that scavenges reactive 
oxygen species (ROS). In addition, ASA-related antioxidant systems, including 
the ascorbate–glutathione cycle (in which ascorbate peroxidase is involved), prevent 
the accumulation of toxic ROS levels under environmental stress conditions (Zhang 
 2013 ). Fruit ASA content is affected by cropping season, cultivar, and environmental 
stress (Dumas et al.  2003 ). However, the effect of salinity on fruit ASA content is actu-
ally not as clear as its effects on other metabolites such as sugars and amino acids. 
Several studies have shown positive results (Krauss et al.  2006 ), negative results (Zushi 
and Matsuzoe  2009 ), or no change (Fanasca et al.  2007 ) in the ASA content, and an 
interaction with other factors such as cultivars and growth conditions (e.g., temperature 
and light intensity) was suggested. Zushi et al. ( 2014 ) examined the combined effect of 
salt stress and light intensity on ASA content and the activity of ASA-related antioxi-
dant enzymes in tomato fruits using tissue culture experiments. The results revealed 
that changes in the ASA content and the activity of antioxidant enzymes under salt 
stress conditions could not be explained only by salinity, because light intensity could 
also be involved in the regulation of antioxidant enzyme activity.   

1.4     Effect of Salinity on Carbohydrate Allocation to Fruits 

 Salinity stress inhibits water uptake by the roots and water infl ux into the fruits as a 
result of high osmotic pressure around the root system, resulting in a decrease in 
fruit size and an increase in quality constituents. As described in Sect.  1.3 , enhanced 
metabolite accumulation in salinity-stressed fruit has been attributed to a “concen-
tration effect.” However, our previous studies revealed that the ratio of sucrose to the 
total sugar content in salt-stressed fruits was increased compared with that of the 
control (Saito et al.  2006 ), and the effect of salt stress on the sugar concentration 
was apparently more severe than its suppressive effect on fruit weight (Yin et al. 
 2010b ). Gao et al. ( 1998 ) reported that salinity enhanced the transport of assimilates 
from leaves to adjacent fruits. These results indicate that the increase in sugar con-
tent from salinity is not simply a result associated with the suppression of fruit 
growth; rather, it is also caused by alterations in sugar metabolism or sugar translo-
cation into the fruit. 

 To examine alterations in carbohydrate partitioning in plants exposed to salt 
stress, Saito et al. ( 2009 ) investigated the distribution of carbohydrates under moder-
ate salt stress conditions (EC 8.0 dS m −1 ) in tomato plants by feeding [ 13 C]-labeled 
CO 2  to source leaves at 16 days after anthesis, which is the time when a tomato plant 
shows the greatest transport activity of photoassimilates from the source leaves to the 
fruits (Ho  1986 ). Although both photosynthetic and transpiration ratios were reduced 
by approximately 60 % under salt stress, the content of [ 13 C]-labeled assimilate to 
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fruits was 28 % higher compared with that observed in the control (Fig.  1.1 ). 
The distribution ratio of [ 13 C]-labeled assimilate in fruits was 32 % higher under 
saline conditions than under control conditions (Fig.  1.1 ). A similar result was also 
observed in the [ 13 C] tracer analyses performed under different salt stress conditions 
(EC 15.0 dS m −1 ), in which the carbohydrate infl ux into the fruit was strongly 
enhanced by salinity in immature and mature green fruits, even though the stress 
severely  suppressed plant growth (Yin et al.  2010b ). These results indicate that salt 
stress alters the allocation of photoassimilate in the entire plant and enhances the 
sink strength of fruits.   

1.5      Salinity Stress Enhances Starch and Sugar Accumulation 
in Fruit 

1.5.1     Sugar Metabolism 

 In addition to the enhancement of photoassimilate translocation and the sink strength 
of fruit, salt stress increases the sugar content in fruit. This sugar mainly consists 
of hexoses produced by the cleavage of sucrose. Interestingly, sucrolytic activity is 

  Fig. 1.1    Effect of salinity 
treatment on  13 C content and 
distribution in tomato plants 
48 h after feeding  13 CO 2 . 
 Bars  indicate SE ( n  = 3)       
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also thought to be an index of sink strength (Yamaki  2010 ). There are two notable 
enzymes involved in the cleavage of sucrose to monosaccharides: sucrose synthase 
and invertase. Sucrose synthase (Susy) converts sucrose into fructose and UDP- 
glucose. By contrast, invertase irreversibly catalyzes the hydrolytic cleavage of 
sucrose into glucose and fructose. In tomato, Susy was considered to be a major 
factor determining the fruit sink strength because a strong correlation among Susy 
activity, ADP-glucose pyrophosphorylase activity, and starch accumulation in early 
developing fruit was found (Robinson et al.  1988 ; Yelle et al.  1988 ). Moreover, 
antisense transgenic plants in which Susy activity was suppressed displayed reduced 
fruit setting and sucrose import capacity in young fruit (D’Aoust et al.  1999 ). 
However, the suppression of the Susy-encoding gene in tomato did not lead to 
remarkable alterations in starch and sugar accumulation in the fruit (Chengappa 
et al.  1999 ). There is minimal evidence that sucrose synthase is directly involved in 
the control of fruit sugar content and composition in tomato. 

 On the other hand, during the past two decades, increasing evidence has indi-
cated that invertase is an essential factor involved in the regulation of sugar content 
in tomato fruit. In plants, invertases are classifi ed into three isozyme types accord-
ing to their solubility, subcellular localization, isoelectric point (pI), and optimal pH 
(Sturm  1999 ): cell wall invertase (CWIN), vacuolar invertase (VIN), and cytoplasmic 
invertase (CIN). Among these isozyme types, CWIN and VIN are characterized as 
acid invertases because of their acidic optimal pH, whereas CIN is characterized 
as a neutral invertase because of its neutral optimal pH. Several studies have revealed 
the diverse roles of invertases in the plant life cycle, including their participation in 
various responses to abiotic and biotic stresses such as drought, hypoxia, high 
temperature, wounding, and pathogen infection (Roitsch and González  2004 ). 

 The relationship between fruit sugar content and abiotic stress suggests that the 
most important invertase is CWIN. During the past decade, CWIN has attracted 
attention as an essential enzyme for determination of the total soluble solids level 
in tomato (Fridman et al.  2002 ,  2004 ; Zanor et al.  2009 ). Among the genes encod-
ing CWIN ( LIN s),  LIN6  responds to various biotic and abiotic stimuli, including 
wounding, pathogen infection, and sugars (Godt and Roitsch  1997 ; Ohyama et al. 
 1998 ; Sinha et al.  2002 ). Additionally,  LIN7  was suggested to be involved in heat 
stress tolerance because its expression was specifi cally promoted by heat stress in 
heat- tolerant varieties (Li et al.  2012 ). Li et al. ( 2012 ) also suggested that the 
increased ability of young fruits to import sucrose contributes to the heat tolerance 
of the variety and is likely to be governed by  LIN7  expression. However, reports 
that fruit VIN and CWIN activities were not affected by salt stress (Carvajal et al. 
 2000 ; Saito et al.  2009 ) suggest that these two isozymes are most likely not 
involved in the phenomenon. In contrast, there was a positive correlation between 
CIN activity and hexose levels in the fruit of plants exposed to salinity stress 
(Balibrea et al.  1996 ,  2006 ). However, minimal information is available on CIN 
in tomato, and its physiological function has yet to be elucidated. These results 
suggest that CIN functions under specifi c environmental conditions such as 
 salinity stress.  
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1.5.2     Starch Biosynthesis 

 Several studies have reported that salt stress enhances starch accumulation in early- 
developing tomato fruit (Balibrea et al.  1996 ; Gao et al.  1998 ; Yin et al.  2010b ). 
In fact, this phenomenon involves an increase in ADP-glucose pyrophosphorylase 
(AGPase) activity. AGPase plays a role in the regulation of starch accumulation 
in early-developing fruit (Schaffer and Petreikov  1997 ; Schaffer et al.  2000 ). This 
enzyme catalyzes the synthesis of ADP-glucose from glucose-1-phosphate and 
ATP, which is the fi rst regulatory step in starch biosynthesis in plants (Tsai and 
Neleson  1966 ; Lin et al.  1988 ; Stark et al.  1992 ). Plant AGPase is a heterotetrameric 
enzyme composed of two small and two large subunits (Morell et al.  1987 ). 
In tomato, four AGPase-encoding genes were isolated: one encodes the small sub-
unit ( AgpS1 ) and the other three genes encode the large subunit ( AgpL1, L2 , and  L3 ) 
(Chen et al.  1998 ; Park and Chung  1998 ). Among these genes,  AgpL1  and  AgpS1  
are predominantly expressed in fruit, and both genes show the highest expression 
during early developmental stages (Petreikov et al.  2006 ; Yin et al.  2010b ). It has 
been reported that plant AGPase-encoding genes are regulated at the transcriptional 
level by phosphates, nitrates, and sugars (Müller-Röber et al.  1990 ; Scheible et al. 
 1997 ; Nielsen et al.  1998 ; Sokolov et al.  1998 ; Li et al.  2002 ). Additionally, our 
previous work showed that  AgpS1  and  AgpL1  expression was specifi cally enhanced 
by salt stress in early developing fruits in an ABA- and osmotic stress-independent 
manner (Yin et al.  2010b ). Detailed expression analyses utilizing detached fruits 
revealed that the response of  AgpL1  expression to salt stress is a sugar-mediated 
response. This observation was indirectly supported by the [ 13 C] tracer analyses, in 
which the carbohydrate infl ux into the fruit was notably enhanced under salinity 
stress conditions in immature green fruits (Yin et al.  2010b ). The observation that 
starch biosynthesis in fruit is dependent on the sugar supply is consistent with the 
results of N’tchobo et al. ( 1999 ). It has been reported that total soluble sugar con-
tents and sucrose phosphate synthase (SPS) activity were increased (Carvajal et al. 
 2000 ) and the expression of the sucrose transporter gene  LeSUT1  was enhanced 
(Yin et al.  2010b ) by salinity stress in leaves. Considering the results of the tracer 
analyses, which showed that the allocation of photosynthetic [ 14 C]/[ 13 C] to fruits 
and roots was increased under saline conditions (Gao et al.  1998 ; Saito et al.  2009 ), 
those responses are most likely a result of a systemic response to salt stress that 
promotes assimilate accumulation in sink organs. Salt stress expands carbohydrate 
availability in the developing fruits and promotes AGPase gene expression and con-
sequent starch biosynthesis, followed by starch breakdown during ripening, which 
results in a high sugar content in red-ripe fruit. Similar phenomena were observed 
in different germplasms, such an  Solanum pennellii -derived introgression line pos-
sessing the  Brix9-2-5  allele, in which enhanced starch accumulation in young fruit 
results in a higher content of total soluble solids in red-ripe fruit compared with 
normal tomato cultivars (Robinson et al.  1988 ; Baxter et al.  2005 ). These observa-
tions support the view that salt stress enhances sugar accumulation in red- ripe fruit 
through activation of starch biosynthesis in immature green fruit.   
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1.6     Conclusion 

 In this chapter, we introduced the concept of active alteration of fruit metabolism 
in response to salinity stress and discussed the proposed molecular mechanisms 
 underlying the development of the “fruit tomato.” As described in Sect.  1.5  and 
elsewhere, increased sugar levels cannot be explained only by a “concentration 
effect” caused by the suppression of fruit enlargement. This insight indicates that 
some metabolic pathways, at least those related to sugar and starch biosynthesis, 
have functions that are independent from that of the suppression of fruit enlarge-
ment. Generally, moderate salt stress simultaneously causes a reduction in fruit 
yield with a concomitant improvement in fruit quality. However, utilizing current 
biotechnological techniques, we are interested in producing a high-Brix fruit with-
out yield reduction; this could be accomplished, for example, by manipulating 
the expression of starch biosynthesis genes. Another possibility entails the use of 
a reverse genetic approach to obtain a mutant in which a metabolic pathway is 
modifi ed by knockout of a protein that degrades a particular metabolite (for example, 
GABA-T) utilizing a targeted mutant screen, such as the TILLING (targeting-
induced local lesions in genomes) technique. Additionally, starch accumulation 
under salt stress would be a useful marker for identifying candidates that can be 
used in breeding varieties with high-Brix fruit. We hope that the information 
described in this chapter will be useful for researchers studying salt stress responses 
and those who are interested in the development of novel, high-value-added fruit 
crop varieties.     
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