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    Chapter 2   
 CRISPR/Cas9: The Leading Edge of Genome 
Editing Technology 

             Tetsushi     Sakuma      and     Takashi     Yamamoto   

    Abstract     An RNA-guided endonuclease (RGEN), known as CRISPR/Cas9, has been 
dramatically changing the fi eld of genome engineering. Because CRISPR/Cas9 is 
much easier to introduce than ZFNs or TALENs because of its simple construction 
of customized vectors targeting particular genomic loci, this epoch- making technol-
ogy has rapidly become a standard tool for targeted gene modifi cation within a time 
span of just a few years. In this chapter, we explain how the technology has arisen, 
how it has become established, improved, and applied, and how it will evolve in the 
future. CRISPR/Cas9-mediated genome editing strategies are likely to continue to 
accelerate studies on functional genomics for years to come. Moreover, nuclease-
inactivated Cas9 (dCas9) with various functional domains will develop the technol-
ogy to its fullest potential, in addition to ZF- and TALE-based platforms. CRISPR/Cas9 
will change the face not only of genetic engineering, but also of a variety of research 
areas in life science studies.  

  Keywords     Cas9 nuclease   •   CRISPR/Cas9   •   Genome editing   •   Genome engineering   
•   gRNA   •   Guide RNA   •   RGEN   •   RNA-guided endonuclease  

2.1         Introduction 

 Engineered endonuclease-mediated genome editing using ZFNs and TALENs is 
conceptually similar to restriction endonuclease-mediated DNA manipulation 
in vitro. Given that recent advances in the engineering of programmable nucleases 
have almost completely abolished any limitations of the target sequences, especially 
for TALENs, it appears as though the use of restriction endonucleases has become 
unrestricted. 

 On the other hand, engineered endonuclease-mediated genome editing strategies 
always require the construction of customized nucleases corresponding to the 
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intended genomic sequence. As an analogy, the principle is similar to the performance 
of immunostaining using primary antibodies directly conjugated with alkaline 
phosphatase. As we know, two components, primary antibodies without any conju-
gations and secondary antibodies recognizing the primary antibodies conjugated 
with alkaline phosphatase, can facilitate immunochemical manipulation, because the 
phosphatase-conjugated secondary antibody can be used for any primary antibodies 
recognizing a variety of antigens. The same phenomenon is also expected in genome 
editing technology, and prokaryotic immunity has represented a “diamond in the 
rough” to realize such two-component gene targeting.  

2.2     The CRISPR/Cas System in Prokaryotic 
Adaptive Immunity 

 The clustered regularly interspaced short palindromic repeats (CRISPR) locus is 
found in the genomes of some bacteria and archaea (Ishino et al.  1987 ; Mojica et al. 
 2000 ; Jansen et al.  2002 ). It contains tandem repeats and spacers, in which the 
repeats comprise the same sequence and the spacers comprise different sequences 
derived from exotic DNA (Mojica et al.  2005 ; Pourcel et al.  2005 ). The CRISPR 
locus functions with CRISPR-associated (Cas) proteins as an adaptive immune sys-
tem against invading foreign DNA (CRISPR/Cas system; Fig.  2.1 ) (Wiedenheft 
et al.  2012 ; Westra et al.  2014 ). In the system, the invading DNA is incorporated into 
the spacer region in the CRISPR locus and transcribed as a long pre-crRNA 
(CRISPR RNA) containing multiple repeats and spacers. Subsequently, in the type 
II CRISPR/Cas system, pre-crRNA is processed to crRNA harboring a single spacer 
sequence complementary to the foreign DNA with another short RNA molecule, 
trans-crRNA (tracrRNA), transcribed from a different locus. The resulting crRNA–
tracrRNA heteroduplex works as a guidance molecule to target exogenous DNA 
with the identical sequence to the crRNA, and induce a DNA double-strand break 
(DSB) at the specifi c locus in association with Cas protein(s) (Bhaya et al.  2011 ; 
Reeks et al.  2013 ; Barrangou and Marraffi ni  2014 ).

2.3        Application of CRISPR/Cas9 in Genome Editing 

 When applying the CRISPR/Cas system in genome editing, only two components 
are needed, namely a chimeric guide RNA (gRNA) mimicking the crRNA–tracrRNA 
complex, and a Cas9 protein with nuclease activity (Fig.  2.2 ) (Jinek et al.  2012 ; 
Cong et al.  2013 ; Mali et al.  2013a ). Although the targeting specifi city is mainly 
dependent on the gRNA sequence, Cas9 also requires a few particular bases, known 
as a protospacer adjacent motif (PAM) (Bolotin et al.  2005 ). The PAM sequences 
vary among species. For example,  Streptococcus pyogenes  Cas9 (SpCas9) requires 
5′-NGG-3′ (Jinek et al.  2012 ),  Streptococcus thermophilus  Cas9 (StCas9) requires 
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  Fig. 2.1    Natural mechanism of the type II CRISPR/Cas adaptive immune system. Foreign nucleo-
tides such as viral DNA or plasmids are incorporated into the CRISPR locus on the host genome. 
Following new spacer acquisition, pre-crRNA is transcribed and hybridized with tracrRNA. After 
processing, the crRNA–tracrRNA complex is recruited to the target DNA sequence along with 
Cas9 protein, and degradation occurs through the nuclease activity of Cas9       

  Fig. 2.2    Schematic representation for target DNA recognition and cleavage by a gRNA-Cas9 
complex. SpCas9 initially searches for the PAM sequence (5′-NGG-3′) on the target 
DNA. Subsequently, base-pairing between the target DNA and gRNA gradually occurs from the 
PAM side. After 20-bp hybridization, the target DNA is cleaved by Cas9 nuclease, resulting in a 
blunt end at the 3-bp upstream of the PAM site       
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5′-NNAGAAW-3′ (Cong et al.  2013 ; Esvelt et al.  2013 ), and  Neisseria meningitidis  
Cas9 (NmCas9) requires 5′-NNNNGATT-3′ (Esvelt et al.  2013 ; How et al.  2013 ; 
Walsh and Hochedlinger  2013 ). Currently, SpCas9 is the most widely used for 
genetic engineering (Hsu et al.  2014 ; Wilkinson and Wiedenheft  2014 ). The SpCas9-
gRNA complex is known to initially seek out the PAM sequence in the genome, and 
subsequently unwind the double-stranded DNA and form DNA-RNA base-pairing 
in a directional manner (Sternberg et al.  2014 ). When introducing a DSB, two 
nuclease domains, HNH and RuvC, independently induce a nick at the Watson and 
Crick strands, resulting in a linear DSB between the bases at 3- and 4-bp upstream 
of the PAM sequence (Jinek et al.  2012 ; Nishimasu et al.  2014 ).

   The gRNA structure is another important factor for CRISPR/Cas9-based genome 
editing. Although crRNA and tracrRNA can be separately transcribed like the 
naturally- occurring CRISPR/Cas system, a chimeric gRNA structure is rather sim-
ple and often leads to high activity (Hsu et al.  2013 ). A chimeric gRNA consists of 
a crRNA-derived region at the 5′ end and a tracrRNA-derived region at the 3′ end, 
and various modifi cations have been adopted in both regions by several groups 
(reviewed in Sander and Joung  2014 ). Basically, the DNA-recognition sequence in 
the crRNA region is 20-bp long, but the addition or truncation of a few bases can 
reportedly improve the specifi city (Cho et al.  2014 ; Fu et al.  2014 ). The 3′ end of the 
crRNA region and the 5′ end of the tracrRNA region are generally linked with four 
nucleotides (5′-GAAA-3′) to form a major stem loop, known as a tetraloop (Kim and 
Kim  2014 ). Stem extensions have also been reported (Chen et al.  2013 ; Hsu et al. 
 2013 ; Jinek et al.  2013 ). The tracrRNA region has additional minor loops on the 3′ 
side, and these sequences are known to be important for high gRNA expression 
(Hsu et al.  2013 ). In addition, A-U fl ips in the poly-A or poly-T regions have been 
adopted in some studies (Chen et al.  2013 ; Jinek et al.  2013 ).  

2.4     Targeting Specifi city of CRISPR/Cas9 

 As described above, the approximately 20-bp gRNA sequence and 3-bp PAM 
sequence of SpCas9 defi ne the targeting specifi city of CRISPR/Cas9. However, the 
stringency of base recognition is not equivalent among these sequences. Regarding 
the PAM sequence, SpCas9 has the ability to bind to 5′-NGA-3′ (Zhang et al.  2014 ) 
and 5′-NAG-3′ (Hsu et al.  2013 ; Jiang et al.  2013 ) sites as well as 5′-NGG-3′. 
Regarding the gRNA targeting sequence, the specifi city decreases with increasing 
distance from the PAM site. The sequence extending up to 12 bp adjacent to the 
PAM site is called the seed sequence, and has relatively high targeting specifi city 
(Jinek et al.  2012 ; Cong et al.  2013 ). 

 In some types of cultured cells, especially immortalized cell lines such as U2OS, 
HEK293T, and K562, highly frequent off-target mutations have been observed by 
many groups (Cradick et al.  2013 ; Fu et al.  2013 ; Hsu et al.  2013 ; Pattanayak et al. 
 2013 ; Cho et al.  2014 ; Lin et al.  2014 ). In vitro assays have also shown off-target 
binding with high frequencies (Pattanayak et al.  2013 ). However, in normal cells 
such as mouse embryonic stem (mES) cells and organisms such as mice and rats, the 
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levels of induced off-target mutations do not seem to be as high (Wang et al.  2013 ; 
Mashiko et al.  2014 ; Yoshimi et al.  2014 ). Furthermore, whole-genome sequencing 
has recently been conducted by several groups to analyze the off-target mutations 
in genome-edited cells, resulting in fi ndings that individual cell clones had low 
frequencies of unintended mutations among human stem cells treated with CRISPR/
Cas9, as well as TALENs (Smith et al.  2014 ; Suzuki et al.  2014 ; Veres et al.  2014 ). 
These reports suggest that the mutation frequencies at off-target sites vary among 
species and cell types because of potential differences in the DSB repair machineries. 

 Interestingly, a genome-wide survey of SpCas9-gRNA-binding sites using chro-
matin immunoprecipitation followed by sequencing (ChIP-seq) revealed that only 
seven nucleotides, including 5′-GG-3′ in the PAM, could be identifi ed as a consen-
sus sequence (Wu et al.  2014 ). Furthermore, although thousands of off-target bind-
ing sites were determined, only one of the analyzed potential off-target sites carried 
signifi cant mutations in mES cells (1/295; 0.34 %). Similar results were reported by 
two other groups (Duan et al.  2014 ; Kuscu et al.  2014 ). On the other hand, 70 % of 
SpCas9-gRNA-binding sites were found to be associated with genes (Wu et al.  2014 ). 
This result suggests that changes in transcriptional regulation can be triggered by 
CRISPR/Cas9 for unintended genes, because various studies have shown that bind-
ing of catalytically inactive Cas9 to a coding region or regulatory region causes 
transcriptional inhibition (CRISPRi) (Gilbert et al.  2013 ; Larson et al.  2013 ; Qi 
et al.  2013 ; Zhao et al.  2014 ). Although further studies are needed to clarify this 
issue, we need to recognize the possibility of such potential side effects without any 
mutations when using CRISPR/Cas9.  

2.5     Double-Nicking and Dimeric FokI-dCas9 Strategies 
for Highly-Specifi c Genome Editing 

 Based on the strong concern about off-target mutations, several advanced strategies 
for highly specifi c CRISPR/Cas9-mediated genome editing have been developed 
(Fig.  2.3 ). The main problem for CRISPR/Cas9 specifi city is its monomeric archi-
tecture, unlike the case for the dimeric ZFNs and TALENs. A conventional CRISPR/
Cas9 genome editing system contains a single gRNA and a Cas9 nuclease. Since the 
Cas9 nuclease has cleavage activity for both DNA strands, the induced DSB site is 
determined by the single gRNA.

   Previous research on engineered endonucleases has provided some clues to solve 
the problem of specifi city. The TALE::TevI architecture, known as compact TALEN 
(cTALEN), can induce a nick when used as a monomer, but can also induce a DSB 
when used as a pair (Beurdeley et al.  2013 ). This paired nicking can only cleave 
DNA when the space between two nicks is within a range of defi ned lengths 
(9–18 bp). Similarly, the double nicking induced by CRISPR/Cas9 was reported to 
introduce a DSB (Mali et al.  2013b ; Ran et al.  2013 ; Cho et al.  2014 ). The nuclease 
activity of Cas9 can be converted to nickase activity when a D10A or H840A mutation is 
incorporated (Jinek et al.  2012 ). Theoretically, these nickases cannot induce a DSB 
unless two adjacent nicks on both strands are introduced. Therefore, when using 
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Cas9 nickase, the target site needs to be recognized by two distinct gRNAs, meaning 
that targeted mutagenesis can be performed in a highly specifi c manner. Moreover, 
this double-nicking strategy reportedly works not only in cultured cells, but also in 
embryos of animals such as mice (Fujii et al.  2014 ; Shen et al.  2014 ). 

 Another attempt to improve the specifi city involves the creation of a fusion pro-
tein between catalytically inactive Cas9 (dCas9) and the nuclease domain of FokI 
(RNA-guided FokI nuclease; RFN). dCas9 has both D10A and H840A mutations 
and no DNA-cleaving activity. Tsai et al. ( 2014 ) showed that FokI-dCas9 can be 
used as a dimeric nuclease similar to ZFNs and TALENs. FokI-dCas9 can introduce 
a DSB when the spacer length is in the range of 13–18 bp. In fact, paired nicking is 
not truly a dimeric strategy, because Cas9 nickase is catalytically active and the 
nicks sometimes induce mutations (Tsai et al.  2014 ). On the other hand, FokI-dCas9 
acts as a proper dimeric nuclease. The applicability of RFNs in various organisms 
other than cultured cells needs to be investigated in future studies.  

2.6     Web-Based Software for Designing gRNA Targets 
and Predicting Off-Target Candidates 

 In principle, the sequence limitation for targeting with CRISPR/Cas9 is only a 
PAM site. In practice, other actual limitations are as follows: 1) sequences harboring 
poly-T should be avoided as gRNA target sequences, because poly-T can work 

  Fig. 2.3    Three different 
DNA-cleaving strategies 
using the CRISPR/Cas9 
system. ( a ) Original CRISPR/
Cas9 system mediated by 
wild-type Cas9 nuclease and 
a single gRNA. ( b ) Double- 
nicking strategy mediated by 
Cas9 nickase harboring the 
D10A mutation and two 
gRNAs. ( c ) RNA-guided 
FokI nuclease system 
mediated by catalytically 
inactive Cas9 harboring 
D10A and H840A mutations 
(dCas9) fused to the nuclease 
domain of FokI and two 
gRNAs       
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as a transcriptional terminator; and 2) the number of potential off-target sites should 
be minimized. 

 Currently, various tools for designing CRISPR/Cas9 target sites and predicting 
potential off-target sites are available on the web. CRISPR Design Tool (  http://
crispr.mit.edu/    ), developed by the Feng Zhang laboratory at MIT (Ran et al.  2013 ), 
is supposedly the most widely used resource for designing and assessing gRNA 
target sequences (Ni et al.  2014 ; Yen et al.  2014 ; Yoshimi et al.  2014 ). CRISPR 
Design Tool is used not only for design, but also for searching for off-target sites in 
the genomes of certain species, including humans, rats, mice, zebrafi sh, fl ies, and 
nematodes. ZiFiT Targeter (  http://zifi t.partners.org/ZiFiT/    ) (Sander et al.  2007 , 
 2010 ; Hwang et al.  2013 ; Fu et al.  2014 ) available on the website of the Zinc Finger 
Consortium is also commonly used for designing gRNAs (Blitz et al.  2013 ; 
Nakayama et al.  2013 ; Yu et al.  2014 ). Other web resources include E-CRISP 
(  http://www.e-crisp.org/E-CRISP/    ) (Heigwer et al.  2014 ), CRISPRdirect (  http://
crispr.dbcls.jp/    ), CRISPR Optimal Target Finder (  http://tools.fl ycrispr.molbio.wisc.
edu/targetFinder/    ) (Gratz et al.  2014 ), CasOT (  http://eendb.zfgenetics.org/casot/    ) 
(Xiao et al.  2014 ), Cas-OFFinder (  http://www.rgenome.net/cas-offi nder/    ) (Bae 
et al.  2014 ), CHOPCHOP (  https://chopchop.rc.fas.harvard.edu/    ) (Montague et al. 
 2014 ), sgRNAcas9 (  http://www.biootools.com/col.jsp?id=103    ) (Xie et al.  2014 ), 
and CRISPy (  http://staff.biosustain.dtu.dk/laeb/crispy/    ) (Ronda et al.  2014 ). 

 CRISPR Genome Analyzer, CRISPR-GA (  http://crispr-ga.net/    ) (Guell et al. 
 2014 ), developed by the George Church laboratory, is a different type of web tool. 
Using CRISPR-GA, we can obtain analytical data by uploading forward and reverse 
reads of Miseq sequences from the amplicons of genetically modifi ed cells or organ-
isms. The percentages of error-prone non-homologous end-joining are calculated, 
and the sizes and locations of deletions and insertions can be visualized in automati-
cally created fi gures.  

2.7     Construction of CRISPR/Cas9 Vectors 

 Plasmids for constructing custom gRNA- and Cas9-expressing vectors are available 
from Addgene (  https://www.addgene.org/    ) and several other commercial compa-
nies including Life Technologies, OriGene, and System BioSciences. The construc-
tion procedure only involves insertion of annealed oligonucleotides into the vectors, 
which is much simpler than the procedures for ZFNs or TALENs (Fig.  2.4 ) (Cong 
et al.  2013 ; Ran et al.  2013 ). The gRNA and Cas9 can be expressed using either 
separate vectors or a single combined vector. pX330, a single vector expressing 
both gRNA and Cas9 nuclease with human U6 and chicken beta-actin hybrid (CBh) 
promoters, respectively, was originally developed by the Feng Zhang laboratory 
(Cong et al.  2013 ) and has been very widely used for cell and animal genome edit-
ing (Mashiko et al.  2013 ,  2014 ; Ran et al.  2013 ; Matsunaga and Yamashita  2014 ; 
Mizuno et al.  2014 ; Park et al.  2014 ; Yin et al.  2014 ).

   Meanwhile, Sakuma et al. ( 2014 ) developed an all-in-one CRISPR/Cas9 vector 
system for multiplex genome engineering by modifying the pX330 plasmid. In their 
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system, up to seven gRNA expression cassettes are tandemly ligated into a single 
vector along with a Cas9 nuclease/nickase cassette using the Golden Gate assembly 
method (Fig.  2.4 ), which is often used for modular assembly of DNA-binding 
repeats of TALE (Cermak et al.  2011 ; Kim et al.  2013 ; Sakuma et al.  2013a ,  b ). 
The all-in-one vector constructed with this system has been proven to be applicable 
for simultaneous gene targeting of up to seven and three genomic loci with standard 
nuclease and paired nickase strategies, respectively. The materials for the construc-
tion are expected be distributed as the “Multiplex CRISPR/Cas9 Assembly System 
Kit” by Addgene.  

2.8     Methods for Introducing CRISPR/Cas9 into Cells 
and Organisms 

 To achieve CRISPR/Cas9-mediated genome engineering, various methodologies 
have been devised and conducted for delivery of the two components, gRNA and 
Cas9. For cultured cells and animal embryos, the two components can be introduced 
by DNA/RNA/protein transfection or microinjection. Multiplex genome engineer-
ing is also applicable when multiple plasmids, plasmid and DNA fragments, single 
all-in-one plasmids, or RNA/protein are introduced (Fig.  2.5 ) (Jao et al.  2013 ; Li 
et al.  2013b ; Wang et al.  2013 ; Guo et al.  2014 ; Ma et al.  2014 ; Sakuma et al.  2014 ). 
Purifi ed Cas9 protein and gRNAs can form ribonucleoproteins (RNPs) in vitro, 

  Fig. 2.4    Construction methods for CRISPR/Cas9 vectors for single ( upper panel ) and multiple 
( lower panel ) gene targeting. pX330, originally developed in the Feng Zhang laboratory, is prob-
ably the most commonly used CRISPR/Cas9 vector. A template DNA sequence for the gRNA 
should be prepared as annealed oligonucleotides and inserted into the BbsI-digested pX330 vector. 
For multiplex genome engineering, an all-in-one vector system containing multiple gRNA cassettes 
and a Cas9 cassette can be used. The system involves the BsaI-mediated Golden Gate assembly 
method for the concatemerization of gRNA cassettes       
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which can be incorporated into cells by electroporation (Kim et al.  2014b ). If a 
cell-penetrating peptide is added for gRNAs and conjugated with Cas9, RNPs can 
be delivered into cells by simply adding them into the medium (Ramakrishna et al. 
 2014 ), similar to the case for TALENs with cell-penetrating peptides (Ru et al. 
 2013 ; Liu et al.  2014 ). Lentiviral delivery into cells and animals has also been 
reported (Malina et al.  2013 ; Heckl et al.  2014 ). Importantly, a lentiviral CRISPR/
Cas9 library has enabled forward genetics screening in cultured cells (Koike-Yusa 
et al.  2014 ; Shalem et al.  2014 ; Wang et al.  2014 ; Zhou et al.  2014 ). For plant appli-
cations, protoplast transformation or  Agrobacteria  infection has generally been 
used for the delivery (Feng et al.  2013 ; Li et al.  2013a ; Nekrasov et al.  2013 ; Shan 
et al.  2013 ). The current situations for CRISPR/Cas9-mediated genome editing in 
various cells and organisms are described in Part II of this book.

2.9        Expanded Applications of CRISPR/Cas9 
in Life Science Studies 

 Similar to ZF- and TALE-based technologies, fusion proteins of dCas9 with various 
functional domains can act as a variety of site-specifi c DNA-binding effector 
proteins (Fig.  2.6 ) (Mali et al.  2013c ; Hsu et al.  2014 ; Sander and Joung  2014 ). 

  Fig. 2.5    Examples of transfection strategies for CRISPR/Cas9-mediated multiplex genome engi-
neering. Multiple plasmids, plasmid and DNA fragments, or single plasmids can be applied for the 
DNA transfection ( upper panels ). Alternatively, Csy4-mediated cleavage of long transcripts can 
produce multiple gRNAs (Nissim et al.  2014 ; Tsai et al.  2014 ). Several gRNAs transcribed in vitro 
and Cas9 mRNA or protein can be used for DNA-free transfection       
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For transcriptional activation, the herpes simplex virus-derived activator domain, 
VP16, or its concatemers, such as VP48, VP64, and VP120, are fused with dCas9 
(Cheng et al.  2013 ; Maeder et al.  2013a ; Hu et al.  2014 ). Regarding transcriptional 
repression, although dCas9 itself can inhibit transcription (Gilbert et al.  2013 ; Larson 
et al.  2013 ; Qi et al.  2013 ; Zhao et al.  2014 ), dCas9 fused with a repressor domain 
such as KRAB can repress gene expression more effi ciently (Gilbert et al.  2013 ; 
Kearns et al.  2014 ). dCas9-GFP, developed by Chen et al. (2103), enables dynamic 
imaging of genomic loci in cultured cells. Site-specifi c epigenome editing is also 
thought to be applicable using a dCas9-fusion strategy (Rusk  2014 ), but only a few 
examples have currently been reported using TALE-based strategies (Konermann 
et al.  2013 ; Maeder et al.  2013b ; Mendenhall et al.  2013 ) and there are no reports 
for CRISPR technology. Nuclease-independent genetic engineering enzymes have 
also been adopted in ZF/TALE-fusion architectures. ZF/TALE-recombinases and 
ZF/TALE-transposases have been reported in the following papers: Gordley et al. 
( 2007 ), Gersbach et al. ( 2011 ), Mercer et al. ( 2012 ), and Gaj et al.  2013  for recom-
binases; Li et al. ( 2013c ) and Owens et al. ( 2013 ) for transposases. CRISPR appli-
cations for these purposes are expected to be developed in the near future.

   It is particularly worth noting that CRISPR/Cas9-based transcriptional control 
methodologies open up a huge new fi eld of synthetic biology, as well as TALE- 
based transcriptional modulation techniques (Farzadfard et al.  2013 ; Kiani et al. 
 2014 ; Moore et al.  2014 ). Among others, Nissim et al. ( 2014 ) constructed particu-
larly sophisticated gene networks using CRISPR transcriptional control tools in 
combination with various RNA-modifying systems such as RNA-triple-helix struc-
tures, introns, microRNAs, and ribozymes. In the meantime however, further expan-
sion and deepening of the technologies are required for this challenging fi eld. 

 In addition, there are some other applications that differ from the standard genome 
engineering approaches. Engineered DNA-binding molecule-mediated chromatin 
immunoprecipitation, enChIP, is one of the unique methods utilizing CRISPR/Cas9 
(Fujita and Fujii  2013 ). Using enChIP, specifi c genomic regions can be effi ciently 

  Fig. 2.6    Various applications of ZF/TALE/CRISPR technologies. Genome editing techniques can 
expand beyond site-specifi c nucleases. For example, VP16 and KRAB fusions result in transcrip-
tional activation and repression of specifi c genes, respectively, GFP fusion results in visualization of 
specifi c genomic loci, and TET1 and LSD1 fusions result in site-specifi c epigenetic modifi cations       
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purifi ed and their associated proteins can be identifi ed by mass spectrometry. 
The same group further showed that similar experiments can be performed with 
TALEs instead of CRISPR/Cas9 (Fujita et al.  2013 ). Kim et al. ( 2014a ) applied the 
CRISPR/Cas9 system to the genotyping of polymorphisms in vitro. Restriction 
fragment length polymorphism (RFLP) analysis is often used for genotyping of 
genome-edited alleles (Suzuki et al.  2013 ; Nakagawa et al.  2014 ; Sakane et al. 
 2014 ). However, conventional RFLP analysis can only be applied when there is a 
recognition sequence for a restriction enzyme around the DSB site. On the other 
hand, the CRISPR/Cas9-mediated RFLP method using in vitro-synthesized gRNA 
and Cas9 protein enables the genotyping of any sequence, as long as there is a PAM 
sequence around the target site.      
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tional wisdom in every research fi eld in life science studies. Researchers are 
encouraged to enjoy the benefi ts of this novel technique and drive the growth of 
their science. 
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