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Abstract A Hamiltonian minimal (shortly, H-minimal) Lagrangian submanifold in
a Kähler manifold is a critical point of the volume functional under all compactly
supported Hamiltonian deformations. We show that any normal bundle of a principal
orbit of the adjoint representation of a compact simple Lie group G in the Lie
algebra g of G is an H-minimal Lagrangian submanifold in the tangent bundle
T g which is naturally regarded as C

m. Moreover, we specify these orbits with
this property in the class of full irreducible isoparametric submanifolds in the
Euclidean space.

1 Introduction

A Lagrangian submanifold L is an m-dimensional submanifold in a 2m-
dimensional symplectic manifold .M; !/ on which the pull-back of the symplectic
form ! vanishes. When M is a Kähler manifold, extrinsic properties of Lagrangian
submanifolds have been studied by many authors. Since the Lagrangian property
is preserved by Hamiltonian flows, namely, flows generated by Hamiltonian vector
fields on M , it is natural to consider the variational problem under the Hamiltonian
constraint. A Lagrangian submanifold which attains an extremal of the volume
functional under Hamiltonian deformations is called Hamiltonian minimal (shortly,
H-minimal). This was first investigated by Oh [26], where he gave some basic
examples. Many more examples have been constructed in Kähler manifolds by
various methods (see Sect. 2).

In this note, we review some basic results of H-minimal Lagrangian submani-
folds in a general Kähler manifold (Sect. 2). Furthermore, we focus on constructions
of H-minimal Lagrangian submanifolds in the complex Euclidean space C

m

(Sect. 3.1). In particular, we give a new family of non-compact, complete H-
minimal Lagrangian submanifolds in the complex Euclidean space C

m (Sect. 3.2
through 3.4).

T. Kajigaya (�)
Mathematical Institute, Graduate School of Sciences, Tohoku University, Aoba-ku, Sendai, Japan
e-mail: kajigaya@math.tohoku.ac.jp

© Springer Japan 2014
Y.J. Suh et al. (eds.), Real and Complex Submanifolds, Springer Proceedings
in Mathematics & Statistics 106, DOI 10.1007/978-4-431-55215-4__43

485

mailto:kajigaya@math.tohoku.ac.jp


486 T. Kajigaya

Let N n be a submanifold in R
nCk . Our examples are given by the normal

bundle �N of N in TR
nCk ' C

nCk . It is known that the normal bundle �N is
a Lagrangian submanifold in TR

nCk . Harvey–Lawson [10] first showed that �N

is a minimal Lagrangian submanifold if and only if N is an austere submanifold,
namely, the set of principal curvatures of N with respect to any unit normal
vector is invariant under the multiplication by �1. In their context, the condition
that a Lagrangian submanifold is minimal is equivalent to that it is a special
Lagrangian submanifold of some phase. Hence, one can construct examples of
special Lagrangian submanifold in C

nCk from austere submanifolds. On the other
hand, in [18], the author proves that any normal bundle over the principal orbit of the
adjoint action of a compact semi-simple Lie group G is a non-minimal, H-minimal
Lagrangian submanifold. Such an orbit is called the complex flag manifold or
regular Kähler C-space. Moreover, we show that this property characterizes regular
C-spaces among the class of full and irreducible isoparametric submanifolds in the
Euclidean space (Sect. 3.3, Theorem 1). In Sect. 3.4, we review a proof of this result
which is given in [18].

2 Hamiltonian Minimal Lagrangian Submanifolds

Let � W L ! M be a Lagrangian immersion into a Kähler manifold .M; !; J /,
where ! is the Kähler form and J is the complex structure on M . An infinitesimal
deformation �t W L � .�"; "/ ! M of � is called a Hamiltonian deformation if
˛ QVt

2 ˝1.L/ is an exact form for t 2 .�"; "/, namely, ˛Vt D dft for some functions

ft 2 C 1
0 .L/, where QVt WD d�t =dt is the variational vector field of �t . Define the

mean curvature form of � by ˛H WD ��.!.H; �//, where H is the mean curvature
vector of �. A Lagrangian immersion � is called minimal if ˛H D 0, or equivalently
H D 0. When M is Kähler–Einstein, the mean curvature form ˛H is a closed
1-from by the result of Dazord [9], and hence, it defines a real cohomology class
Œ˛H � 2 H 1.L;R/. It is known that any Hamiltonian isotopy preserves Œ˛H �, namely,
under any global Hamiltonian isotopy f�t g0�t�1 of � D �0, the 1-forms ˛Ht on L

represent the same cohomology class, where ˛Ht is the mean curvature form of
�t (see [27]). In particular, for a Lagrangian immersion � into a Kähler–Einstein
manifold M , if there exist a minimal Lagrangian immersion in its Hamiltonian
isotopy class, then Œ˛H � D 0. Therefore, there exist an obstruction for the existence
of minimal Lagrangian submanifold in the Hamiltonian isotopy class (see also [30]).

A Lagrangian immersion � is called Hamiltonian minimal (shortly, H-minimal)
if it is a critical point of the volume functional under all compactly supported
Hamiltonian deformations. It is known that � is H-minimal if and only if the
mean curvature form ˛H 2 ˝1.L/ satisfies the equation ı˛H D 0, where ı is
the codifferential acting on ˝1.L/ (see [26]). When M is Kähler–Einstein, the
maximum principle implies that if � W L ! M is a non-minimal, H-minimal
immersion of a compact manifold L into M , then H 1.L;R/ ¤ 0 ([26]).
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Example 1. (1) Any minimal Lagrangian immersion is H-minimal. Thus, the
notion of H-minimality is an extension of minimal submanifold.

(2) Any Lagrangian immersion with the parallel mean curvature vector (i.e.,
r?H D 0) is H-minimal.

(3) A curve with constant geodesic curvature in a Riemann surface.
(4) Any compact extrinsically homogeneous Lagrangian submanifold in a Kähler

manifold.

An H-minimal Lagrangian immersion � W Ln ! M 2n is Hamiltonian stable
(or H-stable) if the second variation of the volume functional of the immersion is
non-negative for all Hamiltonian deformations f�t gt . In [26], Oh derived the second
variation under a Hamiltonian deformation for a compact Lagrangian submanifold
in a Kähler manifold as follows:

d2

dt2

?
?
?

tD0
Vol.�t .L// D

Z

L

n

j�f j2 � Ric.rf / � 2g.B.rf; rf /; H/ C g.J rf; H/2
o

dvL;

where ˛V0 D df , Ric is the Ricci curvature of M , and B is the second fundamental
form of L. When M is Kähler–Einstein, and L is a compact minimal Lagrangian
submanifold, it turns out that the H-stability is equivalent to �1 � c, where �1 is
the first eigenvalue of � acting on C 1.L/ and c is the Einstein constant of M .
In particular, any compact minimal Lagrangian submanifold in a Kähler–Einstein
manifold with non-positive Ricci curvature is H-stable.

Example 2. The following examples are H-stable.

(1) Einstein real forms (i.e., the fixed point sets of an anti-holomorphic involution
on M ) in a Hermitian symmetric space of compact type [25].

(2) The standard tori T m D S1.r1/ � � � � S1.rm/ in C
m [26].

(3) Lagrangian submanifolds with parallel second fundamental form in C
m or CP m

[1, 2].

For more examples of H-stable Lagrangian submanifold, we refer to [20,21] and
a survey article by Ohnita [28].

A diffeomorphism � on M is called a Hamiltonian diffeomorphism of M if �

satisfies the following conditions:

(i) � is symplectic, namely, ��! D !.
(ii) � is represented by the flow f�t gt2Œ0;1� of a time dependent Hamiltonian vector

field fXFt g on M , namely, d=dt.�t .x// D XFt .�t .x// with �0 D IdM and
�1 D �, where !.XFt ; �/ D dFt for Ft 2 C 1

0 .M/.

We denote the set of all Hamiltonian diffeomorphisms by Ham.M; !/.
A Lagrangian submanifold L in M is called Hamiltonian volume minimizing (or
shortly, H.V.M. Lagrangian submanifold) if L is a volume minimizer of any Hamil-
tonian diffeomorphism, namely, L satisfies the inequality Vol.�.L// � Vol.L/

for any � 2 Ham.M; !/. By definition, it follows that an H.V.M. Lagrangian
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submanifold is necessarily H-minimal and H-stable. We know only a few examples
of H.V.M. Lagrangian submanifolds.

Example 3. (1) The totally geodesic RP n in CP n (Kleiner–Oh, cf. [25]).
(2) The product of two equators S1 � S1 in S2 � S2 (Iriyeh–Ono–Sakai, [16]).
(3) The totally geodesic Sn in Qn.C/ (cf. Iriyeh–Sakai–Tasaki, [17]).

Note that all known examples of H.V.M. Lagrangians belong to Einstein real
forms in a Hermitian symmetric space. Based on these examples, Oh posed the
following conjecture:

Conjecture 1. Let L be a real form, i.e., the fixed point sets of an anti-holomorphic
involution of a Kähler–Einstein manifold M . If L is Einstein, then L is H.V.M.

More generally, we consider the following problem:

Problem 1. Construct and classify H-minimal Lagrangian submanifolds, H-stable
Lagrangian submanifolds and H.V.M. Lagrangian submanifolds in a specific Kähler
manifold.

3 Hamiltonian Minimality of Normal Bundles in TR
nCk

3.1 H-Minimal Lagrangian Submanifolds in C
m

Let L be an oriented Lagrangian submanifold in the complex Euclidean space C
m.

The Lagrangian angle of L is an S1-valued function � W L ! S1 D R=2	Z on L

defined by

e
p�1�.p/ D d z1 ^ : : : ^ d zm.e1; : : : ; em/.p/;

where zi D xi C p�1yi and fe1; : : : ; emg is an oriented orthonormal basis of L.
Then one can show that the mean curvature form ˛H of L satisfies the relation

˛H D �d�: (1)

Recall that a Lagrangian submanifold L in C
m is special Lagrangian with phase

e
p�1� if L is calibrated by the calibration Re.e�p�1� ˝/, where ˝ D d z1 ^ : : : ^

d zm. A special Lagrangian submanifold is automatically volume minimizing in its
homology class.

Proposition 1. For an oriented, connected Lagrangian submanifold L in C
m, we

have (i) � is special Lagrangian if and only if � is constant, and (ii) � is H-minimal
if and only if � is harmonic (as a S1-valued function), namely, �� D 0.

The minimality of a Lagrangian submanifold L in C
m is equivalent to that L

is a special Lagrangian submanifold of some phase (see Proposition 2.17 in [10]).
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We also note that there exist no compact minimal submanifolds in the (complex)
Euclidean space.

On the other hand, Oh [26] pointed out that the standard tori T m D S1.r1/

� � � ��S1.rm/ are H-minimal. Generalizing Oh’s results [26], Dong [8] showed that
the pre-image of an H-minimal Lagrangian submanifold in the complex projective
space CP m�1 via the Hopf fibration 	 W S2m�1 ! CP m�1 is H-minimal
Lagrangian in C

m. We note that there are some known H-minimal Lagrangian
submanifolds in CP m�1. For instance, any compact, extrinsically homogeneous
Lagrangian submanifolds in CP m�1 are H-minimal, and Bedulli and Gori [4] gives
the complete classification of Lagrangian orbits which are obtained by a simple
Lie group of isometries acting on CP m�1. On the other hand, Anciaux and Castro
[3] gave examples of H-minimal Lagrangian immersions of manifolds with various
topology by taking a product of a Lagrangian surface and Legendrian immersions in
odd-dimensional unit spheres. Note that these examples are compact and contained
in a sphere. In [18], we give a new family of non-compact, complete H-minimal
Lagrangian submanifolds in C

m, which is described in the following subsections.
For more examples in C

m (and CP m�1), we refer to [1–3, 11, 12] and references
therein.

3.2 Normal Bundles in TR
nCk

Let R
nCk be the Euclidean space with the standard flat metric h; i. Denote the

tangent bundle of R
nCk by TR

nCk . Since TR
nCk is trivial, it is identified with

the direct sum R
nCk ˚ R

nCk on which we can define the flat metric g.; / induced
from h; i. Moreover, we define the complex structure J by J.X; Y / D .�Y; X/ for
.X; Y / 2 TpR

nCk˚TuR
nCk where .p; u/ 2 R

nCk˚R
nCk . By this identification, we

regard TR
nCk as the complex Euclidean space CnCk with the standard Kähler form

! WD g.J �; �/. Let � W N n ! R
nCk be an isometric embedding of an n-dimensional

smooth manifold into R
nCk . In the following, we always identify N with its image

under �, and call it a submanifold in R
nCk . Define the normal bundle of N by

�N WD f.p; u/ 2 TR
nCk I p 2 N; u ? TpN g. This is an .n C k/-dimensional

submanifold in TR
nCk . Moreover, one can check that �N is Lagrangian in TR

nCk

with respect to the standard symplectic form.
We denote the Levi–Civita connections on R

nCk and TR
nCk by r and Qr,

respectively. For a normal vector u 2 �pN at p 2 N , the shape operator
Au 2 End.TpN / is defined by Au.X/ WD �.rX u/> for X 2 TpN , where > denotes
the tangent component of the vector. Since Au is represented by a symmetric matrix,
the eigenvalues of Au are real, and we denote it by 
i .p; u/ for i D 1; : : : ; n. If u
is an unit normal vector, these eigenvalues are called the principal curvatures of N

with respect to the normal direction u.

Lemma 1 ([18]). Let N n be an oriented submanifold in R
nCk . Then the

Lagrangian angle of the normal bundle �N in TR
nCk ' C

nCk is given by
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�.p; u/ D �
n

X

iD1

Arctan
i .p; u/ C k	

2
.mod 2	/; (2)

where Arctan
i .p; u/ denotes the principal value of arctan 
i .p; u/.

By the relation (1) and (2), the mean curvature form of the normal bundle can be
written by

˛H D d
� n

X

iD1

arctan 
i

�

: (3)

For convenience, we put Q� WD Pn
iD1 arctan 
i .

Remark 1. We remark that a similar formula of (3) has been obtained by Palmer
[33] in a different situation.

The following necessary and sufficient conditions for the minimality of normal
bundles in C

nCk was first given by Harvey–Lawson [10]:

Proposition 2 (Theorem 3.11 in [10]). Let N n be a connected submanifold in
R

nCk . Then the normal bundle �N is a minimal Lagrangian submanifold in
TR

nCk ' C
nCk if and only if N is austere, namely, the set of principal curvatures

f
i .p; u/gn
iD1 is invariant under the multiplication by �1.

By using this result, one can produce examples of special Lagrangian submani-
folds in C

nCk from austere submanifolds in R
nCk .

By the explicit formulation of the Lagrangian angle of �N given in Lemma 2.1,
we improve Harvey–Lawson’s result a bit as follows:

Proposition 3 ([18]). Let N n be a submanifold in R
nCk . If the mean curvature

vector of the normal bundle �N is parallel in TR
nCk ' C

nCk , then �N is minimal.

By Proposition 2 and 3, we obtain the following.

Corollary 1. Let N n be a submanifold in R
nCk . Then the following three

are equivalent: (i) N is austere, (ii) the normal bundle �N is minimal in
TR

nCk ' C
nCk , (iii) �N has parallel mean curvature vector.

In the following, we investigate the H-minimality of a Lagrangian submanifold in
the complex Euclidean space CnCk obtained as the normal bundle of a submanifold
N n in R

nCk . By Lemma 1, the H-minimality of the normal bundle �N in C
nCk is

equivalent to

� Q� D 0; where Q� WD
n

X

iD1

arctan
i : (4)
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We recall that there are no non-minimal, H-minimal Lagrangian normal bundles
in C

nCk with parallel mean curvature vector by Corollary 1.
Besides, one can show that the normal bundle of the Riemannian product

N1 � N2 ! R
n1Ck1 � R

n2Ck2 of two embeddings Ni ! R
ni Cki .i D 1; 2/ is

H-minimal if and only if each of �Ni is H-minimal. Thus, in the following, our
concern is always irreducible ones.

3.3 Normal Bundles over Isoparametric Submanifolds

In [18], we classify isoparametric submanifolds in R
nCk with H-minimal normal

bundles. Before describing the main result, we briefly review the isoparametric
submanifolds in R

nCk (For more details, refer to [5, 39] and references therein).
Let N n be a submanifold in R

nCk of an arbitrary codimension k. There are
several ways to define the notion of isoparametric submanifolds (see [39]). In this
article, we consider the following two conditions.

(i) For any parallel normal vector field u.t/ along a piece-wise smooth curve c.t/

on N , the shape operator Au.t/ has constant eigenvalues.
(ii) The normal bundle of N is flat, namely, R? D 0, where R? denotes the

curvature tensor with respect to the normal connection of N .

If N satisfies the condition (i), we say N has constant principal curvatures. If
N satisfies both conditions, we call N an isoparametric submanifold. It is known
that any non-compact complete isoparametric submanifold is a product of compact
isoparametric submanifolds and the Euclidean space (see [37]). Since the Euclidean
factor is obviously austere, we may assume that an isoparametric submanifold N is
compact for our purpose.

In the following, we consider an isoparametric submanifold N n in R
nCk .

The isoparametric hypersurfaces in R
nC1 are classified by Somigliana [35] for

n D 3, and Segre [34] for the general dimension. We denote the number of distinct
principal curvatures by g. Then g is at most two, and an isoparametric hypersurface
in R

nC1 is one of the following:

g D 1: An affine hyperplane R
n or a hypersphere Sn.r/, where r > 0.

g D 2: A spherical cylinder Rk � Sn�k.r/, i.e., a tube around an affine plane R
k ,

where r > 0.

The codimension two isoparametric submanifolds in R
nC2 are known as isopara-

metric hypersurfaces in the unit sphere SnC1.1/. One of large subclasses of these
hypersurfaces are extrinsically homogeneous hypersurfaces in SnC1.1/ and these
are classified by Hsiang–Lawson [10]. This result asserts that all homogeneous
hypersurfaces in SnC1.1/ are obtained by principal orbits of s-representations of
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symmetric spaces of rank 2, where the s-representation is the isotropy representation
of a symmetric space U=K (see Sect. 3.4). Other classes includes infinitely many
non-homogeneous examples due to Ozeki–Takeuchi and Ferus–Karcher–Münzner.
These are the so called isoparametric hypersurfaces of OT-FKM type (for more
details, refer to monographs [6, 39] and references therein). The classification of
isoparametric hypersurfaces in SnC1.1/ has not been completed yet. Let N be an
isoparametric hypersurface in the unit sphere SnC1.1/, and � the unit normal vector
field on N . We denote the distinct principal curvatures of N with respect to � by

i D cot �i with 0 < �1 < � � � < �g < 	 , and these multiplicities by mi for
i D 1; : : : ; g, respectively. Then, Münzner showed the following ([23]):

�i D �1 C i � 1

g
	; for i D 1; : : : ; g; (5)

mi D miC2; modulo g indexing: (6)

In particular, 0 < �1 < 	=g, and the multiplicities are same if g is odd. Münzner
also proved that the number of distinct principal curvatures g is equal to 1; 2; 3; 4 or
6 [24].

On the other hand, Thorbergsson [38] proved that any full, irreducible, isopara-
metric submanifold in R

nCk with k � 3 is extrinsically homogeneous (see also
Olmos [29]). Moreover, combining it with the results of Dadok [7] and Palais-Terng
[32], they are principal orbits of an s-representation, namely, an isotropy orbit of
semi-simple symmetric space U=K.

Let us describe the main results in [18]. For the H-minimality of normal bundles
of isoparametric submanifolds, we prove the following:

Theorem 1 ([18]). Let N be a full, irreducible isoparametric submanifold in the
Euclidean space R

nCk . Then the normal bundle �N is H-minimal in TR
nCk '

C
nCk if and only if N is a principal orbit of the adjoint action of a compact simple

Lie group G.

In particular, we obtain:

Corollary 2 ([18]). Let G be a compact, connected, semi-simple Lie group, g the
Lie algebra of G, and N n D Ad.G/w a principal orbit of the adjoint action of G

on g ' R
nCk through w 2 g. Then the normal bundle �N of N is an H-minimal

Lagrangian submanifold in the tangent bundle T g ' C
nCk .

The principal orbit N is diffeomorphic to G=T , where T is a maximal torus of
G, and N is called a complex flag manifold or regular Kähler C-space. Since N D
Ad.G/w is compact, N is never austere in R

nCk , and hence, �N is not minimal.
Moreover, it does not have parallel mean curvature vector (see Proposition 3). We
also note that the normal bundle of N D Ad.G/w is always trivial, namely, �N is
homeomorphic to N � R

k .
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3.4 Outline of a Proof of Theorem 1

The strategy of the proof of Theorem 1 in [18] is as follows. When N is an
isoparametric submanifold, the differential equation (4) on �N is expressed in
terms of the eigenvalues of the shape operators of N . If the codimension of
isoparametric submanifold is equal to 1, by using the classification results, we
specify submanifolds with (4). The full and irreducible (or compact) one is the
hypersphere. Then we have the following:

Proposition 4. The normal bundle of the n-dimensional hypersphere N n D Sn.r/

with radius r > 0 in R
nC1 is H-minimal if and only if n D 2.

When the codimension is 2, they are isoparametric hypersurfaces in the sphere,
and the known examples consist of principal orbits of s-representations and non-
homogeneous ones. By applying the relations (5) and (6) to (4), we obtain the
following crucial lemma:

Lemma 2. Let N n be an isoparametric hypersurface in the unit sphere SnC1.1/ �
R

nC2. Suppose that the normal bundle �N of N as a submanifold in R
nC2 is

H-minimal in C
nC2 ' TR

nC2. Then the multiplicities of the distinct principal
curvatures in f
i gn

iD1 are all equal to 2.

In particular, it turns out that N is a homogeneous hypersurface. In fact, Cartan
proved this for g � 3, and Ozeki–Takeuchi for the case .g; m/ D .4; 2/ [31] .
The remaining case .g; m/ D .6; 2/ was settled by R. Miyaoka [22], where m is
the same multiplicity. Therefore, together with the results of Hsiang–Lawson [14]
and the fact that isoparametric submanifolds of codimension grater than three are
homogeneous (Thorbergsson [38]), it is sufficient to consider the normal bundle of
principal orbits of s-representations.

The eigenvalues of the shape operators of these orbits are given by the restricted
root systems of associated symmetric spaces. Let .U; K/ be a Riemannian sym-
metric pair of compact type, where U is a compact, connected real semi-simple
Lie group and K a closed subgroup of U such that there exist an involutive
automorphism � of U so that Fix.�; U /0 � K � Fix.�; U /, where Fix.�; U / WD
fg 2 U I �.g/ D gg and Fix.�; U /0 is the identity component of Fix.�; U /. Denote
the Lie algebra of U and K by u and k, respectively. Let .u; �/ be the orthogonal
symmetric Lie algebra which corresponds to .U; K/, namely, � is an involution on
u such that the C1-eigenspace coincides with k and k is a compactly embedded Lie
algebra in u.

We take an inner product h; i of u which is invariant under � and Ad.U / on u.
Then we have the orthogonal decomposition u D k C p. Since the subspace p is
invariant under Ad.K/jp, K acts on p as an orthogonal transformation. We call this
action of K the s-representation of the symmetric space U=K.

Choose a maximal abelian subspace a of p. For an 1-form � on a, set

k� WD fX 2 kI .adH/2X D ��.H/2X for all H 2 ag;
p� WD fX 2 pI .adH/2X D ��.H/2X for all H 2 ag:
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Then p�� D p�, k�� D k�, p0 D a, and k0 is the centralizer of a in k. A non-zero
1-form � is called a (restricted) root of .u; �/ with respect to a if p� ¤ f0g. We
denote the set of all roots of .u; �/ by R, and call R the restricted root system on a.
We take a basis of the dual space a� of a and define the lexicographic ordering on
a� with respect to the basis. We call a root � 2 R a positive root if � > 0, and put
RC WD f� 2 RI � > 0g. Then we have decompositions

k D k0 C
X

�2RC

k�; p D a C
X

�2RC

p�: (7)

These are orthogonal direct sums with respect to h; i. We put m� WD dimRp�, and
call it the multiplicity of � 2 RC.

Let us consider orbits of the s-representation. Since any s-representation is polar
(see [5]) and the section is given by a, it is sufficient to consider the orbits through
a point w 2 a. The point w is called a regular element if �.w/ ¤ 0 for any � 2 R

(otherwise, it is called singular). We note that regular orbits are orbits of maximal
dimension [36]. Since the isotropy action does not have any exceptional orbit, an
orbit is regular if and only if it is principal.

When w is a regular element, we have the following [36] (See also [15]):

(i) The tangent space TwNw and the normal space �wNw of Nw at w in p are
given by

TwNw D
X

�2RC

p�; �wNw D a:

In particular, codimNw D dima.
(ii) The shape operator Au of Nw in p in the direction u 2 �wNw satisfies

Au.X�/ D � �.u/

�.w/
X� for X� 2 p� and � 2 RC:

By using these, we characterize the H-minimality of normal bundles over the
principal orbits of s-representations as follows: For the root system R, we set

r WD f� 2 RI �=2 62 Rg; and rC WD r \ RC:

Then r is a reduced root system, namely, if two roots �; � 2 r are proportional, then
� D ˙�. We also set l� WD m� C m2�, where m2� D 0 unless 2� 2 r . By using an
argument of the reduced root system, we prove the following.

Proposition 5. Let N n D Nw be a regular orbit of an s-representation through an
element w 2 p ' R

nCk . Then the normal bundle �N is H-minimal in T p ' C
nCk

if and only if l� D 2 for all � 2 rC (In fact, this is equivalent to m� D 2 for all
� 2 RC).
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On the other hand, we have the following characterization of symmetric spaces
of Type II due to Loos [19]:

Proposition 6 (cf. [19]). Let .u; �/ be an effective, irreducible orthogonal symmet-
ric Lie algebra of compact type and u D k C p the ˙1-eigenspace decomposition
with respect to � . Then the following statements are equivalent:

(i) For the restricted root system R of .u; �/, m� D 2 for all � 2 RC.
(ii) The dual u� WD k C p�1p of u has a complex structure (i.e., there exist a

complex structure J on u such that J ŒX; Y � D ŒX; J Y � for any X; Y 2 u).
(iii) .u; �/ is isomorphic to an irreducible orthogonal symmetric Lie algebra of

Type II (in the sense of [13]).

The compact Lie group G is regarded as a symmetric space of the Riemannian
symmetric pair .G � G; �G/, where �G D f.g; g/ 2 G � GI g 2 Gg ' G, and
the isotropy representation is equivalent to the adjoint representation of G. Since the
associated globally symmetric space with .u; �/ of Type II is a compact, connected
simple Lie group G, the assertion of Theorem 1 follows from Proposition 5 and 6.
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