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Abstract An (n + 1)-dimensional Generalized Robertson—Walker (GRW)
spacetime such that the universal Riemannian covering of the fiber is parabolic
(thus so is the fiber) is said to be spatially parabolic. This class of spacetimes
allows to model open relativistic universes which extend to the spatially closed
GRW spacetimes from the viewpoint of the geometric-analysis of the fiber and
which are not incompatible with certain cosmological principle. We explain here a
new technique for the study of non-compact complete spacelike hypersurfaces
in such spacetimes. Thus, a complete spacelike hypersurface in a spatially
parabolic GRW spacetime inherits the parabolicity, whenever some boundedness
assumptions on the restriction of the warping function to the spacelike hypersurface
and on the hyperbolic angle between the unit normal vector field and a certain
timelike vector field are assumed. Conversely, the existence of a simply connected
parabolic spacelike hypersurface, under the previous assumptions, in a GRW
spacetime also leads to its spatial parabolicity. Then, all the complete maximal
hypersurfaces in a spatially parabolic GRW spacetime are determined in several
cases, extending known uniqueness results. Finally, all the entire solutions of the
maximal hypersurface equation on a parabolic Riemannian manifold are found in
several cases, solving new Calabi—Bernstein problems.

1 Introduction

In the study of complete spacelike surfaces M in certain three-dimensional GRW
spacetimes M, whose mean curvature function H satisfies: H = 0, H = constant

or H? < /}-(/((;))Zz’ one arrives to the parabolicity of the surface as an intermediate
technical step. Normally, it follows from a property of the Gauss curvature of the
surface (obtained via the Gauss equation) and an intrinsic result to get the parabol-
icity on a two-dimensional (non-compact) complete Riemannian manifold (see for

instance [15]). In fact, parabolicity for two-dimensional Riemannian manifolds is
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very close to the classical parabolicity for Riemann surfaces. Moreover, it is strongly
related to the behavior of the Gauss curvature of the surface. For instance, by a
classical result by Ahlfors and Blanc—Fiala—Huber [11], a complete Riemannian
surface (M, g) with non-negative Gauss curvature K must be parabolic. The same
conclusion is attained if (M, g) is complete and we have either K > —1/(r?logr),
for r, the distance to a fixed point sufficiently large [8] or if the negative part of K
is integrable on M, [12], i.e., [,, K- < oo, where K_(p) := max{—K(p), 0}, for
any p e M.

Parabolicity has no clear relation with curvature for bigger dimension and,
therefore, other techniques are normally used in that case. However, the parabolicity
of a complete spacelike hypersurface in a certain spacetime, may be obtained in
another way independent of the dimension and of any curvature assumption [16].
Thus, our main aim here is to explain this new approach and to show, based on
[16, 17], how it can be applied to prove several uniqueness results on complete
maximal hypersurfaces.

2 Parabolicity of Riemannian Manifolds

An n-dimensional non-compact complete Riemannian manifold (M, g) is said to be
parabolic if it admits no non-constant non-negative superharmonic function, i.e., if
u € C*®(M) satisfies Agu < 0 and u > 0, then u = constant.

To be parabolic is clearly a property invariant under (global) isometries. Even
more, a Riemannian manifold (M, g) is said to be quasi-isometric to another one
(M’, g’) if there exists a diffeomorphism ¢ : M — M’ and a constant ¢ > 1
such that

C71|V|g = |d¢(V)|g’ = C|V|gv

forallv € T,M, p € M (see for instance [12]). Obviously, isometric Riemannian
manifolds are also quasi-isometric and to be quasi-isometric is an equivalence
relation. Moreover, we have [10, 18],

Theorem 1. Ler (M, g) and (M’',g’) be quasi-isometric Riemannian manifolds.
Then, (M, g) is parabolic if and only if (M’, g') is parabolic.

Remark I. (a) The universal Riemannian covering map R? — S! x R? is a local
isometry. Note that S! x R? is parabolic and R? is not. Therefore, in the notion of
quasi-isometry, the diffeomorphism cannot be relaxed to be a local diffeomorphism,
(however, note that if a Riemannian covering M of a Riemannian manifold M is
parabolic, then M is also parabolic). (b) Theorem 1 also holds if the exterior of some
compact subset in M is quasi-isometric to the exterior of a compact subset in M’ [9,
Cor. 5.3]. (c) There exists a notion much weaker than quasi-isometry: the so-called
rough isometry (roughly isometric manifolds are not homeomorphic, in general).
Under this hypothesis, it is necessary to impose extra geometric assumptions (in
terms of the Ricci curvature and the injectivity radius) to get that parabolicity is
preserved by rough isometries [10].
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3 Set Up

For a Generalized Robertson—-Walker (GRW) spacetime we mean a product
manifold / x F, of an open interval I of the real line R and an n (> 2)-dimensional
(connected) Riemannian manifold (F, g,.), endowed with the Lorentzian metric

§=—n/(d*) + f(m,) 7} (8,). ()
where 7, and 7, denote the projections onto / and F, respectively, and f is a
positive smooth function on 7. We will denote this Lorentzian manifold by (M, g).
The (n 4 1)-dimensional spacetime M is a warped product, with base (I, —dt?),
fiber (F, g,) and warping function f.

On M, there exists a distinguished vector field § = f(rr;) d,, where 9, denotes
d/9;, which is timelike and satisfies

Vxé = f'(m1) X, 2

for any X € X(M), where V is the Levi-Civita connection of g, from the
relationship between the Levi-Civita connections of M and those of the base and
the fiber [14, Cor.7.35]. Therefore, & is conformal with ;g = 2 f/(7r;) g and its
metrically equivalent 1-form is closed. If the warping function of M is constant, i.e.,
M is a Lorentzian product, the GRW spacetime is called static. Contrary, if there is
no open subinterval J of I such that f; is constant, then M is said to be proper.
Any GRW spacetime has a global time function (in particular, it is time orientable)
and then it is stably causal [3, p. 64].

Given an n-dimensional manifold M, an immersion x : M — M is said
to be spacelike if the metric g on M, induced from the Lorentzian metric (1),
is Riemannian. In this case, M is called a spacelike hypersurface in M. Let
N € X1(M) be the unitary timelike normal vector field in the same time-orientation
of the vector field —d;, i.e., such that g(N, —d,) < 0.

From the wrong-way Schwarz inequality (see [14, Prop. 5.30], for instance) we
have g(N, d;) > 1, and the equality holds at p € M if and only if N = —d, at p.
In fact, g(N, d;) = cosh 8, where 6 is the hyperbolic angle, at any point, between
the unit timelike vectors N and —d,. We will refer to 6 as the hyperbolic angle
function on M. If we denote by 37 := 9, + g(N,d,)N the tangential component
of d; along x, then we have the following formula for the gradient on M of the
function 7t := 7; o x,

vVt =-9!, 3)
and therefore

g(Vr,Vr) =sinh? 6. )
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If a GRW spacetime admits a compact spacelike hypersurface then its fiber
is compact [2, Prop. 3.2(1)]. A GRW spacetime whose fiber is compact is called
spatially closed. Classically, the family of spatially closed GRW spacetimes has
been very useful to get closed cosmological models. Moreover, from a geometric
point of view, to deal with compact spacelike hypersurfaces in a spatially closed
GRW spacetime is natural, indeed, the a complete spacelike hypersurface in a
spatially closed GRW spacetime must be compact if some natural assumptions
are satisfied [2, Prop. 3.2(ii)]. From a physical point of view, spatially closed
cosmological models have been being criticized, and open cosmological models
have been suggested instead [7]. More recently, it has been argued that the existence
of a compact spacelike hypersurface in a spacetime makes it unsuitable in a possible
quantum theory of gravity [4].

We will consider here an (n + 1)-dimensional GRW spacetime such that the
universal Riemannian covering of the fiber is parabolic (thus so is the fiber) and
call it a spatially parabolic GRW spacetime.! This class of spacetimes extends to
spatially closed GRW spacetimes from the point of view of geometric analysis of
the fiber, and allows to model open relativistic universes.

4 Parabolicity of Spacelike Hypersurfaces

Let x : M — M be a spacelike hypersurface in a GRW spacetime (M, g) and
assume the induced metric g on M is complete. Suppose in addition that there exists
a positive constant ¢ such that f(t) < c. Then, we have that the projection of M on
the fiber F, w := 7, o x, is a covering map [2, Lemma 3.1].

Now, from (1) we have forany v € T, M,

gv,v) = —g(Ve. )’ + f(0)°g, (dn(v), dn(v))
<c? g (dn(v),dn(v)).

Now, the classical Schwarz inequality g(V,v)? < g(Vt, V1) g(v,v), gives,

g.v) = —g(Ve, Vo) gn.v) + f(1)’g, (dn(v), d(v)),
which implies

2
) > % ¢, (dr(v). dx(v).

Thus, we arrive to

'This definition simplifies the one given in [16] where each GRW spacetime considered was
explicitly assumed with parabolic universal Riemannian covering of its fiber.
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Lemma 1. Let M be a spacelike hypersurface in a GRW spacetime M. If

(i) The hyperbolic angle is bounded,
(ii) sup f(r) < o0, and
(iii) inf f(7) > 0,

then, there exists a constant ¢ > 1 such that
-1
g < |d7t(v)|gF < cvlg,
forallve T,M, pe M.

Proposition 1. Let M be a GRW spacetime whose warping function f satisfies
sup f < oo and inf f > 0. If M admits a simply connected parabolic spacelike
hypersurface M and the hyperbolic angle of M is bounded, then M is spatially
parabolic.

Proof. Let 7 : M — F be a lift of the mapping 7 : M — F, where F
is the universal Riemannian covering of F'. The map 7 is a diffeomorphism [2,
Lemma 3.1] and Lemma 1 asserts that it is a quasi-isometry.

Theorem 2. Let M be a complete spacelike hypersurface in a spatially parabolic
GRW spacetime M. If

(i) The hyperbolic angle is bounded
(ii) sup f(t) < o0, and
(iii) inf f(7) > 0,

then, M is parabolic.

Proof. Let M be the universal Riemannian covering of M with projection 7 :
M — M. The map w oy : M — F may be lifted to a diffeomorphism 7 :

M — F , where F is the universal Riemanniap covering of F, which is, in fact, a
quasi-isometry, leading to the parabolicity of M and, hence, M is also parabolic.

Remark 2. The boundedness assumption on the hyperbolic angle has a physical
interpretation. In fact, along M there exist two families of instantaneous observers
,, where J = —0,, p € M, and the normal observers N,. The quantities
coshf(p) and v(p) := (1/coshf(p)) NF, where le is the projection of N, onto
F, are respectively the energy and the velocity that .7, measures for N, [19, pp.
45, 67], and on M we have |v| = tanh 8. Therefore the relative speed function |v| is
bounded on M and, hence, it does not approach to speed of light in vacuum.

5 The Restriction of the Warping Function on M

Denote by V the Levi-Civita connection of the induced metric g on M. The Gauss
and Weingarten formulas of M in M are

VyY =VyY —g(AX,Y)N and AX = —VgN, (5)
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for all X,Y € X(M), where A is the shape operator associated to N. The mean
curvature function relative to N is defined by H := —(1/n)trace(A). The mean
curvature is zero if and only if the spacelike hypersurface is, locally, a critical point
of the n-dimensional area functional for compactly supported normal variations.
A spacelike hypersurface with H = 0 is called a maximal hypersurface.

In any GRW spacetime the level hypersurfaces of the projection 7r; : M — I
constitute a distinguished family of spacelike hypersurfaces, the so-called spacelike
slices. We will represent by ¢ = £ the spacelike slice {fo} x F. For a spacelike
hypersurface x : M — M, x(M) is contained in a spacelike slice t = t, if and
only if T =ty on M. When x (M) equals to ¢ = ty, for some ¢y, € I, we will say that
M is a spacelike slice. The shape operator and the mean curvature of the spacelike
slice t = 1y are respectively A = f'(t0)/f(ty) I and H = — f '(to)/f (ty), where I
denotes the identity transformation Thus, a spacelike slice 1 = 7, is maximal if and
only if f/(z)) = 0 (and hence, totally geodesic).

Given a spacelike hypersurface M in ‘M, from (2) and (5) we get

VyEl + f(1)8(N,0,) AY = f'(1) Y, (©6)

for any Y € X(M), where §7 = £ + g(§, N)N is the tangential component of &
along x, f(tr) = fotand f'(r) = f'o7.From (3) and (6) we have

At = —];((:)) {n+|Vt|*’} —nHg(N.d,). (7
where A denotes the Laplacian on M. Therefore
_ f /(T)z ” 2 / —
Af(r) =—n 10 + f(®)(og f)"(O)|V|" —nH f'(r)g(N.9,). ®)

If we assume (log f)”(tr) < 0and H f'(tr) < 0, then the positive function f(t)
on M is superharmonic.

Remark 3. Clearly, the assumption (log )”(r) < 0 holds on M if the function
—log f is convex. With respect to this assumption: (a) It was proved that in a
GRW spacetime whose warping function f satisfies that —log f is convex, the
only compact CMC spacelike hypersurfaces are the spacelike slices [1]. This result
was later extended to a wider class of spacetimes in [5]. On the other hand, the
assumption —log f is convex is related to certain natural one on the Ricci tensor
Ric of M, the so called Null Convergence Condition (NCC): Ric(w,w) > 0 for
any null tangent vector w. (Namely, if M obeys the NCC then — log f is convex).
(b) If —log f is convex, f is not locally constant and it has a critical point, then
the assumption sup f < oo is automatically satisfied. In fact, if there exists 7y €
such that f'(fg) = 0, then ¢, is the unique critical point of f and sup f = f(to).
(c) Consider the reference frame .7 := —0, (which defines the time orientation we
have considered in M). We have div(.7) = —nfT/ Thus, f/ < 0 (resp. f' > 0)
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may be interpreted saying that the observers in 7 are on average spreading apart
(resp. coming together). If we assume — log f convex then % (div(ﬂ )o y)(s) >0,
for any observer y in 7. If in addition we assume there is a proper time s of y such
that div(7)y(s,) > 0, then div(.7), ;) > O for any s > so. Therefore, the assumption

—1log f is convex, favors that M models an expanding universe.

6 Uniqueness Results in the Parametric Case

Theorem 3. Let M be a proper spatially parabolic GRW spacetime such that
—log f is convex. The only complete spacelike hypersurface M in M whose mean
curvature function satisfies H f'(t) < 0 (in particular, with H = 0), such that

(i) The hyperbolic angle is bounded
(ii) sup f(r) < o0, and
(iii) inf f(7) > 0,

is the spacelike slice t = ty with f'(ty) = 0.
If the warping function is allowed to be constant on an open subinterval, we have

Theorem 4. Let M be a spatially parabolic GRW spacetime such that —log f is
convex. The only complete maximal hypersurfaces M in M such that

(i) The hyperbolic angle is bounded, and
(ii) which are bounded between two spacelike slices,

are the spacelike slices t = ty with f'(ty) = 0.

Proof. From the assumption x(M) C [to,#;] X F, the function f(t) is upper
bounded and satisfies inf /() > 0. As in the previous result, we arrive to f(7)
constant. Therefore, from (8), we get f'(r) = 0 and, hence, the function t is
harmonic making use of (7). Since T(M) C [to, t1], the function T must be constant.

Remark 4. In order to illustrate the range of application of the two previous results,
note that F may be taken as S"~! x R, n > 2, with g, = g + ds?, being g an
arbitrary metric on S"~!. Assume g has non-negative Ricci curvature. Thus, g, has
the same property. When the fiber (F, g,) has non-negative Ricci curvature, the
convexity of —log f leads that the Ricci tensor of the GRW spacetime satisfies the
NCC (and hence, ‘M, in the case n = 4, could be a candidate to represent a solution
to the Einstein equation).

The previous result may be specialized to the static case (f = 1), i.e., when
the GRW spacetime is fact a Lorentzian product. However, we will see that under
the assumption that the Ricci tensor of the fiber is positive semi-definite the
boundedness assumption of x (M) can be dropped. In order to do that, recall the
Bochner-Lichnerowicz formula (see [6, p. 83], for instance)

1
5A|vu|2 = |Hess(u)|* + Ric(Vu, Vu) + g(Vu, V Au)
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which holds true for any Riemannian manifold (M, g) and any u € C>®(M).
The idea is to apply it to the function ¥ = 7 on a maximal hypersurface M in
a static GRW spacetime M. Using (6), we have |[Hess(t)|?> = cosh? 6 trace(4?).
Moreover, from (7), T is now harmonic. On the other hand, taking into account (4)
and Ric(Vz, Vt) = cosh® @ Ric" (NF, N¥) 4+ g(AVt, AVt), which follows from
the Gauss equation of M in ‘M and [14, Props. 7.42, 7.43], we get

Lemma 2. For any maximal hypersurface M in a static GRW spacetime M whose
fiber has non-negative Ricci curvature, we have

Asinh*6 > 2 cosh® 6 trace(Az) ,

and, hence, sinh® 0 is subharmonic. Moreover, if it is constant, then M is totally
geodesic.

Theorem S. Let M be a complete maximal hypersurface in a spatially parabolic
static GRW spacetime M. If the Ricci curvature of the fiber is non-negative and the
hyperbolic angle of M is bounded, then M must be totally geodesic.

Remark 5. 1t should be recalled that a complete maximal hypersurface in a locally
symmetric Lorentzian manifold ‘M whose Ricci tensor satisfies ﬁ(w, w) > 0 for
any timelike tangent vector w (the Timelike Convergence Condition (TCC)) must
be totally geodesic [13]. Note that the spacetime in previous result satisfies the TCC
but is not locally symmetric, in general.

7 Calabi-Bernstein Type Problems

Let (M, g,,) be a Riemannian manifold and let f : / — R be a positive smooth
function. For each u € C° (M) such that u(M) C [ we can consider its graph
X, = {(u(p), p) i pE M} in the GRW spacetime M with base (I, —dt?), fiber
(M, g,,) and warping function f. The graph inherits a metric from (1), given by

gu=—du’ + f(u)’g,. )

on M, which is Riemannian (i.e., positive definite) if and only if u satisfies | Du |<
f(u), everywhere on M, where Du denotes the gradient of u in (M, g,,) and |
Du |*= g,,(Du, Du). Note that t(u(p), p) = u(p) forany p € M, and so, t and u
may be naturally identified on X,. When X, is spacelike, the unitary normal vector
field on X, satisfying g(N, d,) > O is

1
N =-— 29, + (0, Du)), 0
T T TDap W 0P0) o
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and the corresponding mean curvature function

H(u) = —div Du - ) (n L | Du |2)
nf(u)/ fw?=1|Dul*) n+fw?—|Du|? fw? )’

The differential equation H (1) = 0 with the constraint | Du |< f(u) is called
the maximal hypersurface equation in M, and its solutions give the maximal graphs
in M . This equation is elliptic since the constraint holds. We will apply the previous
uniqueness results in the parametric case to determine all the entire solutions of the
maximal hypersurface equation

div Du - S L i . (ED
S/ fw)?—| Du |? Vv fw)?—| Du |? f(w)?

| Du|<Af(u), 0<A<l. (E.2)

in several cases.

Remark 6. (a) The constraint (E.2) means that the differential equation (E) is in
fact uniformly elliptic. (b) Note that (E.2) may be written as cosh§ < 1/+/1 — A2,
where 0 is the hyperbolic angle of X,. Conversely, if coshf < pu, with u > 1,
then | Du |< Af(u), where A = /1 — (1/u?). Therefore, (E.2) means that X,
has bounded hyperbolic angle. (c) If in addition to (E.2) we have inf f(u) > 0
then L,(y) > ~1—A%inf f(u) L(y), where L(y) and L,(y) are the lengths of a
smooth curve y on M with respect to the metrics g,, and g,, respectively. Therefore,
if a divergent curve in M has infinite g,,-length then it has also infinite g,-length.
Hence, if (M, g,,) is complete, then (M, g,,) is so.

As an application of Theorems 3 and 4, we have

Theorem 6. Let f : I — R be a non-locally constant positive smooth function
(resp. a positive smooth function). Assume f satisfies (log f)” < 0, sup f < oo
and inf f > 0 (resp. [ satisfies (log )" < 0). The only entire solutions (resp.
The only bounded entire solutions) of the equation (E) on a parabolic Riemannian
manifold M are the constant functions u = ¢, with f'(c) = 0.

Finally, as a consequence of Theorem 5, we obtain

Theorem 7. The only entire solutions of the equation

Du
div | ————=] =0 E'.1
lv(\/1—|Du|2) D

| Du|j<A, 0<A<l1, (E'.2)
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on $?" x R, endowed with a product Riemannian metric g + ds?, where g is a
Riemannian metric on S*™ with non-negative Ricci curvature, are the functions
u(x,s) =as + b, witha,b € R, |a| < A.
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