The Geometry on Hyper-Kähler Manifolds of Type A_{∞}

Kota Hattori

Abstract Hyper-Kähler manifolds of type A_{∞} are noncompact complete Ricci-flat Kähler manifolds of complex dimension 2, constructed by Anderson, Kronheimer, LeBrun (Commun. Math. Phys., **125**, 637–642, 1989) and Goto (Geom. Funct. Anal., **4**(4), 424–454, 1994). We review the asymptotic behavior, the holomorphic symplectic structures and period maps on these manifolds.

1 Introduction

Hyper-Kähler manifolds of type A_{∞} were first constructed by Anderson, Kronheimer and LeBrun in [1], as the first example of complete Ricci-flat Kähler manifolds with infinite topological type. Here, infinite topological type means that their homology groups are infinitely generated. The construction in [1] is due to Gibbons-Hawking ansatz, and Goto [5] has constructed these manifolds in another way, using hyper-Kähler quotient construction. Some of the topological and geometric properties of hyper-Kähler manifolds of type A_{∞} were studied well in the above papers. In this article, we focus on the volume growth of the hyper-Kähler metrics, the holomorphic symplectic structures, and the period maps.

The construction of hyper-Kähler manifolds of type A_{∞} is similar to that of ALE spaces of type A_k , where k is a nonnegative integer. Moreover, their topological properties and complex geometric properties are also similar to type A_k . For example, both of the ALE spaces of type A_k and the hyper-Kähler manifolds of type A_{∞} have the parameter naturally given by the construction. We review that they correspond to the cohomology classes of three Kähler forms along [8].

On the other hand, one of the essentially different properties between them appears in their asymptotic behaviors. In fact, the volume growth of ALE spaces is Euclidean, but that of hyper-Kähler manifolds of type A_{∞} are less than Euclidean volume growth, which is a main result of [7].

© Springer Japan 2014

K. Hattori (🖂)

Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, Japan e-mail: hattori@math.keio.ac.jp

Y.J. Suh et al. (eds.), *Real and Complex Submanifolds*, Springer Proceedings in Mathematics & Statistics 106, DOI 10.1007/978-4-431-55215-4_27

Moreover, we will review the independence of the volume growth of hyper-Kähler metrics and the complex structures. More precisely, we review the result in [9] to the effect that the volume growth of the hyper-Kähler metric of type A_{∞} can be deformed preserving the complex structure.

2 Hyper-Kähler Manifolds of Type A_{∞}

2.1 Hyper-Kähler Quotient Construction

In this section, we review shortly the construction of hyper-Kähler manifolds of type A_{∞} along [5]. For more details, see [1, 5] or review in Section 2 of [7].

First of all, hyper-Kähler manifolds are defined as follows.

Definition 1. Let (X, g) be a Riemannian manifold of dimension 4n with three integrable complex structures I_1, I_2, I_3 , and g be a hermitian metric with respect to each I_i . Then (X, g, I_1, I_2, I_3) is a hyper-Kähler manifold if (I_1, I_2, I_3) satisfying the relations $I_1^2 = I_2^2 = I_3^2 = I_1I_2I_3 = -1$ and each $\omega_i := g(I_i, \cdot)$ being closed.

Denote by $\mathbb{H} = \mathbb{R} \oplus \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k = \mathbb{C} \oplus \mathbb{C}j$ the quaternion and denote by $\operatorname{Im}\mathbb{H} = \mathbb{R}i \oplus \mathbb{R}j \oplus \mathbb{R}k$ its Imaginary part. Then an Im \mathbb{H} -valued 2-form $\omega := i\omega_1 + j\omega_2 + k\omega_3 \in \Omega^2(X) \otimes \operatorname{Im}\mathbb{H}$ characterizes the hyper-Kähler structure (g, I_1, I_2, I_3) . Accordingly, we call ω the hyper-Kähler structure on X instead of (g, I_1, I_2, I_3) .

Now we construct hyper-Kähler quotient method introduced in [9]. Put

$$(\mathrm{Im}\mathbb{H})_0^{\mathbb{N}} := \{\lambda = (\lambda_n)_{n \in \mathbb{N}} \in (\mathrm{Im}\mathbb{H})^{\mathbb{N}}; \sum_{n \in \mathbb{N}} \frac{1}{1 + |\lambda_n|} < +\infty\},\$$

where \mathbb{N} is the set of positive integers. Here, we denote by $S^{\mathbb{N}}$ the set of all maps from \mathbb{N} to a set S.

Let

$$M_{\mathbb{N}} := \{ v \in \mathbb{H}^{\mathbb{N}}; \|v\|_{\mathbb{N}}^2 < +\infty \},$$

where

$$\langle u, v \rangle_{\mathbb{N}} := \sum_{n \in \mathbb{N}} u_n \overline{v}_n, \quad \|v\|_{\mathbb{N}}^2 := \langle v, v \rangle_{\mathbb{N}}$$

for $u, v \in \mathbb{H}^{\mathbb{N}}$. Here, the quaternionic conjugate of v_n is denoted by \overline{v}_n .

For each $\lambda \in (\operatorname{Im}\mathbb{H})_0^{\mathbb{N}}$, $\Lambda \in \mathbb{H}^{\mathbb{N}}$ can be taken so that $\Lambda_n i \overline{\Lambda}_n = \lambda_n$. Put

$$M_{\Lambda} := \Lambda + M_{\mathbb{N}} = \{\Lambda + \nu; \nu \in M_{\mathbb{N}}\},\$$

$$G_{\lambda} := \{g \in (S^1)^{\mathbb{N}}; \sum_{n \in \mathbb{N}} (1 + |\lambda_n|) | 1 - g_n |^2 < +\infty, \prod_{n \in \mathbb{N}} g_n = 1\}.$$

Here, $\prod_{n \in \mathbb{N}} g_n$ always converges by the condition

$$\sum_{n\in\mathbb{N}}\frac{1}{1+|\lambda_n|}<+\infty.$$

Then G_{λ} is an infinite dimensional Lie group, and G_{λ} acts on M_{Λ} by $xg := (x_n g_n)_{n \in \mathbb{N}}$ for $x \in M_{\Lambda}, g \in G_{\lambda}$.

Now G_{λ} acts on

$$N_{\Lambda} = \{x \in M_{\Lambda}; x_n i \overline{x}_n - \lambda_n = x_m i \overline{x}_m - \lambda_m \text{ for all } n, m \in \mathbb{N}\}$$

and we obtain the quotient space N_A/G_λ which is called the hyper-Kähler quotient. Here, N_A corresponds to the level set of the hyper-Kähler moment map.

Definition 2. $\lambda \in (\text{Im}\mathbb{H})_0^{\mathbb{N}}$ is generic if $\lambda_n - \lambda_m \neq 0$ for all distinct $n, m \in \mathbb{N}$.

Theorem 1 ([5]). If $\lambda \in (\text{Im}\mathbb{H})_0^{\mathbb{N}}$ is generic, then N_{Λ}/G_{λ} is a smooth manifold of real dimension 4, and the hyper-Kähler structure on M_{Λ} induces a hyper-Kähler structure ω_{λ} on N_{Λ}/G_{λ} .

Although the hyper-Kähler quotient N_{Λ}/G_{λ} seems to depend on the choice of $\Lambda \in \mathbb{H}^{\mathbb{N}}$, the induced hyper-Kähler structure on N_{Λ}/G_{λ} depends only on λ by the argument of Section 2 of [7]. Accordingly we may put

$$X(\lambda) := N_A/G_\lambda$$

= {x \in M_A; x_n i \overline{x}_n - \lambda_n is independent of n \in \mathbb{N}}/G_\lambda,

and call it a hyper-Kähler manifold of type A_{∞}

If \mathbb{N} is replaced by a finite set in the above construction, $(X(\lambda), \omega_{\lambda})$ becomes an ALE hyper-Kähler manifold of type A_k [4].

2.2 S¹-actions and Moment Maps

An S^1 -action on $X(\lambda)$ preserving the hyper-Kähler structure is defined as follows. (See also [5].) Let $[x] \in N_A/G_\lambda$ be the equivalence class represented by $x \in N_A$. Take $m \in \mathbb{N}$ arbitrarily and let

$$[x]g := [x_mg, (x_n)_{n \in \mathbb{N} \setminus \{m\}}]$$

for $x = (x_m, (x_n)_{n \in \mathbb{N} \setminus \{m\}}) \in N_A$ and $g \in S^1$. This definition does not depend on the choice of $m \in \mathbb{N}$. Then we obtain the hyper-Kähler moment map

$$\mu_{\lambda}([x]) := x_n i \bar{x}_n - \lambda_n \in \mathrm{Im}\mathbb{H}.$$

The right hand side is independent of the choice of $n \in \mathbb{N}$ since x is an element of N_A .

We have a principal S^1 -bundle $\mu_{\lambda}|_{X(\lambda)^*} : X(\lambda)^* \to Y(\lambda)$, where

$$X(\lambda)^* := \{ [x] \in X(\lambda); x_n \neq 0 \text{ for all } n \in \mathbb{N} \},$$

$$Y(\lambda) := \operatorname{Im}\mathbb{H} \setminus \{ -\lambda_n; n \in \mathbb{N} \}.$$

By the Gibbons-Hawking construction [1], we can check easily that $X(\lambda)$ and $X(\lambda')$ are isomorphic as hyper-Kähler manifolds if λ and λ' satisfy one of the following conditions; (*i*) $\lambda'_n - \lambda_n \in \text{Im}\mathbb{H}$ is independent of *n*, (*ii*) $\lambda'_n = \lambda_{a(n)}$ for some bijective maps $a : \mathbb{N} \to \mathbb{N}$, (*iii*) $\lambda = -\lambda'$.

3 The Volume Growth

Here we focus on the Riemannian geometric aspects of $X(\lambda)$, especially their volume growth.

For a Riemannian manifold (X, g), denote by $V_g(p, r)$ the volume of the geodesic ball of radius r > 0 centered at $p \in X$. By the volume comparison theorem [2,6], we can deduce that

$$\lim_{r \to \infty} \frac{V_g(p_0, r)}{V_g(p_1, r)} = 1$$

for any Ricci flat manifold (X, g) and any $p_0, p_1 \in X$. Thus the volume growth of g is the invariant for Ricci flat manifolds.

Theorem 2 ([7]). For each $\lambda \in (\text{Im}\mathbb{H})_0^{\mathbb{N}}$ and $p_0 \in X(\lambda)$, the function $V_{g_{\lambda}}(p_0, r)$ satisfies

$$0 < \liminf_{r \to +\infty} \frac{V_{g_{\lambda}}(p_0, r)}{r^2 \tau_{\lambda}^{-1}(r^2)} \leq \limsup_{r \to +\infty} \frac{V_{g_{\lambda}}(p_0, r)}{r^2 \tau_{\lambda}^{-1}(r^2)} < +\infty,$$

where the function $\tau_{\lambda} : \mathbb{R}_{\geq 0} \to \mathbb{R}_{\geq 0}$ is defined by

$$\tau_{\lambda}(R) := \sum_{n \in \mathbb{N}} \frac{R^2}{R + |\lambda_n|}$$

for $R \ge 0$. Moreover, we have

$$\lim_{r \to +\infty} \frac{V_{g_{\lambda}}(p_0, r)}{r^4} = 0, \quad \lim_{r \to +\infty} \frac{V_{g_{\lambda}}(p_0, r)}{r^3} = +\infty.$$

Next we see some examples computed in [7].

Example 1. Fix $\gamma > 1$ and put $\lambda_n^{\gamma} := i \cdot n^{\gamma} \in \text{Im}\mathbb{H}$. Then there exist positive constants A, B > 0 such that

$$Ar^{4-\frac{2}{\gamma+1}} \leq V_{g_{\lambda^{\gamma}}}((p_0,r) \leq Br^{4-\frac{2}{\gamma+1}}.$$

Example 2. Put $\lambda_n := i \cdot e^n \in \text{Im}\mathbb{H}$. Then there exist positive constants A, B > 0 such that

$$A\frac{r^4}{\log r} \le V_{g_{\lambda}}(p_0, r) \le B\frac{r^4}{\log r}$$

for any $\alpha < 4$.

4 Period Maps

4.1 Holomorphic Curves

In this subsection, we see that there are several compact minimal submanifolds in $X(\lambda)$ following [8].

Definition 3. (i) Let X be a complex manifold of dimension 2n and $\omega_{\mathbb{C}}$ be a holomorphic 2-form on X. Then $(X, \omega_{\mathbb{C}})$ is called a holomorphic symplectic manifold if $d\omega_{\mathbb{C}} = 0$ and $\omega_{\mathbb{C}}^n$ is nowhere vanishing. (ii) An *n* dimensional complex submanifold L of a holomorphic symplectic manifold $(X, \omega_{\mathbb{C}})$ is holomorphic Lagrangian submanifold if $\omega_{\mathbb{C}}|_L = 0$.

Let (X, ω) be a hyper-Kähler manifold of real dimension 4n. For each $y \in$ Im \mathbb{H} with |y| = 1, Im \mathbb{H} is decomposed into *y*-component and its orthogonal complement. Then we denote by $\omega_y \in \Omega^2(X)$ the *y*-component of $\omega \in \Omega^2(X) \otimes$ Im \mathbb{H} . Let I_y be the complex structure corresponding to the Kähler form ω_y .

Let $\eta = (\eta_1 \ \eta_2 \ \eta_3) \in SO(3)$, where $\langle \eta_1, \eta_2, \eta_3 \rangle$ is an orthonormal basis of \mathbb{R}^3 . Then η gives the orthogonal decomposition Im $\mathbb{H} = \mathbb{R}^3 = \mathbb{R}\eta_1 \oplus \mathbb{R}\eta_2 \oplus \mathbb{R}\eta_3$, and the hyper-Kähler structure $\omega \in \Omega^2(X) \otimes \text{Im}\mathbb{H}$ can be written as $\omega = \eta_1 \omega_{\eta_1} + \eta_2 \omega_{\eta_2} + \eta_3 \omega_{\eta_3}$ for every $\eta \in SO(3)$. Now we regard (X, I_{η_1}) as a complex manifold. Then a holomorphic symplectic structure on X is given by $\omega_{\eta_{\mathbb{C}}} := \omega_{\eta_2} + i\omega_{\eta_3}$.

Proposition 1. Let (X, ω) be a hyper-Kähler manifold and take $\eta \in SO(3)$. Then each holomorphic Lagrangian submanifold $L \subset X$ with respect to $\omega_{\eta C}$ gives the minimum volume in their homology class.

Proof. The pair of a Kähler form ω_{η_3} and a holomorphic volume form $(\omega_{\eta_1} + i\omega_{\eta_2})^n$ gives the Calabi-Yau structure on (X, I_{η_3}) . Here, *n* is the half of the complex dimension of *X*. Now, assume that $L \subset X$ is a holomorphic Lagrangian submanifold with respect to $\omega_{\eta_{\Omega}}$. Then $\omega_{\eta_2}|_L = \omega_{\eta_3}|_L = 0$, hence *L* is lagrangian

with respect to ω_{η_3} . Since $\operatorname{Im}(\omega_{\eta_1} + i\omega_{\eta_2})^n$ is the multiplication of ω_{η_2} and some differential forms, we also have $\operatorname{Im}(\omega_{\eta_1} + i\omega_{\eta_2})^n|_L = 0$, which means *L* is a special Lagrangian submanifold. The volume minimizing property of special Lagrangian submanifolds [11] gives the assertion.

Take a generic $\lambda \in (\text{Im}\mathbb{H})_0^{\mathbb{N}}$ and consider the hyper-Kähler manifold $(X(\lambda), \omega_{\lambda})$ as constructed in Sect. 2. Put

$$[a, b] := \{ta + (1 - t)b \in \text{Im}\mathbb{H}; 0 \le t \le 1\},\$$
$$(a, b] := \{ta + (1 - t)b \in \text{Im}\mathbb{H}; 0 \le t < 1\},\$$
$$[a, b) := \{ta + (1 - t)b \in \text{Im}\mathbb{H}; 0 < t \le 1\},\$$
$$(a, b) := \{ta + (1 - t)b \in \text{Im}\mathbb{H}; 0 < t < 1\}$$

for $a, b \in \text{Im}\mathbb{H}$.

Proposition 2. Let $n, m \in \mathbb{N}$ satisfy $n \neq m$ and $(-\lambda_n, -\lambda_m) \subset Y(\lambda)$. The inverse image $\mu_{\lambda}^{-1}([-\lambda_n, -\lambda_m]) \cong \mathbb{C}P^1$ is a complex submanifold of $X(\lambda)$ with respect to I_y and gives the minimum volume in its homology class, where $y := \frac{\lambda_n - \lambda_m}{|\lambda_n - \lambda_m|}$.

Proof. Let $\eta \in SO(3)$ satisfies $\eta i = y$. If we write $\mu_{\lambda} = (\mu_{\lambda,1}, \mu_{\lambda,2}, \mu_{\lambda,3})$ with respect to the decomposition $\text{Im}\mathbb{H} = \mathbb{R}\eta_1 \oplus \mathbb{R}\eta_2 \oplus \mathbb{R}\eta_3$, then $\mu_{\lambda,2}$ and $\mu_{\lambda,3}$ are constant on $\mu_{\lambda}^{-1}([-\lambda_n, -\lambda_m])$. Hence we have $d\mu_{\lambda,\alpha}|_{\mu_{\lambda}^{-1}([-\lambda_n, -\lambda_m])} = 0$ for $\alpha = 2, 3$, which gives $\omega_{\lambda,\eta_{\mathbb{C}}}|_{\mu_{\lambda}^{-1}([-\lambda_n, -\lambda_m])} = 0$.

4.2 Topology

In this subsection we review the construction of the deformation retracts of $X(\lambda)$ following [3, 5]. See also [8]. In the case of toric hyper-Kähler varieties, the deformation retracts are constructed in [3].

For $(-\lambda_n, -\lambda_m) \subset Y(\lambda)$, the orientation of $\mu_{\lambda}^{-1}([-\lambda_n, -\lambda_m])$ is determined as follows. By taking a smooth section $(-\lambda_n, -\lambda_m) \rightarrow \mu_{\lambda}^{-1}((-\lambda_n, -\lambda_m))$ of μ_{λ} , a coordinate (s, t) on $\mu_{\lambda}^{-1}((-\lambda_n, -\lambda_m))$ is naturally given where $t \in \mathbb{R}/2\pi\mathbb{Z}$ is the parameter of S^1 -action and a function $s : \mu_{\lambda}^{-1}((-\lambda_n, -\lambda_m)) \rightarrow \mathbb{R}$ is given by

$$s(p) := \frac{\lambda_n + \mu_\lambda(p)}{\lambda_n - \lambda_m}$$

for $p \in \mu_{\lambda}^{-1}((-\lambda_n, -\lambda_m))$. Then the orientation of $\mu_{\lambda}^{-1}([-\lambda_n, -\lambda_m])$ is given by $ds \wedge dt$. Therefore, $\mu_{\lambda}^{-1}([-\lambda_n, -\lambda_m])$ and $\mu_{\lambda}^{-1}([-\lambda_m, -\lambda_n])$ are same as manifolds but have opposite orientations.

For $n, m, l \in \mathbb{N}$, $\mu_{\lambda}^{-1}([-\lambda_n, -\lambda_m]) \cup \mu_{\lambda}^{-1}([-\lambda_m, -\lambda_l])$ and $\mu_{\lambda}^{-1}([-\lambda_n, -\lambda_l])$ determines the same homology class since the boundary of $\mu_{\lambda}^{-1}(\Delta_{n,m,l})$ is given by $\mu_{\lambda}^{-1}([-\lambda_n, -\lambda_m]) \cup \mu_{\lambda}^{-1}([-\lambda_m, -\lambda_l]) \cup \mu_{\lambda}^{-1}([-\lambda_l, -\lambda_n])$, where

 $\Delta_{n,m,l} := \{-\alpha \lambda_n - \beta \lambda_m - \gamma \lambda_l \in \text{Im}\mathbb{H}; \ \alpha + \beta + \gamma = 1, \ \alpha, \beta, \gamma \ge 0\}.$

We denote by $C_{n,m}$ the homology class determined by $\mu_{\lambda}^{-1}([-\lambda_n, -\lambda_m])$. Then the above observation implies

$$C_{n,m} + C_{m,l} + C_{l,n} = C_{n,m} + C_{m,n} = 0$$

for $n, m, l \in \mathbb{N}$.

If $n, m, l, h \in \mathbb{N}$ satisfies $n \neq h, n \neq m$ and $l \neq h$ then the intersection number $C_{n,m} \cdot C_{l,h}$ is given by

$$C_{n,m} \cdot C_{l,h} = \begin{cases} 1 \ (m=l) \\ 0 \ (m \neq l) \end{cases}$$

and $C_{n,m} \cdot C_{n,m} = -2$.

Since the subset of $(\text{Im}\mathbb{H})_0^{\mathbb{N}}$ consisting of generic elements is connected in $(\text{Im}\mathbb{H})_0^{\mathbb{N}}$, the topological structure of $X(\lambda)$ does not depend on λ . Consequently, it suffices to study $X(\hat{\lambda})$ for investigating the topology of $X(\lambda)$, where $\hat{\lambda}$ is the special one defined by $\hat{\lambda}_n := (n^2, 0, 0) \in \text{Im}\mathbb{H}$.

Proposition 3. There exists a deformation retract of $\mu_{\hat{\lambda}}^{-1}(\bigcup_{n \in \mathbb{N}} [-\hat{\lambda}_n, -\hat{\lambda}_{n+1}]) \subset X(\hat{\lambda}).$

Proof. There is a deformation retract

$$F: \operatorname{Im}\mathbb{H} \times [0,1] \to \operatorname{Im}\mathbb{H}$$

which satisfy $F(\cdot, 0) = id_{\text{Im}\mathbb{H}}$, $F(\text{Im}\mathbb{H}, 1) = \bigcup_{n \in \mathbb{N}} [-\hat{\lambda}_n, -\hat{\lambda}_{n+1}]$ and $F(\zeta, 1) = \zeta$ for $\zeta \in \bigcup_{n \in \mathbb{N}} [-\hat{\lambda}_n, -\hat{\lambda}_{n+1}]$. Then we have the horizontal lift $\tilde{F} : X(\hat{\lambda}) \times [0, 1] \rightarrow X(\hat{\lambda})$ of F by using the S^1 -connection on $X(\hat{\lambda})^*$ naturally induced from the hyper-Kähler metric on $X(\hat{\lambda})^*$. The map \tilde{F} is a deformation retract as we expect.

Corollary 1. The second homology group $H_2(X(\lambda), \mathbb{Z})$ is generated by $\{C_{n,m}; n, m \in \mathbb{N}\}$.

Thus we obtain the followings.

Theorem 3. Let $\lambda \in (\text{Im}\mathbb{H})_0^{\mathbb{N}}$ be generic. Then $H_2(X(\lambda), \mathbb{Z})$ is a free \mathbb{Z} -module generated by $\{C_{n,m}; n, m \in \mathbb{N}\}$ with relations

$$C_{n,m} + C_{m,l} + C_{l,n} = 0, C_{n,m} + C_{m,n} = 0$$

for all $n, m, l \in \mathbb{N}$. Moreover the intersection form on $H_2(X(\lambda), \mathbb{Z})$ is given by

$$C_{n,m} \cdot C_{l,h} = \begin{cases} 1 \ (m=l) \\ 0 \ (m \neq l) \end{cases}$$

and $C_{n,m} \cdot C_{n,m} = -2$ for $n, m, l, h \in \mathbb{N}$ taken to be $n \neq h, n \neq m$ and $l \neq h$.

4.3 Period Maps

Let $[\omega_{\lambda}] \in H^2(X(\lambda), \mathbb{R}) \otimes \text{Im}\mathbb{H}$ be the cohomology class of ω_{λ} . In this subsection we compute $[\omega_{\lambda}]$, that is, compute the value of $\langle [\omega_{\lambda}], C_{n,m} \rangle := \int_{C_{n,m}} \omega_{\lambda} \in \text{Im}\mathbb{H}$ for all $n, m \in \mathbb{N}$ along [8]. In the case of finite topological type of toric hyper-Kähler varieties, the period maps are computed in [12].

Theorem 4. Let $\lambda \in (\text{Im}\mathbb{H})_0^{\mathbb{N}}$ be generic. Then

$$\langle [\omega_{\lambda}], C_{n,m} \rangle = \lambda_n - \lambda_m$$

for all $n, m \in \mathbb{N}$.

Proof. Take a smooth path $\gamma : [0, 1] \to \text{Im}\mathbb{H}$ such that $\gamma(0) = -\lambda_n$, $\gamma(1) = -\lambda_m$ and $\gamma(s) \in Y(\lambda)$ for $s \in (0, 1)$. Since the homology class represented by $\mu_{\lambda}^{-1}(\gamma([0, 1]))$ is $C_{n,m}$, we have

$$\langle [\omega_{\lambda}], C_{n,m} \rangle = \int_{\mu_{\lambda}^{-1}(\gamma([0,1]))} \omega_{\lambda}.$$

Take the local coordinate $(t, \mu_{\lambda,1}, \mu_{\lambda,2}, \mu_{\lambda,3})$ of an open subset of $X(\lambda)^*$, where $\mu_{\lambda} = (\mu_{\lambda,1}, \mu_{\lambda,2}, \mu_{\lambda,3})$ and *t* is the coordinate of S^1 -action. Then the local coordinate (s, t) on $\mu_{\lambda}^{-1}(\gamma([0, 1]))$ is given by $(t, \mu_{\lambda,1} \circ \gamma(s), \mu_{\lambda,2} \circ \gamma(s), \mu_{\lambda,3} \circ \gamma(s))$. By using this, we can see that

$$\omega_{\lambda,\alpha} = \gamma'_{\alpha}(s) \frac{1}{2\pi} ds \wedge dt$$

for $\alpha = 1, 2, 3$, where $\gamma(s) = (\gamma_1(s), \gamma_2(s), \gamma_3(s)) \in \text{Im}\mathbb{H} = \mathbb{R}^3$. Hence we have

$$\int_{\mu_{\lambda}^{-1}(\gamma([0,1]))} \omega_{\lambda,\alpha} = \int_{\mu_{\lambda}^{-1}(\gamma([0,1]))} \gamma_{\alpha}'(s) \frac{1}{2\pi} ds \wedge dt$$
$$= \int_{0}^{2\pi} \frac{1}{2\pi} dt \int_{0}^{1} \gamma_{\alpha}'(s) ds$$
$$= \gamma_{\alpha}(1) - \gamma_{\alpha}(0) = \lambda_{n,\alpha} - \lambda_{m,\alpha}.$$

5 Holomorphic Symplectic Structures

In this section we regard a hyper-Kähler manifold (X, g, I_1, I_2, I_3) as a complex manifold by I_1 . Then the holomorphic 2-form $\omega_{\mathbb{C}} = \omega_2 + \sqrt{-1}\omega_3$ is called the holomorphic symplectic structure, and the cohomology class $[\omega_2 + \sqrt{-1}\omega_3]$ is called the holomorphic symplectic class.

Let λ^{γ} as in Example 1 of Sect. 3. Then, we can see that the holomorphic symplectic class $[\omega_{\lambda^{\gamma},\mathbb{C}}]$ is independent of γ by Theorem 4.

Theorem 5 ([9]). The holomorphic symplectic structures $\omega_{\lambda^{\gamma},\mathbb{C}}$ are independent of γ . In particular, $X(\lambda^{\gamma})$ and $X(\lambda^{\hat{\gamma}})$ are biholomorphic for all $\gamma, \hat{\gamma} > 1$.

Since the function $4 - \frac{2}{\nu+1}$ gives one-to-one correspondence between open intervals $(1, \infty)$ and (3, 4), we have the following conclusion by combining Theorems 2 with 5.

Theorem 6. Let $\alpha \in (3, 4)$. Then there is a complex manifold X and the family of Ricci-flat Kähler metrics $\{g_{\alpha}\}_{3 < \alpha < 4}$ whose volume growth satisfies

$$Ar^{\alpha} \leq V_{g_{\alpha}}(p_0, r) \leq Br^{\alpha}$$

for some positive constants A, B.

References

- Anderson, T., Kronheimer, P., LeBrun, C.: Complete Ricci-flat K\u00e4hler manifolds of infinite topological type. Commun. Math. Phys., 125, 637–642 (1989)
- 2. Bishop, R.L., Crittenden, R.J.: Geometry on Manifolds. Academic Press, New York (1964)
- 3. Bielawski, R., Dancer, A.S.: The geometry and topology of toric hyperkähler manifolds. Comm. Anal. Geom. **8**, 727–760 (2000)
- Goto, R.: On toric hyper-Kähler manifolds given by the hyper-Kähler quotient method. Infinite Analysis, Advanced Series in Mathematical Physics, vol. 16, pp. 317–388 (1992)
- 5. Goto, R.: On hyper-Kähler manifolds of type A_{∞} . Geom. Funct. Anal. 4(4), 424–454 (1994)
- Gromov, M., Lafontaine, J., Pansu, P.: Structures métriques pour les variétés riemanniennes. Cédic, Fernand Nathan, Paris (1981)
- 7. Hattori, K.: The volume growth of hyper-Kähler manifolds of type A_{∞} . J. Geom. Anal. **21**(4), 920–949 (2011)
- 8. Hattori, K.: On hyperkähler manifolds of type A_{∞} . Thesis, University of Tokyo (2010)
- 9. Hattori, K.: The holomorphic symplectic structures on hyper-Kähler manifolds of type A_{∞} . Advances in Geometry, **14**(4), 613–630, (2014)
- Hitchin, N.J., Karlhede, A., Lindström, U., Roček, M.: Hyper-Kähler metrics and supersymmetry. Comm. Math. Phys. 108(4), 535–589 (1987)
- 11. Harvey, R., Lawson Jr, H.B.: Calibrated geometries. Acta Math. 148(1), 47-157 (1982)
- 12. Konno, H.: Variation of toric hyper-Kähler manifolds. Int. J. Math. 14, 289-311 (2003)