The Geometry on Hyper-Kéhler Manifolds
of Type A

Kota Hattori

Abstract Hyper-Kéhler manifolds of type Ao, are noncompact complete Ricci-flat
Kéhler manifolds of complex dimension 2, constructed by Anderson, Kronheimer,
LeBrun (Commun. Math. Phys., 125, 637-642, 1989) and Goto (Geom. Funct.
Anal., 4(4), 424-454, 1994). We review the asymptotic behavior, the holomorphic
symplectic structures and period maps on these manifolds.

1 Introduction

Hyper-Kéhler manifolds of type Ao were first constructed by Anderson,
Kronheimer and LeBrun in [1], as the first example of complete Ricci-flat Kihler
manifolds with infinite topological type. Here, infinite topological type means
that their homology groups are infinitely generated. The construction in [1] is
due to Gibbons-Hawking ansatz, and Goto [5] has constructed these manifolds in
another way, using hyper-Kihler quotient construction. Some of the topological and
geometric properties of hyper-Kéhler manifolds of type A were studied well in
the above papers. In this article, we focus on the volume growth of the hyper-Kéhler
metrics, the holomorphic symplectic structures, and the period maps.

The construction of hyper-Kéhler manifolds of type Ao is similar to that of ALE
spaces of type Ay, where k is a nonnegative integer. Moreover, their topological
properties and complex geometric properties are also similar to type Aj. For
example, both of the ALE spaces of type Ax and the hyper-Kahler manifolds of
type Ao have the parameter naturally given by the construction. We review that
they correspond to the cohomology classes of three Kihler forms along [8].

On the other hand, one of the essentially different properties between them
appears in their asymptotic behaviors. In fact, the volume growth of ALE spaces
is Euclidean, but that of hyper-Kahler manifolds of type A are less than Euclidean
volume growth, which is a main result of [7].
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Moreover, we will review the independence of the volume growth of hyper-
Kihler metrics and the complex structures. More precisely, we review the result
in [9] to the effect that the volume growth of the hyper-Kéhler metric of type Aeo
can be deformed preserving the complex structure.

2 Hyper-Kihler Manifolds of Type A
2.1 Hyper-Kihler Quotient Construction

In this section, we review shortly the construction of hyper-Kéhler manifolds of type
Ao along [5]. For more details, see [1, 5] or review in Section 2 of [7].
First of all, hyper-Kéhler manifolds are defined as follows.

Definition 1. Let (X, g) be a Riemannian manifold of dimension 4n with three
integrable complex structures I, I, I3, and g be a hermitian metric with respect to
each [;. Then (X, g, I1, I3, I3) is a hyper-Kihler manifold if (11, I», I3) satisfying
the relations 112 = 122 = 132 = 111,13 = —1 and each w; := g(I;-,-) being closed.

Denote by H = R® Ri ® Rj & Rk = C @ Cj the quaternion and denote by

ImH = Ri & Rj & Rk its Imaginary part. Then an ImH-valued 2-form w := iw; +

Jjws +kws € 27(X) ® ImH characterizes the hyper-Kihler structure (g, 11, I», I3).

Accordingly, we call @ the hyper-Kihler structure on X instead of (g, Iy, I, I3).
Now we construct hyper-Kihler quotient method introduced in [9]. Put

(ImH)G = {A = (A)nen € (AImHE)"; >

neN

1
— < +o0},
T+ =T

where N is the set of positive integers. Here, we denote by S the set of all maps
from NtoasetS.
Let

My = {v e HY; |v|} < 400},
where

(u, V)N = Zunvnv ”V”Iz\l = (v, V>N

neN

for u, v € HY. Here, the quaternionic conjugate of v, is denoted by V.
For each A € (ImH)}, A € H" can be taken so that A,i A, = A,. Put

Mp:=A+ My={A+v;ve My},
Gri= (g € SV Y (1 + [AuDI1 - gul? < +oo. [ &0 = 1.

neN neN
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Here, [ [,y g» always converges by the condition

1
) PRI
ST+

Then G, is an infinite dimensional Lie group, and G, acts on M, by xg =
(Xn8gn)nen for x € My, g € G;.
Now G, acts on

Np={x € My; x4iX, — Ay = XpiX, — Ay foralln,m € N}

and we obtain the quotient space N, /G, which is called the hyper-Kihler quotient.
Here, N, corresponds to the level set of the hyper-Kihler moment map.

Definition 2. A € (ImH)) is generic if A, — A,, # 0 for all distinct n, m € N.

Theorem 1 ([5]). If A € (ImH)) is generic, then N4/ G is a smooth manifold of
real dimension 4, and the hyper-Kdhler structure on M, induces a hyper-Kdihler
structure wy, on N,/ G).

Although the hyper-Kéhler quotient N4/G; seems to depend on the choice of
A € HY, the induced hyper-Kihler structure on N, /G, depends only on A by
the argument of Section 2 of [7]. Accordingly we may put

X(A) := N4/ Gy
= {x € M4;x,iX, — A, is independent of n € N}/G;,,

and call it a hyper-Kihler manifold of type Ao
If N is replaced by a finite set in the above construction, (X (1), w;) becomes an
ALE hyper-Kidhler manifold of type Ay [4].

2.2 Sl-actions and Moment Maps

An S'-action on X(A) preserving the hyper-Kihler structure is defined as follows.
(See also [5].) Let [x] € Na/G, be the equivalence class represented by x € Ny.
Take m € N arbitrarily and let

[X]g = [xmg, (xn)neN\{m}]

for x = (X, (Xx)nem\gm}) € Na and g € S'. This definition does not depend on
the choice of m € N. Then we obtain the hyper-Kédhler moment map

war([x]) := x,ix, — A, € ImH.L

The right hand side is independent of the choice of n € N since x is an element
of N A-
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We have a principal S'-bundle 1, |X(A)* : X(A)* — Y(A), where

X(A)* ;= {[x] € X(1); x, # Oforalln € N},
Y(A) := ImH\{—A,: n € N}.

By the Gibbons-Hawking construction [1], we can check easily that X (A1) and X (1)
are isomorphic as hyper-Kihler manifolds if A and A’ satisfy one of the following
conditions; (i) A, — A, € ImH is independent of n, (ii) A, = Auu) for some
bijective maps a : N - N, (iii) A = —1/.

3 The Volume Growth

Here we focus on the Riemannian geometric aspects of X(A), especially their
volume growth.

For a Riemannian manifold (X, g), denote by V,(p,r) the volume of the
geodesic ball of radius r > 0 centered at p € X. By the volume comparison theorem
[2,6], we can deduce that

Vg(po,r) —
=00 Vg(plar)

for any Ricci flat manifold (X, g) and any po, p; € X. Thus the volume growth of
g is the invariant for Ricci flat manifolds.
Theorem 2 ([7]). For each A € (ImH)(I? and po € X(A), the function Vg, (po,1)

satisfies

Ve, (Po, . |4 ,
0< liminfM < lim sup M < 400,

r—>too r217 1 (r?) T roteo 1275 N (r?)

where the function t) : R>o — Ry is defined by

I
T(R) =
wen Rt 1A
for R > 0. Moreover, we have
V 3 V )
lim —gl(pf r) =0, lim S22 (p30 r) = +o0.
r—>-+00 r r—>-+o00 r

Next we see some examples computed in [7].
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Example 1. Fix y > 1 and put A) := i -n” € ImH. Then there exist positive
constants A, B > 0 such that

ArtTE < Ve ((po, 1) < Bri T
Example 2. Put A, := i - ¢" € ImH. Then there exist positive constants A, B > 0
such that
4 4

r r
A— <V, ,r)<B
logr — g)t(po r)—

log r

for any o < 4.

4 Period Maps

4.1 Holomorphic Curves

In this subsection, we see that there are several compact minimal submanifolds in
X (1) following [8].

Definition 3. (i) Let X be a complex manifold of dimension 2n and w¢ be a
holomorphic 2-form on X. Then (X,wc) is called a holomorphic symplectic
manifold if dwe = 0 and ¢, is nowhere vanishing. (ii) An n dimensional complex
submanifold L of a holomorphic symplectic manifold (X, wc) is holomorphic
Lagrangian submanifold if wc|, = 0.

Let (X,w) be a hyper-Kdhler manifold of real dimension 4n. For each y €
ImH with |y| = 1, ImH is decomposed into y-component and its orthogonal
complement. Then we denote by w, € £2%(X) the y-component of » € 2%(X) ®
ImH. Let ), be the complex structure corresponding to the Kéhler form w, .

Let n = (91 12 n3) € SO(3), where {11, 72, n3) is an orthonormal basis of R3.
Then 7 gives the orthogonal decomposition ImH = R? = Ry, @Rn, ®Rys, and the
hyper-Kihler structure » € £22(X) ® ImH can be written as @ = 11wy, + M@y, +
n3w,, forevery n € SO(3). Now we regard (X, I,,) as a complex manifold. Then a
holomorphic symplectic structure on X is given by w,. := w;, + iw,;,.

Proposition 1. Let (X, ) be a hyper-Kiihler manifold and take n € SO(3). Then
each holomorphic Lagrangian submanifold L C X with respect to wy. gives the
minimum volume in their homology class.

Proof. The pair of a Kahler form w,, and a holomorphic volume form (w,, +
iwy,)" gives the Calabi-Yau structure on (X, /,,). Here, n is the half of the
complex dimension of X. Now, assume that L C X is a holomorphic Lagrangian
submanifold with respect to w,.. Then wy,|; = w,;|; = 0, hence L is lagrangian
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with respect to wy,. Since Im(w,, + iw,,)" is the multiplication of w,, and some
differential forms, we also have Im(w,, +iw;,)"|; = 0, which means L is a special
Lagrangian submanifold. The volume minimizing property of special Lagrangian
submanifolds [11] gives the assertion. O

Take a generic A € (Im]HI)(R)I and consider the hyper-Kéhler manifold (X(1), w;)
as constructed in Sect. 2. Put

[a,b] :={ta+ (1 —1t)b € ImH; 0 <t < 1},
(a,b] :={ta+ (1 —t)b eImH; 0 <t < 1},
[a,b) :={ta+ (1 —t)b e ImH; 0 <t <1},
(a,b) :={ta+(1—-t)beImH; 0 <t < 1}

fora, b € ImH.

Proposition 2. Let n,m € N satisfy n # m and (—A,, —Ay,) C Y(X). The inverse
image p,;l ([<An, =Am]) = CP' is a complex submanifold of X ()) with respect to
I, and gives the minimum volume in its homology class, where y 1= ﬁ

Proof. Let n € SO(3) satisfies ni = y. If we write uy = (Ua.1, La2, 423)
with respect to the decomposition ImH = Rn; & Rn, @& Rns, then w) » and wy 3
are constant on ;' ([—A,, —A,]). Hence we have dﬂxyalﬂzl([il".ikm]) = 0 for

a = 2,3, which gives wA’nC|U)Tl([_)‘n-_Am]) =0. 0

4.2 Topology

In this subsection we review the construction of the deformation retracts of X(A)
following [3, 5]. See also [8]. In the case of toric hyper-Kéhler varieties, the
deformation retracts are constructed in [3].

For (—A,,—A,) C Y(A), the orientation of u;l([—kn, —Am]) is determined as
follows. By taking a smooth section (—A,, —A4,) — ,u,;l((—k,l, —Am)) of uy, a
coordinate (s,?) on /,L;l((—)t,,, —Am)) is naturally given where t € R/2nZ is the
parameter of S!-action and a function s : ,u;l ((=Au, —Am)) — Riis given by

_ Antpa(p)
s(p) = —a

for p € /L)Tl((—)tn, —Am)). Then the orientation of u;l([—kn, —Am]) is given by
ds A dt. Therefore, iy ' ([—An, —A]) and g3 ([—A,n, —A,]) are same as manifolds
but have opposite orientations.
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For n,m,l € N, u;7' ([=An. —=Am]) U w7 ([=Am. —A1]) and w3 ([—An, —A1])
determines the same homology class since the boundary of /LII(An_m,;) is given
by 1 ([ Ans —Am]) U ([ A, —Ai]) U ([ Ar, —Au]), where

DNpmii={—ar, —BAy —yAyelmH; a +8+y =1, a, B,y > 0}.

We denote by C, ,, the homology class determined by ;' ([—A,, —A,]). Then
the above observation implies

Cn,m + Cm,l + Cl,n = Cn.m + Cm.n =0

forn,m,l € N.
Ifn,m,l, h € Nsatisfiesn # h,n # m and [ # h then the intersection number
Cu.m - Cy is given by

| lm=1

Cn,m : Cl,h - 0 (m 75 l)

and C, - Cp py = —2.
Since the subset of (ImH)ON consisting of generic elements is connected in
(ImH)ON, the topological structure of X(4) does not depend on A. Consequently, it

suffices to study X (i) for investigating the topology of X (1), where A is the special
one defined by A, := (nz, 0,0) € ImH.

Proposition 3. There exists a deformation retract of Mgl(UneN[_i"’ —Anp1]) C
X().

Proof. There is a deformation retract
F :ImH x [0, 1] = ImH

which satisfy F(-,0) = idimg, FOMH, 1) = U, cn[=An, —Ant1] and F(E, 1) = ¢
for ¢ € UneN[_i”’ —)ALnH]. Then we have the horizontal lift F : X(i) x [0,1] —
X ()AL) of F by using the S'-connection on X (;X)* naturally induced from the hyper-
Kihler metric on X ()AL)*. The map F is a deformation retract as we expect. O

Corollary 1. The second homology group Hy(X(L),Z) is generated by
{Cym; n,m € N}.

Thus we obtain the followings.

Theorem 3. Let A € (ImH), be generic. Then Hy(X(A),Z) is a free Z-module
generated by {C,, ,; n,m € N} with relations

Cn.m + Cm,l + Cl.n = O, Cn,m + Cm,n =0
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foralln,m,l € N. Moreover the intersection form on Hy(X (1), Z) is given by

1(m=1)
0(m#I)

and Cy - Cyy = =2 forn,m,l,h € Ntakentoben # h, n # m andl # h.

Cn,m . Cl,h =

4.3 Period Maps

Let [w;] € H*(X(1),R) ® ImH be the cohomology class of wy. In this subsection
we compute [wy], that is, compute the value of ([w,], Cy.m) 1= an ,, @ € ImH for
all n,m € N along [8]. In the case of finite topological type of toric hyper-Kihler
varieties, the period maps are computed in [12].

Theorem 4. Let A € (ImIHI)ON be generic. Then
([wk]’ CnJ’") = An - Am

foralln,m € N.

Proof. Take a smooth path y : [0,1] — ImH such that y(0) = —A,, y(1) = =4,
and y(s) € Y(A) for s € (0,1). Since the homology class represented by
wy ' (v([0,1])) is Cp m, we have

(03], Com) = [ ;.
wy((o.1]))

Take the local coordinate (¢, ) 1, a2, 42.3) of an open subset of X(A)*, where
wy = (a1, a2, 23) and ¢ is the coordinate of S!'-action. Then the local

coordinate (s, ) on u;l(y([o, 1])) is given by (¢, ux.10y(8), a20Y(s), nr 30y (s)).
By using this, we can see that

1
Wra = Vo (s)=—ds A dt
2

fora = 1,2, 3, where y(s) = (y1(s), y2(5), y3(s)) € ImH = R3. Hence we have
1
/ Wyg = [ Yo (s)=—ds A dt
w7 o(0.1D) 1 (0.1 2

2 1 1
= / —dt/ vo(s)ds
o 2 Jo

= Ye(1) = v2(0) = Ay o — Ao O
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5 Holomorphic Symplectic Structures

In this section we regard a hyper-Kahler manifold (X, g, 11, I, I3) as a complex
manifold by 7. Then the holomorphic 2-form w¢c = w, + \/—_la)3 is called the
holomorphic symplectic structure, and the cohomology class [w, +~/—Lws] is called
the holomorphic symplectic class.

Let AV as in Example 1 of Sect. 3. Then, we can see that the holomorphic
symplectic class [w,r ¢] is independent of y by Theorem 4.

Theorem 5 ([9]). The holomorphic symplectic structures wyy ¢ are independent of
y. In particular, X(AV) and X (AV) are biholomorphic for all y,y > 1.

Since the function 4 — V—erl gives one-to-one correspondence between open intervals
(1,00) and (3,4), we have the following conclusion by combining Theorems 2
with 5.

Theorem 6. Let o € (3,4). Then there is a complex manifold X and the family of
Ricci-flat Kdihler metrics {gq }3<q<4 Whose volume growth satisfies

Ar® < Vg, (po.1) < Br*

for some positive constants A, B.
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