Totally Geodesic Surfaces of Riemannian
Symmetric Spaces

Katsuya Mashimo

Abstract A submanidfold S of a Riemannian manifold is called a totally geodesic
submanifold if every geodesic of S is also a geodesic of M. Totally geodesic
submanifolds of Riemannian symmetric spaces have long been studied by many
mathematicians. We give a classification of non-flat totally geodesic surfaces of the
Riemannian symmetric space of type AI, AIIIl and BDI.

1 Introduction

Let G be a compact simple Lie group and 6 be an involutive automorphism of G.
We denote by g the Lie algebra of G and denote also by 6 the differential of 6. Let
t be the set of all f-invariant elements of g and K be a Lie subgroup of G of which
Lie algebra coincides with &.

Let (,) be an Ad(G)-invariant inner product on g and p be the orthogonal com-
plement of €. We extend the restriction of (,) on p to the G-invariant Riemannian
metric on G/ K and denote it also by {, ).

A subspace s of p is called a Lie triple system if it satisfies [[s, s]s] C s. There
exits a one-to-one correspondence between the set of totally geodesic submanifold
of M through the origin 0 = eK and the set of Lie triple systems in p [1].

Important constructions and classification results of totally geodesic subman-
ifolds in Riemannian symmetric spaces are summarized in an expository article
by S. Klein [2].

In [3] the author classified non-flat totally geodesic surfaces in irreducible
Riemannian symmetric spaces where G is SU(n), Sp(n) or SO(n). The main
tool used in [3] is the representation theory of SU(2). The aim of this article is
to introduce the outline of the contents of [3].
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2 Irreducible Representation of SU(2)

In this section, we review real and complex irreducible representations of SU(2).
Let H, X, Y be a basis of the complexification of the Lie algebra su(2) of SU(2)
satisfying

[H . X]=2X, [H.Y]=-2Y, [X.Y]=H. (1)

2.1 Complex Irreducible Representations

If we denote by V, the set of polynomial functions on C? and by pg the
contragradient action of SU(2) on V,, then (Vy, py) is a complex irreducible
representation of SU(2). On the other hand, every finite dimensional complex
irreducible representation of SU(2) is equivalent to (Vy, py) for some positive
integer d.

The next proposition plays an important role in our classification.

Proposition 1. Let (V,p) be a (d + 1)-dimensional complex irreducible
representation of SU(2) and (, ) be an SU(2)-invariant Hermitian inner product
on V. If we put A the largest eigenvalue of p(H) and vy € V be a corresponding
eigen vector, then we have A = d and p(Y) (vy) is an eigen vector of p(H)
corresponding to the eigenvalue (A — 2i).

Let ¢; (0 < i < d) be arbitrary complex numbers with |e;| = 1, and put

i
Vi = —

C o p(Y)iw|
of Vy and the matrix representations of p(H), p(X), p(Y') with respect to vy, -+ , vy
are as follows

p(Y)vo (0 <i <d).Thenvy, vy, -, vq is an orthonormal basis

70 0 00--00
¢ 0--00
0d—2--- 0
p(Hy=1|. . .|, pX)=|0c2-- 00
00 —d 00:--¢;0
0c¢/ 0 -0

where ¢ =¢;

p)= | e = id =T 7 D).
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2.2 Real Irreducible Representations

Let (V, p) be a complex representation of SU(2) and vy, ---, vy be a basis of V.
We denote by V the complex vector space, which is V itself as an additive group
and the scalar multiplication is defined by ¢ x x = ¢ x (c € C, x € V). Define the
action p of SU(2) on V so that

ﬁ(ZZi *Vi) = Zzi * p(v;).

The representation (1, p) is called the conjugate representation of (V, p).

A complex irreducible representation (V, p) of G is said to be a self-conjugate
representation if there exists a conjugate-linear automorphism f V-V
which commute with p(g) for any g € SU(2). A conjugate-linear automorphism
commuting with p is called a structure map of (V, p).

Let (V, p) be a self-conjugate representation and f be a structure map. By Schur’s
lemma, f 2 = ¢ for some constant. It is known that the constant ¢ is a real number
and (V, p) is said to be of index 1 (resp. —1) if ¢ > 0 (resp. ¢ < 0).

Each complex irreducible representation (Vy, pg) of SU(2) is a self-conjugate
representation and its index is equal to (—1)?. If d is an even integer, the subspace
of V; invariant under the structure map f is a real irreducible representation of
SU(2).1f d is an odd integer, V; (viewed as a real representation by restricting the
coefficient field from C to R) is also a Real irreducible representation and V; admits
a structure of vector space over the field of quaternions.

3 Classification

The standard orthonormal basis of RV or CV will be denote by ey, - - ,ey. We denote
by Gij (i # j) the skew-symmetric endomorphism satisfying

Gij(ej):ei, Gij(e,-):—ej, Gij(ek):O (k?él,j),
and by §;; the symmetric endomorphism

Sijlej) =ei, Sijei)=e;, Sijlex) =0 (k#i,J).

3.1 AI: SU(n)/SO(n)

We denote by t the conjugation on CV with respect to RV and denote by 6 the
involutive automorphism on SU(N) defined by 8(g) =t o got (g € SU(n)).
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Theorem 1. Let M be a non-flat totally geodesic surface of SU(n)/SO(n) and U
be the set of all elements in SU(n) leaving M invariant.

(i) There exists an orthogonal direct sum decomposition of C" by t-invariant and
U -invariant subspaces.
(ii) Let X5, X3 be a basis of the Lie triple system corresponding to M with

[X2, X3], Xo] = 4X5, [[Xo, X3]. X3] = —4 X

Assume that C" is U-invariant. There exists an element g = [uy, - ,u,] €
SO(n) such that
n
Ad(@) Xy = V=1 (n—2i) E;; 2)
i=1

n—2
Ad(g)X; = —v—1 [Z Viln—)Siip1 + evn—1 1sn_1,n} 3)
i=l1

where

1 if n =1 (mod2),
+1 ifn = 0 (mod2).

Proof. We omit the proof of (i) and assume that the action of U on C” is irreducible.

Note that € = {X : 8(X) = X} = Skew(n;R) and p ={X : (X)) = —X} =
V—1Sym(n; R).

If we puta; > a, > --- > a, the set of eigenvalues of H = —\/—_IXZ €
Sym(n;R), then by the action of Ad(SO(n)) we may assume that H =
Diag(alvab S, ay).

If we put

H=D0.X] X=X+ X). ¥ = (VT XX,
we have
[H,X]=2X, [HY]=-2Y, [X,Y]=H.
Since a; are weights of the complex irreducible representation of U we have

a1 —a) =a,—az = -+ =day—1 —a, = 2.
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Putn = d + 1 and vy = e;. Since each eigenspace (the weight space) of H is

£ )

one-dimensional there exists &; (1 < i < d) such that ¢; = |H'I |H’vo. Thus the
1 vo

matrix H, X and Y are of the form given in the Proposition 1. We can choose unit

complex numbers ¢; (0 < i < d) such that by a change of basis {¢;} — {ele;} all

the components of X, Y in the Proposition 1 are changed to real numbers. We omit

further detail. O

32 AIII : SU(p +q)/S(U(p) x U(g))

I, O
0 -1,

We denote by I, the unit matrix of order n and put /,,, =

Theorem 2. Let M be a non-flat totally geodesic surface of SU(p + q)/S(U(p) x
U(q)) and U be the set of all elements of SU(p + q) which leave M invariant.

(i) There exists an orthogonal direct sum decomposition of CP*4 by I, ,-
invariant, U -irreducible subspaces.
(ii) If V is an I, 4-invariant, U -irreducible subspace of C’*4, then we have

|dim{v e V : I,,(v) =v} —dim{ve V : [, ,(v) = —v}| < 1.

(iii) Assume that the action of SU(2) on CPT4 is irreducible. Let X», X3 be a basis
of the Lie triple system corresponding to M with

[X2, X3], Xo] = 4 X3, [[X2, X3]. X3] = —4 X>.

There exists an element § = [uy, -+ ,up14] € S(U(p) x U(q)) such that

q
Ad(g)X2 =Y V@i —1D)(p+q+1-2i)Gi

i=1

p—1
+) V2i(p+q—20) Gpriin )

i=1

q
Ad(9)X; = V-1 [Z VQi—D(p+q+1-20)Sptis

i=1

p—1
+Z¢2i<p+q—2i)si+1,,,+,} ©)
i=1
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Proof. We omit the proof of (i).
Assume that the action of U on C?*4 is irreducible.
Take a basis X, X», X3 of the Lie algebra u of U which satisfy
IngoXi=X101l,, Ip,0X;=-X;0l,, (i=2,3),
(X1, Xo] =2X3, [Xa2, X3] =2X,, [X3, Xi] =2X,,

and put
1 1 ¥
H=—V=1Xi. X = 2(Xo = V=1X3). ¥ = — Xy + V-1X3) = 'X.

Since H is a Hermitian matrix, there exists an element g € S(U(p) x U(q))
such that

Ad(g)H = diag(ay, -+ ,ap:b1,-++ ,by)

where a; > --- > a, and by > --- > b, holds. We denote by £; the i-th column
vector of g. The set of eigenvalues of H coincides with the set of weights of the
(p + g)-dimensional complex irreducible representation of SU(p + ¢)), namely we
have

{ap,---,ap. by, by} ={p+q—-1,p+q—2, -, 1—-p—gqj.

We assume that a¢; > by holds.

e Wehavea; =p+qg—1land/,,&§ =&,H-& = (p+q—1)§ hold.

* From/,,0Y = —Yol,,,wehave I, (Y-§) = —Y-§ andfrom[H,Y] = -2Y
we have H(Y - &) = (p+q—3)Y - &. Thus we have b = p 4+ ¢ — 3 and there
exists a complex number y; with

Y- =&, Inl=+vVp+qg-1

¢ Similarly we have

Y -6pr1=mb, Inl=v2(p+qg-2)

etc.
Finally we have p —¢g = 0, 1 and the matrix representation of ¥ with respect to the

basis E], "',SP,SP_H, ey §p+q is

q p—1
Ad(g)Y = Z Vai—1 Eptii + Z Vai Eit1p+i-

i=1 i=1
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Let & (1 < i =< p + g) be unit complex numbers and put g =
(181, -+ . €prq &prq). We can choose & so that the all of the coefficients y»;
and y,;— in the representation of Ad(g)Y above are positive real numbers. From

X,="Y-Y, X;=+-1(Y+Y)

we obtain (4) and (5). O

3.3 BDI: SO(p+q)/S(O(p) x O(q))

Let 6 be the involutive automorphism on G = SO(p + ¢) defined by

0(g) =1pq080°1p4

and put

K =1{geSO(p+q):0(g) =g}=S50(p)x0(g)).

We can classify totally geodesic surfaces of SO(p + ¢)/S(O(p) x O(q)) by
similar argument to that on SU(p + q)/S(U(p) x U(q)). But, since there are two
types of real irreducible representations of S U(2), the classification result is divided
into two cases; (iii) and (iv) in the following theorem. Since it is troublesome to
give the representation matrix of the action of su(2) on the odd-dimensional real
irreducible representation ((ii7) in the following theorem), we give only the result
without proof.

Theorem 3. Let M be a non-flat totally geodesic surface of SO(p +q)/S(O(p) x
0(q)) and U be the set of all elements in SO(p + q) leaving M invariant.

(i) There exists an orthogonal direct sum decomposition of RP*4 by I p.q-invariant
and U -irreducible subspaces.
(ii) For each I, 4-invariant, U-irreducible subspace V of R? T4, we have

[dim{ve V :1,,(v) =v}—dim{ve V : [,,(v) = —v}| < 1.

(iii) Assume that the action of U on RPT4 is irreducible and p = q + 1 > 3.
We denote by p' the integer part of p/2 and by q’ the integer part of q/2.
There exists an element g € S(O(p) x O(q)) such that

/

q
Ad(g) X, = — Z V@i —1D)(p+q+1-2i)(Gpsaim12i-1 + Gpsaini)

i=1
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Pl
+ Z V2i(p+q—2i) (Gpsri12i+1 + G ptaini+2)

i=1

n { (~vV2) /PG p1qq (if p =0 mod 2) ©
ﬂ,/qupﬂ_l,p (if p =1 mod 2)
q/
Ad(g) X5 = Z VQi—1)(p+q+1=20)(Gpyai2i-1 — Gpyai-12i)
i=1
p-1
+ Z V2i(p 4+ q —2i) (Gps2izi+1 — G ptai—1i+2)
i=1
n (~~2) /P GG ptq.p (if p =0 mod 2) o
ﬁ,/qupﬂ,p (if p =1 mod 2)

(iv) Assume that the action of U on RP %9 is irreducible and p = q. Then p is an
even integer, say p = 2p’, and there exists an element g € S(O(p) x O(q))
such that

/

p'—1
Ad(g) X, = Z V2i(p =20) (Gptii+1 + Gptp/tip/+it+1)
i=1

p
- Z V@i —1)(p+1=2i) (Gpgisi + Gpiptip+i) (8

i=1

-1
Ad@)Xs = Y V2i(p = 20) (Gptpiitt = Gpiprti+1)
i=l1

»
+ Z V@i =1)(p +1=2i) (Gpiptii — Gprip+i) ()

i=1
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