Totally Geodesic Surfaces of Riemannian Symmetric Spaces

Katsuya Mashimo

Abstract A submanidfold S of a Riemannian manifold is called a *totally geodesic submanifold* if every geodesic of S is also a geodesic of M. Totally geodesic submanifolds of Riemannian symmetric spaces have long been studied by many mathematicians. We give a classification of non-flat totally geodesic surfaces of the Riemannian symmetric space of type AI, AIII and BDI.

1 Introduction

Let G be a compact simple Lie group and θ be an involutive automorphism of G. We denote by g the Lie algebra of G and denote also by θ the differential of θ . Let θ be the set of all θ -invariant elements of g and K be a Lie subgroup of G of which $\mathfrak k$ be the set of all θ -invariant elements of g and K be a Lie subgroup of G of which
Lie algebra coincides with $\mathfrak k$ Lie algebra coincides with ℓ .

Let \langle , \rangle be an Ad(G)-invariant inner product on g and p be the orthogonal complement of ℓ . We extend the restriction of \langle , \rangle on p to the G-invariant Riemannian metric on G/K and denote it also by \langle , \rangle .

A subspace $\mathfrak s$ of $\mathfrak p$ is called a *Lie triple system* if it satisfies $[[\mathfrak s, \mathfrak s] \mathfrak s] \subset \mathfrak s$. There $\mathfrak s$ a one-to-one correspondence between the set of totally geodesic submanifold exits a one-to-one correspondence between the set of totally geodesic submanifold of M through the origin $o = eK$ and the set of Lie triple systems in p [\[1\]](#page-7-0).

Important constructions and classification results of totally geodesic submanifolds in Riemannian symmetric spaces are summarized in an expository article by S. Klein [\[2\]](#page-7-1).

In [\[3\]](#page-7-2) the author classified non-flat totally geodesic surfaces in irreducible Riemannian symmetric spaces where G is $SU(n)$, $Sp(n)$ or $SO(n)$. The main tool used in $[3]$ is the representation theory of $SU(2)$. The aim of this article is to introduce the outline of the contents of [\[3\]](#page-7-2).

K. Mashimo (\boxtimes)

Hosei university, 3-7-2 Kajino-cho, Koganei, Tokyo, 184-8584, Japan e-mail: mashimo@hosei.ac.jp

Y.J. Suh et al. (eds.), *Real and Complex Submanifolds*, Springer Proceedings in Mathematics & Statistics 106, DOI 10.1007/978-4-431-55215-4__26

2 Irreducible Representation of $SU(2)$

In this section, we review real and complex irreducible representations of $SU(2)$.

Let H, X, Y be a basis of the complexification of the Lie algebra $\mathfrak{su}(2)$ of $SU(2)$ satisfying

$$
[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H.
$$
 (1)

2.1 Complex Irreducible Representations

If we denote by V_d the set of polynomial functions on \mathbb{C}^2 and by ρ_d the contragradient action of $SU(2)$ on V_d , then (V_d, ρ_d) is a complex irreducible representation of $SU(2)$. On the other hand, every finite dimensional complex irreducible representation of $SU(2)$ is equivalent to (V_d, ρ_d) for some positive integer d .

The next proposition plays an important role in our classification.

Proposition 1. Let (V, ρ) be a $(d + 1)$ -dimensional complex irreducible *representation of* $SU(2)$ *and* \langle , \rangle *be an* $SU(2)$ *-invariant Hermitian inner product on* V. If we put λ the largest eigenvalue of $\rho(H)$ and $v_0 \in V$ be a corresponding *eigen vector, then we have* $\lambda = d$ *and* $\rho(Y)^i(v_0)$ *is an eigen vector of* $\rho(H)$ *corresponding to the eigenvalue* $(\lambda - 2i)$ *corresponding to the eigenvalue* $(\lambda - 2i)$ *.*

Let ε_i $(0 \le i \le d)$ be arbitrary complex numbers with $|\varepsilon_i| = 1$, and put $v_i = \frac{\varepsilon_i}{|\rho(Y)^i v_0|} \rho(Y)^i v_0$ ($0 \le i \le d$). Then v_0, v_1, \dots, v_d is an orthonormal basis $|\rho(Y)^i v_0|$
and the m *of* V_d *and the matrix representations of* $\rho(H)$ *,* $\rho(X)$ *,* $\rho(Y)$ *with respect to* v_0, \cdots, v_d
are as follows are as follows

$$
\rho(H) = \begin{bmatrix} d & 0 & \cdots & 0 \\ 0 & d - 2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & -d \end{bmatrix}, \quad \rho(X) = \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ c_1 & 0 & \cdots & 0 & 0 \\ 0 & c_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & c_d & 0 \end{bmatrix},
$$

$$
\rho(Y) = \begin{bmatrix} 0 & c'_1 & 0 & \cdots & 0 \\ 0 & 0 & c'_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & c'_d \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix}, \quad \text{where } c'_i = \overline{c_i} \\ |c_i| = \sqrt{i(d-i+1)}.
$$

2.2 Real Irreducible Representations

Let (V, ρ) be a complex representation of $SU(2)$ and v_1, \dots, v_N be a basis of V. We denote by \overline{V} the complex vector space, which is V itself as an additive group and the scalar multiplication is defined by $c * x = \overline{c} x$ $(c \in \mathbb{C}, x \in V)$. Define the action $\overline{\rho}$ of $SU(2)$ on \overline{V} so that

$$
\overline{\rho}\left(\sum z_i * v_i\right) = \sum z_i * \rho(v_i).
$$

The representation $(\overline{V}, \overline{\rho})$ is called the *conjugate* representation of (V, ρ) .

A complex irreducible representation (V, ρ) of G is said to be a *self-conjugate* representation if there exists a conjugate-linear automorphism $\hat{j} : V \to V$ which commute with $\rho(g)$ for any $g \in SU(2)$. A conjugate-linear automorphism commuting with ρ is called a *structure map* of (V, ρ) .

Let (V, ρ) be a self-conjugate representation and \hat{j} be a structure map. By Schur's lemma, $\hat{j}^2 = c$ for some constant. It is known that the constant c is a real number and (V, ρ) is said to be of *index* 1 (resp. -1) if $c > 0$ (resp. $c < 0$).

Each complex irreducible representation (V_d, ρ_d) of $SU(2)$ is a self-conjugate representation and its index is equal to $(-1)^d$. If d is an even integer, the subspace of V_d invariant under the structure map \hat{j} is a real irreducible representation of $SU(2)$. If d is an odd integer, V_d (viewed as a real representation by restricting the coefficient field from $\mathbb C$ to $\mathbb R$) is also a Real irreducible representation and V_d admits a structure of vector space over the field of quaternions.

3 Classification

The standard orthonormal basis of \mathbb{R}^N or \mathbb{C}^N will be denote by e_1, \dots, e_N . We denote by G_{ii} $(i \neq j)$ the skew-symmetric endomorphism satisfying

$$
G_{ij}(e_j) = e_i
$$
, $G_{ij}(e_i) = -e_j$, $G_{ij}(e_k) = 0$ $(k \neq i, j)$,

and by S_{ij} the symmetric endomorphism

$$
S_{ij}(e_j) = e_i
$$
, $S_{ij}(e_i) = e_j$, $S_{ij}(e_k) = 0$ $(k \neq i, j)$.

3.1 $AI: SU(n)/SO(n)$

We denote by τ the conjugation on \mathbb{C}^N with respect to \mathbb{R}^N and denote by θ the involutive automorphism on $SU(N)$ defined by $\theta(g) = \tau \circ g \circ \tau (g \in SU(n)).$

Theorem 1. Let M be a non-flat totally geodesic surface of $SU(n)/SO(n)$ and U *be the set of all elements in* $SU(n)$ *leaving* M *invariant.*

- *(i) There exists an orthogonal direct sum decomposition of* \mathbb{C}^n *by* τ -*invariant and* U*-invariant subspaces.*
- *(ii)* Let X_2 , X_3 *be a basis of the Lie triple system corresponding to* M *with*

$$
[[X_2, X_3], X_2] = 4 X_3, \quad [[X_2, X_3], X_3] = -4 X_2.
$$

Assume that \mathbb{C}^n *is U-invariant. There exists an element* $g = [u_1, \dots, u_n] \in$ $SO(n)$ *such that*

$$
Ad(g)X_2 = \sqrt{-1} \sum_{i=1}^{n} (n-2i) E_{i,i}
$$
 (2)

$$
Ad(g)X_3 = -\sqrt{-1} \left[\sum_{i=1}^{n-2} \sqrt{i(n-i)} S_{i,i+1} + \varepsilon \sqrt{n-1} S_{n-1,n} \right]
$$
 (3)

where

$$
\varepsilon = \begin{cases} 1 & \text{if } n \equiv 1 \text{ (mod2)}, \\ \pm 1 & \text{if } n \equiv 0 \text{ (mod2)}. \end{cases}
$$

Proof. We omit the proof of (i) and assume that the action of U on \mathbb{C}^n is irreducible.

 $\sqrt{-1}$ Sym(n; R).
If we put a. Note that $\mathfrak{k} = \{X : \theta(X) = X\}$ = Skew $(n; \mathbb{R})$ and $\mathfrak{p} = \{X : \theta(X) = -X\}$ = $\overline{-1}$ Sym $(n; \mathbb{R})$

If we put $a_1 > a_2 > \cdots > a_n$ the set of eigenvalues of $H = -\sqrt{-1} X_2 \in$ Sym(n; R), then by the action of Ad($SO(n)$) we may assume that $H =$ Diag (a_1, a_2, \cdots, a_n) .

If we put

$$
H = [X_2, X_3], \quad X = \frac{1}{2}(\sqrt{-1}X_3 + X_1), \quad Y = \frac{1}{2}(\sqrt{-1}X_3 - X_1),
$$

we have

$$
[H, X] = 2X, \quad [H, Y] = -2Y, \quad [X, Y] = H.
$$

Since a_i are weights of the complex irreducible representation of U we have

$$
a_1 - a_2 = a_2 - a_3 = \cdots = a_{n-1} - a_n = 2.
$$

Put $n = d + 1$ and $v_0 = e_1$. Since each eigenspace (the weight space) of *H* is one-dimensional there exists ε_i ($1 \le i \le d$) such that $e_i = \frac{\varepsilon_i}{|H^i v_0|} H^i v_0$. Thus the $H^i v_0$
matrix H, X and Y are of the form given in the Proposition [1.](#page-1-0) We can choose unit complex numbers ε'_i $(0 \le i \le d)$ such that by a change of basis $\{e_i\} \to \{\varepsilon'_i e_i\}$ all
the components of X, Y in the Proposition 1 are changed to real numbers. We omit the components of X , Y in the Proposition [1](#page-1-0) are changed to real numbers. We omit further detail.

3.2 $AIII : SU(p+q)/S(U(p) \times U(q))$

We denote by I_n the unit matrix of order *n* and put $I_{p,q}$ = $\sqrt{2}$ 4 I_p O $O-I_q$ 1 $\vert \cdot$

Theorem 2. Let M be a non-flat totally geodesic surface of $SU(p+q)/S(U(p) \times$ $U(q)$) and U be the set of all elements of $SU(p + q)$ which leave M invariant.

- *(i) There exists an orthogonal direct sum decomposition of* \mathbb{C}^{p+q} by $I_{p,q}$ *invariant,* U*-irreducible subspaces.*
- *(ii)* If V is an $I_{p,q}$ -invariant, U-irreducible subspace of \mathbb{C}^{p+q} , then we have

$$
\left|\dim\{v \in V : I_{p,q}(v) = v\} - \dim\{v \in V : I_{p,q}(v) = -v\}\right| \le 1.
$$

(iii) Assume that the action of $SU(2)$ on \mathbb{C}^{p+q} is irreducible. Let X_2 , X_3 be a basis *of the Lie triple system corresponding to* M *with*

$$
[[X_2, X_3], X_2] = 4 X_3, \quad [[X_2, X_3], X_3] = -4 X_2.
$$

There exists an element $g = [u_1, \dots, u_{p+q}] \in S(U(p) \times U(q))$ such that

$$
Ad(g)X_2 = \sum_{i=1}^q \sqrt{(2i-1)(p+q+1-2i)} G_{i,p+i}
$$

+
$$
\sum_{i=1}^{p-1} \sqrt{2i(p+q-2i)} G_{p+i,i+1}
$$

$$
Ad(g)X_3 = \sqrt{-1} \left[\sum_{i=1}^q \sqrt{(2i-1)(p+q+1-2i)} S_{p+i,i} \right]
$$
 (4)

$$
+\sum_{i=1}^{p-1}\sqrt{2i(p+q-2i)}\,S_{i+1,p+i}\Bigg]
$$
 (5)

Proof. We omit the proof of (i) .

Assume that the action of U on \mathbb{C}^{p+q} is irreducible.

Take a basis X_1, X_2, X_3 of the Lie algebra u of U which satisfy

$$
I_{p,q} \circ X_1 = X_1 \circ I_{p,q}, \quad I_{p,q} \circ X_i = -X_i \circ I_{p,q} \quad (i = 2, 3),
$$

\n
$$
[X_1, X_2] = 2X_3, \quad [X_2, X_3] = 2X_1, \quad [X_3, X_1] = 2X_2,
$$

and put

$$
H = -\sqrt{-1}X_1, \ X = \frac{1}{2}(X_2 - \sqrt{-1}X_3), \ Y = -\frac{1}{2}(X_2 + \sqrt{-1}X_3) = {}^{t}\overline{X}.
$$

Since H is a Hermitian matrix, there exists an element $g \in S(U(p) \times U(q))$ such that

$$
Ad(g)H = diag(a_1, \cdots, a_p; b_1, \cdots, b_q)
$$

where $a_1 > \cdots > a_p$ and $b_1 > \cdots > b_q$ holds. We denote by ξ_i the *i*-th column vector of g. The set of eigenvalues of H coincides with the set of weights of the $(p+q)$ -dimensional complex irreducible representation of $SU(p+q)$, namely we have

$$
\{a_1, \cdots, a_p, b_1, \cdots, b_q\} = \{p+q-1, p+q-2, \cdots, 1-p-q\}.
$$

We assume that $a_1 > b_1$ holds.

- We have $a_1 = p + q 1$ and $I_{p,q} \xi_1 = \xi_1$, $H \cdot \xi_1 = (p + q 1) \xi_1$ hold.
- From $I_{p,q} \circ Y = -Y \circ I_{p,q}$, we have $I_{p,q}(Y \cdot \xi_1) = -Y \cdot \xi_1$ and from $[H, Y] = -2Y$ we have $H(Y \cdot \xi_1) = (p + q - 3) Y \cdot \xi_1$. Thus we have $b_1 = p + q - 3$ and there exists a complex number γ_i with

$$
Y \cdot \xi_1 = \gamma_1 \xi_{p+1}, \quad |\gamma_1| = \sqrt{p+q-1}.
$$

• Similarly we have

$$
Y \cdot \xi_{p+1} = \gamma_2 \xi_2, \quad |\gamma_2| = \sqrt{2(p+q-2)}
$$

etc.

Finally we have $p - q = 0$, 1 and the matrix representation of Y with respect to the basis $\xi_1, \dots, \xi_p, \xi_{p+1}, \dots, \xi_{p+q}$ is

$$
Ad(g)Y = \sum_{i=1}^{q} \gamma_{2i-1} E_{p+i,i} + \sum_{i=1}^{p-1} \gamma_{2i} E_{i+1,p+i}.
$$

Let ε_i $(1 \le i \le p + q)$ be unit complex numbers and put $g =$ $(\varepsilon_1 \xi_1, \dots, \varepsilon_{p+q} \xi_{p+q})$. We can choose ε_i so that the all of the coefficients γ_{2i} and γ_{2i-1} in the representation of $Ad(g)Y$ above are positive real numbers. From

$$
X_2 = {}^{t}\overline{Y} - Y, \quad X_3 = \sqrt{-1} \left({}^{t}\overline{Y} + Y \right)
$$

we obtain [\(4\)](#page-4-0) and [\(5\)](#page-4-0). \Box

3.3 BDI: $SO(p+q)/S(O(p) \times O(q))$

Let θ be the involutive automorphism on $G = SO(p + q)$ defined by

$$
\theta(g) = I_{p,q} \circ g \circ I_{p,q}
$$

and put

$$
K = \{ g \in SO(p+q) : \theta(g) = g \} = S(O(p) \times O(q)).
$$

We can classify totally geodesic surfaces of $SO(p + q)/S(O(p) \times O(q))$ by similar argument to that on $SU(p + q)/S(U(p) \times U(q))$. But, since there are two types of real irreducible representations of $SU(2)$, the classification result is divided into two cases; (iii) and (iv) in the following theorem. Since it is troublesome to give the representation matrix of the action of $\mathfrak{su}(2)$ on the odd-dimensional real irreducible representation (iii) in the following theorem), we give only the result without proof.

Theorem 3. Let M be a non-flat totally geodesic surface of $SO(p+q)/S(O(p) \times$ $O(q)$ and U be the set of all elements in $SO(p+q)$ leaving M invariant.

- *(i) There exists an orthogonal direct sum decomposition of* \mathbb{R}^{p+q} *by* $I_{p,q}$ *-invariant and* U*-irreducible subspaces.*
- *(ii) For each* $I_{p,q}$ -invariant, U-irreducible subspace V of \mathbb{R}^{p+q} , we have

$$
\left|\dim\{v \in V : I_{p,q}(v) = v\} - \dim\{v \in V : I_{p,q}(v) = -v\}\right| \le 1.
$$

(iii) Assume that the action of U on \mathbb{R}^{p+q} is irreducible and $p = q + 1 \geq 3$. *We denote by* p' *the integer part of* $p/2$ *and by* q' *the integer part of* $q/2$ *. There exists an element* $g \in S(O(p) \times O(q))$ *such that*

$$
Ad(g)X_2 = -\sum_{i=1}^{q'} \sqrt{(2i-1)(p+q+1-2i)} (G_{p+2i-1,2i-1} + G_{p+2i,2i})
$$

$$
+\sum_{i=1}^{p'-1} \sqrt{2i(p+q-2i)} \left(G_{p+2i-1,2i+1} + G_{p+2i,2i+2} \right)
$$

+
$$
\begin{cases} (-\sqrt{2})\sqrt{pq}G_{p+q,q} & \text{(if } p = 0 \mod 2) \\ \sqrt{2}\sqrt{pq}G_{p+q-1,p} & \text{(if } p = 1 \mod 2) \end{cases}
$$

Ad(g) $X_3 = \sum_{i=1}^{q'} \sqrt{(2i-1)(p+q+1-2i)} \left(G_{p+2i,2i-1} - G_{p+2i-1,2i} \right)$
+
$$
\sum_{i=1}^{p'-1} \sqrt{2i(p+q-2i)} \left(G_{p+2i,2i+1} - G_{p+2i-1,2i+2} \right)
$$

+
$$
\begin{cases} (-\sqrt{2})\sqrt{pq}G_{p+q,p} & \text{(if } p = 0 \mod 2) \\ \sqrt{2}\sqrt{pq}G_{p+q,p} & \text{(if } p = 1 \mod 2) \end{cases}
$$
(7)

(iv) Assume that the action of U on \mathbb{R}^{p+q} is irreducible and $p = q$. Then p is an *even integer, say* $p = 2p'$, and there exists an element $g \in S(O(p) \times O(q))$
such that *such that*

$$
Ad(g)X_2 = \sum_{i=1}^{p'-1} \sqrt{2i(p-2i)} \left(G_{p+i,i+1} + G_{p+p'+i,p'+i+1} \right)
$$

$$
- \sum_{i=1}^{p'} \sqrt{(2i-1)(p+1-2i)} \left(G_{p+i,i} + G_{p+p'+i,p'+i} \right) \quad (8)
$$

$$
Ad(g)X_3 = \sum_{i=1}^{p'-1} \sqrt{2i(p-2i)} \left(G_{p+p'+i,i+1} - G_{p+i,p'+i+1} \right)
$$

$$
+\sum_{i=1}^{p'}\sqrt{(2i-1)(p+1-2i)}\left(G_{p+p'+i,i}-G_{p+i,p'+i}\right)
$$
 (9)

References

- 1. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic press, New York (1978)
- 2. Klein, S.: Totally Geodesic Submanifolds in Riemannian Symmetric Spaces. arXiv:0810.4413v1 [math.DG]
- 3. Mashimo, K.: Non-flat Totally Geodesic Surfaces in Symmetric Spaces of Classical Type. Preprint