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    Chapter 4   
 Polyamine Catabolism in Prokaryotes 

             Hideyuki     Suzuki      and     Shin     Kurihara   

    Abstract     Polyamines play important roles in cell growth and proliferation. 
In particular, these biogenic compounds are involved in the regulation of transcrip-
tion and translation processes required for bacterial proliferation. Consequently, 
intracellular polyamine content is strictly regulated at several levels, including 
 biosynthesis, degradation, and uptake from and excretion into the environment. 
In this chapter, we discuss polyamine catabolism in prokaryotes, focusing on the 
well-studied polyamine catabolism pathway in  Escherichia coli. E. coli  catabolizes 
putrescine to succinate via γ-aminobutyraldehyde (GABA) through the aminotrans-
ferase pathway or the γ-glutamylate pathway (the Puu pathway). Excess spermidine 
is acetylated to yield acetylspermidine, but whether this metabolite is then excreted 
from cells, as it is in eukaryotes, is not clear.  Pseudomonas aeruginosa  POA1, in 
contrast to  E. coli , has expanded catabolic pathways to salvage cadaverine and 
 spermidine as carbon and nitrogen sources.  

  Keywords     Aminotransferase   •   Putrescine utilization pathway   •   Spermidine 
acetyltransferase   •   Transporter   •   γ-Aminobutyric acid   •   γ-Glutamyl intermediate   • 
  γ-Glutamylation  

4.1         Introduction 

 The major polyamines in  Escherichia coli  cells are putrescine, spermidine, and 
cadaverine; this bacterium does not synthesize spermine. In eukaryotes, the 
lysine residue of the precursor of eukaryotic translation initiation factor 5A (elF5A) 
is hypusinated by the sequential reactions of two enzymes using spermidine, 
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and spermidine is synthesized from putrescine (see Fig.  4.1 ) (Park  2006 ; also see 
Chap.   10     by Park in this book). Therefore, polyamines are essential growth factors 
for eukaryotic cells. In contrast, an  E. coli  strain defi cient in all genes for polyamine 
biosynthesis can grow in polyamine-free medium in an aerobic environment, albeit 
at reduced growth rate (Chattopadhyay et al.  2009 ). However, polyamines are 
involved in various proliferation-associated processes in bacteria, including regula-
tion of transcription and translation, and their intracellular levels are strictly 
 regulated by biosynthesis, degradation, and uptake from and excretion into the 
 environment (Igarashi and Kashiwagi  2010 ).

    E. coli  synthesizes putrescine from ornithine by ornithine decarboxylases (SpeC 
or SpeF) or from arginine by the sequential reactions of arginine decarboxylase 
(SpeA) and agmatinase (SpeB) (Tabor and Tabor  1985 ). In addition to SpeB, the 
 Pseudomonas aeruginosa  PAO1 strain can convert agmatine to putrescine via 
 N -carbamoylputrescine by the sequential reaction of agmatine deaminase (AguA) 
and  N -carbamoylputrescine amidohydrolase (AguB) (Nakada et al.  2001 ). 
Spermidine is synthesized by the addition of propylamine to putrescine by spermi-
dine synthetase (SpeE). Cadaverine is synthesized from lysine by lysine decarbox-
ylases (CadA or LdcC). In spermidine defi ciency, relatively large amounts of 
aminopropylcadaverine are synthesized as a compensatory polyamine, achieved by 
the addition of propylamine to cadaverine, and the resulting molecule has the same 
effect on polypeptide synthesis and cell growth as spermidine (Igarashi et al.  1986 ). 
An in vitro study revealed that the transfer of propylamine to cadaverine is mediated 
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  Fig. 4.1    Metabolic map of polyamines in  Escherichia coli        
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by SpeE (Bowman et al.  1973 ). Hanfery et al. ( 2011 ) showed that  Campylobacter 
jejuni  has an alternative biosynthetic pathway of spermidine. In that pathway, not 
propylamine but carboxypropylamine is added from aspartate β-semialdehyde to 
putrescine to yield carboxyspermidine by carboxyspermidine dehydrogenase, fol-
lowed by decarboxylation to yield spermidine by carboxyspermidine decarboxylase. 

 In this chapter, we discuss various bacterial polyamine catabolic pathways, 
focusing mainly on those of  E. coli , and describe how polyamine production may be 
regulated and used as a bacterial feedstuff.  

4.2     Putrescine Catabolic Pathways in  E. coli  

 Two pathways, the aminotransferase pathway and the putrescine utilization path-
way (the Puu pathway) (see Fig.  4.1 ), are responsible for the catabolism of putres-
cine to yield nitrogen and carbon sources for growth. 

4.2.1     Aminotransferase Pathway 

 The aminotransferase pathway was fi rst reported by Shaibe et al. ( 1985a ,  b ) as a 
component of the arginine and ornithine catabolic networks (see Fig.  4.1 ). In this 
pathway, either arginine or ornithine is catabolized to succinate as a sole N source 
via putrescine and γ-aminobutyric acid (GABA). During the process, one of the 
amino groups of putrescine is transferred to α-ketoglutarate by putrescine amino-
transferase (PatA = YgjG) to form γ-aminobutyraldehyde and glutamate. 
γ-Aminobutyraldehyde is further oxidized to GABA by γ-aminobutyraldehyde 
dehydrogenase (PatD = YdcW). The amino group of GABA is transferred to 
α-ketoglutarate by GABA aminotransferase (GabT) to form succinic semialdehyde 
and glutamate. Then, succinic semialdehyde is oxidized to succinate by succinic 
semialdehyde dehydrogenase (GabD). Approximate map positions of  patA  and 
 patD  on the genome were also reported by Shaibe et al. ( 1985a ), although the map 
position of  patD  that they defi ned confl icts with current knowledge. PatD protein 
was purifi ed in 1987 (Prieto et al.  1987 ). These genes, however, were not cloned 
until 2003 (Samsonova et al.  2003 ). The  ygjG  (= patA ) gene was cloned and PatA 
(=YgjG) protein was purifi ed to homogeneity from an overexpressing strain and 
then characterized (Samsonova et al.  2003 ). In the case of PatD (=YdcW), the pro-
tein was purifi ed and the amino acid sequences of trypsin-digested peptides were 
compared with the  E. coli  genome database to identify its gene as  ydcW  (Samsonova 
et al.  2005 ). The  k  cat / K  m  value of YdcW against γ-aminobutyraldehyde is two orders 
of magnitude greater than that against butyraldehyde, indicating that 
γ-aminobutyraldehyde is its natural substrate. The crystal structure of YdcW 
(=PatD) had also been solved without knowing which pathway it involves and what 
is its cognate substrate (Gruez et al.  2004 ). 

4 Polyamine Catabolism in Prokaryotes



50

 GABA released by PatD (=YdcW) is further converted to succinate for entry to 
the TCA cycle by the sequential reactions of GABA aminotransferase (GabT) and 
succinic semialdehyde dehydrogenase (GabD) (Schneider et al.  2002 ). Strains with 
deletion mutations in these genes grew normally on all tested nitrogen sources with 
the exception of GABA. That  gabP  gene is located next to  gabT , which encodes a 
GABA transporter, and that  gabDTP  forms an operon (Maciag et al.  2011 ) indicates 
that the products of  gabDTP  genes constitute a pathway for utilization of GABA as 
an N source. However, a Δ gabDT  strain is able to grow on putrescine as an N source, 
and still retains GABA aminotransferase and succinic semialdehyde dehydrogenase 
activities. Furthermore, its generation time when putrescine is used as an N source is 
comparable to wild-type strains (Schneider et al.  2002 ). Thus, there must be another 
pathway by which GABA generated from putrescine can be catabolized. Indeed, this 
is the putrescine utilization pathway that is described in Sect.  4.2.3  following. 

 In  P. aeruginosa  PAO1, the fi rst enzyme of the aminotransferase pathway 
was reported as putrescine-pyruvate aminotransferase, which generates 
γ-aminobutyraldehyde and  L -alanine (Lu et al.  2002 ; Chou et al.  2013 ).  

4.2.2     Regulation of the Aminotransferase Pathway 

 The expression of  patA  gene is under the control of NtrC (nitrogen regulatory pro-
tein C) and σ 54  (Zimmer et al.  2000 ; Samsonova et al.  2003 ; Schneider et al.  2013 ) 
and is also subjected to catabolite repression (Shaibe et al.  1985b ). Because loss of 
both σ S  and σ 54  diminished PatA activity,  patA  is transcribed with RNA polymerase 
not only with σ 54  but also with σ S  (Schneider et al.  2013 ). The expression of 
 ydcSTUVW  ( ydcW  =  patD ) operon is regulated exceptionally by Nac (nitrogen 
assimilation control protein) and σ S  (Schneider et al.  2013 ). 

 General gene regulation by σ S , σ 54 , NtrC, and Nac can be explained as follows. 
In a two-component nitrogen regulatory system, the sensor histidine kinase, NtrB, 
senses nitrogen limitation in the medium and undergoes autophosphorylation. Then, 
NtrB transfers the phosphoryl group to the aspartate residue of its cognate response 
regulator (transcription regulator), NtrC. Phosphorylated NtrC is active, and it helps 
the closed complex of RNA polymerase with σ 54  (nitrogen limitation σ factor) at the 
promoter to form an open complex to promote transcription initiation of genes 
required under nitrogen-limiting conditions (Zimmer et al.  2000 ). The  nac  gene is 
under the control of NtrC and σ 54 , and is expressed upon nitrogen starvation. Nac 
activates RNA polymerase in cooperation with σ 70  (housekeeping σ factor) to tran-
scribe a number of operons whose products can supply the cell with ammonium or 
glutamate from alternative organic sources (Muse and Bender  1998 ). By contrast, 
σ S  is recognized as the master regulator of the general stress response, which is 
often accompanied by reduction or cessation of growth, and provides the cells 
with the ability to survive the actual stress as well as additional stresses not yet 
encountered (Hengge-Aronis  2002 ). 
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  gabDTP  consists of an operon whose  gabD  p2  promoter is regulated by σ S  
(Metzner et al.  2004 ; Maciag et al.  2011 ). Metzner showed that  csiD-ygaF-gabDTP  
also consists of an operon and whose  csiD  p  promoter depends on cAMP-CRP and 
σ S ; the operon is activated exclusively upon carbon starvation and onset of station-
ary phase (Metzner et al.  2004 ). In response to low nitrogen, the expression of 
 gabDTP  is upregulated by Nac and σ 70  from an alternative promoter,  gabD  p1  
(Schneider et al.  2002 ).  

4.2.3       The Putrescine Utilization Pathway (the Puu Pathway) 

 The other catabolic pathway of putrescine is the putrescine utilization pathway that 
we fi rst reported in 2005 (Fig.  4.1 ) (Kurihara et al.  2005 ). In this pathway, extracel-
lular putrescine is transported into the cell by transporter PuuP (its gene,  puuP  =  ycjJ ). 
One of the amino groups of putrescine is γ-glutamylated by γ-glutamylputrescine 
synthetase (PuuA) (its gene,  puuA  =  ycjK ) using ATP to generate γ-glutamylputrescine 
(Kurihara et al.  2008 ). γ-Glutamylputrescine is oxidized to γ-glutamyl-γ- 
aminobutyraldehyde by PuuB (its gene,  puuB  =  ordL ), which is further oxidized to 
γ-glutamyl-GABA by PuuC (its gene,  puuC  =  aldH ). Then, the γ-glutamyl moiety is 
cleaved by γ-glutamyl-GΑΒΑ hydrolase (PuuD) (its gene,  puuD  =  ycjL ) to release 
glutamate and GABA (Kurihara et al.  2006 ). The amino group of GABA is trans-
ferred to α-ketoglutarate by GABA aminotransferase (PuuE) (its gene,  puuE  =  goaG ) 
to generate succinic semialdehyde. Then, succinic semialdehyde is oxidized to suc-
cinate by succinic semialdehyde dehydrogenase (YneI = Sad) (its gene,  yneI  =  sad ) 
(Kurihara et al.  2010 ). 

 Sad activity was fi rst reported as the second succinic semialdehyde dehydroge-
nase, which is smaller than GabD and prefers NAD +  as a cofactor, whereas GabD 
prefers NADP +  (Donnelly and Cooper  1981 ). The Sad is induced by succinic semi-
aldehyde, whereas  gabD  is induced by GABA coordinately with  gabT  (Donnelly 
and Cooper  1981 ). More than 25 years after that report, the gene coding Sad was 
fi rst identifi ed as  yneI  (Fuhrer et al.  2007 ). 

 PuuC was originally identifi ed as γ-glutamyl-γ-aminobutylaldehyde dehydroge-
nase of the Puu pathway (Kurihara et al.  2005 ), but thereafter Schneider and Reitzer 
( 2012 ) showed that PuuC has broad substrate specifi city and utilizes not only 
γ-glutamyl-γ-aminobutyraldehyde, but also γ-aminobutyraldehyde and succinic 
semialdehyde, as substrates by comparing the activities of cell-free extracts of 
strains with various combinations of mutations. They also showed that PatD could 
be replaced by PuuC in vivo to support the growth of cells with putrescine as a sole 
N source. However, whether PuuC has suffi cient succinic semialdehyde dehydroge-
nase activity in vivo to support the growth of cells with putrescine as a sole C source 
instead of GabD was not shown. Because  puu  genes exist as a gene cluster, it is quite 
likely that the natural substrate of PuuC is γ-glutamyl-γ-aminobutyraldehyde. The 
Δ gabD  Δ yneI aldA  +   puuC  +  strain did not grow on a M9 putrescine-ammonium 
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chloride plate, which contains putrescine as a sole carbon source, although the 
Δ gabD yneI  +   aldA  +   puuC  +  strain grew on this plate at 20 °C (Kurihara et al.  2010 ). 
This observation clearly indicates that YneI, but not PuuC, supports the growth of 
the cells using putrescine as a sole carbon source in the absence of GabD. Although 
both  puu  genes and  yneI  are induced by putrescine (Kurihara et al.  2010 ), they are 
located separately on the genome at 29.3 min (Kurihara et al.  2005 ) and 34.7 min 
(Fuhrer et al.  2007 ), respectively. 

 It should be emphasized that an amino group is very reactive and one of the two 
amino groups of putrescine is fi rst protected with a γ-glutamyl moiety by the reac-
tion of PuuA at the expense of ATP before the second amino group is oxidized. 
Then, the γ-glutamyl moiety of γ-glutamyl-GABA is cleaved by PuuD to release 
GABA; the newly released amino group is further catabolized by GABA amino-
transferase, PuuE. In fact, γ-aminobutyraldehyde, an intermediate of the amino-
transferase pathway, is unstable, and its amino and aldehyde groups tend to form 
cyclic Δ 1 -pyrroline nonenzymatically (Shaibe et al.  1985a ). The γ-glutamylation 
and de-γ-glutamylation of the reactive amino group are exactly the same processes 
as the protection and deprotection of reactive groups performed during the chemi-
cal synthesis of some compounds. This is a rare example of the physiological role 
of γ-glutamylation, although there are some other examples (de Azevedo Wasch 
et al.  2002 ; Yao et al.  2011 ). PuuA catalyzes γ-glutamylation of putrescine to form 
the γ-glutamyl linkage of γ-glutamylputrescine, whereas PuuD catalyzes hydroly-
sis of the γ-glutamyl linkage of γ-glutamyl-GABA. If γ-glutamylputrescine, and 
not γ-glutamyl-GABA, were the preferred substrate of PuuD, there would be 
no rationale for PuuA to synthesize γ-glutamylputrescine at the expense of ATP. 
 K   m   values against γ-glutamylputrescine and γ-glutamyl-GABA were 18.5 and 
2.93 mM, respectively. Also,  k  cat / K  m  values against γ-glutamylputrescine and 
γ-glutamyl- GABA were 23.5 and 850, respectively (Kurihara et al.  2005 ). These 
results indicate that γ-glutamyl-GABA is a far better substrate for PuuD than is 
γ-glutamylputrescine.  

4.2.4     Regulation of the Puu Pathway 

 Genes coding for the Puu pathway make a gene cluster,  puuPADRCBE  (Fig.  4.2 ) 
(Kurihara et al.  2005 ).  puuA ,  B ,  C ,  D ,  E , and  P  code for the members of the Puu 
pathway, as described in Sect.  4.2.3 , and  puuR  codes for the repressor (PuuR) of 
 puuAP  and  puuDRCBE  operons. There are four promoters in this gene cluster 
(Fig.  4.2 ): three of them are reported to be σ S  dependent (Reitzer and Schneider 
 2001 ; Maciag et al.  2011 ) and the other is NtrC-σ 54  dependent (Reitzer and Schneider 
 2001 ; Zhao et al.  2010 ). Maciag et al .  ( 2011 ) suggested that σ S  regulates the expres-
sion of genes from arginine to succinate via putrescine through the Puu pathway.

   Both  puu  genes and  yneI  are induced by putrescine (Kurihara et al.  2010 ). 
Although  puu  genes are regulated by the repressor PuuR (Kurihara et al.  2005 ,  2008 , 
 2009 ,  2010 ; Nemoto et al.  2012 ),  yneI  is PuuR independent (Kurihara et al.  2010 ). 
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 Schneider and Reitzer ( 2012 ) showed that the in-frame Δ puuA  strain, which 
does not cause a polar effect on  puuP , could grow on putrescine as an N source if 
the enzymes of the aminotransferase pathway were present. By contrast, they 
revealed that Δ puuP  strain could not grow on putrescine as an N source even though 
the enzymes of aminotransferase pathway are present. This fi nding confl icts with 
our result that Δ puuA :: kan  strain, which could not utilize putrescine as a sole C 
source and a sole N source, complemented the growth on putrescine with a plasmid 
that expresses only PuuA (Kurihara et al.  2008 ). PuuP is the essential putrescine 
transporter required for the cells to grow on putrescine as an N source (Kurihara 
et al.  2009 ; see Chap.   14     by Kurihara and Suzuki in this book). Because the  puuP  
gene can also be transcribed under the control of NtrC and σ 54  from the promoter 
 puuP  p , which is separate from the promoter  puuA  p  under the control of σ S , its expres-
sion could be coordinated with that of the aminotransferase pathway. 

 We observed that the expression of  puu  genes was induced at high aeration by 
putrescine and reduced by either glucose, succinate, or NH 4 Cl (Kurihara et al.  2005 , 
 2006 ). Since then, the molecular mechanisms of regulations of  puu  genes have 
been elucidated. The expression of  puu  genes is repressed by PuuR, which has a 
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helix-turn- helix DNA-binding motif and is coded in the  puu  gene cluster; this 
 cluster is induced in the presence of putrescine (Nemoto et al.  2012 ). A probe 
 corresponding to the intergenic region between  puuA-puuD  was shifted in the pres-
ence of purifi ed His 6 -PuuR by a gel mobility shift assay, and the amount of the 
shifted bands was inversely proportional to the concentration of putrescine but not 
to that of spermidine. However, the probes corresponding to the intergenic regions 
between  puuA- puuP   and  puuR-puuC  were not shifted. Transcript sizes were 
checked, and it was confi rmed that  puuAP  and  puuDRCBE  transcripts exist. DNase 
I footprint analysis of the intergenic region between  puuA - puuD  showed there 
are four PuuR-binding sites (Fig.  4.2 ), and Nemoto et al .  ( 2012 ) proposed a consen-
sus binding sequence that consists of 15 nucleotides with an asymmetrical recogni-
tion sequence, AAAATATAATGAACA, which is in the PuuR-binding site from 20 
nucleotides (ATGGaCAATATATTGaCCAT) with an inverted repeated symmetry 
that was suggested by the curator of the Regulon Database (URL:   http://regulondb.
ccg.unam.mx/    ). 

  puu  genes are repressed by the addition of glucose, and the regulatory mecha-
nisms involved are now known. There is a cAMP-CRP recognition site between the 
transcription initiation site and the initiation codon of  puuD  (Fig.  4.2 ) (Shimada 
et al.  2011 ). Terui et al .  ( 2014 ) showed that the expression of  puuR  from the  puuD  p  
promoter is positively regulated by glucose. That is, in the presence of glucose the 
concentration of cAMP decreases and CRP no longer binds to the cAMP–CRP 
recognition site in front of the initiation codon of  puuD . This stage releases the inhi-
bition of transcription of  puuR , and PuuR as synthesized then represses  transcription 
from  puuA  p  and  puuD  p  as a result. 

 Partridge et al .  ( 2006 ) observed that  puu  genes are induced upon a shift from 
anaerobic to aerobic conditions in  E. coli . They predicted an FNR recognition site 
and an ArcA recognition site in the  puuA–puuD  intergenic region and suggested the 
de-repression of the  puu  genes in the presence of O 2 . They also showed that the 
supercoiling of plasmid was changed along with the shift from anaerobic to aerobic 
condition, but this phenomenon was delayed in the  puuA  mutant. This investigation 
leads to a model in which O 2  induces the Puu pathway, reduces the intracellular 
putrescine concentration, and causes the topological changes in DNA that infl uence 
the transcription of various genes. 

 Another possible regulatory mechanism of the Puu pathway is the metal- catalyzed 
oxidative modifi cation of PuuA followed by proteolytic degradation. This regulatory 
mechanism was proposed to be one of the regulatory mechanisms of glutamine syn-
thetase, a key enzyme of ammonium assimilation (Liaw et al.  1993 ). PuuA has high 
amino acid sequence similarity to glutamine synthetase. The enzymatic reactions 
catalyzed by glutamine synthetase and PuuA are also very similar in terms of the 
amide bond formation between the γ-carboxyl group of glutamate and ammonia, and 
the γ-carboxyl group of glutamate and the amino group of putrescine, respectively. 
Both enzymes exist as homododecamers and require Mg 2+  or Mn 2+  for activity 
(Stadtman and Ginsburg  1974 ; Kurihara et al.  2008 ). The important amino acid resi-
dues for two metal-binding sites, the glutamate and ATP-binding sites, are well con-
served. It was reported that the oxidative modifi cation of His-269 to Asn and Arg-344 

H. Suzuki and S. Kurihara

http://regulondb.ccg.unam.mx/
http://regulondb.ccg.unam.mx/


55

to Gln induces the loss of activity of glutamine synthetase followed by increased 
susceptibility to proteolytic degradation (Liaw et al.  1993 ). Because these residues 
are also conserved in PuuA in addition to the similarities already mentioned, it is 
plausible that PuuA is also subjected to metal-catalyzed oxidative modifi cation fol-
lowed by proteolytic degradation. In fact, PuuA protein is much more unstable than 
many other proteins. Because PuuA is the key enzyme of the Puu pathway and the 
catabolism of putrescine, it is quite rational that its prompt decay allows  E. coli  to 
adapt to the sudden decrease of intracellular putrescine concentration.   

4.3      Catabolic Pathways of Spermidine 

  E. coli  can increase intracellular spermidine concentration by synthesizing it from 
putrescine or by importing it from the environment by PotABCD (Igarashi and 
Kashiwagi  1999 ). Conversely, intracellular spermidine concentration is reduced by 
the activity of spermidine acetyltransferase. This enzyme acetylates spermidine to 
form acetylspermidine by using acetyl-CoA (Fukuchi et al.  1994 ). In eukaryotes 
acetylspermidine is excreted from the cell (Gerner and Meyskens  2004 ), but the fate 
of acetylspermidine in  E. coli  is not clear. Intracellular spermidine concentration in 
the wild-type strains does not vary dramatically between cells grown in the presence 
and absence of 0.5 mM spermidine. On the other hand, the spermidine 
acetyltransferase- defi cient ( speG  − ) strain markedly accumulates spermidine when it 
is grown in the presence of 0.5 mM spermidine, but not in the absence of spermidine 
(Fukuchi et al.  1995 ). The growth of the  speG  −  strain in M9 medium was normal in 
the presence and absence of 0.5 mM spermidine, but its viability at the late station-
ary phase was greatly decreased compare to the wild type. Fukuchi et al. ( 1995 ) 
suggested that a decrease of various protein syntheses that included ribosome mod-
ulation factor essential for cell viability at the stationary phase was caused by the 
accumulation of spermidine in the  speG  −  strain. 

 The other enzyme that may decrease the intracellular spermidine in  E. coli  is 
glutathionylspermidine synthetase/amidase (Gss = Gsp). Gss was fi rst studied exten-
sively by Bollinger et al., who found that the enzyme is bifunctional and consists of 
two domains that are responsible for catalysis of the reverse reactions (Bollinger 
et al.  1995 ; Kwon et al.  1997 ). The three-dimensional structure of Gss has been 
reported (Pai et al.  2006 ), and its role in redox regulation was studied (Chiang et al. 
 2010 ). However, there has been no report if it regulates the intracellular spermidine 
concentration. 

  P. aeruginosa  PAO1 has spermidine dehydrogenase (SpdH), which cleaves sper-
midine into 1   ,3-diaminopropane and γ-aminobutyraldehyde and spermine into 
 spermidine and 3-aminopropanaldehyde. γ-Aminobutyraldehyde is further oxidized 
to GABA by KauB, which corresponds to PatD, followed by catabolism to succi-
nate by GabT and GabD. 3-Aminopropanaldehyde is oxidized to β-alanine by 
KauB, and subsequently catabolized to acetyl-CoA by β-alanine-pyruvate amino-
transferase (BauA) and malonic semialdehyde dehydrogenase (BauB). However, 
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SpdH is not induced by exogenous polyamines, and the  spdH  knockout mutant 
grows normally on spermidine and spermine (Dasu et al.  2006 ). According to a 
database search using Blastp (Altschul et al.  1997 ),  E. coli  does not have a SpdH 
homologue. In  P. aeruginosa  PAO1, spermidine is catabolized by the  pau  pathway, 
which is discussed in the next section, and all seven  pauA  genes-defi cient mutants 
cannot grow on spermidine.  

4.4     Catabolic Pathways of Cadaverine 

 In  E. coli  a cadaverine-specifi c catabolic pathway has not yet been reported. Despite 
the lack of in vivo evidence, the activity of PatA (=YgjG) toward cadaverine is 
comparable to that toward putrescine (Samsonova et al.  2003 ), and the activity of 
PuuA toward cadaverine is about one third of that toward putrescine in vitro, imply-
ing that both the aminotransferase and the Puu pathways are involved in cadaverine 
catabolism. If this is true, then either PuuE or GabT might also use δ-aminovalerate, 
and either YneI or GabD could use glutamic semialdehyde as substrate. However, 
this requires further experimental testing. In  P. aeruginosa  PAO1, seven  pauA  genes, 
four  pauB  genes, one  pauC  gene, and two  pauD  genes, which correspond to  puuA, 
B, C,  and  D  gene of the Puu pathway, respectively, are responsible to various poly-
amines catabolism. Each PauA has different specifi city toward each polyamine, and 
specifi c combination of  pauA  knockouts is required to abolish the utilization of 
specifi c polyamines (Yao et al.  2011 ). It has also been demonstrated that PauR con-
trols  pau  promoters in response to putrescine and cadaverine (Chou et al.  2013 ). 

 In this strain, spermidine-inducible genes overlap almost completely with 
putrescine- inducible  pau  genes, with the exception of  pauA3B2  and  bauABCD  
operons (Yao et al.  2011 ). PauA3 and PauB2 are involved in the catabolism of 
diaminopropane, generated from the aminopropyl moiety of spermidine, and BauA 
and BauB are involved in β-alanine catabolism as described in Sect.  4.3  (Yao et al. 
 2011 ). A single knockout mutation of the  pauA2  gene blocks growth on spermidine 
completely, but the mutant can grow on putrescine, cadaverine, or diaminopropane 
(Yao et al.  2011 ). This indicates that PauA2 is a spermidine-specifi c γ-glutamyl 
ligase. However, it is still unclear whether the amino group of the aminopropyl 
moiety or that of the aminobutyl moiety is γ-glutamylated and how the internal C–N 
bond is cleaved.  

4.5     Future Perspectives 

 Can  E. coli  degrade cadaverine and spermidine as does  P. aeruginosa ? How does  
P. aeruginosa  degrade spermidine through the Pau pathway? How does the intracel-
lular putrescine concentration respond to various stresses? These are questions that 
should be answered in the near future. 
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 Global warming has become a major issue, and there is a move away from fossil 
resources toward recyclable resources, not only as energy sources but also as chemi-
cal feedstocks. Polyamines are used as intermediate materials in the production of 
synthetic fi bers and fabrics. At present, they are mainly produced from petroleum 
by industrial chemical processes, but putrescine, spermidine, and cadaverine can all 
be synthesized biologically from arginine, ornithine, and lysine. These amino acids 
are produced industrially by fermentation. To obtain a higher polyamine yield and 
industrialize the process, we await a more detailed understanding of polyamine 
metabolism in bacteria.     
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