
Chapter 6

Microscopically Viewed Relationship

Between Structure and Mechanical Property

of Crystalline Polymers: An Important

Guiding Principle for the Development

of Super Fibers
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Abstract The crystalline phase of polymer substance may be assumed as an idel

state for the study of ultimate mechanical property of this polymer. The historical

development in the study of structure-property relationship of polymer crystals has

been reviewed by focusing on the crystallite modulus along the chain axis, the

anisotropy in the lateral plane perpendicular to the chain axis, and the strength. This

information is quite important as a guiding principle of the development of fibers

with ultrahigh modulus and ultrahigh strength. In other words, the history of the

development of these super fibers has been a challenge for approaching the goal of

ultimate mechanical property. The experimental and theoretical methods to esti-

mate the ultimate mechanical property of polymer crystals have been reviewed in

Sects. 6.2, 6.3, 6.4, and 6.5. In the experimental approach, the X-ray diffraction

peak shift and Raman band shift caused by the application of tensile stress are

measured to detect the mechanical deformation of crystalline region, but the data

analysis must be performed by taking the heterogeneous distribution into account.

The quantum mechanical prediction of the ultimate strength of polymer chain has

been reviewed in Sect. 6.6. The factors governing the strength of bulk polymer

sample have been discussed concretely.
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6.1 Introduction

Historically viewed, the recognition of the possibility that the synthetic polymers

possess the elastic modulus beyond the steel was made much earlier than the actual

development of fibers with high Young’s modulus and high strength. Let us see the

case of polyethylene (PE). In 1949, Shimanouchi and Mizushima discovered the

so-called accordion vibrational bands for a series of n-alkanes in the low-frequency
region of Raman spectra [1]. The peak positions were found to shift inversely in

proportion to the chain length. They interpreted these bands in terms of longitudinal

acoustic vibration of a continuous body. This mode was found to correspond to the

propagation of acoustic phonons in the polyethylene crystal along the chain axis

[2]. In almost the same years, Lyons (1959) [3] and Treloar [4] calculated the

Young’s modulus of polyethylene zigzag chain on the basis of the theory about the

balance of forces between the internal coordinates such as bond lengths and bond

angles. Although the calculation was relatively rough, the theoretical evaluation of

the Young’s modulus of PE chain was made for the first time. In 1966, Odajima [5]

calculated the elastic constants of orthorhombic polyethylene crystal on the basis of

lattice dynamical theory developed by Born [6]. The vibrational frequency-phase

angle dispersion curve of polyethylene crystal was calculated by Tasumi and

Shimanouchi [7] and Krimm [8]. From the slope of the dispersion curve of the

acoustic branch along the chain axis, the Young’s modulus of polyethylene was

estimated. In 1971, the neutron scattering measurement gave the dispersion curves

experimentally and evaluated the Young’s modulus as about 329 GPa [9]. On the

other hand, in 1966, Sakurada et al. performed the X-ray diffraction measurement

for the oriented polyethylene crystal under the constant tensile force, and the

Young’s modulus was estimated as 235 GPa, where the homogeneous stress

distribution was assumed, i.e., the stress working on the crystal region was equal

to the tensile stress in the bulk sample [10]. In the 1970s–1980s, the theoretical and

experimental techniques to estimate the ultimate mechanical property of the various

types of polymer crystals were developed remarkably [11]. In this way, it should be

noticed that the prediction of the ultimate mechanical property of polymers was

made in much earlier years before the development of actual polyethylene fiber

with ultrahigh modulus in the 1980s.

In the present article, the development of the molecular theoretical study on the

relationship between structure and mechanical property of polymer materials in this

half century is reviewed briefly, which has been an important guiding principle for

the development of fibers of ultrahigh modulus and ultrahigh strength.
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6.2 Experimental Evaluation of Ultimate Elastic Constants

of Polymers

6.2.1 X-Ray Diffraction Method

Important mechanical property in the discussion of high-modulus fibers is the

Young’s modulus along the chain axis, which is named here the crystallite modulus

Ec. Of course, the most ideal method for this purpose is to use a giant single crystal

of polymer. The strain along the chain axis is estimated directly by applying a

tensile force along the chain axis [12, 13]. Unfortunately, the usage of such a giant

single crystal is limited at present to the polymers obtained by the photo-induced

solid-state polymerization reaction, e.g., polydiacetylenes [12, 14] and poly

(muconic ester) [13]. In the case of partially crystalline polymers, the X-ray

diffraction method is one of the most excellent techniques [10]. The signal from

the small crystallites is detected by measuring the X-ray diffractions. This point can

be evaluated well in such a meaning that the mechanical property of small crystal-

lites can be extracted even in the bulk sample consisting of the crystalline and

amorphous regions. As pointed out in the introduction, this X-ray diffraction

technique was accomplished by Sakurada et al. in the 1960s [10]. The small strain

of the crystal is estimated by tracing the small shift of the X-ray diffraction peak

corresponding to the lattice planes along the chain axis by applying a tensile force

to the oriented sample. The shift of X-ray diffraction peak can be converted into the

strain εc. Unfortunately, the stress σc working on the crystalline region cannot be

known explicitly, and so it must be assumed to be equal to the macroscopic stress

calculated from the actually applied tensile force and the cross-sectional area of the

sample. This was named the assumption of homogeneous stress distribution. The Ec

can be estimated as the initial slope in the σc – εc curve, which is now termed as Ec
X-ray. For example, Ec

X-ray is 235 GPa for polyethylene (PE) crystal, 40 GPa for

isotactic polypropylene (it-PP) [15, 16], 53 GPa for polyoxymethylene (POM) [17],

100 GPa for poly(ethylene terephthalate) (PET) [18, 19], and so on.

As pointed above, these X-ray values were obtained under the assumption of

homogeneous stress distribution. This assumption causes a serious problem in the

evaluation of true Young’s modulus of the crystalline region (Ec
true) in the semi-

crystalline polymer samples. In fact, in many cases, the Ec
true and Ec

X-ray gave

serious gap between them. For example, a giant single crystal of poly(muconic

ester) of several centimeter lengths gives the Ec of 47 GPa, which was measured

accurately by reading out the change in sample length under the application of

tensile forces [13]. This value might be assumed as Ec
true in a good approximation.

Luckily, this polymer can be melted and stretched to give the oriented semicrys-

talline samples. The crystallite modulus was estimated by the X-ray method under

the assumption of homogeneous stress distribution. However, the Ec
X-ray was only

17–35 GPa depending on the sample preparation conditions, far lower than the Ec
true. In this way, one of the most significant points about the X-ray diffraction

method is that the Ec
X-ray is not always common to all the samples, but it depends on
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the preparation condition of the sample. This situation was found to occur also in

the Raman scattering experiment, as will be mentioned in a later section. For the

solution of this problem, Ward et al. [20] and Tashiro et al. [13, 21–23] utilized a

complex mechanical model to show the heterogeneous stress distribution, which

was proposed by Takayanagi et al. in 1963 [24]. The Young’s modulus of the bulk

sample (Ebulk) and Ec
X-ray (and Raman shift factor) were expressed in an explicit

form on the basis of this mechanical model. The Ec
true was determined so that the

observed data of Ebulk and Ec
X-ray (and Raman shift factor) were reproduced

consistently. The above-mentioned relation of Ec
true¼ 47 GPa and Ec

X-ray¼ 17–35-

GPa observed for poly(muconic ester) samples could be interpreted reasonably

using this complex mechanical model [13]. This method was applied to the

observed Ec
X-ray values of the various polymers, giving Ec

true of 75 GPa for POM

(Ec
X-ray was 53–59 GPa for normally drawn samples and 72 GPa for ultra-drawn

sample) [21], 260� 10 GPa for PE [21], and so on.

6.2.2 Vibrational Spectroscopic Method

In this way the correction of heterogeneous stress distribution gives in general a

higher Young’s modulus compared with Ec
X-ray. Such higher Ec values are detected

in the vibrational spectroscopic experiments. As mentioned in the introduction,

Shimanouchi and Mizushima discovered the accordion bands in the low-frequency

region of Raman spectra of n-alkanes, which were interpreted reasonably using the

longitudinal acoustic dispersion curve of polyethylene crystal along the chain axis

[1, 2]. The evaluated Young’s modulus was quite high, ca. 358 GPa. Strobl

et al. [25] and Kobayashi et al. [26] corrected an effect of end-to-end interactions

between the n-alkane molecules in the neighboring layers on the LAM (longitudinal

acoustic mode) frequency and derived the Ec
LAM as 280–290 GPa, which is nearer to

the Ec
true. The dispersion curve measured using coherent neutron scattering from the

fully deuterated polyethylene crystal gave 329 GPa [9]. The theoretical calculation

based on the lattice dynamical method gives 316GPa [27]. For reference, the Young’s
modulus of ultra-drawn polyethylene fiber at low temperature was 288 GPa [28],

which is closer to these spectroscopic values and far beyond the Ec
X-ray.

The Raman bands corresponding to the vibrational modes of the skeletal chains

were shifted by applying the tensile force [29, 30]. In a small strain region, the shift

is expressed as a linear function of stress (ν¼�α·σ). Similarly to the case of Ec
X-ray,

the shift factor α is also affected sensitively by the morphology of the sample

[21]. This fact is combined with the Ec
X-ray data to derive the heterogeneous stress

distribution as already mentioned in the previous sections [13, 21–23].

98 K. Tashiro



6.3 Theoretical Evaluation of Ultimate Elastic Constants

of Polymers

As mentioned in the introductory section, the theoretical estimation of Ec was

performed already in the 1960s. The principle of the calculation was based on the

static balance of forces between the internal coordinates such as bond lengths, bond

angles, and torsional angles [3, 4, 31–34]. This method was developed by deriving

the equation of Ec on the basis of lattice dynamical theory [5, 11, 31–36]. In this

calculation the atomic displacements were expressed in terms of the accurate

atomic coordinates and the reliable force constants, from which the three-

dimensional elastic constants matrix can be derived. Odajima et al. calculated the

elastic constant matrix of orthorhombic polyethylene crystal by the lattice dynam-

ical theory for the first time [5]. Miyazawa et al. rewrote the equation by using

matrices corresponding to the force constants and the atomic coordinates

[35]. Tashiro et al. introduced the space group symmetry to the lattice dynamical

equation and reduced the dimension of the giant matrices remarkably so as to

accelerate the calculation rate of elastic constants, and they made it possible to

apply the equation to any type of polymer crystal of complicated aggregation

structure of atoms [36]. Another method is based on the molecular mechanics

(MM), in which the potential energy of polymer chain (or polymer crystal) is

numerically calculated by changing the repeating period along the chain axis step

by step by considering the interactions between the atoms, from which the potential

energy is expressed as a function of strain V ¼ 1=2ð ÞEcε2ð Þ and so the Young’s
modulus Ec is obtained as the second derivatives of potential energy V with respect

to the strain ε [37]. The ab initio molecular orbital (MO) method is more sophis-

ticated and calculates the potential energy based on Hamiltonian and a basis

function set. The elastic constant matrix is obtained by the calculation of second

derivatives of the thus calculated potential energy with respect to the Cartesian

coordinates [38, 39]. These MM andMOmethods give in general the overestimated

values than the lattice dynamical method. In the latter case, the force constants

between the internal displacement coordinates such as bond stretching, bond angle

deformation, etc. were refined so that the calculated vibrational frequencies are in

good agreement with the actually observed infrared and/or Raman spectra. The MM

and MO give the relatively higher values to the vibrational frequencies. Sometimes

the “adjustable parameter” was introduced in the MO calculation so that the thus-

calculated frequencies were matched to the observed data.

The temperature dependence of the elastic constants can be estimated theoret-

ically on the basis of molecular dynamics (MD) method [40–42]. The time-

dependent fluctuation of potential energy of a crystal is calculated at the various

temperatures, from which the elastic constant is obtained as a function of

temperature.
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6.4 Relationship Between Chain Conformation

and Young’s Modulus

As easily imagined, the Young’s modulus Ec is sensitively dependent on the

geometry or conformation of polymer chain and the interactions between the

internal coordinates. More concretely, the Ec is expressed in an approximation as

follows [11]:

1=Ec /
X

i

∂d=∂Rið Þ2=Fii /
X

i

PEDð Þi

where (∂d/∂Ri) is the first derivative of the pitch of one monomeric unit with

respect to the internal coordinate Ri, Fii is the diagonal term of force constant

corresponding to Ri, and (PED)i is the potential energy distribution to Ri. When a

tensile force is applied along the chain axis, the potential energy is increased as a

result of chain deformation, which is distributed to the various changes of the

internal coordinates. This equation indicates that the Ec is related to the easiness

of chain deformation (∂d/∂Ri) and the rigidity of the change in Ri (Fii) and that the

internal coordinates having larger PED contribute to the determination of Ec. For

example, Fig. 6.1 shows the deformation of molecular chains with the various PED

values calculated for PE, PET, POM, PEOB (poly(ethylene oxybenzoate) α form),

and PBO (poly-p-phenylene benzobisoxazole) [11, 42]. PE shows a high Ec because

of its slim form and the PED to the skeletal C-C bond stretching and C-C-C angle

deformation in almost equal percentage. PET chain is deformed by changing

mainly the bond angles of ester carbon atoms (O-C(O)-benzene) so that the virtual

bond passing through the benzene ring stands up toward the chain axis. Although

PET chain possesses rigid benzene rings and ester groups, the Ec is not determined

by the rigidity of these groups but by the easiness of deformation of zigzag angle.

POM chain takes a helical form and the deformation occurs mainly through the

change of COCO torsional angles as well as the change in bond angles (COC and

OCO). POM shows relatively high Ec value because of the large contribution of

bond angle deformation in addition to the torsional angle changes. PEOB α form

takes a large zigzag conformation consisting of long arms and ethylene segmental

parts. The chain deformation occurs mainly through the torsional motion around the

ether bonds, giving quite low Ec of about 2 GPa. In the case of PBO, the whole of

chain is so rigid, and the deformation occurs mainly through the stretching of

linkages connecting the benzene and oxazole rings as well as the deformations of

these rigid rings. The Ec value of 460 GPa is in the highest level among the various

polymers.
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6.5 Crystal Structure and Anisotropic Mechanical

Property

The Young’s modulus along the chain axis is one of the mechanical properties. The

anisotropy in Young’s modulus is also important in the discussion of the relation-

ship between crystal structure and mechanical property [11]. The H. . .H
intermolecular interactions in the crystal lattice govern mainly the anisotropy of

the mechanical property. Therefore the Young’s modulus in the lateral directions is

one to two order lower compared with the modulus along the chain axis. Figure 6.2

shows the anisotropic curves of Young’s modulus calculated for the various types

of polymer crystals [11, 43]. In the case of orthorhombic PE crystal, the anisotropy

is not very high, but the modulus is almost isotropic in the lateral directions because

of the weak van der Waals forces between the hydrogen atoms. In the case of nylon

6, the sheet planes built up by hydrogen-bonded zigzag chains are stacked by

weaker van der Waals interactions, resulting in the highly anisotropic mechanical

property. These intermolecular interactions do not affect the Young’s modulus

along the chain axis very much. Poly-p-phenylene terephthalamide (PPTA) forms

also the sheet structure similar to that of nylon 6 [44]. Therefore this polymer shows

appreciably highly anisotropic mechanical property in the lateral direction as seen

in Fig. 6.2. In the case of poly-m-phenylene isophthalamide (PMPI), the

intermolecular hydrogen bonds are formed between the neighboring chains in a

similar way as those of poly-p-phenylene terephthalamide, but when the direction

of hydrogen bonds is viewed along the chain axis, it changes alternately perpen-

dicularly along the a and b axes. As a result, the mechanical property is

isotropically strong in the lateral directions [45]. POM chain takes a compact

Fig. 6.1 Chain deformation and potential energy distribution calculated for the various polymers
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helical form, and these chains are closely packed in a hexagonal-type cell, resulting

in the appreciably strong but isotropic Young’s modulus in the lateral plane

perpendicular to the chain axis [43]. Another typical example of helical chain

conformation is observed for poly(L-lactic acid) [46]. The helices of large radius

are packed in the crystal lattice in relatively loose manner, giving appreciably small

and isotropic curve of the Young’s modulus [43].

6.6 Strength of Polymer Chains

So far we have discussed the Young’s modulus of polymer crystals or the mechan-

ical property in the infinitesimally small deformation region. When the crystal is

deformed in higher strain region, the crystal will be broken. The stress at this point

is called the (fracture) strength. The fracture occurs by cutting the covalent bonds of

the skeletal chain. If the potential energy of bond stretching mode is harmonic

V ¼ 1=2ð ÞEcε2ð Þ, the chain recovers to the original form necessarily even when the

chain is stretched to a quite high strain. The breakdown of the covalent bond can be

expressed using the anharmonic potential function, typical form of which is a

so-called Morse potential function V ¼ Vo 1� e�kΔr
� �2

� �
. As the deformation

Δr (¼ r–ro) becomes larger and reaches a certain value, then the potential energy

reaches the flat value, where the recovery force becomes zero. This stress corre-

sponds to the breakage stress. Since the breakage of covalent bond occurs by

changing the electronic structure, more sophisticated method is based on the

quantum mechanics. The repeating period along the chain axis is changed step by

step, and the potential energy is calculated using a Hamiltonian operator. The

recovery force is calculated as the first derivative of the potential energy. The

recovery force reaches maximum and reduces sharply to zero at a certain strain, as

shown in Fig. 6.3. The strength of PE chain was calculated to be about 45 GPa by

the several researchers [47–49]. The sp3 orbital of carbon atom changes to the sp2

form when the radicals are generated at the ruptured C-C bond (see Fig. 6.3).

However, the thus-estimated stress is too high compared with the actually observed

strength of ultra-drawn PE sample, at most 6 GPa. The similar situation can be seen

also for such rigid polymers as PBO [38].

These calculations did not consider the kinetic factor. As shown in Fig. 6.4, the

scission of covalent bond is a chemical reaction. The system must cross the energy

barrier E* in the transition process from the bonded C-C bond to the fractured C

atoms. When the stress σ is applied to the system, the barrier is reduced, and the

probability to cross the barrier, expressed as exp½�ðU � βσÞ=kT�, becomes higher,

where k is the Boltzmann constant, T is an absolute temperature, and β is a

proportional coefficient. Using this idea, the fracture strength was calculated by a

Monte Carlo method, giving a few GPa, comparative to the realistic value [50–52].
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In the actual case, the fracture of fibers does not only occur by the scission of

C-C covalent bonds in the fully extended chains but also it occurs at the various

structural defects through the separation of chains in the vicinity of chain ends, the

slippage between the microfibrils, and so on. Because of these additional factors,

the strength of a bulk sample becomes lower.

In this way the fracture of fibers must be interpreted by taking these various

factors into consideration. Sometimes the phase transition might occur before the

fracture, and the strength predicted must be changed correspondingly. Another

factor important for the discussion of strength is the heterogeneous stress distribu-

tion. The local parts with structural defects might be damaged most easily if the

stress concentration occurs there. One example is seen in carbon fiber (CF) [23, 53,

54]. The inner structure of a CF monofilament is not homogeneous but consists of

the complicated aggregation of crystalline and amorphous regions. Roughly speak-

ing, the CF monofilament takes a skin-core structure as revealed by the wide-angle

X-ray scattering measurement using a synchrotron X-ray beam of micrometer size

[53, 54]. The Ec
X-ray and Raman shift factor (α) were found to be different

depending on the CF monofilaments prepared at the different temperatures

[53, 54]. The analysis was performed in a similar way using a complex mechanical

model, from which the heterogeneous stress distribution was estimated in a quan-

titative manner. As shown in Fig. 6.5, the stress at the skin part is much higher than

the core part. The skin part or the surface of CF monofilament is annealed at a

higher temperature than the core part. As a result the Young’s modulus of the

surface part is higher and owes the stress at a higher level. The structure defect is

said to generate relatively easily on the surface of CF monofilament, causing easier

fracture of the CF starting from the surface part. In other words, the homogeneous

heat treatment is needed for the production of the CF monofilament with homoge-

neous stress distribution. One idea is to use a microwave technique by which the

PAN precursor is heated homogeneously to be a CF monofilament with higher

modulus and higher strength than before [55].

Tie chain is also an important concept in the discussion of strength [56]. The tie

chains pass through the neighboring lamellae and protect the stacked lamellae from

the fracture. So far the tie chain had been assumed as only a hypothetical object. But

one example is seen to show the actual existence of tie chains. This is a study of

structural change in the isothermal crystallization of POM from the melt [57]. As

well known, the infrared spectra of POM change sensitively depending on the

morphology or the aggregation state of helical chains [58, 59]. The ECC (extended

chain crystal) and FCC (folded chain crystal) can be distinguished by measuring the

IR band characteristic of these morphologies. The time-dependent measurement of

FTIR spectra during the isothermal crystallization from the melt revealed that the

FCC bands appeared at first in parallel to the formation of the stacked lamellae as

known from the small-angle X-ray scattering measurement. After that, the ECC

bands started to appear, just when the daughter lamellae were generated between

the mother lamellae, as shown in Fig. 6.6. The good correspondence between the

appearance of ECC bands and daughter lamellae make it possible to imagine that

the fully extended tie chain segments pass through the neighboring lamellae. When
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the POM sample is stretched, these tie chain segments may be tensioned and protect

the fracture of stacked lamellae up to the critical stress causing the covalent bond

breakage.

In this way the strength of bulk polymer material is governed by the various

factors including the ultimate strength of fully extended chain, the kinetic effect of

transient energy barrier, the structural defects, the slippage of microfibrils, the

heterogeneous stress distribution, and the existence of taut tie chains. The theoret-

ical estimation is still difficult at present for understanding the microscopically

viewed correlation between the mechanical breakage and the chain aggregation

state in the bulk polymer material by taking all of these factors into account.

Fig. 6.5 The heterogeneous stress distributions calculated for the carbon fiber monofilament

subjected to a tensile stress 1 GPa. The stress in the skin part is 1.5 times higher than the average

stress

FCCFCC

ECC-like

Fig. 6.6 Formation of tie chain segments in the melt-isothermal crystallization of

polyoxymethylene
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