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Abstract
18F-2-fluoro-2-deoxy-d-glucose (18F-FDG) is a tracer that can objectively evalu-
ate neuronal activity in the brain and has been widely used in the research and 
diagnosis of Alzheimer’s disease (AD). The clinical diagnostic criteria for AD 
were revised in 2011. Along with magnetic resonance imaging, FDG-positron 
emission tomography (PET) has been shown to be an important research criteria 
as an objective biomarker for neuronal injury.

Typical FDG-PET findings in AD include reduced glucose metabolism in 
the parietotemporal association cortex, precuneus, and posterior cingulate. 
FDG- PET plays an important role in visually and quantitatively perceiving 
these types of findings; consequently, the certainty of the clinical diagnosis of 
AD can be improved, and differentiating between AD and non-Alzheimer’s 
dementia is also possible. Furthermore, FDG-PET may be used as a biomarker 
for early diagnosis of AD, at the mild cognitive impairment (MCI) or preclini-
cal stages, in order to start medical or non-pharmacologic treatment and, sub-
sequently, as a biomarker to determine treatment effects. This chapter focuses 
on previously collected evidence about the efficacy and practicality of FDG-
PET in the diagnosis of AD.
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9.1  Introduction

18F-FDG is a chemical compound similar to glucose that can pass through the blood-
brain barrier by means of carrier-mediated transport, specifically, glucose trans-
porter type 1 (GLUT1), to enter the brain and undergo phosphorylation by 
hexokinase, an enzyme in the glycolytic pathway. Unlike glucose, however, 18F-
FDG is not degraded by isomerase and reverse phosphorylation is rare; hence, 
metabolism is “trapped” at this point and 18F-FDG builds up in cells [1].

Localized brain glucose metabolism reacts to functional activity and density of 
synapse in the area through neuron-glia metabolic coupling [2] and exhibits a strong 
correlation with neuronal activity [3, 4]. This is because biologically, the brain’s 
only source of energy is glucose, whereas ATP, which facilitates the glycolytic path-
way and the tricarboxylic acid cycle, is mainly used for neuronal activity in the 
brain. This explains the superiority of the PET scan, which uses 18F-FDG in objec-
tively evaluating neuronal activity in the brain.

When diagnosing AD, computed tomography (CT) and magnetic resonance 
imaging (MRI) have been necessary for the exclusion of treatable dementia such as 
normal pressure hydrocephalus and chronic subdural hematoma and for evaluation 
of cerebrovascular diseases. In the diagnosis of AD, single photon emission CT 
(SPECT) and PET scans, which evaluate cerebral blood flow and metabolism, 
respectively, have earned their status as ancillary methods to increase diagnostic 
certainty. However, due to an increase in the need for early diagnosis and advances 
in amyloid imaging, the role of imaging diagnosis in AD is changing dramatically. 
Currently, the Alzheimer’s Disease Neuroimaging Initiative (ADNI; http://www.
adni-info.org) is advancing globally; it is a large-scale, comprehensive clinical 
research initiative which aims to standardize early diagnosis of AD internationally. 
This study involves repeated biomarker testing, such as brain volume measurement 
with MRI, brain glucose metabolism imaging, amyloid imaging with PET, and mea-
surement of cerebrospinal fluid Aβ and tau, to make early diagnosis of AD and 
verify the efficacy of treatment and pathophysiological status; the goal is to estab-
lish a standard evaluation system for AD, and many of these research results have 
been published [5]. Among such activities, clinical diagnostic criteria have been 
revised from the previous National Institute of Neurological and Communicative 
Disorders and Stroke/Alzheimer’s Disease and Related Disorders Association 
(NINCDS-ADRDA) [6] in 2011 through the working groups of the National 
Institute of Aging and Alzheimer’s Association [7]. In the new criteria, MCI due to 
AD and preclinical stage of AD were suggested [8, 9]. In all of the disease phases, 
FDG-PET, along with MRI, has been included in important research criteria as a 
biomarker that objectively shows neuronal injury.
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9.2  18F-FDG-PET Findings in the Healthy Brain and in AD

FDG uptake in the cerebral cortex, cerebellar cortex, and central gray matter of 
healthy people is high because there is a clear correlation between gray matter 
density and glucose metabolism. In the cerebral cortex, accumulation is espe-
cially high in the occipital lobe, posterior cingulate, and precuneus. Accumulation 
of FDG in the striatum and thalamus is equivalent to that in the cerebral 
cortex.

Typical FDG-PET findings in AD include hypometabolism in the parietotem-
poral association cortex, posterior cingulate, and precuneus (Fig. 9.1). In many 
cases, hypometabolism in the frontal cortex becomes clear in the progression 
period [10–12]. On the other hand, accumulation in the primary sensorimotor 
cortex, primary visual cortex, basal nuclei, and thalamus tends to remain the 
same even when the disease progresses. Almost identical findings can be seen on 
cerebral blood flow SPECT, but these findings are generally clearer with PET 
than SPECT because the spatial resolution and the quantitativity of PET are 
superior to SPECT. FDG-PET is superior in terms of diagnostic accuracy for 
dementia, including AD, especially in its early stages [13, 14]. Atrophy of the 
hippocampus and parahippocampus is found from the early stages of AD, but the 
reduction in glucose metabolism corresponding to atrophy is not always detected 
[15]. There are also known discrepancies depending on the age of onset. In pre-
senile onset AD, the typical AD glucose metabolism pattern is often centered in 
the parietotemporal association cortex, whereas in senile onset AD, glucose 
metabolism tends to be reduced in the limbic system and in the frontal lobe, with 
cases of relatively weak reduction in the parietotemporal association area, poste-
rior cingulate, and precuneus [16, 17]. Furthermore, there are individual differ-
ences in the progression of reduced glucose metabolism in each case of AD, and 
there is no fixed degree of spread or reduction and no fixed speed of 
progression.
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Fig. 9.1 Representative FDG-PET images of AD patient. (a) Tomography, (b) 3D-SSP, and (c) 
3D-SSP Z-score images show hypometabolism in the parietotemporal association cortex, posterior 
cingulate, and precuneus
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Reduction in glucose metabolism in the posterior cingulate and precuneus is con-
sidered to be an early diagnostic clue for AD [18], because this area lies inside the 
brain, visual assessment of subtle reductions in metabolism on PET cross- section 
images is not easy. This may be overcome by the use of statistical image analysis 
methods, such as the widely used 3D-stereotactic surface projection (3D- SSP) [19] 
and statistical parametric mapping (SPM) [20]. These are tools which can easily 
evaluate all the cerebral regions by comparing individual case images with normal 
database. 3D-SSP applies a z-score mapping to areas with reduced or increased glu-
cose metabolism. Not only does this simplify the assessment of medial side of the 
brain, it also offers high reproducibility and detection of slight changes.

Many reports have examined the diagnostic ability of FDG-PET on cases that had 
been diagnosed with AD according to clinical diagnostic criteria such as NINCDS-
ADRDA and DSM-IV [19, 21–42]. Reported sensitivity and specificity vary widely, 
but according to a meta-analysis, the sensitivity and specificity of FDG-PET are 90% 
and 89%, respectively, demonstrating FDG-PET’s superiority over biomarkers such 
as cerebrospinal fluid Aβ42 and tau, cerebral blood flow SPECT, and MRI [43]. 
Furthermore, analysis of the literature published after the year 2000 revealed the 
extremely high diagnostic ability offered by FDG-PET, with 96% sensitivity and 90% 
specificity. This improvement in diagnostic ability is thought to be due to the use of 
improved PET devices or improved interpretational skills of observers [44]. However, 
the best that FDG-PET can do is differentiating between patients with AD and healthy 
subjects: it must be noted that it does not incorporate histopathological evidence, and 
clinical diagnosis is the current gold standard.

9.3  Differentiation between Alzheimer’s  
and Non- Alzheimer’s Dementia

About half of the patients with dementia have AD, but there are also various cases of 
non-AD dementia, such as dementia with Lewy bodies (DLB), frontotemporal 
dementia (FTD), and vascular dementia (VaD), which must be differentiated from 
AD. Differentiating between non-AD dementia and AD is important for deciding on 
the treatment approach, estimating future symptoms, and determining prognosis. 
There are also a number of reports about differentiation between AD and non-AD 
dementia with FDG-PET [26, 27, 29, 38, 45–52], but according to a meta-analysis, 
the sensitivity and specificity of FDG-PET are 93% and 70%, respectively; the speci-
ficity is somewhat low [43]. Even if only reports with histopathological confirmation 
are selected, specificity still tends to be low [48, 50–52]. Among non-AD dementia 
cases, there are many instances of false positive FDG-PET scans which show hypo-
metabolic patterns similar to those seen in AD.

The frequency of DLB is high among non-AD dementia cases. Differential diag-
nosis of DLB and AD is important for accurate prognostication and appropriate 
treatment; however, it is not easy because there is clinically overlapping symptoms 
and hypometabolism observed in DLB is similar to that observed in AD (Fig. 9.2). 
In addition to a decline in glucose metabolism that is similar to that found in AD, 
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hypometabolism in the occipital lobe including visual cortex is characteristic of 
DLB. Low uptake in occipital lobe on SPECT and/or PET is one of the supportive 
features suggested as a clinical diagnostic criterion for DLB [53], although specific-
ity is not high [45–47]. Also, regarding differentiation between AD and FTD, which 
are covered by the US Medicare system insurance, FDG-PET has been shown to 
have 99% sensitivity and 65% specificity in a study of a large number of cases [38]. 
In reports confirmed by histopathological diagnosis, sensitivity was high at 97% 
and specificity was 71% [48]. These results suggest that it is not uncommon for 
DLB and FTD to be diagnosed as AD.

9.4  FDG-PET for Mild Cognitive Impairment

MCI was proposed and revised by Petersen et al. as a summary of cognitive function 
status expressing normal and dementia statuses [54]. Subtypes include amnestic 
type and non-amnestic type; single-domain types, in which disability forms in the 
single higher brain function area; and multi-domain type, in which the disability 
manifests in many areas. The cause of MCI is heterogeneous and involves a number 
of conditions; besides AD, degenerating dementia, such as DLB and FTD; cerebro-
vascular disease, including VaD; and psychiatric conditions, such as depression and 
external injury-type changes; and normal aging [54, 55]. Among these, amnestic-
type MCI patients convert to AD at a rate of about 12–15% per year [54]. If disease-
modifying treatment is developed in the future, the MCI stage would be considered 
to be the appropriate period to begin treatment, so there is an especially high neces-
sity for early diagnosis at this stage. Early diagnosis at the MCI stage using FDG-
PET allows prediction of conversion from MCI to AD. In past reports with 1–2-year 
follow-up periods, the accuracy of predicting conversion from MCI to AD was high, 
at 80% or greater [56–58], and in a meta-analysis conducted by Yuan et al., sensitiv-
ity and specificity both tended to be high, at 88.8% and 84.9%, respectively [59]. 
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Fig. 9.2 Representative FDG-PET images of DLB patient. (a) Tomography, (b) 3D-SSP, and (c) 
3D-SSP Z-score images show hypometabolism in the occipital lobe, parietotemporal association 
cortex, posterior cingulate, and precuneus
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However, recent reports using ADNI data suggested low diagnostic ability, with a 
sensitivity of 57% and a specificity of 67% [60]. This lack of consistency in diag-
nostic ability may be due to differences in backgrounds of the registered MCI 
groups, discrepancies in analysis or evaluation methods, or differences in follow-up 
periods.

In Japan, a prospective multicenter study targeting amnestic MCI, the Study 
on Diagnosis of early Alzheimer’s disease-Japan, SEAD-J, was conducted; this 
report contains the results of 3-yr. observations of progress [61]. According to 
this study, the diagnostic ability of FDG-PET using visual evaluation has a sen-
sitivity of 98%, specificity of 41%, and an accurate diagnosis rate of 71%. This 
trend coincides with the results of a similar multicenter study using cerebral 
blood flow SPECT, the Japan Cooperative SPECT Study on Assessment of Mild 
Impairment of Cognitive Function, J-COSMIC [62], but the overall diagnostic 
ability of FGD-PET is higher. In the SEAD-J extension, which included a 5-year 
follow-up of SEAD-J cases, there were cases of MCI that converted to AD in the 
fourth or fifth year (Fig. 9.3); hence, it may be possible that the low specificity is 
caused by being a slow converter. Compared with slow converters, rapid convert-
ers have clear tendencies for AD-type changes on baseline images (Fig. 9.3). In 
fact, on assessments by mathematical indicators using AD t-sum, diagnostic abil-
ity was highest at 2 years when sensitivity was 70%, specificity was 90%, and 
accuracy was 83%, whereas at 3 years, sensitivity was 60%, specificity was 91%, 
and accuracy was 77% [61]. These results indicate that if there is no 
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Fig. 9.3 3D-SSP images of MCI patients converted to AD. Top: Baseline image of rapid converter 
during a visit in the second year of follow-up. (a) 3D-SSP image, (b) 3D-SSP Z-score image. 
Glucose metabolism decreased in the parietotemporal association cortex, posterior cingulate, and 
precuneus mainly on the left side. Bottom: Baseline image of slow converter during a visit in the 
fifth year of follow-up. (c) 3D-SSP image, (d) 3D-SSP Z-score image. Glucose metabolism 
decreased in the parietotemporal association cortex, posterior cingulate, and precuneus. Rapid 
converter exhibited clearer AD changes at baseline than slow converter
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hypometabolism that suggests AD, the probability of conversion from MCI to 
AD is low and that selecting cases with clear-cut AD changes using semi-quan-
titative indicators could make it possible to select rapid converters up to the 
second year.

In addition to FDG-PET evaluation, concomitant use of the ApoE genotype has 
been reported to improve accuracy [56, 57]. In any case, in MCI research, histo-
pathological confirmation of the diagnosis is difficult, and results are based on clini-
cal diagnosis using follow-up examinations.

9.5  Preclinical Stage FDG-PET

There are a limited number of reports on the use of FDG-PET in the asymptomatic 
preclinical stage. In the middle age and older groups at high risk for AD due to fam-
ily history and positive ApoE ε4, hypometabolism of the parietotemporal associa-
tion cortex has been reported [63, 64]; this abnormality is also seen in their 20s and 
30s [65]. In asymptomatic middle aged and older cases with positive ApoE ε4, 
parietotemporal association cortex and posterior cingulate glucose metabolism 
declines at an annual rate of 2% [66]. In elderly cases with normal cognitive func-
tion progressing to MCI within 3 years of observation, abnormalities were found in 
the hippocampus, suggesting that abnormal glucose metabolism may start in this 
area [67]. It is difficult to predict progression to MCI or AD on an individual level 
because changes in the association cortex and inner part of the temporal lobe during 
the preclinical stage are normally extremely subtle; but in cases of preventive inter-
vention for asymptomatic cases, FDG-PET may determine efficacy of medical and 
non-pharmacologic treatment.

In recent years, a substantial number of cognitively normal, elderly individuals 
without proven deposition of Aβ on amyloid imaging were reported to have at least 
one significant marker of neurodegeneration including FDG metabolism [68–70]. 
Cases like these are placed in a separate category from preclinical AD and are des-
ignated as “suspected non-AD pathology, SNAP.” It may be affected by the pres-
ence of conditions such as cerebrovascular disease, tauopathy, or synucleinopathy, 
but further verification is required.
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