
Discrete Optimization: Network Flows
and Matchings

Naoyuki Kamiyama

Abstract In this paper, we give a brief introduction to network flow problems
and matching problems that are representative problems in discrete optimization.
Network flow problems are used for modeling, e.g., car traffic and evacuation.
Matching problems are used when we allocate jobs to workers and assign students to
laboratories, and so on. Especially, we focus on mathematical models that are used
in these problems.
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1 Introduction

Optimization is a branch of mathematics that studies problems of finding the
optimal object from a set of objects. Especially, discrete optimization is the study of
optimization problems with certain discrete structures. In this paper, we give a brief
introduction to network flow problems andmatching problems that are representative
problems in discrete optimization. Network flow problems are used for modeling,
e.g., car traffic and evacuation. Matching problems are used when we allocate jobs
to workers and assign students to laboratories, and so on. Especially, we focus on
mathematical models that are used in these problems. See references given in each
section for theory and algorithms.

In the rest of this paper is organized as follows. In Sect. 2, we explain graphs that
play an important role in discrete optimization. In Sect. 3, we consider network flow
problems. In Sect. 4, we consider matching problems.
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Throughout this paper, we denote by R, R+ and Z+ the sets of real numbers,
nonnegative real numbers and nonnegative integers, respectively.

2 Graphs

In this section, we explain basic concepts related to graphs. Intuitively speaking,
graphs model “links” connecting “objects” (e.g., people, countries, papers and
words). In graph theory, “vertices” and “arcs” (or “edges”) correspond to objects
and links, respectively. See, e.g., [2, 17] for coverage of concepts related to graph
theory. Here we define two kinds of graphs. The first one is a directed graph and the
second one is an undirected graph.

A directed graph D = (V, A) is a pair of a vertex set V and an arc set A, where
every arc in A is an ordered pair of vertices in V . See Fig. 1a for an example of a
directed graph. Notice that in a directed graph, we take the direction of each arc into
consideration. For each arc a = (v, w) in A, we call v and w the tail and head of a,
respectively. For each vertex v in V , we denote by Δ+(v) and Δ−(v) the sets of arcs
of A whose tails and heads are v, respectively. That is, Δ+(v) represents the set of
arcs “leaving” v, and Δ−(v) represents the set of arcs “entering” v. For example, in
Fig. 1a, Δ+(v) = {a3} and Δ−(v) = {a1, a2}.

An undirected graph G = (V, E) is a pair of a vertex set V and an edge set E ,
where every edge e in E is a subset of V with |e| = 2. See Fig. 1b for an example of
an undirected graph. Notice that in an undirected graph, we do not take the direction
of each edge into consideration. For each subset F of E and each vertex v in V ,
we denote by F(v) the set of edges e in F with v ∈ e. For example, in Fig. 1b,
E(v) = {e1, e2, e3}. An undirected graph G = (V, E) is called a bipartite graph, if
V is partitioned into two subsets P and Q, and every edge in E connects a vertex in
P and a vertex in Q. See Fig. 6 for an example of a bipartite graph.

3 Network Flows

In this section, we consider network flow problems that are used for modeling, e.g.,
car traffic and evacuation. See [1] for applications of network flow problems. In the
first half of this section, we consider an ordinary network flow model, called a static
network flow. In the second half, we consider a dynamic network flow in which
we take an important factor “time” into consideration. See, e.g., [1, 5, 17, 18] for
coverage of concepts related to networks flows.

3.1 Static Network Flows

In this section, we explain an ordinary network flow model, called a static network
flow model. Intuitively speaking, we do not take into account “time,” i.e., objects
“ceaselessly” flow.
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Fig. 1 a A directed graph. b An undirected graph
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Fig. 2 a A static network. b A static flow

More formally, in a static network flow model, we are given a directed graph
D = (V, A) with specified vertices s, t ∈ V and a capacity function c : A → R+.
We call the pair of D and c a static network. A function ξ : A → R+ is called a static
flow, if it satisfies the following two condition.

Capacity constraint. For every arc a in A,

ξ(a) ≤ c(a).

Flow conservation. For every vertex v in V with v �= s, t ,

∑

a∈Δ+(v)

ξ(a) =
∑

a∈Δ−(v)

ξ(a).

The value of a static flow ξ is defined as

∑

a∈Δ−(t)

ξ(a) −
∑

a∈Δ+(t)

ξ(a).

See Fig. 2 for an example of a static flow model and a static flow. In Fig. 2a, the
numbers attached to arcs represent their capacities. In Fig. 2a, the numbers attached
to arcs represent a static flow.
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Here we explain two representative problems in a static flow model. The first one
is the maximum-flow problem. The goal of this problem is to find a static flow with
maximum value. That is, this problemmodels the situation in which we want to send
objects as much as much possible from s to t . For example, in the static network
illustrated in Fig. 2a, the static flow in Fig. 2b is a solution of the maximum-flow
problem. It is known that this problem can be efficiently solved. See, e.g., [9] for an
efficient algorithm for the maximum-flow problem.

The second problem is the minimum-cost flow problem. In this problem, we are
given a demand d ∈ R+ and a cost function k : A → R+. The cost of a static flow
ξ : A → R+ is defined as ∑

a∈A

k(a) · ξ(a).

The goal of the minimum-cost flow problem is to find a static flow whose cost is
minimum among all static flows whose value is equal to d. That is, this problem
models the situation in which a penalty incurs when we send objects on arcs. This
problem can be efficiently solved. See, e.g., [15] for an efficient algorithm for the
minimum-cost flow problem.

3.2 Dynamic Network Flows

In this section, we consider a dynamic network flow in which we take an important
factor “time” into consideration. That is, in this model, the time required to transit
an arc plays an important role.

More formally, in a dynamic network flow model, we are given a directed graph
D = (V, A) with a terminal subsets S of V partitioned into S+ and S−, a capacity
function c : A → R+, a transit time function τ : A → Z+ and a timehorizonT ∈ Z+.
The value τ(a) represent the time required to transit from the tail of a to the head of
a. We call the triple D, c and τ a dynamic network. A function f : A × Z+ → R+
is called a dynamic flow, if it satisfies the following two conditions.

Capacity constraint. For each arc a in A and each nonnegative integer θ ,

f (a, θ) ≤ c(a).

Flow conservation. For each vertex v in V \S and each nonnegative integer θ ,

ex f (v, θ)

{
≥ 0 if θ = 0, 1, . . . , T − 1

= 0 if θ ≥ T ,
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Fig. 3 A dynamic network.
In this figure, S+ := {s}
and S− := {t}. Furthermore,
we set c(a) := 1 for every
arc a in A, and τ(a1) =
τ(a5) = 0, τ(a3) = 1,
τ(a2) = τ(a4) = 3 and T = 5
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where define

ex f (v, θ) :=
∑

a∈Δ−(v)

θ−τ(a)∑

t=0

f (a, t) −
∑

a∈Δ+(v)

θ∑

t=0

f (a, t).

Intuitively speaking, f (a, θ) represents the value of flow entering the tail of a at the
time θ . The value ex f (v, θ) represents the excess of supplies on the vertex v until
the time θ . Notice that in the flow conservation constraint, we allow supplies to stay
at vertices. See Fig. 3 for an example of a dynamic network.

Here we explain two representative problems in a dynamic flow model. The first
one is the maximum dynamic flow problem. Intuitively speaking, this problem is
a dynamic version of the maximum-flow problem in a static flow model. In this
problem, S+ and S− consists of single vertices s+ and s−, respectively.Thegoal of the
maximum dynamic flow problem is to find a dynamic flow maximizing ex f (s−, T ),
i.e., we want to send objects from s+ to s− as much as possible within the time limit
T . This problem can be efficiently solved. See, e.g., [6] for an efficient algorithm for
the maximum dynamic flow problem.

The second problem is the dynamic transshipment problem. There exists no cor-
responding problem in a static flow model. In this problem, we are given a demand
function d : S → R such that

d(s)

{
≤ 0 s ∈ S+

≥ 0 s ∈ S−.

The dynamic transshipment problemasks for discerningwhere there exists a dynamic
flow f such that

∀s ∈ S : ex f (s, T ) = d(s),

and find it, if one exists. That is, we want to send objects from S+ to S− so that all
supplies and demands are satisfied. This problem can be efficiently solved. See, e.g.,
[11] for an efficient algorithm for the dynamic transshipment problem.
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Fig. 4 The time-expanded network of the dynamic network in Fig. 3

From now on, we show that problems in a dynamic flow model can be reduced
to those in a static flow model. For this, we define the time-expanded graph T of a
dynamic network D with c and τ , which is a static network. See Fig. 4 for an example
of a time-expanded network. The vertex set of T consists of a new vertex vθ for
each vertex v in V and each θ = 0, 1, 2, . . . , T . The arc set of T consists of the
following two parts. The first part consists of an arc aθ = (vθ , wθ+τ(a)) for each arc
a = (v, w) in A and each θ = 0, 1, . . . , T − τ(a). Furthermore, the capacity of aθ

is equal to c(a). The second part consists of an arc (v(θ), v(θ + 1)) for each vertex
v in V and each θ = 0, 1, . . . , T − 1. Furthermore, the capacity of (v(θ), v(θ + 1))
is infinite.

Let ξ be a static flow in the time-expanded network T . By defining f (a, θ) :=
ξ(aθ ) for each arc a in A and each θ = 0, 1, 2 . . . , T − τ(a), we can construct a
dynamic flow f in D with c and τ . Conversely, we can construct a static flow from
a dynamic flow in the similar way. This observation implies that by defining s = s0
and t = tT , we can reduce the maximum dynamic flow problem to the maximum-
flow problem. It should be noted that the size of the time-expanded network is
exponentially larger than that of the input dynamic network.

3.3 Other Problems

In this section, we give other problems in a dynamic flow model.
Similarly to a static flow model, it is natural to consider the problem of finding

a dynamic flow with minimum cost. More precisely, we are given a cost function
k : A → R+ and a demand d ∈ R+. Furthermore, we assume that S+ and S− consists
of single vertices s+ and s−, respectively. For each dynamic flow f , we define its
cost as

∑

a∈A

T∑

θ=0

k(a) · f (a, θ).
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The goal of this problem is to find a dynamic flow f whose cost is minimum among
all dynamic flows f ′ such that ex f ′(s−, T ) = d. Unlike the minimum-cost flow
problem in a static flow model, this problem is very hard. See [12] for details.

Furthermore, it is practically important to consider the case where there exist
many kinds of objects. For example, there exist several kinds of people in evacuation
situations. We can model this problem by using “multi-commodity” flow. There are
many papers considering multicommodity flow problems in a static flow model.
Thus, it is natural to consider a dynamic version of a multicommodity flow problem
in a dynamic flow model. See [10] for details.

In the above problems, we implicitly assume that we can control movement of
objects. However, if objects are people, then it is natural to consider that objects
selfishly move. That is, it is natural to consider problems from the game theoretical
viewpoint. There are many papers considering network flow problems in a static
flow model from the game theoretical viewpoint. In a dynamic flow model, e,g, the
paper [13] considers a dynamic flow problem from the game theoretical viewpoint.

4 Matchings

In this section, we consider matching problems that are used when we allocate jobs
to workers and assign students to laboratories, and so on. See [16] for applications of
matching problems. In the first half of this section, we consider an ordinary matching
problem, called the maximum-size matching problem. In the second half of this
section,we consider the stablematchingproblem inwhich each agent has a preference
list edges, i.e., a matching problem in a strategic situation. See, e.g., [14, 16, 17] for
coverage of concepts related to matching problems.

4.1 Maximum-Size Matchings

In this section, we consider the maximum-size matching problem. Intuitively speak-
ing, in this problem, we try to find “pairs” as many as possible.

More formally, in themaximum-sizematching problem,we are give an undirected
graph G = (V, E). A subset M of E is called a matching, if

∀e, f ∈ M s.t. e �= f : e ∩ f = ∅.

The maximum-size matching problem asks for finding a matching with maximum
cardinality. See Fig. 5 for an example of a maximum-size matching. The matching
in Fig. 5b is a maximum-size matching in the undirected graph illustrated in Fig. 5a.
This problem can be efficiently solved. See, e.g., [3] for a efficient algorithm for the
maximum-size matching problem.
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(a) (b)

Fig. 5 a An undirected graph. b A maximum-size matching

In the maximum-size matching, the goal is to find a matching with maximum
cardinality. If a “profit” is given for each edge, then it is natural tomaximize the profit
of a matching. This problem is called the maximum-weight matching problem. More
formally, in the maximum-weight matching problem, we are given an undirected
graph G = (V, E) and a weight function σ : E → R+. The weight of a matching
M is defined as ∑

e∈M

σ(e).

The goal of the maximum-weight matching problem is to find a matching with
maximum weight. This problem can be efficiently solved. See, e.g., [17] for details.

4.2 Stable Matchings

In this section, we explain the stable matching problem. Intuitively speaking, in this
model, there exist two groups of agents and each agent has a preference ranking over
members of the other group. The goal is to find a matching between these two groups
with some specified properties.

More formally, the stable matching problem is defined as follows. We are given a
bipartite graph G = (V, E). We assume that V is partitioned into P and Q. For each
vertex v in V , we are given a strict linear order >v that represents the preference of
v. If e >v f for some edges e, f in E(v), then v prefers e to f . See Fig. 6a for an
example of the stable matching problem. In this example, we assume that

{u, y} >u {u, x}
{v, x} >v {v, y} >v {v, z}

{v, x} >x {u, x}
{v, y} >y {w, y} >y {u, y}.
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Fig. 6 a A bipartite graph. b An unstable matching. c A stable matching

Let M be a matching (see Sect. 4.1 for the definition of a matching). An edge e
in E\M is said to be free on its end-vertex v ∈ e, if

• M(v) is empty, or
• e >v f , where M(v) = { f }.
We say that an edge e in E\M blocks M , if e is free on both vertices in e. A matching
M is said to be stable, if there exists no edge in E\M blocking M . That is, if a
given matching is not stable, then there is incentive for some pair to break a current
matching.

It is not clear that there exists a stable matching in every instance of the stable
matching problem. Gale and Shapley [7] proved that there always exists a stable
matching and we can efficiently find it. For example, the matching in Fig. 6b is not
stable since {v, x} is a blocking pair. On the other hand, the matching in Fig. 6c is
stable.

4.3 Other Problems

Here we explain other problems related to the stable matching problem.
In the stable matching problem, we try to find one-to-one matching. However,

when we consider the problem of allocating jobs to workers or assigning residents
to hospitals, it is natural to consider that one agent can be matched to more than
one partners. That is, we consider a many-to-one or many-to-many matching. This
problem is called that hospital/residents problem. More formally, in this problem,
we are given the same input as the stable matching problem. Furthermore, we are
given a capacity function c : Q → Z+. A subset F of E is called an assignment, if
|F(p)| ≤ 1 for every vertex p in P and |F(q)| ≤ c(q) for every vertex q in Q. Let
F be an assignment. An edge e = {p, q} in E\F is said to be free on q ∈ Q, if

• |M(q)| < c(q), or
• there exists an edge f in M(q) with e >q f .

We say that an edge e in E\F blocks F , if e is free on both vertices in e. An assignment
F is said to be stable, if there exists no edge in E\F blocking F . It is known that
there always exists a stable matching and we can efficiently find it. See [7] for details.
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Next we consider a problem related to preference lists. In the stable matching
problem, we are given a “strict” linear order as a preference list of each agent. That
is, some agent v strictly prefer some edge in E(v) to other edge. However, in many
practical situations, it is natural to think that agents has preference lists with “ties.”
That is, in this case, it is possible that some agent v is “indifferent” between some
edge in E(v) and other edge. It is known that in this case, there always exists a stable
matching, but a new issue arises. This is “Pareto efficiency” of a matching. This
concept means that there exists no other matching improving some agent without
hurting everyone else. See [4] for this topic.

Finally, we consider the popular matching problem introduced by Gärdenfors
[8]. Recall that the concept of stability of a matching is “locally” defined. Thus, it is
natural to consider a “global” fairness. The concept of popularmatching is one of such
concepts of global fairness. In the popular matching problem, we decide the order
over matchings by “voting.” More precisely, when we are given two matchings, we
conclude that a matching for which much people vote is preferable. It is not clear that
there always exists a popular matching, but Gärdenfors [8] proved that there always
exists a popular matching. In fact, a stable matching is also a popular matching. Thus,
the existence of a popular matching follows from that of a stable matching.
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