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Abstract Markov chains are important tools used for stochastic modeling in various
areas of mathematical sciences. The first section of this article presents a survey
of the basic notions of discrete-time Markov chains on finite state spaces together
with several illustrative examples. Markov decision processes (MDPs), which are
also known as stochastic dynamic programming or discrete-time stochastic control,
are useful for decision making under uncertainty. The second section will provide
a simple formulation of MDPs with finite state spaces and actions, and give two
important algorithms for solving MDPs, value iteration and policy iteration, with an
example on iPod shuffle.
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1 Markov Chains

Throughout this article, we assume that S is a finite set of states and we denote the
set {0, 1, 2, . . . } by T.

A discrete-time stochastic process on S is a sequence of S-valued random variables
{Xt }t∈T defined on a probability space (Ω,F ,P). A Markov chain on S is a stochas-
tic process having the following Markov property: for 0 ≤ t0 < t1 < · · · < tn < t
and x0, x1, . . . , xn, x ∈ S,

P(Xt = x |Xt0 = x0, Xt1 = x1, . . . , Xtn = xn) = P(Xt = x |Xtn = xn).
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Fig. 1 State transition diagram and corresponding transition matrix

In particular, a Markov chain X = {Xt }t∈T is said to be time homogeneous if
P(Xt+1 = y|Xt = x), x, y ∈ S does not depend on t . When a Markov chain X
is time homogeneous, the |S|× |S| matrix P = (p(x, y))x,y∈S given by the one-step
transition probability p(x, y) := P(Xt+1 = y|Xt = x) is called a transition matrix.
A time homogeneous Markov chain is completely determined by a transition matrix.

Lemma 1 Let X = {Xt }t∈T be a time homogeneous Markov chain. Then, for every
s, t ∈ T and x, y ∈ S, P(Xt+s = y|Xs = x) = Pt (x, y).

Throughout this section, we treat only time homogeneous Markov chains.

1.1 Examples of Markov Chains

Example 1 Let S = {1, 2, . . . , n}. An n by n matrix P = (pi j )
n
i, j=1 is said to be

a stochastic matrix if pi j ≥ 0 for all i, j = 1, 2, . . . , n and
∑n

j=1 pi j = 1 for all
i = 1, 2, . . . , n. Every stochastic matrix P defines a Markov chain. If n is small, it
is well described by using a diagram (Fig. 1).

Example 2 (Simple random walk (SRW) on a finite graph) Let G = (V, E) be a
finite connected graph and set S = V with |V | ≥ 2. An SRW on a finite graph G is
a Markov chain on the vertex set S with the transition probability being deg(x)−1 at
each vertex x ∈ S, where deg(x) is the degree of a vertex x in G. For example, in
Fig. 2, deg(1) = deg(2) = deg(5) = 2, and deg(3) = deg(4) = 3.

Example 3 (Ehrenfest’s urn) In two urns, say U1 and U2, there are n balls in total.
A ball is taken out uniformly at random and put into the other urn. Looking at the
number of balls in U1, we can regard it as a Markov chain on S = {0, 1, 2, . . . , n}
with transition probability

p(k, k − 1) = k

n
, p(k, k + 1) = n − k

n
(k = 0, 1, 2, . . . , n).
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Fig. 2 Finite graph and transition matrix of SRW on it

Example 4 (SRW on a hypercube) Let S = {0, 1}n . We can identify S with the
vertices of a square when n = 2 and those of a cube when n = 3. Since the size of
the transition matrix is 2n , it is not practical to write it down. In this case, it is more
convenient to give a transition rule algorithmically. The transition rule from a point
x = (x1, . . . , xn) ∈ S is defined as follows:

1. Choose a coordinate i from {1, 2, . . . , n} uniformly at random.
2. Update xi to be 1 if xi = 0 and 0 if xi = 1. That is, xi �→ 1 − xi .

This rule defines the SRW X = {Xt }t∈T on S. For example, when n = 5, transition
proceeds like

(1, 0, 1, 1, 0)
3→ (1, 0, 0, 1, 0)

5→ (1, 0, 0, 1, 1)
2→ (1, 1, 0, 1, 1)

3→ (1, 1, 1, 1, 1)
1→ · · ·

The number above each arrow indicates the coordinate chosen in step 1. If we use
up-spin and down-spin instead of 1 and 0, we see that

(↑, ↓, ↑, ↑, ↓)
3→ (↑, ↓, ↓, ↑, ↓)

5→ (↑, ↓, ↓, ↑, ↑)
2→ (↑, ↑, ↓, ↑, ↑)

3→ (↑, ↑, ↑, ↑, ↑)
1→ · · ·

It seems like a transition for the stochastic Ising model (a model for magnetism). One
can easily see that Nt = ∑n

i=1(Xt )i , the number of 1’s in Xt , is the same Markov
chain as was given in Example 3.

Example 5 (Markov chain on the set of q-colorings) Let G = (V, E) be a finite
connected graph. For a fixed integer q > maxx∈V deg(x), we consider a map c :
V → {1, 2, . . . , q}. It can be regarded as a coloring of V by q-colors. We call a map
c a q-coloring and denote the set of all q-colorings by S. If c satisfies c(v) 	= c(w)

whenever vw ∈ E , i.e., v and w are adjacent in G, we call it a proper q-coloring
and denote the totality of proper q-colorings by Sproper . Even when it is difficult to
identify the structure of S for a general graph G, we can define a natural Markov
chain {ct }t∈T on S algorithmically:

1. A vertex in V is chosen uniformly at random.
2. If v ∈ V is chosen at step 1, we set Av(ct ) = {1, 2, . . . , q} \ {ct (w) : vw ∈ E},

which is the set of colors admissible for the vertex v. A color is chosen from
Av(ct ) uniformly at random and ct+1(v) is updated to that color, leaving all the
other vertices unchanged (Fig. 3).
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Fig. 3 Left diagram shows a proper 3-coloring, and right diagram shows an improper one

1.2 Irreducibility and Periodicity

It is important to know whether or not the Markov chain under consideration can
traverse its state space.

Definition 1 We say that a Markov chain X = {Xt }t∈T on S is irreducible if for any
x, y ∈ S there exists t = tx,y ∈ N such that P(Xt = y|X0 = x) > 0.

Definition 2 Let Per(x) := {t ∈ N : P(Xt = x |X0 = x) > 0}. We call the greatest
common divisor of Per(x) the period of a state x ∈ S. It is known that the period is
constant on S when X is irreducible. In this case, the period can be considered as
that of Markov chain X . If the period is 1, X is said to be aperiodic.

Example 6 (Random bishop/knight moves) The possible moves for a bishop and a
knight from a particular square on a chessboard are shown in Fig. 4. The state space S
comprises the 64 squares. The square to move to is chosen uniformly at random from
the possible moves. In the example shown, the bishop chooses one of the squares
with probability 1/13 and moves to it, and the knight does the same with probability
1/8. These transition rules define Markov chains on S. We call these chains “random
bishop move” and “random knight move,” respectively.

• (Irreducibility). The random bishop move is not irreducible. Indeed, by the tran-
sition rule, the bishop can only move on the squares of the same color as that of
the initial place. Then, it is impossible for the bishop to jump to any square of the
other color. By induction on the size of the chessboard, it can be shown that the
random knight move is irreducible.

• (Periodicity). The period of the random knight move is two. Indeed, the random
knight can move only to a square of the opposite color so that an even number of
moves is required to return to the initial square. On the other hand, the random
bishop move is aperiodic since it is clear that {2, 3} ⊂ Per(x) for every x ∈ S.
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Fig. 4 Bishop (B) and knight (K) can move to a square with a white dot

1.3 Stationarity and Reversibility

It is important to study the behavior of a Markov chain X = {Xt }t∈T as t → ∞.
By the Markov property, the distribution of Xt converges to a stationary distribution
(under mild conditions) as t → ∞ regardless of its initial distribution.

Definition 3 We say that π is a stationary distribution of a Markov chain X on S if
it is a probability distribution and satisfies

∑

x∈S

π(x)p(x, y) = π(y), ∀y ∈ S.

We say that a Markov chain X or its transition matrix P is reversible with respect to
π if the detailed balance condition

π(x)p(x, y) = π(y)p(y, x), ∀x, y ∈ S

holds. We call π a reversible distribution or a reversible probability measure.

It is easy to see the following.

Proposition 1 If π is a reversible distribution, then it is also a stationary distribu-
tion.

Remark 1 Suppose that P is irreducible. There exists a reversible distribution if and
only if for any closed path (x1, x2, . . . , xn, x1), it holds that

p(x1, x2)p(x2, x3) · · · p(xn, x1) = p(x1, xn)p(xn, xn−1) · · · p(x2, x1). (1)

For fixed a ∈ S, we define π̃(x) = p(a,x1)p(x1,x2)···p(xn ,x)
p(x1,a)p(x2,x1)···p(x,xn)

by taking a path
(a, x1, . . . , xn, x). It does not depend on the choice of a path joining a and x under
the condition (1), and it is a constant multiple of the reversible distribution.

Example 7 It is easy to show that the Markov chain defined in Example 3 is reversible
with respect to π(k) = (n

k

)
2−n . Indeed, the detailed balance condition π̃(k) n−k

n =
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π̃(k + 1) k+1
n , k = 0, 1, . . . , n − 1 with π̃(0) = 1 yields π̃(k) = (n

k

)
. Therefore, we

obtain the reversible distribution π(k) = π̃(k)/
∑n

j=0 π̃( j).

Example 8 Let Cn be the cycle graph with n vertices. The SRW on Cn is irreducible
and reversible with respect to the uniform distribution. If n is odd, the SRW is
aperiodic; if n is even, the SRW has period 2. A Markov chain on Cn moving to the
right with probability p( 	= 1/2) and to the left with probability 1 − p( 	= 1/2) has
the uniform distribution as the stationary distribution; however, it is not reversible
since the condition (1) in Remark 1 fails.

The following two propositions are useful for identifying reversible distributions:

Proposition 2 The SRW on a finite graph G = (V, E) in Example 2 has the
reversible distribution π(x) = deg(x)

2|E | , where 2|E | = ∑
x∈V deg(x) by the hand-

shaking lemma.

Proposition 3 Suppose that the transition probability of an irreducible Markov
chain on S is symmetric in the sense that p(x, y) = p(y, x) for every x, y ∈ S.
Then, the uniform distribution π(x) = 1

|S| , ∀x ∈ S, is the reversible distribution.

The next theorem is one of the most important facts in Markov chain theory.

Theorem 1 Let X = {Xt }t∈T be an irreducible Markov chain on a finite state space
S.

(1) There exists a unique stationary distribution π .
(2) If X is aperiodic, then the distribution P(Xt = ·|X0 = x) = Pt (x, ·) of Xt

starting at x converges to the stationary distribution π as t → ∞ for any
x ∈ S. In other words, Pt converges to the matrix Π whose row vectors are all
Π(x, ·) = π (x ∈ S).

(3) For each x ∈ S, π(x) = 1
Ex [τ+

x ] , where τ+
x = inf{t ≥ 1 : Xt = x}.

Example 9 The Markov chain given in Example 2 has the stationary distribution
π = ( 1

6 , 1
6 , 1

4 , 1
4 , 1

6 ) from Proposition 2. Since P is irreducible and aperiodic, (2) of
Theorem 1 implies

Pt =

⎛

⎜
⎜
⎜
⎜
⎝

0 1/2 1/2 0 0
1/2 0 0 1/2 0
1/3 0 0 1/3 1/3
0 1/3 1/3 0 1/3
0 0 1/2 1/2 0

⎞

⎟
⎟
⎟
⎟
⎠

t

→

⎛

⎜
⎜
⎜
⎜
⎝

1/6 1/6 1/4 1/4 1/6
1/6 1/6 1/4 1/4 1/6
1/6 1/6 1/4 1/4 1/6
1/6 1/6 1/4 1/4 1/6
1/6 1/6 1/4 1/4 1/6

⎞

⎟
⎟
⎟
⎟
⎠

= Π (t → ∞)

By (3) of Theorem 1, we have Ex [τ+
x ] = 6 for x = 1, 2, 5 and Ex [τ+

x ] = 4 for
x = 3, 4.

Example 10 For a random knight move starting from one of the corners on the
chessboard, say c, it is easy to show that Ec[τ+

c ] = 168 by Proposition 2 and (3) of
Theorem 1. Indeed, it is easy to check that deg(c) = 2 and that
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2|E | =
∑

x∈S

deg(x) = 2 × 4 + 3 × 8 + 4 × 20 + 6 × 16 + 8 × 16 = 336.

Remark 2 We note that an irreducible Markov chain on S is aperiodic if there exists
a state x ∈ S such that p(x, x) > 0. To apply (2) of Theorem 1, we define the lazy
version of a Markov chain with P = (p(x, y)) as the Markov chain with transition
matrix Q = (q(x, y)) with

q(x, y) =
{

1
2 p(x, y) if y 	= x,
1
2 + 1

2 p(x, x) if y = x .

It is clear that Q = 1
2 (I + P). If a fair coin is flipped and it comes up heads, then

the Markov chain moves according to the original probability law P; if it comes up
tails, then it stays at the present position. The stationary distribution of Q is the same
as that of P . Even if P is periodic, Q becomes aperiodic.

Example 11 Let G = (V, E) be a finite connected graph and suppose that q >

maxx∈S deg(x). In Example 5, a Markov chain was defined on the set of all q-
colorings. By the transition rule, a vertex chosen in step 1 is colored differently from
the vertices in its neighborhood. Through repeated transitions, at least after all the
vertices are chosen in step 1, the state becomes a q-proper coloring even if it was
originally a non-q-proper coloring. Moreover, once the state becomes q-proper, it will
remain q-proper. This means that Sproper is closed with respect to this Markov chain.
Although the Markov chain on S is not irreducible, that on Sproper is irreducible. Such
a subset of a state space as Sproper is sometimes called an irreducible component.
By Proposition 3, the stationary distribution is the uniform distribution on Sproper .

1.4 Coupon Collector’s Problem

Coupon collector’s problem is a classic problem in probability theory and has been
extended in several ways. Here we consider the most basic one.

Problem 1 Suppose that there are n different kinds of coupons. One coupon is
obtained with equal probability 1

n in each trial. How many trials does it take to
collect a complete set of coupons?

The number of different coupons is considered to be a Markov chain X = {Xt }t∈T
on S = {0, 1, 2, . . . , n} with X0 = 0. Since the probability of getting a new kind of
coupon is n−k

n if one has k different kinds already, the transition probability is given
by

p(k, k) = k

n
, p(k, k + 1) = n − k

n
(k ∈ S).
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Fig. 5 Histogram of τ100 (simulation) and the limiting distribution e−e−c

By definition, this Markov chain only goes upwards. Let τn be a random variable
taking values in N defined by

τn = inf{t ∈ N : Xt = n},

which is the first time that a complete set of coupons has been collected; if the set
{t ∈ N : Xt = n} is empty, τn is understood to be ∞. Problem 1 can thus be
rephrased as the problem of studying the random variable τn .

Proposition 4 (1) E[τn] = n
∑n

k=1
1
k ∼ n log n.1 (2) limn→∞ P(τn ≤ n log n +

cn) = e−e−c
(c ∈ R).

This proposition implies that the expected time to collect a complete set of coupons
is about n log n and the probability that all kinds are not yet collected after n log n is
exponentially small. For example, if n = 100, then E[τ100] = 518.738 . . . (Fig. 5).

1.5 Mixing Time

The distribution at time t of an irreducible and aperiodic Markov chain on a finite
state space S converges to the stationary distribution as t → ∞ by Theorem 1. Here
we consider the speed of convergence. For that we introduce a distance on P(S),
the set of all probability measures on S.

Definition 4 For μ, ν ∈ P(S), we define the total variation distance by

‖μ − ν‖T V = max
A⊂S

|μ(A) − ν(A)|.

This distance has several different expressions.

1 an ∼ bn means that an/bn → 1 as n → ∞.
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Proposition 5 For μ, ν ∈ P(S), 0 ≤ ‖μ − ν‖T V ≤ 1 and

‖μ − ν‖T V = 1

2

∑

x∈S

|μ(x) − ν(x)| =
∑

x∈S
μ(x)≥ν(x)

|μ(x) − ν(x)|

= inf{P(X 	= Y ) : (X, Y ) is a coupling of(μ, ν)},

where a two-dimensional random variable (X, Y ) is said to be a coupling of (μ, ν)

if the marginal distributions of X and Y are equal to μ and ν, respectively. Here we
simply write μ(x) for μ({x}).
Remark 3 When a Markov chain is irreducible and aperiodic, since S is finite, The-
orem 1 implies that d(t) := maxx∈S ‖Pt (x, ·) − π‖T V → 0. Moreover, it is known
that d(t) is monotone decreasing.

Definition 5 From the remark above, we can define the mixing time by

tmix(ε) := inf{t ∈ N : d(t) ≤ ε}

for given ε ∈ (0, 1/2). In particular, we write tmix := tmix(1/4). Here 1/4 can be
replaced with any ε ∈ (0, 1/2).

Mixing time is the time when a Markov chain approaches the stationarity “suffi-
ciently.” Several results have been obtained for the following problem.

Problem 2 Given an increasing sequence of state spaces {Sn : n ∈ N} and Markov
chains X (n) = {X (n)

t }t∈T on Sn , one can define t (n)
mix for each X (n) on Sn . Analyze the

asymptotic behavior of the mixing time t (n)
mix as n → ∞.

1.6 Coupling of Markov Chains

The coupling method is often used for comparisons with probability distributions.
In the example below, we use a coupling of Markov chains to derive an inequality.

Definition 6 (1) Let X = {Xt }t∈T and Y = {Yt }t∈T be Markov chains on S starting
at different initial states x and y, respectively. A Markov chain {(X̃t , Ỹt )}t∈T on
S × S is said to be a Markov coupling of X and Y if the probability law of {X̃t }t∈T
(resp. {Ỹt }t∈T) is equal to that of the given Markov chain X (resp. Y ). We denote the
probability law of this coupling {(X̃t , Ỹt )}t∈T by Px,y .

(2) We define a coupling time by τcouple = inf{t ≥ 0 : X̃t = Ỹt }.
Example 12 Consider a Markov chain on S = {0, 1, 2, . . . , n}. This chain jumps to
one of its two neighbors with equal probability 1/2 at {1, 2, . . . , n −1}, to 0 or 1 with
equal probability at 0, and to n − 1 or n with equal probability at n. We construct
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a coupling as follows: Toss a fair coin. Both X̃t and Ỹt move upwards if it comes
up heads and both move downwards if it comes up tails. The important feature of
this coupling is the fact that if x ≤ y, then X̃t ≤ Ỹt for any t ≥ 0. Therefore, since
{X̃t = n} ⊂ {Ỹt = n}, we can see that if x ≤ y then

Pt (x, n) = Px,y(X̃t = n) ≤ Px,y(Ỹt = n) = Pt (y, n).

In other words, Pt (x, n) is an increasing function of x for each t . This fact is not so
easy to prove by simply using matrix computations.

1.7 Upper Estimate of Mixing Time via Coupling of Markov Chains

The expected coupling time is used as an upper bound of tmix.

Proposition 6 Let Px,y be a coupling of two Markov chains starting at x and y.
Then, tmix ≤ 4 maxx,y∈S Ex,y[τcouple].

From Proposition 6, it is important to construct a “nice” coupling with small
coupling time. Here we give two examples.

1.7.1 Mixing Time of LSRW on Cycle Graph Cn

First we estimate the mixing time for the lazy version of the SRW on Cn given in
Example 8. We construct a coupling {(X̃t , Ỹt )}t∈T of two LSRWs starting at x and
y respectively as follows:

1. Toss a fair coin. If it comes up heads, X̃t moves according to the transition rule;
if it comes up tails, Ỹt does.

2. After the two chains meet, they move together as a single LSRW, keeping X̃t = Ỹt

for t ≥ τcouple.

Looking at either X̃t or Ỹt reveals that each chain is obviously an LSRW on Cn .
Let us consider the coupling time of this chain {(X̃t , Ỹt )}t∈T. Let Zt be the shortest
path distance between X̃t and Ỹt . It is thus a Markov chain on {0, 1, . . . , �n/2�}.
(The transition rule at �n/2� is a little different depending on whether n is even or
odd.) Then, the coupling time of X̃t and Ỹt is equal to the first hitting time of Zt

at 0. It is known to be of O(n2). Therefore, by Proposition 6, we can conclude that
t (n)
mix = O(n2).
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1.7.2 Mixing Time of LSRW on Hypercube

Consider the lazy version of the SRW on hypercube S = {0, 1}n given in Example 4.
A coupling {(X̃t , Ỹt )}t∈T of two LSRWs starting at different initial states is con-
structed as follows:

1. A coordinate i is chosen from {1, 2, . . . , n} uniformly at random.
2. In accordance with the heads or tails of a fair coin flip, set X̃t (i) = Ỹt (i) = 1 or

X̃t (i) = Ỹt (i) = 0.

For example, a transition when n = 5 proceeds like

(
1 0 1 1 0
0 0 0 0 0

)
3,heads→

(
1 0 1 1 0
0 0 1 0 0

)
5,heads→

(
1 0 1 1 1
0 0 1 0 1

)
3,tails→

(
1 0 0 1 1
0 0 0 0 1

)
1,tails→ · · ·

Suppose i is chosen at step 1. No matter what the value of the i-th coordinate is,
at step 2, it keeps that value with probability 1/2 and is updated to the other value
with probability 1/2. Therefore, if we look at either X̃t or Ỹt only, we see nothing
but an LSRW. Under this coupling, once the i-th coordinate is chosen at step 1,
the values of the i-th coordinate of X̃t and Ỹt will remain the same. Therefore, the
coupling time of the coupled chain is the first time when all the coordinates at which
the values are different at t = 0 (e.g., {1, 3, 4} in the example above) are chosen. If
we regard {1, 3, 4} as the coupons yet to be collected, the coupling time is smaller
than τn defined in coupon collector’s problem in Sect. 1.4. Therefore, Ex,y[τcouple] ≤
E[τn] ≤ n log n +n. By Proposition 6, we see that t (n)

mix ≤ 4(n log n +n). It is known

that t (n)
mix ∼ 1

2 n log n.

1.8 Cutoff Phenomenon

The cutoff phenomenon is said to occur when the total variation distance d(t) keeps
nearly 1 before the mixing time tmix and abruptly drops to near 0 around the mixing
time tmix. This implies that the distribution of Xt is far from the stationarity before
time tmix and close to stationarity after time tmix. This phenomenon is formulated as
follows.

Definition 7 A sequence of Markov chains has a cutoff if

t (n)
mix(ε) ∼ t (n)

mix(1 − ε) for every ε ∈ (0, 1/2)

as n → ∞, which is equivalent to

lim
n→∞ dn(ct (n)

mix) =
{

1 if c < 1,

0 if c > 1.
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Fig. 6 Cutoff phenomenon. Graph of dn(t) rescaled by t (n)
mix as n → ∞

The total variation distance dn(t) converges to a step function as n → ∞ by rescaling
time t by t (n)

mix (Fig. 6).
The following is a more precise version of the above.

Definition 8 A sequence of Markov chains has a cutoff with a window of size wn if
wn = o(t (n)

mix) and for every ε ∈ (0, 1/2) there exists cε > 0 such that

t (n)
mix(ε) − t (n)

mix(1 − ε) ≤ cεwn (∀n ∈ N),

which is equivalent to

lim
c→−∞ lim inf

n→∞ dn(t (n)
mix + cwn) = 1, lim

c→+∞ lim sup
n→∞

dn(t (n)
mix + cwn) = 0.

Example 13 (1) The LSRW on the hypercube {0, 1}n has a cutoff at t (n)
mix ∼ 1

2 n log n
with a window of size n.

(2) The SRW on cycle graph Cn does not have a cutoff.
(3) A biased random walk on {0, 1, . . . , n} moves upwards with probability p > 1/2

and downwards with probability 1− p. Then its lazy version has a cutoff around
t (n)
mix ∼ (p − 1/2)−1n with a window of size

√
n.

2 Markov Decision Processes

On many occasions one has to make a decision to minimize a cost or maximize a
reward. Markov decision processes (MDPs) provide a model for use in such situa-
tions.

Here we give a formulation of MDPs. Let S be a finite state space and A a finite
set of actions. For each a ∈ A a transition matrix P(a) = (pxy(a))x,y∈S is given.
A function c : S × A → [0,∞) is called a cost function. A policy is a sequence
u = {ut }t∈T of functions ut : St+1 → A. For given {P(a)}a∈A, we define a stochastic
process {Xt }t∈T on S associated with policy u and initial state μ = (μx )x∈S by the
following properties: for x0, x1, . . . , xt+1 ∈ S,
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1. P
u(X0 = x0) = μx0 .

2. P
u(Xt+1 = xt+1|X0 = x0, . . . , Xt = xt ) = pxt xt+1(ut (x0, . . . , xt )).

When the initial state μ is the delta measure at x , we denote the probability law of
{Xt }t∈T by P

u
x . This process is not, in general, a Markov chain since the conditional

probability depends on the past not just on the present state. A policy u is said to be
a stationary policy if there exists a map u : S → A such that ut (x0, . . . , xt ) = u(xt )

for any t = 0, 1, . . . . Here we abuse the notation of u. If a policy u is stationary,
then the corresponding stochastic process is a Markov chain.

In what follows, for simplicity, we assume the following:

(A1) There exists an absorbing state z ∈ S in the sense that pzy(a) = δzy and
c(z, a) = 0 for any a ∈ A. We denote the set of all absorbing states by Sabs .

(A2) For x ∈ S \ Sabs , c(x, a) > 0 for every a ∈ A.
(A3) There exists a stationary policy u such that for every x ∈ S \ Sabs there exists

t = tx ∈ N so that Pu
x (Xt ∈ Sabs) > 0.

Let τ be the first hitting time to Sabs , i.e., τ = inf{t ≥ 0 : Xt ∈ Sabs}. We define
the expected total cost associated with a policy u by

V u(x) = E
u
x

[
τ−1∑

t=0

c(Xt , ut (X0, X1, . . . , Xt ))

]

(x ∈ S)

and the optimal total cost by

V ∗(x) = inf
u

V u(x) (x ∈ S).

It is clear that
cminE

u
x [τ ] ≤ V u(x) ≤ cmaxE

u
x [τ ], (2)

where cmin = minx∈S\Sabs ,a∈A c(x, a) and cmax = maxx∈S,a∈A c(x, a). This implies,
under (A2), that maxx∈S V u(x) < ∞ is equivalent to maxx∈S E

u
x [τ ] < ∞.

Lemma 2 Let u be a stationary policy as in (A3). Then, maxx∈S E
u
x [τ ] < ∞. In

particular, maxx∈S V ∗(x) < ∞.

We note that if a policy u is a stationary policy associated with u : S → A, then
V u(x) satisfies

V u(x) = c(x, u(x)) +
∑

y∈S

pxy(u(x))V u(y). (3)

Example 14 For n ≥ 2, let S = {0, 1, 2, . . . , n} be a state space with 0 being the
absorbing state. There are two actions A = {a1, a2}. If one chooses a1, then one
goes downward by 1 in every state; if one chooses a2, then one jumps to 0 or n − 1
with equal probability 1/2 at n and goes downward by 1 otherwise. Suppose that
the cost of action a1 (resp. a2) is 1 (resp. C), i.e., c(x, a1) = 1 (resp. c(x, a2) = C)
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for x = 1, 2, . . . , n. Suppose C > 1 for simplicity. It is clear that V ∗(x) = x for
x ∈ {0, 1, . . . , n − 1} and

V ∗(n) =
{

C + n−1
2 if 1 < C ≤ n+1

2 ,

n if C ≥ n+1
2

for x = n. One should choose action a2 at n for the former and action a1 for the
latter.

In Example 14, we can compute the optimal cost V ∗ explicitly. However, it is not
easy to determine the optimal cost in general. So the question is how to estimate the
optimal cost V ∗. Here we give upper and lower estimates for V ∗.

2.1 Lower Bound: Value Iteration

For a lower bound, we define the minimum expected cost incurred before time t
inductively by

Vt (x) = min
a∈A

⎧
⎨

⎩
c(x, a) +

∑

y∈S

pxy(a)Vt−1(y)

⎫
⎬

⎭
, V0(x) = 0 (∀x ∈ S), (4)

which is often called the Bellman equation with finite horizon. By induction, it is
easy to see that Vt (x) is increasing in t . Hence, there exists an increasing limit
limt→∞ Vt (x) ∈ [0,∞]. We can show that the limit is equal to the optimal value
V ∗(x).

Proposition 7 For each x ∈ S, Vt (x) is increasing in t and converges to V ∗(x) as
t → ∞. In particular, Vt (x) ≤ V ∗(x) for any t.

We apply Proposition 7 to Example 14. Since Vt (0) ≡ 0 and C > 1, we see that

Vt (x) =
{

1 + Vt−1(x − 1) for x = 1, 2, . . . , n − 1,

min{1 + Vt−1(n − 1), C + 1
2 Vt−1(n − 1)} for x = n.

This implies that Vt (x) = min{x, t} and hence V ∗(x) = x for x = 1, 2, . . . , n − 1.
When t ≥ n, as Vt−1(n − 1) = n − 1, we have

V ∗(n) = Vt (n) =
{

C + n−1
2 if 1 < C ≤ n+1

2 ,

n if C ≥ n+1
2 .
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2.2 Upper Bound: Policy Iteration

Next we consider an upper bound for V ∗. For a given stationary policy u0 such that
maxx∈S V u0(x) < ∞, one can choose a stationary policy u1 such that for each x ∈ S
action a = u1(x) minimizes the function a �→ c(x, a) + ∑

y∈S pxy(a)V u0(y). For
such a stationary policy u0, we inductively define a sequence of stationary policies
{ut }t∈T by

ut (x) ∈ arg min
a∈A

⎧
⎨

⎩
c(x, a) +

∑

y∈S

pxy(a)V ut−1(y)

⎫
⎬

⎭
(x ∈ S), (5)

where arg mina∈A f (a) is the set of arguments for which f (a) attains its minimum
and ut (x) is arbitrarily chosen from the right-hand side.

Proposition 8 For a stationary policy u0 such that maxx∈S V u0(x) < ∞, we define
{ut }t∈T as described above. Then, V ut (x) is decreasing in t and converges to V ∗(x)

as t → ∞ for each x ∈ S. In particular, V ∗(x) ≤ V ut (x) for any t.

We apply Proposition 8 to Example 14. For simplicity, we assume that n ≥ 3. The
n = 2 case is left to the reader as an exercise. First, we suppose a policy u0(x) = a2
for every x . Then,

V u0(x) =
{

Cx for x = 0, 1, . . . , n − 1,
C
2 (1 + n) for x = n.

It is clear that u1(x) = a1 for x = 0, 1, . . . , n − 1 since C > 1. For x = n,

c(n, ai ) +
∑

y∈S

pny(ai )V u0(y) =
{

1 + C(n − 1) for i = 1,

C + 1
2 C(n − 1) for i = 2.

Then, it is easy to see that u1(n) = a2 when n ≥ 3 since C > 1 and that

V u1(x) =
{

x for x = 0, 1, . . . , n − 1,

c + 1
2 (n − 1) for x = n.

Similarly, it is clear that u2(x) = a1 for x = 1, . . . , n − 1 and that

c(n, ai ) +
∑

y∈S

pny(ai )V u1(y) =
{

1 + (n − 1) = n for i = 1,

C + 1
2 (n − 1) for i = 2

for x = n. Therefore, we have
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u2(x) = a1 (x = 1, . . . , n − 1), u2(n) =
{

a2 if 1 < C ≤ n+1
2 ,

a1 if C ≥ n+1
2

(6)

and

V u2(x) =
{

x for x = 0, 1, . . . , n − 1, or for x = n and C ≥ n+1
2 ,

C + n−1
2 for x = n and 1 < C ≤ n+1

2 .

It can be easily seen that ut (x) = u2(x) for t ≥ 2. Therefore, u2(x) given in (6) is
an optimal policy.

2.3 An Example: iPod Shuffle

An iPod shuffle is an MP3 music player with a clickable control pad and an external
button for switching between two different modes; one is sequential play mode and
the other is random shuffle mode. Suppose that the playlist for your iPod is sorted by
song title, say, S = {1, 2, . . . , n}, and n is assumed to be the song you want to listen
to. If you click the control pad in the sequential play mode, x goes to x +1, and if you
click the control pad in the random shuffle mode, the next song is chosen uniformly
at random from {1, 2, . . . , n}. Intuitively, if you start at a song close enough to n, it
might be better to stay in the sequential play mode, and if you start at a song far from
n, it might be better to switch to the random shuffle mode until a song close to n is
reached. The question is, what is the threshold for switching between two modes?
This problem is well-modeled by a Markov decision process.

Example 15 (iPod shuffle) Let S = {1, 2, . . . , n} be a state space with n being the
absorbing state. There are two actions A = {a1, a2}. If action a1 is chosen, one moves
upward by 1; if action a2 is chosen, one jumps to a state uniformly at random. The
costs of action a1 and a2 are 1 and T , respectively. We assume that 1 < T � n. We
apply Proposition 7 to this example. It follows from (4) that

Vt (x) = min

⎧
⎨

⎩
1 + Vt−1(x + 1), T + 1

n

n∑

y=1

Vt−1(y)

⎫
⎬

⎭
, x = 1, . . . , n − 1, (7)

and Vt (n) = 0(∀t = 0, 1, . . . ). From this expression, by induction, it is easy to see
that Vt (x) is decreasing in x for each t and that there exist νt > 0 and Kt ∈ {1, . . . , n}
such that

Vt (x) =
{

νt for x = 1, 2, . . . , n − Kt ,

n − x for x = n − Kt + 1, n − Kt + 2, . . . , n.



Finite Markov Chains and Markov Decision Processes 205

By Proposition 7, Vt (x) ↗ V ∗(x) as t → ∞, and hence we obtain ν > 0 and
K ∈ {1, . . . , n} such that

V ∗(x) =
{

ν for x = 1, 2, . . . , n − K ,

n − x for x = n − K + 1, n − K + 2, . . . , n.

On the other hand, from (7),

V ∗(x) = min

⎧
⎨

⎩
1 + V ∗(x + 1), T + 1

n

n∑

y=1

V ∗(y)

⎫
⎬

⎭
, for x = 1, 2, . . . , n − 1.

(8)
The second argument on the right-hand side does not depend on x and is equal to

Cn(ν, K , T ) = T + 1

n

{
(n − K )ν + 1

2
K (K − 1)

}
.

Setting x = 1 in (8) yields

⎧
⎪⎨

⎪⎩

ν = min {1 + ν, Cn(ν, K , T )} K = 0, 1, . . . , n − 2,

ν = min {n − 1, Cn(ν, n − 1, T )} K = n − 1,

n − 1 = min {n − 1, Cn(ν, n, T )} K = n.

Since we assumed that T � n, we have that Cn(ν, n, T ) < n − 1, and so K 	= n. It
is also easy to see that ν = Cn(ν, K , T ) for K ≤ n − 1, which implies that

v = 1

2
(K − 1) + nT

K
. (9)

Setting x = n − K and x = n − K + 1 in (8) yields ν = min{K , Cn(ν, K , T )} and
K − 1 = min{K − 1, Cn(ν, K , T )}. Hence, we have

K − 1 ≤ ν = Cn(ν, K , T ) ≤ K .

By solving these inequalities together with (9), we have

√
1 + 8nT − 1

2
≤ K ≤

√
1 + 8nT + 1

2
.

Therefore, we can see that ν ∼ K ∼ √
2nT as n → ∞. ��

Remark 4 We refer the reader to Levin et al. [1] for a comprehensive account of
the topics covered in Sect. 1, especially mixing time and cutoff phenomenon. Norris
[2] provides additional details for the explanations in Sect. 2. The iPod example in
Sect. 2.3 is taken from Norvig [3].
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