
A Phase Field Approach to Mathematical
Modeling of Crack Propagation

Masato Kimura and Takeshi Takaishi

Abstract We consider a phase field model for crack propagation in an elastic body.
The model is derived as an irreversible gradient flow of the Francfort-Marigo energy
with the Ambrosio-Tortorelli regularization and is consistent to the classical Griffith
theory. Some numerical examples computed by adaptive mesh finite element method
are presented.
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1 Introduction

Crack propagation phenomenon appears in various situations from tiny size to huge
scale and often causes serious problems, for example, in tiny precision machine and
its parts, the body of a car or a ship, a building, a large structure, the ground, or the
crust of the earth. Since the propagation of a relatively small crack in such material
may cause the collapse of the whole structure, to understand the behavior of the crack
propagation is very important.

Among various crack propagation models in fracture mechanics, the phase field
approximation [20] of the crack seems to be one of very interesting ideas. A number
of engineering-oriented discrete models, such as extended finite element method
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(XFEM) [3, 21], rigid body spring model (RBSM) [16], discrete element method
(DEM) [9, 22], or particle discretization scheme-FEM (PDS-FEM) [13, 14], etc., are
widely used for fracture analysis in engineering simulations. On the other hand, such
discrete models are dependent on the FEMmesh and other numerical parameters and
algorithms. From themathematical point of view, amathematically closed continuous
model is also preferable.

In [24, 25], the authors proposed a phase filed model for mode III crack propa-
gation on a two dimensional plate and showed several numerical examples. In this
paper, we consider some generalizations of our phase field model and discuss their
properties based on the idea of [19].

In Sect. 2, we derive our phase field model with two-dimensional linear elasticity.
Themodel is derived as the gradient flow of the Francfort-Marigo type energy [7, 10]
with the Ambrosio-Tortorelli regularization [2]. We also introduce a non-repair con-
dition of the crack without destructing the gradient flow structure.

In Sect. 3, we give some numerical examples of crack propagation for mode III
case and modes I and II case. We also show how it works in the case that the fracture
toughness is spatially variable. For the simulation, we use P2 adaptive mesh finite
element method with FreeFEM++ software [12].

2 Derivation of Crack Propagation Models

We suppose that � ⊂ R
2 is a bounded elastic body without crack. Let u(x) ∈ R

2

be an in-plane displacement field at x ∈ �. The strain tensor is denoted by e[u] =
(ei j [u](x)), where

ei j [u](x) := 1

2

(
∂ui

∂x j
(x) + ∂u j

∂xi
(x)

)
(i, j = 1, 2).

We use the Einstein summation convention for spatial indices i, j, k, l ∈ {1, 2}.
We suppose that the elasticity tensor ci jkl(x) satisfies the symmetries ci jkl(x) =
ckli j (x) = c jikl(x) and the positivity condition ci jkl(x) ξi j ξkl ≥ c∗ |ξ |2 for x ∈
�, ξ ∈ R

n×n
sym , where |ξ | := √

ξi j ξi j . The stress tensor is denoted by σ [u] =
(σi j [u](x)) and is defined as

σi j [u](x) = ci jkl(x)ekl [u](x).

Then the equilibrium equation is given by

−divσ [u] = f (x) x ∈ �, (1)

where f (x) ∈ R
2 is a given body force at x . It is known that the solution u is obtained

as the minimizer of the following elastic energy including the body force under a
suitable boundary condition:
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E0(u) = 1

2

∫
�

σ [u] : e[u] dx −
∫
�

f (x) · u(x) dx,

where σ : e = σi j ei j .
Let us assume that there is a crack � in �, where � is a smooth curve in � with

finite length and that � \ � is open and connected. We have crack opening modes I
and II with two-dimensional displacement. We derive a crack propagation model of
modes I and II.

We introduce the following smooth function z(x) for x ∈ � to represent the
approximate profile of the crack. We assume that 0 ≤ z(x) ≤ 1 and z(x) ≈ 1 for
around the crack � and z(x) ≈ 0 for the other region. We call z(x) the phase field
for the crack shape and derive a time evolution model of z.

We suppose that the damaged stress tensor is defined as

σ̃ [u] := (1 − z)2σ [u]. (2)

The function z also can be considered as a damage variable which represents the
damage ratio of the material in the sense of (2).

Then we have the modified elastic energy:

E1(u, z) = 1

2

∫
�

(1 − z)2σ [u] : e[u] dx −
∫
�

f (x) · u(x) dx .

The surface energy on the crack is approximated by

E2(z) = 1

2

∫
�

γ (x)

(
ε|∇z|2 + 1

ε
z2

)
dx,

where the fracture toughness γ (x) > 0 is a given function and ε > 0 is a small
regularization parameter. This is called the Ambrosio-Tortorelli regularization and
they proved that the energy E2(z) approximates the surface energy

∫
�

γ (x)ds in the

sense of 	-convergence for some special cases [2].
Following the derivation of the phase fieldmodel in [25],we consider a regularized

Francfort-Marigo type energy [10]:

E(u, z) := E1(u, z) + E2(z),

and derive our model as a gradient flow of E . It is shown that this energy approach
is compatible to the classical Griffith theory [7, 10, 11].

Let the boundary 	 = ∂� be Lipschitz and piece-wise smooth, and the unit
outward normal vector on 	 is denoted by n. We suppose that 	D is a nonempty
open piece-wise smooth portion of 	, and define 	N := 	 \ 	D . The displacement
on 	D is given as u = g(x) and the traction free condition is assumed on 	N . We
consider the following boundary condition:
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u = g on 	D, σ [u]n = 0 on 	N ,
∂z

∂n
= 0 on 	.

If f and g do not depend on t , the first variations of the energy E(u, z) with respect
to u and z are formally derived as follows. For arbitrary v(x) with v = 0 on 	D , we
have

d

dρ
E(u + ρv, z)

∣∣∣∣
ρ=0

= −
∫
�

{
div

(
(1 − z)2σ [u]

)
+ f

}
v dx

Hence, the gradient flow equation of the displacement u(x, t) becomes

α1
∂u

∂t
= div

(
(1 − z)2σ [u]

)
+ f, (3)

where α1 ≥ 0 is a small time constant. It must be remarked that the case α1 = 0
corresponds to the equilibrium state of forces (1), however, for numerical simulation,
we can set 0 < α1 << 1 to stabilize the numerical solution even in the case of z = 1,
where the ellipticity is broken.

For any ζ(x), we derive the first variation of the energy E(u, z) with respect to
z as

d

dρ
E(u, z + ρζ )

∣∣∣∣
ρ=0

= −
∫
�

{
ε div (γ (x)∇z) − γ (x)

ε
z + σ [u] : e[u](1 − z)

}
ζ dx . (4)

The gradient flow equation of the damage variable z(x, t) becomes

α2
∂z

∂t
= εdiv (γ (x)∇z) − γ (x)

ε
z + σ [u] : e[u](1 − z),

where α2 > 0 is a time constant.
The resulted phase field model is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
∂u

∂t
= div

(
(1 − z)2σ [u]

)
+ f (x, t) x ∈ �, t > 0

α2
∂z

∂t
=

(
ε div (γ (x)∇z) − γ (x)

ε
z + σ [u] : e[u](1 − z)

)
+

x ∈ �, t > 0

u = g(x, t) x ∈ 	D, t > 0
σ [u]n = 0 x ∈ 	N , t > 0

∂z

∂n
= 0 x ∈ 	, t > 0

u(x, 0) = u0(x) x ∈ �

(omit if α1 = 0)
z(x, 0) = z0(x) ∈ [0, 1] x ∈ �

(5)
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Since a crack once generated can be no longer repaired, we put ( )+ to the
right-hand side of the second equation, where (a)+ = max(a, 0). It guarantees
the non-repair condition for the crack: ∂z

∂t ≥ 0. The second equation expresses the
crack evolution due to the magnitude of the elastic energy density σ : e. The fracture
toughness γ (x) > 0 prescribes the critical value of the energy release rate in the
Griffith criterion. It is harder for the crack to grow, if the value of γ is larger.

We remark that the second equation is a fully nonlinear parabolic equation and it
is called an irreversible system in the mathematical field of evolution equation. One
of the authors recently established a global existence of a unique strong solution for
the irreversible diffusion equation ut = (
u + f (x, t))+ in [1].

If f and g do not depend on t , under suitable regularity assumptions, formally
we have the following energy decay property:

d

dt
E(u(·, t), z(·, t)) = −

∫
�

{
div((1 − z)2σ [u]) + f

} ∂u

∂t
dx

−
∫
�

{
εdiv(γ∇z) − γ

ε
z + σ [u] : e[u](1 − z)

} ∂z

∂t
dx

= −α1

∫
�

∣∣∣∣∂u

∂t

∣∣∣∣
2

dx − α2

∫
�

∣∣∣∣∂z

∂t

∣∣∣∣
2

dx ≤ 0.

This stands for the gradient flow structure of our phase field model (5) even with the
non-repair condition.

We remark that the phase field model (5) can be also considered in the three-
dimensional case, u(x, t) ∈ R

3, x ∈ � ⊂ R
3.

In [25], the authors studied our phase field model in two dimension with scalar
anti-plane displacement u(x, t) ∈ R, x ∈ � ⊂ R

2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1
∂u

∂t
= μdiv

(
(1 − z)2∇u

)
+ f (x, t) x ∈ �, t > 0

α2
∂z

∂t
=

(
ε div (γ (x)∇z) − γ (x)

ε
z + μ|∇u|2(1 − z)

)
+

x ∈ �, t > 0

u = g(x, t) x ∈ 	D, t > 0
∂u

∂n
= 0 x ∈ 	N , t > 0

∂z

∂n
= 0 x ∈ 	, t > 0

u(x, 0) = u0(x) x ∈ �

(omit if α1 = 0)
z(x, 0) = z0(x) ∈ [0, 1] x ∈ �,

(6)
where μ > 0 denotes the rigidity, one of the Lamé constant. This is a mode III crack
propagation model. See [25] for detail of the derivation of our phase field models.
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We cannot find any difficulty to compute crack growth numerically. This model
equation makes possible to analyze the crack growth phenomena by well-known
numerical method, only taking notice about the mesh size that you must choose
carefully. In the next section, we show some numerical results of crack growth from
this model equation.

Similar mathematical models for simulation based on the Fracfort-Marigo type
energy are also found in [4–8, 15].

3 Numerical Results

We show some numerical results of our phase fieldmodels of crack growth derived in
the previous section.Weuse a free software FreeFem++ [12] for our computation. It is
a useful tool of finite element method for our purpose. Due to the small regularization
parameter ε introduced in ourmodel, the profiles of u and z have small spatial patterns
of ε-scale. We, however, use an adaptive mesh finite element method with the help
of FreeFEM++.

We fix τ > 0 as a constant time step, uk(x) and zk(x) are the approximated
solution of u and z, respectively, at t = kτ (k = 0, 1, 2, . . .).

First, we make two types of numerical simulation of the single-line crack growth
of the mode III type (6). We set minimum mesh size more than 2 × 10−3 and
maximum number of the vertices of triangular mesh less than 5,000. The numerical
solution (uk, zk) for mode III model (6) are computed from (uk−1, zk−1) with the
semi-implicit scheme:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α1
uk − uk−1

τ
= μ div

(
(1 − zk−1)2∇uk

)

α2
z̃k − zk−1

τ
= ε div

(
γ (x)∇ z̃k

)
− γ (x)

ε
z̃k + μ|∇uk−1|2(1 − z̃k)

zk = min(1, max(z̃k, zk−1))

(7)

We remark that 0 ≤ zk ≤ 1 is guaranteed when z0 ∈ [0, 1] at t = 0. For spatial
discretization, we use adaptive mesh P2 finite element method. The model of modes
I and II (5) is similarly discretized. It is necessary to set the mesh of small size
near crack region (z ∼ 1), because the values of u and z change drastically around
there. We solve (7) by FreeFem++ with adaptive P2-element, where z is evaluated
for remeshing at each time step.

Initial crack is set as Fig. 1a, single-line from left hand side. Figure2 shows that
a crack propagates to the another side when fracture toughness γ is homogeneous.
Adaptive mesh is effective to follow the crack path. As the crack grows, FreeFem++
adapts to set small size mesh near the crack, and the number of vertices becomes
larger till it breaks down (Fig. 3).
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ΓD

ΓD ΓDx1

x2

x3

Σ

ΓD

x1

x2

x3

Σ

(a) (b)

Fig. 1 Domain of numerical simulation ofmode III crack growth (a) andmode I+II crack growth (b)

t = 1 t = 2 t = 4 t = 5

Fig. 2 An initial crack grows in isotropicmediawith given boundary displacement g = (0, 0, 10)×
t (u (upper), z (middle), mesh (lower))

When γ is inhomogeneous, the crack intends to follow the weak region. Figure 4
shows the crack growth when γ has the profile as stripe (γ (x, y) = 0.5(1 +
0.2 sin 20(x + y))). First crack grows following weak position, after that, sub-branch
emerges repeatedly.
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Fig. 3 Temporal evolution of a the minimum and maximum mesh size, (b) number of vertices

t = 1 t = 2 t = 4 t = 5

Fig. 4 An initial crack grows in an anisotropic media (γ (x, y) = 0.5∗(1+0.2∗sin(20∗(x + y))))
with given boundary displacement g = (0, 0, 10) × t (u (upper), z (middle), mesh (lower))

Finally, we show the numerical results of mode I+II crack growth. We use the
phase field model (5) with isotropic elasticity tensor. Lamé constants are set as
λ = 26.76, μ = 19.38, where Young’s modulus and Poisson’s ratio are set as
E = 50, σ = 0.29, respectively. Initial crack which is shaped as slit changes its
direction to perpendicular to the displacement on 	D (Fig. 1b). It shows that crack
kinks to annihilate mode II at the front (Fig. 5).
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t = 1 t = 2 t = 4 t = 5

Fig. 5 An initial crack grows in an isotropic media with given boundary displacement g =
(1, 1, 0) × t (u (upper), z (middle), mesh (lower))

From these results, using adaptive mesh method is effective to calculate the crack
path. For the similar purpose, we use ALBERTA toolbox [23] in [24, 25]. Adaptive
mesh method is also useful in other free boundary or pattern formation problem,
such as reaction-diffusion model [17, 18].
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