
Chapter 7
Chaotic Behavior of Orthogonally
Projective Triangle Folding Map

Jun Nishimura and Tomohisa Hayakawa

7.1 Introduction

Chaotic behavior embedded in dynamical systems has been attracting huge attention
in the field of nonlinear dynamical systems theory since 1960s. Wide variety of
results have also been reported concerning chaotic systems in many areas such as
fundamental field of physics and biology as well.

One of themajor objectives of investigating chaos is to elucidate themechanism of
generating chaotic behavior. A mathematical approach to address analysis problems
of chaotic systems is to observe simple nonlinear dynamics and find key factors that
give rise to chaos. The simplicity of the nonlinear models to consider is central in
obtaining better understanding of complicated behaviors. Notable examples of such
relatively simple dynamic models are the logistic map, the tent map, the Horseshoe
map [12, 13], to cite but a few (see also [1–5, 7–9, 11] and the references therein).

In our earlier paper [6], we considered a simple folding map for equilateral trian-
gles (which we call the triangle folding map) that has sensitivity with respect to the
initial conditions. The operation is shown in Fig. 7.1 and defined by the the following
procedure:

[1] Fold along NL and bring A to M.
[2] Fold along LM and bring B to N.
[3] Fold along MN and bring C to L.
[4] Rotate LMN around its center by π radian.
[5] Enlarge LMN by double so that MNL coincides with ABC.

Specifically, we provided fixed point analysis and periodic point analysis associated
with this mapping operation by sequentially partitioning a restricted domain. Fur-
thermore, we discussed some connections of the foldingmap to the Sierpinski gasket,
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Fig. 7.1 Triangle folding map [6]. The map was defined as a surjective map

which is well known to be composed of self-homothetic triangles, and proposed a
scheme to construct other interesting fractals by removing certain regions of the
equilateral triangle.

In this article, we introduce a bifurcation parameter for the folding angle and
generalize this triangle folding map so that the operation in [6] reduces to a special
case of the new map. In particular, we call the operation the orthogonally projective
triangle folding map and provide a similar analysis given in [6] in terms of the fixed
points. We note that the preliminary results of this article can be found in [10].

7.2 Orthogonally Projective Triangle Folding Map

For the orthogonally projective triangle foldingmap, consider the equilateral triangle
ABC given by [4] in Fig. 7.1. In order to introduce the bifurcation parameter in the
folding operation, let θ be the folding angle in operation [2] and [3] in Fig. 7.1
and the sequence of operation is given by Fig. 7.2.

After the folding operation above, the resulting triangle in [5] becomes identical
to the equilateral triangle in [1]. We denote this folding operation [1]–[5] by
F : T → T . For example, the point P ∈ T shown in [1] of Fig. 7.3 is mapped by

Fig. 7.2 Orthogonally projective triangle folding map. The triangle folding map in Fig. 7.1 is
modified to introduce the bifurcation parameter θ . The case of θ = 0 corresponding to the the
triangle folding map defined in Fig. 7.1
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Fig. 7.3 Visualization of the mapping scheme for a given point in T . This map will be redefined
from the map from D to D as in Definition 7.1

Fig. 7.4 Mapping with small θ

the function F to another point F(P) in [5]. For the case where the folding angle

θ is small, i.e., cos−1 1
3 < θ <

π

2
, the operation is shown in Fig. 7.4. Note that the

operation given by Fig. 7.1 corresponds to the case of θ = 0. It is immediate that the
map F is surjective as discussed below.

Now, it is important to note that there are several variations of prescribing the
operation from [3] to [4] in Fig. 7.2 in order to define the surjective map from
T to T . For example, by rotating the triangle by π

6 radian, instead of π radian,
counterclockwise (or clockwise), we can obtain a similar map to the original map
T . Or, more easily, the triangle in [3] can be flipped upside down to arrive at [4]
through which we can construct a surjective map fromT toT . This commonality is
due to the reflective and the rotational symmetry that the equilateral triangles possess
and it is preferable to characterize themap that describes the essential dynamics of the
folding operation. The following notion precludes the ambiguity of the operation F .

Definition 7.1 (Equivalence relation onT ) Consider themap F : T → T defined
by Fig. 7.2. Two points P,Q ∈ T are considered to be equivalent if P is transformed
to Q via rotation by 2π/3 or 4π/3 radians, or reflection with respect to the symmetric
axis of the equilateral triangle, or the combination of the rotation and the reflection.
Specifically, we denote by

equiv X � {t ∈ T : t has the equivalence relation with a point in X }, (7.1)

the equivalence set associated with the set X ⊂ T .

Note that the center of the equilateral triangle has its equivalence relation with
itself, and any point on the symmetric axis (except for the center) has 2 other points
(on the other symmetric axes) that have equivalence relation with it. Otherwise, a
point on T has 5 other points that have equivalence relation to each other (see
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Fig. 7.5 Equivalence
relation for the triangle
folding map. The 6 points in
the left triangle is identified
as the same point and hence
the top left point (marked in
red) in the left figure is
considered as the point in D
in the right figure

Fig. 7.6 Domain D in the
coordinate system

Fig. 7.5, left). In any case, it is important to note that any point P ∈ T has a unique
point inD that has the equivalence relation with P, where the closed subsetD ⊂ T
is given by partitioning T with the three symmetric axes (Fig. 7.5, right). Note that
the 6 partitioned sets are right triangles and are all identical to each other in the shape
and the size so that the choice of the partitioned set is not important.

Now, from the analysis above, we restrict the domain and the codomain into D ,
instead of the original equilateral triangle T , and define a new map f : D → D
associated with the folding map F under the equivalence relation given by Defini-
tion 7.1. Note that for a point R ∈ D , f (R) ∈ D has the equivalence relation with
F(R) ∈ T.

In order to describe the map f more clearly, we define the x-y coordinate system
to the triangle. Specifically, let the length of the edges of T be 2

√
3 and, as shown

in Fig. 7.6, let the center of the equilateral triangle be placed at the origin, and let
the bottom edge be parallel to the x-axis. In this case, the map f is described by a
piecewise affine function given in Definition 7.2 below.

For the statement of the following results, let the domainD be further partitioned
into the 4 closed subdomains Di , i = 0, 1, 2, 3, for the case of 0 ≤ θ < cos−1 1

3
as given by Fig. 7.7 (left) and the 2 closed subdomains Di , i = 2, 3, for the case of

cos−1 1

3
< θ <

π

2
as given by Fig. 7.7 (right).

Definition 7.2 (Orthogonally projective triangle folding map) For the point p =
[x, y]T in the closed domain D ⊂ R

2, the folding map f θ : D → D for the
equilateral triangle is given by

f θ (p) � f θ
i (p), p ∈ Dθ

i , i = 0, 1, 2, 3, (7.2)
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Fig. 7.7 Partitioned domains of D with respect to θ ; (left) 0 ≤ θ < cos−1 1
3 ; (right) cos−1 1

3
<

θ <
π

2
. When θ ↘ cos−1 1

3 , the domains Dθ
0 and Dθ

1 in the left figure degenerate

where

f θ
0 (p) �

[
2 0
0 2 cos θ

]
p − 1 + cos θ

4

[
0
2

]
,

f θ
1 (p) �

[
1

√
3 cos θ√

3 − cos θ

]
p + 1 + cos θ

4

[−√
3

1

]
,

f θ
2 (p) �

[ −1 −√
3 cos θ√

3 − cos θ

]
p + 1 + cos θ

4

[√
3
1

]
,

f θ
3 (p) �

[ −1
√
3√

3 1

]
p.

Since each subdomainDθ
i is defined as a closed set for all i = 0, 1, 2, 3, adjacent

domains share the points on their boundaries. Note, however, that themap f θ defined
in Definition 7.2 has no ambiguity in that when p ∈ (Dθ

i ∩ Dθ
j ) it follows that

f θ
i (p) = f θ

j (p) so that the point p on the intersection of the domains is mapped to
the same point in D .

Henceforth, for a subset S ⊂ D , f θ (S) denotes the set of points f (p), p ∈ D ,
which is also a subset of D .

7.3 Tetrahedron Map

In this section, we consider the special case of the orthogonally projective triangle
folding map. Specifically, consider the map f θ for the case of θ = cos−1 1

3 . This
value is the critical value for the expression of the piecewise affine function and the
folding in [2] of Fig. 7.3 is characterized by the tetrahedron as shown in Fig. 7.8.

For this specialized map, we write f 	 to denote f cos
−1 1

3 .
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Fig. 7.8 Regular
tetrahedron map (procedure
[2] of Fig. 7.3). This is the
special case of the
orthogonal triangle folding
map f θ with θ = cos−1 1

3

Definition 7.3 (Tetrahedron map) For the point p = [x, y]T in the closed domain
D ⊂ R

2, the tetrahedron map f 	 : D → D for the equilateral triangle is given by

f 	(p) � f 	
i (p), p ∈ Di , i = 2, 3, (7.3)

where

f 	
2 (p) � A	

2 p + b	
2 ,

f 	
3 (p) � A	

3 p,

A	
2 �

[
−1 −√

3
3√

3 − 1
3

]
, b	

2 � 1

3

[√
3
1

]
,

A	
3 �

[ −1
√
3√

3 1

]
.

7.3.1 Fixed Point and Periodic Point Analysis
on the Boundary of D

In this section, we restrict our attention on the boundary ∂D of the domain D and
provide analysis in regards to the fixed points and the periodic points. Specifically,
note that the folding map f maps every point on ∂D onto ∂D . In other words, the
set ∂D is a positively invariant set with respect to f .

For the analysis presented in this section, we define the map f 	
∂ : ∂D → ∂D as

f 	
∂ (p) = f 	

i (p), p ∈ (Di ∩ ∂D), i = 2, 3, (7.4)

where f 	
i (·), i = 2, 3, are given by (7.4). Furthermore, for the statement of the

following result, let the points A, B, C, D be placed on the boundary of D as shown
in Fig. 7.9.

Theorem 7.1 Consider the tetrahedron map f 	
∂ given by (7.4). For ∂D , let A,B,

C,D denote the points shown in Fig. 7.9. Then the map f 	
∂ : ∂D → ∂D satisfies the

following properties:
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Fig. 7.9 Definition of the points A, B, C, D on the boundary of D

Fig. 7.10 Themapping relation of the points on the boundary ofD for the maps f 	
∂ , ( f 	

∂ )2, ( f 	
∂ )3,

and ( f 	
∂ )4. The point B can be seen as a fixed point for the map ( f 	

∂ )k , k ∈ N

1. For k even, the k-times composite map ( f 	
∂ )k has 2k/2 fixed points on the edge

A-B.
2. For k even, the k-times composite map ( f 	

∂ )k has 2k/2 fixed points on the edge
B-D.

3. For k even, the k-times composite map ( f 	
∂ )k has 2k/2+1 − 1 fixed points on ∂D .

4. For k odd, the k-times composite map ( f 	
∂ )k has a unique fixed point on ∂D ,

which is the vertex B.

Proof The results can be shown from the relationship given in Fig. 7.10 where f∂ is
surjective from ∂D to ∂D . 
�

7.4 Extended Fixed Point and Periodic Point
Analysis for Tetrahedron Map

7.4.1 Geometric Interpretation of the Triangle Folding Map

In this section, we provide characterization of the fixed and the periodic points of
the tetrahedron map f 	 over the domain D and compute the Lyapunov exponent
of the map. In the following, we give mathematical representation of the partitioned
domains and characterize the relationship between the partitioned domains and the
map f 	.
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Fig. 7.11 Transition of D2 and D3. For both of the domains, they are mapped to the domain D

Definition 7.4 (Sequentially partitioned set by a sequence) For a given k ∈ N,
consider the collection of finite sequences Sk given by

Sk �
{

s = {si }k−1
i=0 : si ∈ {2, 3}, i = 0, 1, . . . , k − 1

}
. (7.5)

Then the subset Ds , where s = {s0, s1, . . . , sk−1} ∈ Sk , is defined as

Ds � {p ∈ Ds0 : f 	(p) ∈ Ds1 , ( f 	)2(p) ∈ Ds2 , . . . , ( f 	)k−1(p) ∈ Dsk−1}.
(7.6)

For simplicity of exposition, we write Di j ...k to denote D{i, j,...,k}.

Consider the partitioned domains for the map ( f 	)2. Note that f 	 maps D2 and
D3 to D (see Fig. 7.11).

In other words, by taking the inverse map in Fig. 7.11, we can characterize the
partitioned domains for the map ( f 	)2, which are shown in Fig. 7.12.
In a similar manner, it is possible to characterize the partitioned domains for the map
( f 	)k by applying the similar procedure [1] in Fig. 7.12 to the partitioned domains
for the map ( f 	)k−1. As an example, the partitioned domains for the map ( f 	)3 is
shown in Fig. 7.13.

In summary, the partitioned domains for f 	, ( f 	)2, ( f 	)3, ( f 	)4 are shown in
Fig. 7.14.

Remark 7.1 According to this definition, the notation Di used in the previous sec-
tions stands for D{i}.



7 Chaotic Behavior of Orthogonally Projective Triangle Folding Map 85

Fig. 7.12 Domain of ( f 	)2, which are twice inverse maps of the domain D . There are two cases
to be mapped to the domain D2 (above) and D3 (below)

Fig. 7.13 Domain of ( f 	)3. The domainsD223,D233,D323,D333 in [4] are mapped to the domains
D23 and D33 in [1] by f 	

Definition 7.5 Let k, l ∈ Z
+ and let u = {u0, u1, . . . , uk−1} ∈ Sk and v =

{v0, v1, . . . , vl−1} ∈ Sl . Then the operation ⊕ : Sk × Sl → Sk+l is defined as

u ⊕ v � {u0, u1, . . . , uk−1, v0, v1, . . . , vl−1} . (7.7)

Theorem 7.2 For any s ∈ Sk , k ∈ Z
+, it follows that

Π2(Ds) = Ds⊕{2}, (7.8)

Π3(Ds) = Ds⊕{3}. (7.9)

Next, we define a left shift operation for the sequence s.
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Fig. 7.14 Domains of Ds0,...,sk for k = 1, 2, 3, 4

Definition 7.6 (Left shift operation of sequences) For a given k ∈ N and the finite
sequence s = {s0, s1, . . . , sk−1} ∈ S , let i ∈ N be i < k. The left shift operation
for s is defined as the binary operation : S × N → S given by

s  i � {si , si+1, . . . , sk−1}. (7.10)

This definition makes it possible to simply represent the tetrahedron map for the
equilateral triangle.

Theorem 7.3 For a given k ∈ Nand the finite sequence s = {s0, s1, . . . , sk−1} ∈ S ,
let i ∈ N be i < k. Then it follows that

1. ( f 	)i (Ds) = Dsi ,
2. ( f 	)i (p) ∈ Dsi , p ∈ Ds .

Proof We show the case of i = 1 in (i) because the result of (i) can be shown by
applying the case of i = 1 and the result of (ii) is immediate from (i).

Note from Definition 7.4 that

f (Ds) = f 	 ◦ Πsn−1 ◦ · · · ◦ Πs1 ◦ Πs0(D)

= f 	 ◦ Πsn−1 ◦ · · · ◦ Πs1(Ds0)

= Πsn−1 ◦ · · · ◦ Πs1 ◦ f 	(Ds0).

Note that f 	(Ds0) = D for every s0 ∈ {2, 3}. Hence, it follows that

f 	(Ds) = Πsn−1 ◦ · · · ◦ Πs1(D) = Ds1,

which completes the proof. 
�
The result (i) in Theorem 7.3 indicates the fact that applying the tetrahedron map

f is equivalent to shifting left the subscript s of Ds by 1, while (ii) suggests that the
mapped point ( f 	)k(p) of p ∈ D by ( f 	)k may be estimated.
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Theorem 7.4 (Grey code property) Let k ∈ Z
+. For the partitioned domainsDs and

Ds′ for the map ( f 	)k with s′ = {
s′
0, s′

1, . . . , s′
k−1

} ∈ Sk , there exists 0 ≤ α ≤ k −1
such that

sα �= s′
α, (7.11)

si = s′
i , i �= α, 0 ≤ i ≤ k − 1. (7.12)

Proof The result is proven by invoking induction. 
�

7.4.2 Periodic Points of the Tetrahedron Map

The main result of this section is shown in Theorems 7.5 and 7.6 below. Before
stating the result, we need to provide several preliminary lemmas.

Lemma 7.1 Let g	 denote ( f 	)k . Then, for any s ∈ Sk , k ∈ Z
+, the map g	

dom(Ds )
is bijective.

Lemma 7.2 Let l ∈ Z and k ∈ Z
+ be such that k is even and 0 ≤ l ≤ k, and let

s = {s0, s1, . . . , sk−1} ∈ Sk . Then it follows that

A	
sk−1

A	
sk−2

. . . A	
s0 = 2k

[
1 0
0 (−1/3)l

]
. (7.13)

Theorem 7.5 The k-times tetrahedron map ( f 	)k : D → D has a unique fixed
point on Ds , s ∈ Sk , k ∈ Z

+.

Proof The fixed point of the map ( f 	)k on Ds can be obtained by solving the
equation g	 = ( f 	)k(p) = p or, equivalently,

A	
sk−1

A	
sk−2

. . . A	
s0 p + C = p. (7.14)

Now, since
det

(
A	

sk−1
A	

sk−2
. . . A	

s0 − I
)

�= 0, (7.15)

it follows that (7.14) has a unique solution p. 
�
Lemma 7.3 Let p be the fixed point for ( f 	)k . Then there do not exist two distinct
sequences α and β of length k such that p ∈ Dα and p ∈ Dβ .

Theorem 7.6 The map ( f 	)k possesses 2k fixed points on D .

Proof It follows fromTheorem7.5 andLemma7.3 that ( f 	)k possesses a fixed point
on the boundary or the interior ofDs . Note that these fixed points are not shared by 2
different domains. Hence, the number of fixed points is equal to the number of the
partitioned domains. 
�
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Fig. 7.15 Domain separation and fixed points of f 	, ( f 	)2, ( f 	)3, ( f 	)4. There are 2 fixed
points for the map f 	 (left). Similarly, the fixed points for the map ( f 	)2 are shown in the middle
left figure but the ones in the left figure are also included in the figure. The same comment applies
to the figures for ( f 	)3 and ( f 	)4

7.4.3 Chaos by the Tetrahedron Map

In this section, we show that the tetrahedron map exhibits chaotic behavior.

Theorem 7.7 The tetrahedron map f 	 : D → D is topologically transitive on D
and possesses dense periodic points on D .

Hence, the tetrahedron map f 	 exhibits chaotic behavior on D .
Figure7.15 shows the partitioned domains and the corresponding fixed points for

f 	, ( f 	)2, ( f 	)3, ( f 	)4.

Theorem 7.8 Let k ∈ Z
+ and let i ≤ k be an integer. Furthermore, define the

circular function Circk
i : S k → S k given by

Circk
i (s) � {si , si+1, . . . , sk−1, s0, s1, . . . , si−1} . (7.16)

Then there exists s ∈ Sk such that

f 	(xs) = xCirck
1(s)

,

f 	(xCirck
1(s)

) = xCirck
2(s)

,

...

f 	(xCirck
k−1(s)

) = xCirck
k (s)

= xs,

where xs denotes a fixed point for the map ( f 	)k .
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Proof It suffices to show f 	(xs) = xCirck
1(s)

. For any s = {s0, s1, . . . , sk−1} ∈ Sk ,
it follows that

f 	
sk−1

◦ f 	
sk−2

◦ · · · ◦ f 	
s0 (xs) = xs,

and hence
f 	
s0 ◦ f 	

sk−1
◦ f 	

sk−2
◦ · · · ◦ f 	

s0 (xs) = f 	
s0 (xs).

On the other hand, it follows that for xCirck
1(s)

,

f 	
s0 ◦ f 	

sk−1
◦ f 	

sk−2
◦ · · · ◦ f 	

s1 (xCirck
1(s)

) = xCirck
1(s)

.

By comparing the above two equations, we obtain

f 	
s0 (xs) = xCirck

1(s)
,

and hence f 	(xs) = xCirck
1(s)

. 
�
Corollary 7.1 The number Tk of periodic orbits with the fundamental period k is
given by T1 = 2 and

Tk = 1

k

⎛
⎝2k −

∑
i∈Mk

iTi

⎞
⎠ . (7.17)

Figure7.16 shows the periodic orbits of period 1, 2, 3, and 4.

Fig. 7.16 Domain separation and true periodic orbits of f 	, ( f 	)2, ( f 	)3, ( f 	)4. There are 2, 1,
2, 3 periodic orbits for the periods 1, 2, 3, and 4, respectively
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7.5 Conclusion

In this article, we proposed a simple folding map associated with the equilateral
triangle and provided intensive analysis for the case where the folding leads to form
the tetrahedron. Specifically, we showed that each partitioned domain possesses a
unique fixed point for the map ( f 	)k and the labels of the domains satisfy the
grey code property. Furthermore, we showed that when θ is less than the value of
cos−1 1

3 , the f 	 exhibits chaotic behavior in the sense of Devaney. Future works
include investigating the connections and the differences between the folding map
and the well-known horseshoe map, which also has the notion of ‘folding’ in its
operation.
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