
Chapter 6
Threshold Control for Stabilization
of Unstable Periodic Orbits in Chaotic
Hybrid Systems

Daisuke Ito, Tetsushi Ueta, Takuji Kousaka, Jun-ichi Imura
and Kazuyuki Aihara

6.1 Introduction

Various deterministic dynamical systems including nonlinear electric circuits show
chaotic phenomena characterized by the sensitivity to small perturbations, posi-
tive Lyapunov exponents, and their complex orbit structure. It is well known that
an infinite number of unstable periodic orbits (UPOs)are embedded in a chaotic
attractor [1].

Based on the Poincaré mapping, a UPO in a continuous-time system can be
expressed as an unstable periodic point (UPP) in the corresponding discrete-time
system. The Ott-Grebogi-Yorke (OGY) method was the pioneering attempt to stabi-
lizeUPPs [2] by pushing the orbit near the stablemanifold of the target UPPwith very
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small parameter perturbations. If it fails, a retry in near future is expected because of
the recurrence property of the chaos, i.e., the uncontrolled orbit will comes close to
the target UPP again. With this recurrence, there is a possibility that stabilizing the
target UPP with a tiny control input, which is proposed to the distance between the
current state and the UPP. In the very small area around the target UPP, this kind of
problems can be considered by linear control theory. The controlling chaos by the
pole assignment method has been proposed [3]. The feedback gain of this controller
can be designed with assigned poles regarding the characteristic equation for the
variational equation [4, 5]. Extensions of the methods are applied to chaotic hybrid
systems [6]. In these conventional methods, the amplitude of the control input is
basically proportional to the error between the current state of the orbit and the UPP.
As mentioned above, the recurrence property of chaotic dynamics realizes that the
orbit will visit a neighborhood of the UPP in future, thus the control input can be
small at that moment.

Other nonlinear control schemes including the delayed feedback control [7] and
its extensions [8, 9] have been proposed. Related methods such as external force
control [10], and occasional proportional feedback [11–16] are also discussed from
a practical view point.

In these methods, the control input is basically added to the state or parameters
of the system. Thus the controller must vary these values which may be difficult to
change; e.g., in electrical circuits, the controller requires to change the amount of a
resistor or a capacitor quickly.

While, hybrid systems has been intensively studied for a decade [17]. In those
systems, a flow described by differential equations is interrupted by the discrete
events, and then an impulsive jumping or a switching of the governing differential
equations happens. Thus the flow may changes non-smoothly, and it may cause
peculiar bifurcations [18]; e.g., in chaotic spiking oscillators [19], state-dependent
switching generates two different flowswhere a bifurcation phenomena and a chaotic
response are guaranteed theoretically. In general, the switching mechanism is not
explicitly described in the differential equations, but it affects certainly dynamical
behavior of the system [20, 21]. In electric circuits, a variable threshold is realized by
an analog switch (multiplexer); therefore, to choose the threshold value as a control
input is reasonable.

For a specific hybrid system, the controlling chaos based on the linear control
theory can be realized by applying the Poincaré section on the border [6]. UPPs
in the derived discrete-time system are controlled with the same framework of the
conventional control method, i.e., the control input is added into a system parameter
or the state as a small perturbation successively. In other words, the whole control
system spends a certain amount of energy until the control scheme completes the
stabilization.

A threshold value in the given hybrid system is not used as the control parameter
because dynamical affection with perturbed threshold values has not been evaluated
yet. In the previous study [20] we clarified the derivatives and variational equations
of the given hybrid systems about threshold values. Thereby we apply these results
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to controlling chaos; namely, we try to design a control scheme with variations of
threshold values theoretically.

Now let us restate our purpose in this chapter. We stabilize a UPO embedded
within a chaotic attractor in a hybrid system by varying its threshold values. The
control system compares the current state variable with the threshold value, and
updates the threshold value instantly and slightly. The orbit starting from the current
Poincaré section (the threshold value) does not receive any control until it reaches
the next section. Although Murali and Sinha [22] have proposed a chaos controller
by featuring the perturbation of attached threshold values, the objective system is not
a hybrid system and the proposed controller stabilizes UPOs by clipping the voltage
of a system with a simple circuit. Parameter values of the controller are provided
by trial and error. In our method, the control vector is computed systematically by
applying the linear control theory. We demonstrate control results of a 1D switching
chaotic system and a 2D chaotic neuron, and evaluate its control performances as
the controller by specifying basins of attraction. Moreover, a related experiment is
given for the former system.

6.2 Design of Controller with Perturbation
of the Threshold Value

Let us consider the n-dimensional and m-tuple differential equations described by

dx

dt
= fi (x), i = 0, 1, . . . , m − 1, (6.1)

where t ∈ R is time, x ∈ R
n is the state and fi : R

n → R
n is a C∞ class function.

Suppose that Πi is a transversal section to the orbit and set x0 = x(0) ∈ Π0, then
the solution of (6.1) is given by

x(t) = ϕ(x0, t).

Now we provide Πi with a threshold value as follows:

Πi = {
x ∈ R

n| qi (x, θi ) = 0
}
,

where qi is a differentiable scalar function, and θi is a unique parameter that defines
the position of Πi . Note that Πi becomes also a local section, and θi is independent
from the vector field in (6.1). When an orbit governed by fi reaches the section
Πi , the governing function is changed to fi+1. If the orbit passing through several
sections reaches Π0 again, then m local maps are defined as follows:
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T0 : Π0 → Π1,

x0 �→ x1 = ϕ0(x0, τ0),

T1 : Π1 → Π2,

x1 �→ x2 = ϕ1(x1, τ1),
...

Tm−1 : Πm−1 → Π0,

xm−1 �→ x0 = ϕm−1(xm−1, τm−1),

(6.2)

where τi is the passage time from Πi to Πi+1, and depends on the state xi and
the parameter θi+1 of the local section Πi+1. Assume that y(k) ∈ Σ ⊂ R

n−1 is
a location on local coordinates, then there is the projection satisfying η(x(k)) =
y(k). Let the composite map of Ti , i = 0, 1, . . . , m − 1 be the solution starting in
η−1(y(0)) = x(0) ∈ Π0. From (6.2), the Poincaré map T is given by the following
composite map:

T (y(k), θ0, θ1, . . . , θm−1) = η ◦ Tm−1 ◦ · · · ◦ T1 ◦ T0 ◦ η−1.

Thus

y(k + 1) = T (y(k), θ0, θ1, . . . , θm−1).

When the orbit starting from x0 ∈ Π0 returns x0 itself, this orbit forms a periodic
orbit and it is defined as the fixed point by using the Poincaré map T as follows:

y0 = T (y0, θ0, . . . , θm−1).

The corresponding characteristic equation is given by

χ(μ) = det

(
∂T (y0)

∂y0
− μI

)
= 0.

To apply the pole assignment method, the derivatives of the Poincaré map are
required to compute a control gain [3]. The equations in (6.2) are, in fact, differen-
tiable with respect to the state, thus each derivative is given as follows:

∂Ti

∂xi
=

⎡

⎢
⎣I − 1

∂qi+1

∂x

∂ϕi

∂t

∂qi+1

∂θi+1

∂ϕi

∂t

⎤

⎥
⎦

∂ϕi

∂xi
,

∂T

∂y0
= ∂η

∂x

(
m∏

i=1

∂Tm−i

∂xm−i

)
∂η−1

∂y
, (6.3)
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∂Tj−1

∂θ j
= −1

∂q j

∂x

∂ϕ j−1

∂t

∂q j

∂θ j

∂ϕ j−1

∂t
,

∂T

∂θ j
= ∂η

∂x

m− j∏

i=1

∂Tm−i

∂xm−i

∂Tj−1

∂θ j
. (6.4)

We can suppose here that (∂qi+1/∂x) × (∂ϕi/∂t) and (∂q j/∂x) × (∂ϕ j−1/∂t) are
non-zero unless the orbit and sections are crossed tangentially.

Suppose that ξ(k) is a small perturbation and u(k) is intended to be a control
input defined later. When the parameter θ j is chosen as a controlling parameter, the
variational equations around the fixed point are expressed as

y(k) = y∗ + ξ(k), θ j (k) = θ j + u(k). (6.5)

After one iteration of T , we have

y(k + 1) = T (y∗ + ξ(k), θ j + u(k))

≈ y∗ + ∂T

∂y∗ ξ(k) + ∂T

∂θ j
u(k).

Therefore we obtain the difference equation defined by the derivative of T as follows:

ξ(k + 1) = Dy∗ξ(k) + Dθ j u(k), (6.6)

where Dy∗ = ∂T/∂y∗ and Dθ j = ∂T/∂θ j . Note that (6.6) holds when the state y(k)

is located to be adjacent to the fixed point y∗.
To stabilize ξ(k) at the origin, a state feedback control is designed as follows [5]:

u(k) = K Tξ(k), (6.7)

where T is a transpose and K is an appropriate n − 1 dimensional vector designed
by the pole assignment method. Thus we have

ξ(k + 1) = [Dy∗ + Dθ j K T]ξ(k). (6.8)

The corresponding characteristic equation is given by

χ(μ) = det(Dy∗ + Dθ j K T − μI ) = 0. (6.9)

The stability condition at the origin is |μi | < 1, i = 1, 2, . . . , n − 1.
In the conventional chaos control methods, a control input is applied into the

specific system parameter as a small perturbation. During a transition state, the
control system consumes certain control energy given by integration of such per-
turbations even if small. Thus ε = ∫ ∞

0 ||u(t)||dt is regarded as controlling energy.
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Fig. 6.1 Relationship between the flow and sections. Our method adjusts the position of the local
section Π0 only. The state and vector fields are not affected by the control input

In our method, the control input u(k) is added into θ j ; see (6.5). Figure6.1 depicts
a schematic diagram of the method. The location of the section Π0 defined by θ0 is
shifted by u(k) instantly when the orbit ϕ0(t, x0) departs from Π0. No actual con-
trol input is added into the system. The state-feedback is utilized only to determine
the dynamic threshold value, thus the orbit starting from the current threshold value
reaches the next controlled threshold value without any control energy.

It is noteworthy that this is an energy-saving control scheme. For example, let us
suppose that we want to put a ball into a bucket with bouncing once on the wall. In
Fig. 6.2a, an electrical fan modifies the trajectory of the ball by blowing against it.
The fan consumes electrical energy continuously during transient. The conventional
methods look like this situation. On the other hand, changing the position of the wall

Fig. 6.2 Concepts of controlling schemes. In a conventional method, a controller, e.g. an electrical
fan, has to blow the ball to put it to the bucket. Therefore, it requires a powerful controller to move
a ball. In the case to use the threshold value as a perturbation parameter, the controller only move
the position of a wall or a goal, and does not influence the ball directly
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also provides the same effect with (a), i.e., the original position of the wall may cause
failure of the shoot, but a desirable trajectory can be realized by letting the wall to be
in a proper position, see Fig. 6.2b. Realistically, not a little effort is required to move
the wall compared with a short-time operation of the fan, however, in the electric
circuit, such movement of the wall is easily realized, e.g., by a change of the value
of the threshold for an operational amplifier. Note that no control energy consumed
during this scheme. Only small energy is required when the old threshold value is
updated. The orbit runs without any control until it reaches the next threshold value.

6.3 A Simple Chaotic System

Let us consider a simple interrupt chaotic system [23] shown inFig. 6.3 as an example.
The switch is flipped by a certain rule depending on the state and the period. Assume
that v is the state variable, and then the normalized equation is given as follows:

v̇ = −v + E,

if t = nρ then E ← E1, if v > Er then E ← 0

where n ∈ N, E1 and Er are a direct voltage bias and a switching threshold value,
respectively. ρ is the period of the clock pulse input. Figure6.4 illustrates the dynami-
cal behavior. If the Poincaré section is defined as Π = {v ∈ R; t = nρ}, trajectories
stroke two types of solutions (Fig. 6.5), and they can be solved exactly, see, [24].
Therefore the system can be discretized by the Poincaré section, and redefined as
follows:

v′(k + 1) = g(v′(k)) =
⎧
⎨

⎩

(v′(k) − E1)e−ρ + E1, if v′(k) < d,

Er
v′(k) − E1

Er − E1
e−ρ, otherwise,

(6.10)

d = (Er − E1)e
ρ + E1.

Fig. 6.3 Circuit model of an
interrupt chaotic system. ρ
and Er represent the period
of the clock pulse input and
the switching threshold
value, respectively

−

+
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Fig. 6.4 The switching behavior. When the capacitor voltage reaches to the threshold value Er ,
the switch is flipped to the position B. If the time t is ρ, the switch is flipped to the position A

Fig. 6.5 The sketch of a simple chaotic interrupt system. There are two types of trajectories depend-
ing on the initial value v′(k). If v′(k) is less than d, the trajectory reaches v′(k + 1) without inter-
ruption. Otherwise, the trajectory reaches the threshold value Er , and E is changed to zero

(a) (b) (c)

(d)

Fig. 6.6 a A sample trajectories of a chaotic attractor with E1 = 3, and Er = 2.5. b, c, and d:
Period 1, 2 and 4 UPOs embedded in the chaos, respectively

Note that v′(k) = v(kρ). The solution ψ is defined by (6.11):

ψ(v′(0), k) = v′(k), ψ(v′(0), 0) = v′(0) = v(0). (6.11)

A chaotic attractor and three UPOs with parameters E1 = 3, Er = 2.5 and
ρ = 0.606 are shown in Fig. 6.6. Table6.1 lists the periods, states and multipliers of
some UPOs. Each orbit is confirmed to be a UPO.
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Table 6.1 Periods, states, and multipliers of UPOs in Fig. 6.6b–d

Attractor Period v∗ μ

(b) UPO1 1 2.195202 −2.727643125796

(c) UPO2 2 1.794216 −1.488007404341

2.34221

(d) UPO4 4 1.580281 −11.070830176867

2.225503

2.112552

2.420642

From Eqs. (6.8) and (6.9), we can choose the control gain as

K = q − Dv∗

DEr

,

where Dv∗ = ∂T/∂v∗ and DEr = ∂T/∂ Er are derivatives of T , and can be calculated
as follows:

∂T

∂v∗ = ∂ψ

∂v∗ (v∗, p),
∂ψ

∂v∗ (v∗, k + 1) = ∂g

∂v′

∣
∣
∣
∣
v′=v′(i)

∂ψ

∂v∗ (v∗, k),

∂ψ

∂v∗ (v∗, 0) = I, (6.12)

∂T

∂ Er
= ∂ψ

∂ Er
(v∗, p),

∂ψ

∂ Er
(v∗, k + 1) = ∂g

∂v′

∣
∣
∣
∣
v′=v′(i)

∂ψ

∂v∗ (v∗, k) + ∂g

∂ Er

∣
∣
∣
∣
v′=v′(i)

,

∂ψ

∂ Er
(v∗, 0) = 0, (6.13)

where the symbol p ∈ N
+ is the period of the target trajectory, and q is a desirable

pole for the controlling, and |q| < 1 is required for stabilization. When the clock
pulse is input at t = kρ, u(t) is generated as K (v∗ −v′(k)) from (6.7), and it is added
to the switching threshold Er . Figure6.7 shows the behavior of u(t) and the system.
When u(t) is applied to the system, the threshold value is changed, and the behavior
of the system is controlled.

6.3.1 Numerical Simulation

We show some results of the chaos control by referring to Fig. 6.8, where each graph
shows a transition response of the orbit and the threshold value. From this figure,
we confirm that each UPO is controlled to become a stable periodic orbit by several
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Fig. 6.7 Controller affects the switching threshold Er , thus the control input u(t) biases Er . By
doing this, the controller can control the trajectory without any effect on the dynamical equations
and vector fields

Fig. 6.8 Transition
responses of controlled
UPOs and the threshold
values. a Period-1,
b period-2 and c period-4
solutions shown in Table6.1
are stabilized. Note that u(t)
does not affect the state and
vector fields directly

(a)

(b)

(c)

renewals of u(t). The UPO4 in Fig. 6.8c has a longer renewal span than other UPOs
because a renewal span depends on the period of the target UPO.

Figure6.9 shows basins of attraction of UPOs with our controller in the q-v(0)
plane. White regions in the figure indicate the initial values in which the UPO could
be stabilized, and black regions indicate failure of the controlling. This shows that
all UPOs could be stabilized easily with relatively small initial values. Additionally,
UPOs can also be stabilized at a negative initial value. However, in larger initial
values, the UPO4 could not be controlled. The pole assignment method renews the
control signal on a periodic basis only. Therefore, this technique is less effective for
long-period UPOs such as the UPO4.

Figure6.6a reveals that the chaotic attractor wanders within 1.3 < v(t) < 2.5.
The basin of attraction in this range is shown by white regions in Fig. 6.9. Thus the
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(a) (b) (c)

Fig. 6.9 Basins of attraction resulting from a control experiment. (White stabilizable regions and
black unstabilizable regions.) The horizontal and vertical axes are the parameter q of the controller
and the initial state of the system, respectively

UPO1 and the UPO2 are stabilized robustly. The threshold control performs well for
this simple chaotic system.

6.3.2 Circuit Implementation

Owing to the sample holder synchronized with a clock pulse, our controller is very
easy to implement, thuswe show the circuit implementation and experimental results.

Figure6.10 shows the circuit diagram of the system and the controller. The sub-
tractor and the inverter 1 generate u(t), and the adder and the inverter 2 add the
control input to the switching threshold. The switching threshold generated by this
controller is applied to the system as a perturbation of the reference value Er .

Fig. 6.10 Circuit diagram of a simple chaotic system and the proposed controller. The controller is
composed of four parts. The variable resistance defines the controlling gain, and the voltage source
is the target voltage v∗
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(a) (b) (c)

Fig. 6.11 Results of the laboratory experiments. a UPO1, b UPO2, and c UPO4. (For each shot:
Top row the clock pulse input, 2nd row the timing of the renewal of the controlling signal, 3rd row
the voltage of the capacitor [10V/DIV], and the bottom the control input voltage [200mV/DIV].
The horizontal axis time [(a, b) 200 and (c) 500ms/DIV].) The controlling started at 800 ms. The
circuit is quickly converged to each periodic orbit after the control transition

We use ICs TC4053BP and LM325M as the logic switch and the comparator in
this experiment.

Figure6.11 shows a transition response of the circuit experiment. In these figures,
the top, 2nd, 3rd and bottom time series show the clock pulse input, the timing of
the renewal of the control signal, the voltage of the capacitor as the orbit v and the
control signal, respectively. It is confirmed that control inputs converged to zero, and
orbits are certainly stabilized at UPOs.

6.4 Izhikevich Model

Let us consider the Izhikevich model [25] as the second example. As is well known
that this model is two dimensional, and behaves chaotically in certain parameter
setting [26]. The equations are given as follows:

ż(t) =
(
0.04v + 5v + 140 − w + I
a(bv − w)

)
,

if v = θ, then v ← c, w ← w + d,

where z = (v, w) is the state, and I , a, b, c, d and θ are parameters. Especially, c
and d show the jumping dynamics, and θ defines the threshold value of the jumping.
Figure6.12 illustrates the dynamical behavior.

A chaotic attractor and three UPOs that are involved in it with parameters a = 0.2,
b = 2, c = −56, d = −16, I = −99 and θ = 30 are shown in Fig. 6.13. Table6.2
lists the periods, states and multipliers of several UPOs. Each orbit is confirmed to
be a UPO.
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Fig. 6.12 The sketch of the typical behavior of the Izhikevich model. If the state z(t) reaches the
threshold value θ , the state z(t) = (θ, w(t)) jumps to z(t) = (c, w(t) + d)

(a)

(b) (c) (d)

Fig. 6.13 Phase portraits of a chaotic attractor and UPOs by the numerical simulation, where
a = 0.2, b = 2, c = −56, d = −16, I = −99, and θ = 30. These UPOs are embedded in the
chaotic attractor

6.4.1 Controller

The stabilizing control is applied to UPOs in Table6.2. The Poincaré section is
defined as: Π = {

z ∈ R
2| q(z) = v − θ = 0

}
.
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Table 6.2 Periods, states, and multipliers of UPOs in Fig. 6.13

Attractor Period w∗ (v∗ = c = 56) μ

UPO1 1 −111.734371227672 −2.192843924301

UPO2 2 −114.280257572631 −9.910331534347

−109.950121533113

UPO3 3 −114.603487249294 +25.322864600880

−112.427919143969

−109.602553091223

From (6.8) and (6.9), the control gain is computed as follows:

K = q − Dw∗

Dθ

,

where Dw∗ = ∂T/∂w∗ and Dθ = ∂T/∂θ . The derivatives of the Poincaré map are
obtained by (6.3) and (6.4). Now q is a desirable pole for the controller, and |q| < 1 is
required for stabilization. The control input u(k) is generated by the gain K ∈ R and
the state z(t) as K (w∗ − w(τ )) from (6.7). It is renewed after the jumping dynamics,
and added to the threshold value θ as a perturbation. Since θ is only referred as
the threshold value of the jumping dynamics, u(k) does not affect the dynamical
equations during the transition state.

6.4.2 Numerical Simulation

We show some results of the chaos control in Fig. 6.14, where each diagram shows
a transition response of the orbit and the threshold value with the controlling signal.
From these figures, we confirmed that each UPO has been controlled to become a
stable periodic orbit by several renewals of u(t). To prevent generating big amplitude
of the control, a limiter is provided in the controller. The condition is given as follows:

if |u(t)| ≥ 20 then u(t) ← 0.

Figure6.15 shows the basins of attraction of UPOs with our controller in the
q-w(0) plane. White regions in Fig. 6.15 indicate the initial values in which the UPO
can be stabilized, and black regions indicate failure of the controlling.

Figure6.13 reveals that the chaotic attractor wanders within −125 < w < −100
on the Poincaré section. The basin of attraction in this range is shown by the white
regions in Fig. 6.15. Thus UPOs are stabilized robustly, and the threshold control for
the piecewise nonlinear system performs well.
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(a)

(b)

(c)

Fig. 6.14 Transition responses of controlled UPOs and the threshold values. a Period-1, b period-2
and c period-3 solutions shown in Table6.2 are stabilized, and the final threshold value is 30 [mV].
Note that u(t) is not applied to the system as a continuous input, but only updates the threshold
value

(a) (b) (c)

Fig. 6.15 Basins of attraction resulting from a control experiment. (White stabilizable regions and
black unstabilizable regions.) The horizontal and vertical axes are the parameter q of the controller
and the initial state of the system, respectively

6.5 Conclusion

We have proposed a control method for UPOs embedded in hybrid chaotic systems
by variable threshold values. First, we have explained how to design the controlling
gain of assigning poles with the perturbation of a switching threshold value. The
pole assignment method requires the derivatives of the Poincaré map about thresh-
old values, for which we have proposed the technique to calculate. We have also
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demonstrated the design of a controller and numerical simulations of the controlling
for a 1D switching chaotic system and a 2D chaotic neuron model. Some simulation
results indicate that our controller stabilizes target UPOs well. Additionally, we have
implemented our controller in a real circuit and presented experimental results. From
them, it is confirmed that our controller can be implemented in a real circuit, and
also well performed without technical difficulties.

For modeling biological and medical systems, the hybrid dynamical systems are
widely used [27]. For example, Akakura et al. [28] reported that the intermittent
hormone therapy could be effective in the hormone treatment of prostate cancer.
This therapy switches the treatment on and off based on the observation of the serum
prostate-specific antigen (PSA) level. Therefore, the therapy can be represented as a
hybrid dynamical system, and some PSA levels are defined as the switching threshold
values. The mathematical modeling of the intermittent hormone therapy has been
investigated intensively [29]. Since our method is available for general piecewise
nonlinear systems and the threshold perturbation seems to be related to the intermit-
tent hormone therapy, it is worth investigating a possibility whether our method is
applicable for the prostate cancer treatment or not.
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