
Chapter 5
Parametric Control to Avoid Bifurcation
Based on Maximum Local Lyapunov
Exponent

Ken’ichi Fujimoto, Tetsuya Yoshinaga, Tetsushi Ueta
and Kazuyuki Aihara

5.1 Introduction

Discrete-time dynamical systems [2] are widely used for mathematical modeling of
various systems. In many cases, desired behavior in nonlinear discrete-time dynam-
ical systems corresponds to stable fixed and periodic points. The values of system
parameters can be determined through bifurcation analysis [9, 10, 15] in advance
so that desired behavior is produced in a steady state. However, when the parameter
values are set far from appropriate values for any reason, the systems may not work
correctly owing to undesirable behavior caused by bifurcations of desired behavior,
for example, as alternans in the heart model [14].

Control systems to avoid bifurcations can prevent the emergence of undesirable
states and keep proper states of dynamical systems. Here, we assume that desired
behavior corresponds to a stable periodic point and consider a problem of avoiding
its bifurcations in order to construct robust and resilient dynamical systems that are
controlled so as not to make bifurcations.
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Bifurcations of stable periodic points occurwhen their degree of stability (stability
index) defined in Chap.2 becomes one, i.e., their bifurcations can be avoided by
suppressing the stability index below one. However, as described in Chap. 3, the
optimization of the stability index has a difficulty because the stability index is not
differentiable with respect to system parameters in general.

In this chapter, by using the maximum Lyapunov exponent (MLE) [11, 13, 16]
that is related to the stability index [4, 5, 11, 12], we present a parametric controller
that can avoid bifurcations of stable periodic points for unexpected parameter vari-
ation [6]. In practice, we substitute the maximum local LE (MLLE) [1, 3] defined
in finite time to relieve a difficulty in computation of the MLE. Compared with the
stability index, using the MLLE has the following advantages [6]: simple gradient
methods can be used to optimize the MLLE, and the calculations of the MLLE and
control input to avoid bifurcations can be realized along the passage of time. Exper-
imental results applied to the Hénon map [7] to evaluate whether our parametric
controller is effective to avoid bifurcations are also presented.

5.2 Problem Statement

Consider a discrete-time dynamical system described by

x(t + 1) = f (x(t), p(t), q(t)), (5.1)

where t denotes the discrete time, x ∈ R
N representing the set of real numbers

is the vector of state variables, and p ∈ R
M and q ∈ R

L are time-variant system
parameters. Here, we assume that f is known and differentiable, all states are always
observable, and the values of p can be forcibly changed for any reason and are out
of control, but q is handleable. We also assume that these parameter values can be
changed only at t = mT (m = 0, 1, 2, . . .) where T represents an interval to get the
value of the MLLE and control input to avoid bifurcations, which are defined later.

When all parameter values are constant, fixed and periodic points of f are defined
as follows. If a point x∗ ∈ R

N satisfies x∗ − f (x∗, p, q) = 0, then x∗ is a fixed point
of f . In the same way, a periodic point with period n, i.e. an n-periodic point, of f
is defined as a point x∗ such that x∗ − f n(x∗, p, q) = 0 and x∗ − f k(x∗, p, q) �= 0
for k < n where f n denotes the nth iterate of f . By describing the Jacobian matrix
of f as

D f (x(t), p, q) = ∂

∂x
f (x(t), p, q), (5.2)

we introduce the characteristic equation of an n-periodic point x∗ as

χ(x∗, p, q, μ) = det
(
μI − D f n(x∗, p, q)

) = 0, (5.3)

where I denotes the N × N identity matrix;μ is an eigenvalue of D f n(x∗, p, q) and
is called the characteristic multiplier of x∗.
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The stability index of an n-periodic point (x∗) is defined by using the maximum
modulus of its characteristic multipliers, i.e., it is equivalent to the spectral radius of
the Jacobian matrix, ρ (D f n(x∗, p, q)), where ρ(·) represents the spectral radius of
a matrix. Therefore, a periodic point x∗ is stable if and only if ρ (D f n(x∗, p, q)) < 1
and bifurcations of a stable periodic point occur when ρ (D f n(x∗, p, q)) = 1. The
parameter values at which bifurcations occur can be numerically found by using a
powerful computing method [9, 15].

We now assume that desired behavior corresponds to a stable periodic point and
treat a situation that bifurcations of desired behaviormay emerge owing to the forcible
variation of p. For the situation,we consider avoiding bifurcations of desired behavior
by adjusting the values of q only when the parameter values approach any bifurcation
points. Therefore, this problem resembles the problems treated in Chaps. 2, 3 and 4.

5.3 Proposed Method

From the aforementioned assumptions, the values of p and q are constant for the
duration of interval T . When an initial value x(mT ) at t = mT (m = 0, 1, 2, . . .)
that converges to a stable periodic point and a small perturbation w(mT ) ∈ R

N to
x(mT ) are given, the MLLE is defined as

λ(x(mT ), p, q, T ) = 1

T

(m+1)T −1∑

t=mT

ln‖w(t + 1)‖, (5.4)

where ‖·‖ represents the Euclidean norm of a vector. The trajectory of w(t + 1) is
obtained from the linearized system defined by

w(t + 1) = D f (x(t), p, q) · ν(t), (5.5)

where ν(t) = w(t)/‖w(t)‖. This normalization is to relieve a computational difficulty
in (5.4). In the following, we simplify the notation of λ(x(mT ), p, q, T ) as λ.

The problem of avoiding bifurcations of stable periodic points can be formulated
as the minimization problem of an objective function defined by

G(λ) = 1

2
(λ − H(λ))2 , (5.6)

where H is a map described as

H(λ) =
{

λ if λ ≤ λ∗,
λ∗ otherwise.

(5.7)

http://dx.doi.org/10.1007/978-4-431-55013-6_2
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The user-defined parameter λ∗ is set to a negative value close to zero; it is used not
only to detect the approach of the values of p and q to any bifurcation points but also
a set point to control λ when λ∗ < λ < 0. Since λ is the function with respect to q,
we can obtain a gradient system of (5.6), i.e. the updating rule of q, as

q((m + 1)T ) − q(mT ) = −η
∂G(λ)

∂q
= −η(λ − λ∗) ∂λ

∂q
, (5.8)

where η is a positive parameter given by users. The formulas to calculate the values of
∂λ/∂q can be explicitly expressed [6, 8] and their computations can be realized in real
time without off-line calculation to find the exact position of stable periodic points to
be controlled objects. Note that the formulas we derived [6] can be commonly used
in a variety of nonlinear discrete-time dynamical systems. By updating the values of
q according to (5.8) only when λ∗ < λ < 0, the MLLE can remain a negative value,
i.e., bifurcations of stable periodic points can be avoided.

5.4 Experimental Results

To evaluate whether the proposed parametric controller is effective, we carried out
several experiments for stable periodic points observed in the Hénon map [7]. The
dynamics of the Hénon map is described as

x1(t + 1) = 1 + x2(t) − p(t) · x1(t)
2, (5.9a)

x2(t + 1) = q(t) · x1(t), (5.9b)

where x1 and x2 are state variables and t is the discrete time. We here assumed that
p and q correspond to out-of-control and control parameters, respectively. In the
following experiments, we set T = 500, η = 0.1, and λ∗ = −0.2 in (5.4) and (5.8).

Before carrying out experiments, we analyzed bifurcations on fixed and periodic
points observed in (5.9). As shown in Fig. 5.1, we found a fixed point, n-periodic

Fig. 5.1 Bifurcation
diagram on fixed and
periodic points in the Hénon
map, MLLE, and blue
horizontal and red diagonal
curves corresponding to
parameter variation without
and with control
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points (n = 2, 4, 8), and their period-doubling bifurcations where the solid curve
with Pn represents the set of bifurcation points of the n-periodic point. The stable
fixed point is present in the left-hand-side parameter regions of the curve P1 and
the stable n-periodic point exists in the parameter regions surrounded by the curves
of P

n
2 and Pn . The MLLE on the fixed and periodic points is indicated in color,

for example, the color in the parameter regions surrounded by the curves of P1 and
P2 shows the MLLE on the stable two-periodic point. The relationship between the
MLLE and colors is shown in the right bar graph. We note that these analyses are not
necessary to avoid bifurcations using our controller, i.e., it was carried out only to
demonstrate whether bifurcation points are avoided in space of system parameters.

When we set (p(0), q(0)) = (0.5, 0.3) corresponding to the point “a” in Fig. 5.1
and (x1(0), x2(0)) = (1.43, 0.0), the two-periodic point was observed in a steady
state. By decreasing the value of p with 0.0015 every T along the blue horizontal
line from the initial point “a”, the two-periodic point bifurcated on the curve P1 and
instead the fixed point appeared at t � 93T as shown by the blue trajectory of x1 in
Fig. 5.2a. To avoid the period-doubling bifurcation, the proposed controller adjusted
the value of q so as to keep λ � λ∗ after t = 42T (Fig. 5.2b). The trajectory of the
controlled parameter is also shown as the red diagonal curve branching from the blue
horizontal line with the point “a” in Fig. 5.1. Consequently, the stable two-periodic
point could be observed for the duration of 0 ≤ t ≤ 100T without bifurcating.

We also analyzed avoiding the period-doubling bifurcation of the stable four-
periodic point. The initial values were set to (x1(0), x2(0)) = (1.04,−0.18) and
(p(0), q(0)) = (0.95, 0.3) corresponding to the point “b” in Fig. 5.1. When we
changed the value of p along the blue horizontal line starting from the point “b”, we
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Fig. 5.2 Experimental results of bifurcation avoidance for a two-periodic point in the Hénon map
displayed as time series. The blue and red sequences correspond to the trajectories both without
and with control a case without control b case with control



54 K. Fujimoto et al.

0 20T 40T 60T 80T 100T
0.2

0.3

0.4
0 20T 40T 60T 80T 100T

0.9

1

1.1
0 20T 40T 60T 80T 100T

−0.4
−0.2

0
0.2

0 20T 40T 60T 80T 100T
−1

−0.5

0

0.5

1

1.5

0 20T 40T 60T 80T 100T
0.2

0.3

0.4
0 20T 40T 60T 80T 100T

0.9

1

1.1
0 20T 40T 60T 80T 100T

−0.4
−0.2

0
0.2

0 20T 40T 60T 80T 100T
−1

−0.5

0

0.5

1

1.5(a) (b)

Fig. 5.3 Experimental results of bifurcation avoidance for a four-periodic point in the Hénon map
displayed as time series a case without control b case with control

observed the eight-periodic points and a chaotic state caused by a cascade of period-
doubling bifurcations across the curves of P4 and beyond (Figs. 5.1 and 5.3a).Hence,
the stable four-periodic point bifurcated and vanished at t � 70T owing to its period-
doubling bifurcation curve P4. In contrast, the red diagonal curve branching from
the blue horizontal line with the point “b” in Fig. 5.1 indicated that the proposed
controller was used to avoid the bifurcation curve of P4. As the results, as shown in
Fig. 5.3b, we could observe the four-periodic point for the duration of 0 ≤ t ≤ 100T .

5.5 Conclusion

In this chapter, we presented a parametric control system to avoid bifurcations of
stable periodic points in nonlinear discrete-time dynamical systems with parameter
variation. The parameter updating of our controller is theoretically derived from the
minimization of an objective function with respect to the MLLE. The computations
of the MLLE and parameter variation to avoid bifurcations can be realized in real
time without finding the exact positions of stable periodic points to be controlled
objects. Our experimental results showed that the proposed controller effectively
worked to avoid bifurcations of stable periodic points in the Hénon map. We note
that this control system can be also applied to avoid bifurcations of stable fixed
points. Further, the parameter-updating formulas we derived [6] can be widely used
to a variety of nonlinear discrete-time dynamical systems.
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