
Chapter 2
Robust Bifurcation Analysis Based
on Degree of Stability

Hiroyuki Kitajima, Tetsuya Yoshinaga, Jun-ichi Imura
and Kazuyuki Aihara

2.1 Introduction

Consider nonlinear dynamical systems modelled by parameterised differential and
difference equations. When the values of the system parameters vary from those at
which the system is currently operated, it can exhibit qualitative changes in behaviour
and a steady-state may disappear or become unstable through a bifurcation [1, 2].
Bifurcation analysis is clearly useful and a bifurcation diagram composed of bifur-
cation sets projected into parameter space displays various nonlinear phenomena
in dynamical systems. On the other hand, when considering a steady-state which is
closely approaching a bifurcation point due to unexpected factors like environmental
changes, major incidents, and aging, self recovery is an important strategy for con-
structing a robust and resilient system. Traditional bifurcation analysis is not effective
for this purpose because the global features of a bifurcation diagram in parameter
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space needs to be computed to enable system behaviour to be totally understood with
variations in parameters treated as measurable and directly controlled variables.

We present an approach to analyzing the system parameters based on the idea of
characterising a steady-state with the degree of stability as a function of the parame-
ters. The robust bifurcation analysis defined in this chapter provides a direct method
for finding the values of the parameters at which the dynamical system acquires a
steady-statewith a high degree of stability using amethod of optimization; thismakes
it possible to avoid bifurcations caused by the adverse effects of unexpected factors,
without having to prepare the bifurcation diagrams that are required in advance for
methods using traditional bifurcation analysis. As a result, we can design a system
that is robust and resilient to unexpected factors.

The bifurcation control [3–10] also deals with modifications to bifurcation char-
acteristics. It requires a feedback system to be constructed by adding control input,
whereas our method uses prescribed parameters to optimize the stability.

In the following, after introducing the theoretical results [11] of robust bifurca-
tion analysis, we will present numerical experiments of continuous-time dynamical
systems. An example of representative results obtained in a model of the ventricular
muscle cell suggests that our method has a possibility to suppress the alternans and
reduce the risk of sudden death.

2.2 System Description and Robust Bifurcation Analysis

This section gives an exact definition of robust bifurcation analysis, which we
describe both for equilibria in continuous-time dynamical systems and fixed points
in discrete-time dynamical systems.

2.2.1 Continuous-Time Systems

We consider parameterised autonomous differential equations for continuous-time
systems described by

dx

dt
= f (x, λ), t ∈ R, (2.1)

where x(t) = (x1, x2, . . . , xN )T ∈ RN is a state vector, λ = (λ1, λ2, . . . , λM )T ∈
RM is a measurable and directly controlled parameter vector, and f is assumed to be
a C∞ function for simplicity. Suppose that there exists an equilibrium x∗ satisfying

f (x∗, λ) = 0, (2.2)
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and it can be expressed locally as a function of the parameters λ, namely x∗(λ). The
Jacobian matrix or the derivative of f with respect to x at x = x∗ denoted by

D(x∗(λ), λ) := ∂ f (x, λ)

∂x

∣
∣
∣
∣
x=x∗(λ)

(2.3)

gives information to determine the stability of the equilibrium. The eigenvalues μ of
D at x∗ are obtained by solving the characteristic equation

det(μI − D(x∗(λ), λ)) = 0, (2.4)

where I is the identitymatrix.We call x∗ a hyperbolic equilibrium of the system, if D
is hyperbolic, i.e., all the real parts of the eigenvalues of D are different from zero. If
all eigenvalues lie in the left-half plane, then the equilibrium is asymptotically stable.
A local bifurcation occurs if an equilibrium loses its hyperbolicity due to continuous
parameter variations. The generic bifurcations of an equilibrium are the saddle-node
or tangent bifurcation and the Hopf bifurcation.

Themain objective of bifurcation analysis is to find sets of bifurcation values. The
bifurcation sets can be obtained by solving simultaneous equations consisting of the
equilibrium equation in (2.2) and the characteristic equation in (2.4) for unknown
variables x∗ and λm for m = 1, 2, . . . , M . Thus, the bifurcation sets for all m’s need
to be computed to enable system behaviour to be totally understood with parameter
variations.

2.2.2 Discrete-time Systems

Next, let us consider parameterised difference equations for discrete-time systems

x(k + 1) = g(x(k), λ), k = 1, 2, . . . ,

or equivalently, a map defined by

g : RN × RM → RN ; (x, λ) �→ g(x, λ), (2.5)

where x(k) and x are state vectors in RN ,λ ∈ RM are the parameters, and the function
g is assumed to be C∞. Note that, for simplicity, we have used the same symbols
for the state variables x , the parameters λ, and others in both continuous-time and
discrete-time systems. A discrete-time system can be a Poincaré map to take periodic
solutions into consideration in autonomous or periodically forced nonautonomous
differential equations. The existence of a fixed point x∗ satisfying

x∗ − g(x∗, λ) = 0 (2.6)
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is assumed. The Jacobian matrix of g at the fixed point x∗ is indicated by

D(x∗(λ), λ) := ∂g(x, λ)

∂x

∣
∣
∣
∣
x=x∗(λ)

. (2.7)

The roots of the characteristic equation denoted by

det(μI − D(x∗(λ), λ)) = 0 (2.8)

become the characteristic multipliers of the fixed point. The fixed point is hyper-
bolic, if all absolute values of the eigenvalues of D are different from unity. If every
characteristic multiplier of the hyperbolic fixed point is located inside the unit circle,
then it is asymptotically stable. When the hyperbolicity is destroyed by varying the
parameters, a local bifurcation occurs. Generic bifurcations are the tangent, period-
doubling, and Neimark-Sacker bifurcations, which correspond to the critical distri-
bution of characteristic multiplier μ such that μ = +1, μ = −1, and μ = eiθ with
i = √−1, respectively. Further, a pitchfork bifurcation can appear in a symmetric
system as a degenerate case of the tangent bifurcation.

We can simultaneously solve equations consisting of the fixed point equation
in (2.6) and the characteristic equation in (2.8) with a fixed μ depending on the
bifurcation conditions to obtain unknown bifurcation sets x∗ and λm .

2.2.3 Robust Bifurcation Analysis

Let μmax(D) be the maximum value of the real parts (or the absolute values) of
eigenvalues with respect to the matrix D for a continuous-time system in (2.3)
(or a discrete-time system in (2.7)). We denote this as a function of the parame-
ters as follows

ρ(λ) := μmax(D(x∗(λ), λ)).

Consider that the dynamics f or g with parameter values λ∗ defines a system after
being affected by unexpected factors, and the steady-state x∗(λ∗) has a low degree of
stability, which means that the value of ρ(λ∗) is near the condition of a bifurcation.
Then, the purpose of robust bifurcation analysis is to find λ ∈ RM such that

ρ(λ) < ρ(λ∗)

for given λ∗ ∈ RM satisfying

∂ρ(λ)

∂λm

∣
∣
∣
∣
λ=λ∗

�= 0
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for some m’s in {1, 2, . . . , M}. We assume that the unexpected factors do not change
during the process.

The corresponding eigenvalues can be used to make a contour along which the
real part of an eigenvalue is equal to zero to analyze the stability of an equilibrium
observed in a continuous-time system. This should be a curve in the parameter plane
defining the boundary of a region in which the equilibrium stably exists. The level
curves at a fixed maximum eigenvalue in the real part similarly imply the degree
of stability in parameter space. Robust bifurcation analysis provides a method for
finding the values of the parameters at which stable equilibrium has a higher degree
of stability. By obtaining a set of parameters

Λ := argmin
λ∈RM

ρ(λ) (2.9)

subject to ρ(λ) < ρ(λ∗), then it enables us to design a system that has a steady-state
with a high degree of stability. The same argument can be applied to a fixed point
observed in a discrete-time system by taking into consideration the absolute values
of eigenvalues instead of the real parts.

2.3 Method of Robust Bifurcation Analysis

We present a method for finding the set of parameters for the optimization problem
in (2.9), assuming that the characteristic multiplier with maximum absolute value is
real in the case of discrete-time systems.

Because the eigenvalues are not differentiable with respect to the parameters at
points where they coalesce, we consider the optimization problem below instead of
directly solving (2.9):

min
λ∈RM , ν≥ρ(λ)

J (λ, ν),

where

J (λ, ν) := det
(

ν I − D(x∗(λ), λ)
)

. (2.10)

The characteristic polynomial J is non-negative for ν ≥ ρ(λ) and the optimiza-
tion problem is formulated to minimise the maximum absolute value of eigenval-
ues of D(x∗(λ), λ) for discrete-time systems and the real parts of eigenvalues of
D(x∗(λ), λ) for continuous-time systems by varying the parameter λ. Note that the
method provides a uniform treatment of both continuous-time and discrete-time sys-
tems according to the above assumption on discrete-time systems, and that, when the
characteristic multiplier with maximum absolute value is negative for discrete-time
systems, the problem of optimization should be modified to maximise the minimum
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real characteristic multiplier (see Sect. 2.4.2 for an example). We use a continuous
gradient method to obtain the values of the parameters λ and the supplementary
variable ν. The descent flow is given by the initial value problem of the following
differential equations:

dλ

dτ
= −(ν − ρ(λ))

∂ J

∂λ

T
, (2.11)

dν

dτ
= −(ν − ρ(λ))

∂ J

∂ν
.

Here, the solution (λ(τ ), ν(τ )) is a function of the independent variable τ with the
initial conditions λ(0) = λ∗ and ν(0) > ρ(λ∗). When ν �= ρ(λ), the gradient parts
of the right hand sides in (2.11) are given by

∂ J

∂λm
= −tr

(

adj(ν I − D)
∂ D

∂λm

)

= −J tr

(

(ν I − D)−1 ∂ D

∂λm

)

, (2.12)

∂ J

∂ν
= tr (adj(ν I − D))

= J tr
(

(ν I − D)−1
)

, (2.13)

for m = 1, 2, . . . , M , where tr(·) and adj(·) correspond to the trace and adjugate. We
need the derivative of the (i, j) element of D in (2.12) with respect to the parameter
λm . For the difference system g, this is expressed by

∂

∂λm

∂gi

∂x j
=

N
∑

n=1

∂2gi

∂x j∂xn

∂x∗
n

∂λm
+ ∂2gi

∂x j∂λm
.

Here, ∂x∗
n/∂λm , n = 1, 2, . . . , N can be obtained by differentiating the fixed point

equation in (2.6) with respect to λm . Then, we have

∂x∗

∂λm
=

(

I − ∂g

∂x

∣
∣
∣
∣
x=x∗

)−1
∂g

∂λm

∣
∣
∣
∣
x=x∗

.

A similar argument can be applied to the differential dynamics f .
Let us present a theoretical result for the behaviour of the solution to the dynamical

system in (2.11). Note that the subspace of the state (λ, ν) ∈ RM+1 satisfying ν =
ρ(λ) is an equilibrium set of (2.11). Therefore, the trajectories cannot pass through
the set, according to the uniqueness of solutions for the initial value problem. This
leads to the fact that, if we choose initial values (λ(0), ν(0)) with ν(0) > ρ(λ(0)),
any solution (λ(τ ), ν(τ )) stays in the subspace ν > ρ(λ) for all τ > 0. Under this
condition, the derivative of J along the solution to (2.11) is given by
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d J

dτ

∣
∣
∣
∣
(2.11)

=
(

∂ J

∂λ

∂ J

∂ν

)

⎛

⎜
⎝

dλ

dτ
dν

dτ

⎞

⎟
⎠

= −(ν − ρ(λ))

(∥
∥
∥
∥

∂ J

∂λ

∥
∥
∥
∥

2

2
+

(
∂ J

∂ν

)2
)

< 0,

where the last inequality is obtained because ∇ J �= 0 if ν > ρ(λ). Then, we can
see that the value of J (λ(τ ), ν(τ )) with J > 0, for all τ , monotonically decreases
as time passes.

An interior point method [12] is effective when implementing the algorithm to
solve the optimization problem.

2.4 Numerical Examples

Here, we present two representative examples (equilibrium points and periodic
solutions) of our robust bifurcation analysis for continuous-time systems. An exam-
ple of a discrete-time system is shown in [11].

2.4.1 Equilibrium Point

The first example involves the following two-dimensional differential equations,
known as the BvP (Bonhöffer-van der Pol) equations:

dx1
dt

= 3

2
(x1 − 1

3
x31 + x2), (2.14)

dx2
dt

= −2

3
(−λ1 + x1 + λ2x2).

The result with our method is shown in Fig. 2.1. A contour plot of an eigenvalue
with the maximum real part is also presented. The curve T indicates the saddle-node
bifurcation of an equilibrium. Equation (2.14) has three equilibria in the gradation
region. A pair of stable and unstable equilibria disappears at the saddle-node bifur-
cation. Here, we try to find the parameter values at which the equilibrium has a high
degree of stability. The eigenvalue is−0.04 at the initial parameter values λ∗ labeled
by a. The eigenvalue becomes −0.47 at the parameter value b after our method was
applied. Thus, we can avoid the occurrence of the saddle-node bifurcation and obtain
a high degree of stability by automatically changing the parameterswhen considering
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Fig. 2.1 Bold solid line indicates the trace of maximum eigenvalue of the equilibrium in BvP
equations. Contour plot represents the maximum real part of the eigenvalues, as scaled by the
gradation bar. The maximum eigenvalue is equal to 0 on the saddle-node bifurcation curve denoted
by T

that the situation of the equilibrium with a low degree of stability at the parameter
values λ∗ near a bifurcation is caused by the effect of unexpected factors.

Figure2.2 outlines the basins of attraction for the stable equilibrium before and
after our method was applied. The phase diagrams in Fig. 2.2a, b correspond to the
parameter values a and b in Fig. 2.1. If we put the initial states in the shaded region,
we can obtain the targeted equilibrium labeled e in Fig. 2.2 as a steady-state. We can
see that our method expanded the basins of attraction by comparing Fig. 2.2a, b.
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Fig. 2.2 Basins of attraction of equilibria for BvP equations. Red open and blue closed circles
correspond to stable and unstable equilibria. The red open circle with label e and the blue closed
circle are very close in a because the parameter value is near the saddle-node bifurcation. The stable
manifolds of the saddle-type equilibrium (the blue closed circle) form the basin boundary between
shaded and unshaded regions



2 Robust Bifurcation Analysis Based on Degree of Stability 29

2.4.2 Periodic Solution

Next, we consider a periodic solution in (2.1).We can reduce it to a fixed point defined
by (2.6) by constructing a Poincaré map. Thus, we can use the method described
in Sect. 2.3. Here, we study a system of the Luo-Rudy (LR) model [13] with a
synaptic input (Isyn) described by the following 8-dimensional ordinary differential
equations:

C
dV

dt
= −(INa + ICa + IK + IK1 + IK p + Ib + Isyn),

dy

dt
= y∞ − y

τy
, (y = m, h, j, d, f, X), (2.15)

d[Ca]i

dt
= −10−4 ICa + 0.07(10−4 − [Ca]i ),

where ionic currents are given by

INa = 23m3hj (V − ENa), ICa = GCad f (V − ECa),

IK = G K X Xi (V − EK ), IK1 = G K1K1∞(V − EK1),

IK p = 0.0183K p(V − EK p ), Ib = 0.03921(V + 59.87),

Isyn = Gsyn(Vsyn − V )
τ1

τ2 − τ1

(

− exp

(

− t ′

τ1

)

+ exp

(

− t ′

τ2

))

.

Here, we define that the time t ′ is reset at every basic cycle length (BCL) defined
by the period of the external synaptic current Isyn . Detailed explanation and normal
parameter values for the LR model are given in [13].

The LR model is of the ventricular muscle cell. In a previous study, we clarified
alternans corresponding to a two-periodic state that appears by a period-doubling
bifurcation through changing the value of the parameter BCL. It is well known that
the alternans triggers cardiac electrical instability (ventricular arrhythmias) and may
cause sudden cardiac death. Thus, suppressing alternans is important for reducing the
risk of sudden death. Here, using our proposed algorithm we show the suppression
of the alternans.

Figure2.3 shows a result of maximising the smallest real characteristic multiplier
of the LRmodel in the parameter plane λ = (BCL, Gsyn). Initial parameter values are
marked by the closed circle, which is very close to the period-doubling bifurcation.
Then, the smallest real characteristic multiplier is −0.998. In Fig. 2.3, two-periodic
solutions generated by the period-doubling bifurcation exist in the shaded parameter
region. The waveform of the membrane potential after the period-doubling bifurca-
tion is shown in Fig. 2.4. This waveform shows a typical alternans. From this initial
point our algorithm changes the values of the parameters to avoid the bifurcation
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Fig. 2.3 Result of robust bifurcation analysis for the LR model. Initial parameter values are
Gsyn = 4.0, BCL = 362 and ν = −1.15. The solid and dashed curves indicate the period-
doubling bifurcation set in the parameter plane (BCL, Gsyn) and the trace of these parameter values
while our control method works. In the shaded region, stable two-periodic solutions generated by
the period-doubling bifurcation exist

Fig. 2.4 Waveforms of the
membrane potentials
(alternans). BCL = 376 and
Gsyn = 5.0
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(the trace is shown by the dashed curve.). After that, the smallest real characteristic
multiplier becomes −0.434. Thus, our method can avoid the alternans and reduce
the risk of sudden death.

2.5 Conclusion

Traditional bifurcation analysis in parameter space deals with contour or level sets of
the eigenvalue for a bifurcation, whereas our robust bifurcation analysis is used for
finding parameter sets that cause a gradient decrease in the bifurcating eigenvalue.
An automatic trace of the gradient based on our method can effectively construct a
robust system that has a steady-state with a high degree of stability.
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