
Chapter 11
Feedback Control of Spatial Patterns
in Reaction-Diffusion Systems

Kenji Kashima and Toshiyuki Ogawa

11.1 Introduction

There have been plenty of studies on pattern formation such as thermal
convection problems, Turing patterns in reaction-diffusion systems, phase transi-
tions in material sciences, and so on (see [1]). There, one can tune a parameter so
that the uniform stationary solution loses its stability against perturbations with cer-
tain non-zero wavelength. As a result, a spatially non-uniform stationary solution
may appear. Thus the local bifurcation analysis is a first step to understand the onset
of the pattern formation.

Let us consider an activator-inhibitor system of reaction-diffusion equations as
follows.

{
ut = DuΔu + f (u, v),
vt = DvΔv + g(u, v), x ∈ Ω.

(11.1)

Here, the typical reaction part of (11.1) is the following:

{
f (u, v) = u − u3 − v,
g(u, v) = 3u − 2v.

(11.2)
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This reaction-diffusion system (11.1) has a trivial stationary solution u = v = 0
under the Neumann boundary condition:

∂u

∂n
= ∂v

∂n
= 0, x ∈ ∂Ω

or the periodic boundary condition. Here, Ω is a bounded interval or a rectangle in
R or R2. Although the origin u = v = 0 is asymptotically stable under the ODE:

{
u̇ = f (u, v),
v̇ = g(u, v),

(11.3)

it might be possible to become unstable in the sense of (11.1). This is the so-called
Turing instability or diffusion induced instability which is realized by taking the
diffusion constants appropriately as we shall review in the following section.

Once we understand the linearized instability mechanism it turns out that non-
trivial patternsmay appear from the trivial solution by a standard bifurcation analysis.
As one can see in Fig. 11.1, solutions of (11.1) may become closer and closer to stripe
patterns. Now if the non-linear terms are not symmetric as in (11.2) and moreover
they include quadratic terms as

{
f (u, v) = u − u3 − au2 − v,
g(u, v) = 3u − 2v,

(11.4)

the dot-like patterns may appear rather than stripe.

Fig. 11.1 Time sequences of the numerical simulation for (11.1) and (11.4) in a square region with
the periodic boundary condition. The coefficient of the quadratic term a = 0 and a = 0.1 for the
upper and lower lines, respectively. The columns correspond to the time sequences t = 4, 10, 20, 50
from the left to right and only the value of u is displayed
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In Sect. 11.2, after reviewing the Turing instability from the linearized analysis
we introduce the idea which helps us understand the Turing instability mechanism
more clearly. In fact we can consider that the inhibitor in the 2-component reaction-
diffusion system plays a role of negative global feedback to the activator. By extend-
ing this idea we can construct 3-component reaction-diffusion systems which have
different types of instabilities.

Since we are considering the bounded interval or a rectangle with Neumann or
periodic boundary conditions the problem has the so-called SO(2) symmetry which
basically comes from translation invariance. Therefore at the bifurcation point more
than one critical modes may interact with each other. As a result, different types of
patterns emerge simultaneously. However, the stability of these solutions depends
on the nonlinear terms. Now the question is whether we can stabilize each non-
trivial pattern or not. Section11.3 is devoted to partially answer to this question. We
formulate and solve a feedback stabilization problem of unstable non-uniform spatial
pattern in reaction-diffusion systems. By considering spatial spectrum dynamics,
we obtain a finite dimensional approximation that takes over the semi-passivity of
the original partial differential equation. By virtue of this property, we can show
the diffusive coupling in the spatial frequency domain achieves the desired pattern
formation.

11.2 Pattern Formation by Global Feedback

11.2.1 Turing Instability

Turing instability is known to be the fundamental mechanism for the onset of pattern
formations. Let us first review the reason why the uniform stationary solution u =
v = 0 in the reaction-diffusion system (11.1) loses its stability. In fact the linearized
stability of the Fourier mode with wavenumber k is characterized by the matrix:

Mk =
(

fu − k2Du fv

gu gv − k2Dv

)
.

Since the fixed point u = v = 0 is assumed to be stable in the sense of the ODE
(11.3), it turns out that traceM0 = fu + gv < 0 and det M0 = fu gv − fvgu > 0 hold
true. Therefore, Mk has real part positive eigenvalues if and only if det Mk < 0, and
Mk has one real positive eigenvalue in this case. Now det Mk is given by

det Mk = fu gv − fvgu − (Dv fu + Du gv)k
2 + Du Dvk4.

Therefore, if Dv fu + Du gv > 0 and (Dv fu + Du gv)
2 − 4( fu gv − fvgu)Du Dv > 0

hold, then det Mk < 0 for some non-zero wavenumber k and, as a result, Mk has a



144 K. Kashima and T. Ogawa

Fig. 11.2 Two types of neutral stability curves. The onset of the pattern formation can be observed
when the neutral stability curve has the shape as in the right figure

positive eigenvalue. We have only to take Dv sufficiently large compared to Du to
satisfy these conditions. At the moment of stability change the Fourier mode with a
wave-number k ≈ kc = (

fu gv− fvgu
Du Dv

)1/4 may become unstable.

11.2.2 Interpretation of Turing Instability by Global Feedback

We shall introduce the idea that one can control the onset of pattern formation by a
global feedback (see also [2]). Or we can even explain the Turing instability mecha-
nism from the viewpoint of global feedback. Suppose we observe pattern formation
from a uniform rest state by changing a parameter p. More precisely, the uniform
stationary solution is stable when p is less than a critical value p∗ and becomes
unstable against certain wavenumber k∗ > 0 when p > p∗. Therefore pattern for-
mation can be observed in the system where the neutral stability curve p = φ(k)

has the property such that φ(k) attains its minimum at k∗ (see Fig. 11.2). Here, the
neutral stability curve is the stability boundary in the (k, p)-plane. In other words, it
is equivalent to say that the uniform stationary solution is stable against perturbations
of wavenumber k when p < φ(k) and it is unstable when p > φ(k). Let us consider
the following scalar reaction-diffusion equation as a simple example

ut = Duxx + pu, (11.5)

where D is a diffusion constant and p is a parameter. Since it is equivalent to

dũ

dt
= (p − Dk2)ũ

by Fourier transformation, the neutral stability curve is p − Dk2 = 0. Now, it is
clear that φ(k) = Dk2 does not attain its minimum at positive k and the instability
for k = 0 takes place earlier than any other non-trivial perturbation. Therefore we
can not observe pattern formations in scalar reaction-diffusion equations.
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Since the scalar reaction-diffusion equation is not sufficient to produce the onset
of patterns as we saw above let us consider the following activator-inhibitor type
reaction-diffusion equations:

{
ut = D1uxx + pu − sw,

τwt = D2wxx + u − w.
(11.6)

Here, s is assumed to be positive so that species w has negative feedback effect to
the species u. On the contrary, u gives positive effects to w. Moreover suppose that
the time constant for w is sufficiently small. Let us just plug 0 into τ for simplicity.
Then we have the following equations by using the Fourier transformation.

⎧⎨
⎩

dũ

dt
= (p − D1k2)ũ − sw̃,

0 = (−1 − D2k2)w̃ + ũ.
(11.7)

Since w̃ is solved as w̃ = ũ

1 + D2k2
, it turns out that the system (11.7) is equivalent

to the following scalar equation:

dũ

dt
=

(
p − D1k2 − s

1 + D2k2

)
ũ.

Therefore the neutral stability curve is given by

p = φ(k) := D1k2 + s

1 + D2k2
. (11.8)

Moreover we have the following inequality:

p = D1

D2
(1 + D2k2) + s

1 + D2k2
− D1

D2

≥ 2

√
D1s

D2
− D1

D2
.

Since the last equality holds true if and only if (1 + D2k2)2 = D2s

D1
, we have

Theorem 11.1 The following two conditions are equivalent to each other for the
system (11.6):

• The neutral stability curve p = φ(k) attains its minimum at k = k0 > 0.
• The constants s, D1, and D2 satisfy

D2s

D1
> 1. (11.9)
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Fig. 11.3 The neutral
stability curve (11.8). Here,
D1 = 0.1, D2 = 1, and
s = 5

k

p

Therefore the neutral stability curve has the desired property when the condition
(11.9) is satisfied (see Fig. 11.3).

We can study the bifurcation structure for the system (11.6) with nonlinear terms:

{
ut = D1uxx + pu − sw + f (u, w)

τwt = D2wxx + u − w
(11.10)

on a finite interval x ∈ [0, L] with periodic boundary condition. Here, f (u, w)

denotes higher order terms of u, w. Notice that the bifurcation structure with the
Neuman boundary condition is included in the periodic case. By the periodicity we
have only to consider countable Fourier modes with the fundamental wavenumber
k0 = 2π

L . We need to take into account wavenumber of the form k = mk0 where
m ∈ Z. It is convenient to draw the neutral stability curves Cm for each mode m > 0
in the (k0, p)-plane:

Cm := {(k0, p)|p = φ(mk0)}.

If the condition (11.9) is satisfiedwe can conclude that three different neutral stability
curves don’t intersect at the same point except for (0, 0). This means at most two
Fourier modes can be critical at the same time. We call these intersection points
degenerate bifurcation points. Moreover, it turns out that there are only degenerate
bifurcation points with adjacent modes n, n +1 on the first instability (see Fig. 11.4).
Therefore the dynamics near the first instability point is governed by the normal form
as follows:

Theorem 11.2 Assume the condition (11.9) is satisfied for (11.6). Suppose the sys-

tem size L > 2π
√

D1D2
s D2−D1

(k0 <

√
s D2−D1

D1D2
) there is one critical point p where the

first instability takes place for n mode (n > 0). There are the following two cases:

(I) m = ±n are the only critical modes.
(II) m = ±n,±n′ are the only critical modes.
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Fig. 11.4 The neutral
stability curves Cm for
m = 0, 1, 2 and 3 modes
(from black to light gray). It
turns out that more modes
become unstable when
k0 = 2π/L is small

k 0

p

Here, n′ = n + 1 or n′ = n − 1. Dynamics of the solutions to (11.10) close to first
instability points can be reduced to those on the center manifolds. Moreover they
are generically governed by the normal form by taking appropriate real numbers
a, b, c, d.:

(I) α̇n = λαn + a|αn|2αn + O(4),

(II)

{
α̇n = λαn + (a|αn|2 + b|αn′ |2)αn + O(4),

α̇n′ = μαn′ + (c|αn|2 + d|αn′ |2)αn′ + O(4).

Here, {αm ∈ C; |m| = n} and {αm ∈ C; |m| = n, n′} are the critical modes for the
cases (I) and (II), respectively. Moreover, n is assumed to be larger than 1 in the case
(II).

Proof Since (11.10) is translation invariant the center manifold and its dynamics
can be constructed so that they have SO(2) symmetry. Therefore the normal form
dose not have quadratic terms.

Remark 11.1 Dynamics close to the degenerate point between 1 and 2 is the excep-
tion of the above theorem. Armbruster, Guckenheimer and Holmes [3] studied the
interaction of two steady-state bifurcations in a system with O(2)-symmetry, assum-
ing 1:2 resonance for the wavenumbers associated with the critical modes. They
found there are rich variety of dynamics in the 1:2 resonance normal form:

ȧ1 = a1a2 + a1(μ1 + e11|a1|2 + e12|a2|2),
ȧ2 = ca2

1 + a2(μ2 + e21|a1|2 + e22|a2|2)

when the coefficient of the quadratic term c is negative. However, in this case, the
two coefficients of quadratic terms have the same sign and, as a result, c = +1 which
means there are no nontrivial dynamics.

Notice that we solved (1 − D2∂
2
x )w = u in the Fourier space. Since the inverse

Fourier image of
1

1 + D2k2
is e

− |x |√
D2 , w can be written as



148 K. Kashima and T. Ogawa

w = 1

2π

∫ +∞

−∞
e
− |x−y|√

D2 u(y)dy.

Theorem 11.3 The reaction-diffusion system (11.6) is equivalent to the following
equation when τ = 0:

ut = D1uxx + pu − s

2π

∫ +∞

−∞
e
− |x−y|√

D2 u(y)dy. (11.11)

It should be mentioned that Britton [4] studied the ecological pattern formation
also with global feedback. In the population growth model it is natural that intra-
specific competition for resources depends not simply on population density at one
point in space and time but on a weighted average involving values at all previous
points and at all points in space. Therefore he considered

ut = DΔu + u [p + αu − (1 + α)G ∗ ∗u] (11.12)

instead of

ut = DΔu + u(p − u), (11.13)

where, G ∗ ∗u is a weighted average of u:

G ∗ ∗u :=
∫
R

∫ t

−∞
G(x − y, t − s)u(y, s)dsdy.

Here, G is assumed to be positive, L1 and moreover,

∫
R

∫ t

−∞
G(x, t)dtdx = 1.

Notice that the Eq. (11.12) is equivalent to (11.11) when G(x, t) = δ(t)G̃(x) with
an appropriate G̃. Also (11.12) is equivalent to (11.14) when G(x, t) = δ(x)δ(t).

11.2.3 0:1:2-Mode Interaction

We have seen in the previous subsection that the normal form analysis for double
degenerate bifurcation points is sufficient to study the Eq. (11.10). On the other hand,
we can realize the triple degeneracy if we take another component into account in a
three component system as follows:
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k

p

0

s-r

Fig. 11.5 The neutral stability curves Cm = {(k0, p)|p = φ(mk0)} for m = 0, 1, 2 modes (black,
gray, light gray, respectively). Here, φ is given by (11.15). Three curves C0, C1, C2 intersect at
the same point for k0 	= 0 by taking the constants s, t, D1, D2, D3 appropriately. For instance,
s = 5, t = 3.88, D1 = 0.1, D2 = 2.0, D3 = 40.0 in the figure

ut = D1uxx + pu − sv + rw,

τvt = D2vxx + u − v,
τwt = D3wxx + u − w.

(11.14)

Here, τ is again assumed to be small positive number. We also assume negative
feedback (s > 0) effect from v and positive feedback (r > 0) from w. As a conse-
quence of similar discussions in the previous subsection the neutral stability curve
for (11.14) is given by

p = φ(k) := D1k2 + s

1 + D2k2
− r

1 + D3k2
. (11.15)

Now, by taking D3 
 D2 
 1 we can tune the parameters so that the system (11.14)
has triple degeneracy of 0:1:2 modes (see Fig. 11.5). The degenerate dynamics by
0:1:2 modes has been studied also by using the normal form analysis. In fact, Smith,
Moehlis and Holmes [5] studied the generic quadratic normal form:

ȧ0 = μ0a0 + 2(B1|a1|2 + B2|a2|2),
ȧ1 = a1a2 + a1(μ1 − B1a0),
ȧ2 = −a2

1 + a2(μ2 − B2a0).

They conclude there are a wide variety of dynamics including heteroclinic cycles.
On the other hand, Ogawa and Okuda [6] studied the cubic normal form also with
resonance terms under the up-down symmetry:

ż0 = (μ0 + a1z20 + a2z21 + a3z22)z0 + a4z21z2,
ż1 = (μ1 + b1z20 + b2z21 + b3z22)z1 + b4z0z1z2,
ż2 = (μ2 + c1z20 + c2z21 + c3z22)z2 + c4z0z21
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and they showed the existence of oscillatory bifurcation from the 1-mode stationary
solution not only in the general normal form but also in a particular 3-component
reaction-diffusion system.

11.2.4 Wave Instability

Let us introduce pattern formation by an oscillatory instability. We shall start with a
2-dimensional ODE system which has the Hopf bifurcation point:

(
u̇
v̇

)
=

(
p −p
q −1

) (
u
v

)
+

(
O(2)
O(2)

)
.

Here, q > 1 is a given constant and we control the parameter p. The linearized

matrix M =
(

p −p
q −1

)
has a characteristic polynomial λ2 − (traceM)λ + detM .

Therefore M has a pair of purely imaginary eigenvalues when p = 1. Now we are
interested in the bifurcation in the following reaction-diffusion system:

(
ut

vt

)
=

(
D1uxx

D2vxx

)
+

(
p −p
q −1

) (
u
v

)
+

(
f (u, v)
g(u, v)

)
. (11.16)

Here, f, g are assumed to consist of higher order terms of u and v. It turns out from
the linearized eigenvalue problem about 0 the stability of the trivial solution against
perturbation with wavenumber k can be controlled by the matrix

Mk =
(

p − D1k2 −p
q −1 − D2k2

)
.

Since the oscillatory instability takes place when traceMk = 0, the neutral stability
curve for the Hopf bifurcation is given by p = 1+ (D1 + D2)k2. Therefore, we can
not observe any stable spatially non-trivial oscillating patten.

Let us introduce the third component w which has the negative feedback effect to
the activator u and consider the following three component reaction-diffusion system
instead of (11.16):

⎛
⎝ ut

vt

τwt

⎞
⎠ =

⎛
⎝ D1uxx

D2vxx

D3wxx

⎞
⎠ +

⎛
⎝ p −p −s

q −1 0
1 0 −1

⎞
⎠

⎛
⎝ u

v
w

⎞
⎠ +

⎛
⎝ f (u, v)

g(u, v)
0

⎞
⎠ . (11.17)

Here, we also assume τ > 0 is sufficiently small. By a similar argument to (11.7)
we can obtain the linearized matrix for the wavenumber k when τ = 0 as follows:
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Ak =
(

p − D1k2 − s
1+D3k2

−p

q −1 − D2k2

)
.

Thus, a necessary condition for the Hopf instability is given by

traceAk = p − 1 − (D1 + D2)k
2 − s

1 + D3k2
= 0.

Let us also call it the neutral stability curve for the Hopf instability

p = φ(k) := 1 + (D1 + D2)k
2 + s

1 + D3k2
, (11.18)

although it is just a necessary condition. Because it has the same form as (11.8) we
have the following theorems.

Theorem 11.4 The following two conditions are equivalent to each other for the
system (11.17):

• The neutral stability curve p = φ(k) attains its minimum at k = k0 > 0.
• The constants s, D1 and D2 satisfy

s D3

D1 + D2
> 1. (11.19)

Theorem 11.5 The reaction-diffusion system (11.17) is equivalent to the following
equations when τ = 0:

ut = D1Δu + pu − pv + O(2) − s

2π

∫ +∞

−∞
e
− |x−y|√

D3 u(y)dy,

vt = D2Δv + qu − v + O(2).
(11.20)

We may have spatio-temporal oscillating patterns if the system (11.17) satisfies the
condition (11.19) and this is called “wave instability” (see also [7]).

If we consider the system on a finite interval (0, L) similarly to the above discus-
sion there are three cases in the sense of bifurcation analysis.

Theorem 11.6 Assume the condition (11.19) is satisfied for (11.17). For a given
system size L (or fundamental wavenumber k0) there is one critical point p where
the first instability takes place for n mode (n > 0). There are the following three
cases:

(I) m = ±n are the only critical modes.
(II) m = 0,±n are the only critical modes.
(III) m = ±n,±n′ are the only critical modes.

Here, n′ = n + 1 or n′ = n − 1 and all the critical modes are of the Hopf type.
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We need to distinguish two critical modes {αm ∈ C; |m| = n} in this case since
they are the Hopf type critical modes. We introduce the normal form only for the
case (I) for the simplicity.

Theorem 11.7 Under the same setting asTheorem 11.6 dynamics of the solutions to
(11.17) close to first instability points can be reduced to those on the center manifolds.
Moreover they are generically governed by the normal form by taking appropriate
real numbers a, b in the case (I):

{
α̇n = μαn + (a|αn|2 + b|α−n|2)αn + O(4),
˙α−n = μα−n + (b|αn|2 + a|α−n|2)α−n + O(4).

Notice that we don’t need any non-resonance condition in this theorem in con-
trast to the standard double Hopf theorem since we have SO(2) symmetry. We can
conclude that there are two typical oscillating solutions: rotating wave and stand-
ing wave solutions. Stability for both solutions depends on the normal form coef-
ficients a, b. It turns out from simple calculations that (a, b) = (−3,−6) when
f (u, v) = −u3, g(u, v) = 0. Therefore the rotating wave solution is stable while the
standing wave solution is unstable in this case (Fig. 11.6).

Notice that thewave instability criterion depends on s, D3 and D1+D2. Therefore
we can realize the situation where both Turing and wave instabilities take place at
the same value of p by changing the ratio between D1 and D2 without changing
D1 + D2. We draw the neutral stability curves for Turing instability (detAk = 0)
and wave instability (traceAk = 0) in Fig. 11.7 .

Again it should be mentioned that Gourley and Britton [8] studied the similar 2-
component reaction-diffusion system with the global feedback from the population
dynamics.

Fig. 11.6 Numerical simulations for (11.17) under the parameters L = 2π, p = 2.01, q =
1.5, s = 2.0, D1 = 0.8, D2 = 0.2, f (u, v) = −u3, and g(u, v) = 0 in the upper figure.
Therefore the standing wave is unstable and the solution converges to the rotating wave. By taking
another nonlinear terms such as f (u, v) = 0 and g(u, v) = uv
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0.5

1

1.5

2

4

6

8

Fig. 11.7 Two curves of detAk = 0 (upper curve) and traceAk = 0 (lower) are described
in the (k, p)-plane. Parameter sets are (s, D1, D2, D3, τ ) = (0.6, 0.24, 0.76, 50, 0.1) and
(s, D1, D2, D3, τ ) = (20, 0.2, 0.23, 1, 0.01) in left and right figures, respectively

11.2.5 Summary

In this section we introduce the idea that helps us understand the mechanism of the
Turing instability from the viewpoint of global feedback. It turns out that not only
the Turing instability but also other instabilities relating to pattern formation can be
obtained by the global feedback although it might not be described in the system
explicitly.

11.3 Selective Stabilization of Turing Patterns

11.3.1 Reaction-Diffusion Systems

In this section, we consider (11.1) with

{
f (u, v) = a11u − a12v − u3,

g(u, v) = a21u − a22v,
(11.21)

where the spatial domain Ω := [0, Lx ] × [0, L y] with the periodic boundary condi-
tion. We denote (Fig. 11.8)

z(t, x, y) =
[

u(t, x, y)

v(t, x, y)

]
∈ R

2.

This reaction-diffusion system has a trivial equilibrium pattern

zeq(x, y) ≡ 0 on Ω. (11.22)
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Fig. 11.8 Oscillating patterns observed when both Turing and wave instabilities coexist. Vertical
and horizontal axis denote the interval (0, L) and time, respectively

Even if the reaction term is globally stable, this trivial equilibrium of reaction-
diffusion system is not necessarily stable [9].

Consider the spatial Fourier transform

zm(t) :=
[

um(t)
vm(t)

]
:=

∫
Ω

z(t, x, y)pm(x, y)∗dxdy ∈ C
2 (11.23)

for wave number m = (mx , my) ∈ Z
2, where

pm(x, y) := 1√
Lx L y

e
2π j ( mx x

Lx
+ my y

L y
)
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and p∗
m is its complex conjugate. This satisfies

z(t, x, y) =
∑

m∈Z2

zm(t)e
2π j ( mx x

Lx
+ my y

L y
)
.

Note that

zm = z∗−m for all m ∈ Z
2 (11.24)

since the dynamics of our interest is real-valued. Then, it is useful to investigate the
dynamics of each spatial component {zm(t)}m∈Z2 instead of {z(t, x, y)}(x,y)∈Ω .

Let us consider the localized dynamics around the trivial pattern zeq . It should be
emphasized that each wave number has its decoupled local dynamics:

d

dt
zm(t) = Am zm(t), (11.25)

Am := A − sm D =:
[

ā11 −a12
a21 −ā22

]
, (11.26)

A :=
[

a11 −a12
a21 −a22

]
, D :=

[
Du 0
0 Dv

]
, (11.27)

sm :=
(
2πmx

Lx

)2

+
(
2πmy

L y

)2

. (11.28)

Note that when Du 	= Dv, stability of A does not necessarily guarantee stability of
Am . In such a case, the corresponding spatial wave pm grows around the zeq . Further
discussion on the pattern formation needs to consider the effect of nonlinearity.

11.3.2 Problem Formulation

Let us formulate a stabilization problem of unstable spatial patterns. We define the
set of wave numbers for which the local dynamics is unstable: We assume that the
finite set M ⊂ Z

2 satisfies

1. Am has at least one eigenvalue in C+ if m ∈ M ,
2. Am is stable if m /∈ ±M := {±m : m ∈ M }, and
3. if m ∈ M , then −m /∈ M .

Because Am = A−m and (11.24), we imposed the condition (3) in order to avoid
redundancy. It should be emphasized that sm1 = sm2 can hold for m1 	= m2.

Next, for the feedback control problem [10], we assume that we can observe and
also manipulate u in a spatially distributed manner. Thus, the controlled reaction-
diffusion system is given by
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⎧⎨
⎩

ut = DuΔu + f (u, v) + w,

vt = DvΔv + g(u, v), (x, y) ∈ Ω.

w = W (u),

(11.29)

Problem 11.1 Let θm ∈ R, m ∈ M be given. Under definitions and assumptions
above, find a feedback control law W (·) such that
1. z does not diverge,
2. zm for m /∈ ±M asymptotically vanishes,
3. e jθm zm for m ∈ M converges to the same nonzero value, and
4. w(t, x, y) asymptotically vanishes.

11.3.3 Feedback Control of Center Manifold Dynamics

In view of the assumption on the stability of Am , let us assume that zm is negligible
for m /∈ ±M to avoid infinite-dimensionality [11]. We analyze the dynamics that
zm should obey when there exists no third order resonance: If n1, n2, n3 ∈ M
satisfy n1 + n2 + n3 = m ∈ ±M , then at least one of ni ’s is equal to m.

By putting zm ≈ 0 for m /∈ ±M , the wave number m component appears
only from the combination (n1, n2, n3) = (m, n,−n) and its permutation, where
n ∈ ±M is arbitrary. Therefore, we obtain the following approximation in the
spatial frequency domain:

d

dt

[
um

vm

]
= Am

[
um

vm

]
+

⎡
⎢⎢⎣−um

⎛
⎝3|um |2 + 6

∑
n 	=m

|un|2
⎞
⎠

0

⎤
⎥⎥⎦ +

[
wm

0

]
, (11.30)

where

wm(t) :=
∫

Ω

w(t, x, y)p∗
m(x, y)dxdy.

Now, Problem 11.1 is naturally rephrased in this domain:

Problem 11.2 Consider the complex-valued system (11.30) and θm ∈ R, m ∈ M .
Then, find a feedback control law

wm(t) = Wm((un(t))n∈M )
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such that,

(1′) zm is ultimately bounded, that is, there exists (initial state independent) R > 0
such that

lim sup
t→∞

‖zm‖ < R for all m ∈ M , (11.31)

(3′-a)

lim
t→∞ |e jθm zm(t) − e jθn zn(t)| = 0 for all m, n ∈ M , (11.32)

(3′-b) the origin is locally unstable, and
(4′)

lim
t→∞ wm(t) = 0 for all m ∈ M . (11.33)

For this problem, we can simply obtain a desired control law by considering the
specific structure of Problem 11.2.

Theorem 11.8 For Problem 11.2, consider the following diffusive coupling on M

wm(t) = σ
∑

n∈M ,n 	=m

γmn(e jθn− jθm un(t) − um(t)), (11.34)

where γmn ≥ 0. If γmn is associated to a strongly connected1 graph onM , then there
exists σ > 0 such that the control law (11.34) with any strength σ > σ satisfies the
following:

• the condition (1′) in Problem 11.2 holds.
• If sm = s̄ (see (11.28) for the definition) for all m ∈ M , then (3′-a), (3′-b), (4′)

are also satisfied.

Proof Whenwe redefine e jθm zm as zm , this theorem is equivalent to [12, Theorem1].

As a next step, we need to embed this proposed control law onto the original
partial differential equation. The corresponding input pattern should be given as

w(t, x, y) := 2σ
∑

m∈M
Re

⎛
⎝pm

⎛
⎝ ∑

n 	=m, n∈M
γmn(e

j (θn−θm )un − um)

⎞
⎠

⎞
⎠ , (11.35)

where um for m ∈ M is defined by (11.23). We have already verified numerically
that this control law achieves the expected pattern formation.

1 For any mi , m j ∈ M , there exists a sequence {i1, i2, . . . , iK } on M such that γik ,ik+1 > 0 for all
k = 1, . . . , K − 1 and i1 = i , iK = j .
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11.3.4 Numerical Example

The simulation in this section is executed under the following parameter settings:
We take

A =
[
1 −1
3 −2

]
, (11.36)

Du = 0.2, (11.37)

Dv = 1.5, (11.38)

and

Lx = 8π√
1.8

, L y = Lx√
3
. (11.39)

For these parameters, Am has one (real) unstable eigenvalue for m = ±mi

m1 = (4, 0), m2 = (2, 2), m3 = (2,−2), (11.40)

and Am stable otherwise.
The initial patterns are randomly generated but sufficiently close to zeq . We can

expect this reaction-diffusion system can generate three roll patterns corresponding
to mi ’s in (11.40). Figure11.9 is the snapshots of u(t, x, y) for the uncontrolled
(w = 0) reaction-diffusion dynamics. Actually, all of observed patterns (including
transient ones) look like superpositions of these roll patterns.

Next, we attempt to stabilize another spacial pattern by feedback control. We
implement the distributed actuation (11.35) where

θm1 = 0, θm2 = 2π/3, θm3 = 4π/3

Fig. 11.9 Spatial pattern formation in uncontrolled reaction-diffusion systems. Depending on the
initial profile, only one of the three base roll patterns appears. a t = 0. b t = 3000. c t = 3500.
d t = 3600. e t = 3700. f t = 4000. g t = 4300. h t = 5000
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Fig. 11.10 Spatial pattern formation in controlled reaction-diffusion systems. Independent of the
initial profile, the rotational symmetry is achieved. a t = 0. b t = 2000. c t = 2500. d t = 2750.
e t = 3000. f t = 3500. g t = 4000. h t = 5000

and

γmn = 1, m 	= n, σ = 0.1. (11.41)

Figure11.10 shows the snapshots of u(t, x, y) for the controlled dynamics. We can
observe the convergence to another spatial pattern consisting of the three spatial
spectra.

11.3.5 Summary

In this section, we formulated a feedback stabilization problem of unstable non-
uniform spatial pattern in the reaction-diffusion systems. This problem was solved
in the finite dimensionally approximated system. The proposed law, which is a dif-
fusive coupling in the spatial spectrum, achieves desired spectrum consensus while
preserving the instability of the trivial equilibrium pattern.
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