
Chapter 1
Dynamic Robust Bifurcation Analysis

Masaki Inoue, Jun-ichi Imura, Kenji Kashima and Kazuyuki Aihara

1.1 Introduction

In dynamical systems theory, bifurcation phenomena have been studied extensively
[1–3]. Bifurcation is a phenomenon whereby a slight parametric perturbation in a
dynamical system produces qualitative changes in structure of the solutions. It can be
interpreted as bifurcation that because of a slight parameter change a stable equilib-
rium of differential equations is suddenly destabilized, and a stable periodic orbit can
arise near the equilibrium. In order to analyze such phenomena, bifurcation theory
has been studied and widely used for analysis and synthesis of complex behavior in
many research fields; systems biology and synthetic biology [4–14], power system
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analysis [15–18], epidemic model analysis [19–22], and so on. For example, bifurca-
tion theory has contributed to recent breakthroughs in systems biology and synthetic
biology. Bifurcation analysis methods have been adopted to study the functions or
characteristics of artificial bio-molecular systems, such as bio-molecular oscillators
[4, 10, 11] and bio-molecular switches [5, 9, 14]. In addition, the robustness of such
functions is identified with the volume of a parameter region in which the system
has oscillatory property or bistable equilibria.

Conventional bifurcation theory is not always applicable to the analysis and syn-
thesis of dynamical systemswith uncertainties. Bifurcation analysis methods assume
that mathematical models such as differential equations are completely known.
Hence, they are not applicable to dynamical systems with uncertainties, in particular,
large dynamic uncertainties . However, practical systems in the real world inevitably
involve not only static but dynamic uncertainties [23, 24]. In order to apply the the-
ory to such real-world systems, bifurcation analysis methods for uncertain dynamical
systems are required.

In this chapter, we study local bifurcation of an equilibrium for systems with
dynamic uncertainties. Note that a bifurcation point, i.e., a parameter value on which
bifurcation occurs, depends on each model in general. If a system contains uncer-
tainties and is described by a model set, we cannot find the specific bifurcation point.
Therefore,we evaluate the potential bifurcation region: the parameter region that con-
sists of all possible bifurcation points for a givenmodel set. In other words, the region
consists of all parameter points on which bifurcation can potentially occur. Evaluat-
ing the potential bifurcation region is referred to as the dynamic robust bifurcation
analysis problem in this chapter. To this end, we first propose a condition for exis-
tence of equilibria independently of uncertainties and evaluate their location. Then,
we derive a condition for robust hyperbolicity of potential equilibrium points, which
implies that the dimension of unstable manifolds is independent of uncertainties.
We consider parameter-dependent nonlinear systems with dynamic uncertainties,
and using the robust hyperbolicity condition we identify the region that contains all
potential bifurcation points. Finally, illustrative examples for robustness analysis of
normal forms for various types of bifurcation are presented.

Notation: The symbols σ {·} and ρ{·} represent the maximum singular value and
the spectrum radius of a matrix, respectively. RH∞ is the space that consists of all
proper and complex rational stable transfer function matrices. The H∞ norm and L∞
norm of a linear system S are defined by

‖S‖H∞ := sup
Re[s]>0

σ {S̄(s)}, ‖S‖L∞ := sup
Re[s]=0

σ {S̄(s)},

where S̄(s) is a transfer function matrix representation of S. The poles (system poles)
of a linear system ẋ = Ax are defined by the roots of the characteristic polynomial
φ(s) := det (sI − A). In addition, a stable pole, an unstable pole, and a neutral pole
are defined as poles lie in the open left half-plane, open right half-plane, and the
imaginary axis of the complex plane, respectively.
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1.2 Problem Formulation: Dynamic Robust
Bifurcation Analysis

Consider the feedback system (�,Δ) illustrated in Fig. 1.1. In the figure, Σ is the
nominal dynamical system composed of the linear dynamical system ΣL and the
nonlinear static function f . The linear system ΣL is described by the state equations

ΣL :

⎧
⎪⎨

⎪⎩

ẋ = A(μ)x + B1(μ)u1 + B2(μ)u2,

y1 = C1(μ)x + D11(μ)u1 + D12(μ)u2,

y2 = C2(μ)x + D21(μ)u1 + D22(μ)u2,

(1.1)

where x ∈ R
n is the state, u1 ∈ R

q and u2 ∈ R
m are the inputs, y1 ∈ R

p and
y2 ∈ R

� are the outputs, respectively, μ ∈ P ⊂ R
r is a static bifurcation parameter,

and A ∈ R
n×n, B1 ∈ R

n×q, B2 ∈ R
n×m, C1 ∈ R

p×n, C2 ∈ R
�×n, D11 ∈ R

p×q,
D12 ∈ R

p×m, D21 ∈ R
�×q, and D22 ∈ R

�×m are parameter-dependent matrices.
The input-to-output responses of the system ΣL can be characterized by the transfer
function representation as follows:

[
ȳ1(s)
ȳ2(s)

]

= Σ̄L(s)

[
ū1(s)
ū2(s)

]

, Σ̄L(s) :=
[

Σ̄L11(s) Σ̄L12(s)
Σ̄L21(s) Σ̄L22(s)

]

,

Σ̄Lij(s) = Ci(μ)(sIn − A(μ))−1Bj(μ) + Dij(μ),

(i, j) = (1, 1), (1, 2), (2, 1), (2, 2),

where s ∈ C and ū1(s), ū2(s), ȳ1(s), and ȳ2(s) represent the Laplace transformations
of the signals u1(t), u2(t), y1(t), and y2(t), respectively. The function f : R� ×R

r →
R

m is in C2(R� × R
r,Rm) and satisfies

u2 = f (y2, μ).

The symbolΔ in Fig. 1.1 expresses a dynamical systemaswell, but exact dynamics
and even the dimension of the inner state of Δ are uncertain. This Δ is called a
dynamic uncertainty. If there is no assumption on the dynamic uncertainty Δ, it is

Fig. 1.1 Feedback
representation of an
uncertain dynamical system:
A feedback system is
composed of the linear
dynamical system ΣL ,
nonlinear function f , and
dynamic uncertainty Δ
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impossible to further analyze the feedback system illustrated in Fig. 1.1. We assume
that the uncertainty is in the class of linear time-invariant systems.

Δ :
{

δ̇ = Adδ + Bdy1,
u1 = Cdδ + Ddy1,

(1.2)

where δ ∈ R
k is the state of Δ and the matrices Ad ∈ R

k×k , Bd ∈ R
k×p, Cd ∈ R

q×k ,
and Dd ∈ R

q×p are uncertain. Then, the input-to-output responses of Δ can be
characterized by the transfer function matrix Δ̄(s) := Cd(sI − Ad)−1Bd + Dd . In
addition, assume that the uncertainty Δ belongs to the given set of linear time-
invariant systems as

Δ ∈ U .

Discussion below is independent of the realization of Δ. The approach of this
chapter uses only an input-output relation of the uncertainty as Δ ∈ U . Although
we assumed above that the dynamic uncertainty Δ is a linear dynamical system for
simplifying discussion below, we can extend the results of the paper to nonlinear
uncertain cases.

For the uncertain feedback system (Σ,Δ), we consider the bifurcation analysis,
i.e., qualitative change of the flow by parametric variations in μ. In this formulation,
the uncertain feedback system (Σ,Δ) is described by amodel set. Since a bifurcation
point depends on each model, we cannot find a specific bifurcation point for such
a model set (see Fig. 1.2). For uncertain dynamical systems, the location and even
existence of equilibrium points are uncertain as well. We consider the following
dynamic robust bifurcation analysis problem of identifying the sets of all potential
bifurcation points for a given model set.

Definition 1.1 (Potential Bifurcation Region) For a given parameter regionP and a
given set of dynamic uncertaintiesU , the potential bifurcation regionPPB ⊆ P is
the set of parameter points that are bifurcation points of the feedback system (Σ,Δ)

for some Δ ∈ U .

Problem 1.1 (Robust Bifurcation Analysis) Consider the feedback system (Σ,Δ)

and Δ ∈ U . Then, find the potential bifurcation region PPB ⊆ P .

standard  bifurcation diagram 

uncertainty 
exists 

robust bifurcation diagram 

bifurcation point 

potential equilibria 

potential bifurcation points? 

p

x

p

x

Fig. 1.2 Bifurcation analysis: A pitchfork bifurcation diagram for a nominal dynamical system
is illustrated in the left figure. A robust bifurcation diagram for an uncertain dynamical system is
illustrated in the right figure, where the location and hyperbolicity of the equilibria are uncertain
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In dynamical systems theory, there is a similar concept called imperfect bifurcation
[25], which is a bifurcation phenomenon for dynamical systems with small uncer-
tainties. The uncertainties treated in the imperfect bifurcation problem are restricted
to the ones represented by a finite number of uncertain parameters. Thus, our formu-
lation covers a much wider class of uncertainties including dynamic uncertainties.

Bifurcation is defined as qualitative change of the structure of the solution in the
state space by small parametric variation inμ ∈ P (see e.g., [3]). In such phenomena,
we focus only on local bifurcation of an equilibrium. Suppose that for the feedback
system (Σ,Δ) and at a parameter point μ1 ∈ R, the number of equilibria is constant
and they are robustly hyperbolic for all Δ ∈ U . Further suppose that at a point
μ2( �= μ1) ∈ R there exists Δ such that the number of equilibria is varied from
the nominal system (Σ, 0) or an equilibrium loses hyperbolicity. Then, a potential
bifurcation point is included in ( μ1, μ2 ].

In addition, at a bifurcation point, an equilibrium for a dynamical system
disappears or loses its hyperbolicity. Therefore, we evaluate the potential bifurca-
tion region by finding the existence and location of an equilibrium and testifying
its hyperbolicity for the feedback system (Σ,Δ). The content of the next section is
composed of the three parts: Sect. 1.3.1 equilibrium analysis for the feedback system
(Σ,Δ), Sect. 1.3.2 hyperbolicity analysis, and Sect. 1.3.3 a solution to the dynamic
robust bifurcation analysis.

In the following, we assume that the uncertainty Δ is in the set of norm-bounded
linear stable systems U (γ ) as follows:

U (γ ) := { S̄(s) ∈ RH∞ : ‖S‖H∞ ≤ γ },

where a positive constant γ is an upper bound of the maximum gain of Δ. The set
U (γ ) can represent signal distortions, unknown signal delays, approximation errors
from PDEs to ODEs, and truncated errors of high index ODEs as long as their gains
are bounded [23, 24]. Utilizing this characterization by the value of γ , we solve the
dynamic robust bifurcation analysis problem.

Some types of bifurcation phenomena, such as saddle-node bifurcation, are said
to be robust. We qualitatively know the fact that if the constant γ is small so that
Δ ∈ U (γ ) has little effect to the dynamics of the feedback system (Σ,Δ), then, the
same bifurcation can occur generically by parametric variations in μ. On the other
hand, in this chapter, we will propose an analysis method to quantitatively evaluate
the parameter points that can be a bifurcation point for some Δ.

1.3 Equilibrium, Stability/Instability,
and Robustness Analysis

In Sects. 1.3.1 and 1.3.2, the parameter value of μ is fixed at a non-bifurcation point
inP . We first consider the uncertain feedback system (Σ,Δ) to derive an existence
condition for an equilibrium [ xe

T δe
T ]T. Then, we derive a robust hyperbolicity

condition for nonlinear systems with uncertainty-dependent equilibria.
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1.3.1 Equilibrium Analysis

We evaluate the existence and location of equilibria in an uncertain feedback system
(Σ,Δ). They are dependent on the steady-state gain of Δ, i.e., Δ̄(0). To this end, we
make an assumption on the system ΣL .

(A1) ΣL has no neutral poles.
The assumption A1, i.e., hyperbolicity of the origin of ΣL , is a technical assump-

tion that is used only for simplifying an existence condition of equilibria. This
assumption can be satisfied in any uncertain feedback system applying the loop
transformation technique to the feedback loop in ΣL and f .

If A1 holds, the matrix A(μ) is nonsingular. Then, we can evaluate the steady
state gain of Σ̄L(s) as

Σ̄L(0) = −
[

C1(μ)

C2(μ)

]

A−1(μ)
[

B1(μ) B2(μ)
] +

[
D11(μ) D12(μ)

D21(μ) D22(μ)

]

.

The steady state gain of Δ̄(s) can also be defined as

Δ̄(0) = −CdA−1
d Bd + Dd ∈ U0(γ ),

U0(γ ) := {D0 | σ̄ (D0) ∈ [ −γ, γ ]}.

We focus on the steady state output y2 = y2e to derive an existence condition
for an equilibrium [ xe

T δe
T ]T. In the following, we consider the static nonlinear

equation

y2 = Fu(ΣL(0), D0)f (y2, μ), (1.3)

where D0 ∈ R
q×p is a constant matrix and Fu(X, Y) is the upper LFT representation

of matrices X and Y as follows:

Fu(X, Y) = X21Y(I − X11Y)−1X12 + X22.

We also define the matrix

M(D0) := Fu

{[
Σ̄L11(0) Σ̄L12(0)
B1(μ) B2(μ)

]

, D0

}

to state the conditions of a theorem. We derive a condition for the existence of
equilibria as follows.

Theorem 1.1 For a given γ > 0, assume that A1 and σ̄ {Σ̄L11(0)} < 1/γ . Then,
for a fixed μ ∈ P , (T1) holds.

(T1) The feedback system (Σ,Δ) has no equilibrium for all Δ ∈ U (γ ) if and only
if (1.3) admits no real solution for all D0 ∈ U0(γ ).
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In addition, suppose that the matrix M(D0) is of full column rank for all D0 ∈ U0(γ ).
Then, (T2) holds.

(T2) The feedback system (Σ,Δ) has N(≥ 0) isolated equilibria for all Δ ∈ U (γ )

if and only if (1.3) admits N isolated real solutions y2 = y2(D0) for all D0 ∈
U0(γ ).

Proof From A1, at the steady state, we have

xe = −A−1{B1Δ̄(0)y1e + B2f (y2e, μ)}, (1.4)

δe = −A−1
d Bdy1e, (1.5)

[
y1e

y2e

]

= Σ̄L(0)

[
u1e

u2e

]

, u1e = Δ̄(0)y1e.

From the assumption that σ̄ {Σ̄L11(0)} < 1/γ holds, the matrix Fu(�̄L(0), D0) is
well-defined, and we can derive the static equations (1.3) and

y1e = Σ̄L12(0){Iq − Δ̄(0)Σ̄L11(0)}−1f (y2e, μ).

Then, for fixed Δ̄(0) and μ, all equilibria [ xT
e δT

e ]T can be parametrized only by the
steady state output y2e as (1.4) and (1.5). The existence of a real solution y2e of (1.3)
is equivalent to the existence of an equilibrium [ xe

T δe
T ]T. From this equivalence,

we can prove (T1).
By using the representation M(D0), the equilibrium xe of (1.4) can be writ-

ten as xe = −A−1(μ)M(Δ̄(0))f (y2e). From the assumption that M(D0) is of full
column rank for all D0 ∈ U0(γ ), the map from f (y2e) to xe is one-to-one. In
other words, two equilibria xe and x′

e( �= xe) are distinguishable by two vectors
f (y2e, μ) and f (y′

2e, μ)(�= f (y2e, μ)). In addition, a solution of the static equa-
tion (1.3) is determined by an intersection of linear and nonlinear functions. Then,
f (y2e, μ) �= f (y′

2e, μ) if and only if y2e �= y′
2e. The number of the isolated real solu-

tions y2e of (1.3) is equivalent to that of the isolated equilibria xe. This completes the
proof of Theorem 1.1. �


A solution of the static equation (1.3) with D0 = Δ(0) ∈ U0(γ ) is denoted by
y2ei(Δ), i = {1, 2, . . . , N}. The sets of such potential steady state outputs y2ei(Δ),
i = {1, 2, . . . , N} for all Δ ∈ U (γ ) are denoted by

Y2ei(γ ) := {y2ei(Δ) | Δ ∈ U (γ )}, i = {1, 2, . . . , N}. (1.6)

In the next subsection, we analyze hyperbolicity of the equilibria determined by the
elements of Y2ei(γ ).

To evaluate the setY2ei(γ ), we need to solve the nonlinear static equation (1.3) for
all D0 ∈ U0(γ ). In general, it is hard to precisely solve such equations. However, in
the case that f is monotonic, we can easily solve the equation. See the following two
remarks and two examples with single-input and single-output nonlinear feedback
systems.
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Fig. 1.3 Equilibrium
analysis for a monotonically
decreasing function: The
potential equilibrium of the
system is defined by the
intersection of the uncertain
function f (y2) and the
straight line y2. A unique
equilibrium exists for any
uncertainty

Fig. 1.4 Equilibrium
analysis for a monotonically
increasing function: The
potential equilibria of the
system is defined by the
intersections of the uncertain
function f (y2) and the
straight line y2. There can
exist three equilibria for
some uncertainty

Remark 1.1 Assume that f (y2, μ), y2 ≥ 0, � = m = 1 is a positive and monotoni-
cally decreasing function as illustrated in Fig. 1.3. In that case, there exists a unique
equilibrium. In addition, we can evaluate Y2e1(γ ) as follows. First, we evaluate the
range of the function

h(d0) =
{

d0Σ̄L21(0)Σ̄L12(0)

1 − d0Σ̄L11(0)
+ Σ̄L22(0)

}

for all d0 ∈ [ −γ, γ ]. If min h(d0) > 0 holds, then Y2e1(γ ) is given by [ y2emin,

y2emax ], where y2emin and y2emax are the unique solutions of y2=(min h(d0))f (y2, μ)

and y2 = (max h(d0))f (y2, μ), respectively. We can evaluate Y2e1(γ ) by simple
calculations.

Remark 1.2 Assume that f (y2, μ), y2 ≥ 0, � = m = 1 is monotonically increasing
and satisfies f (0) = 0 as illustrated in Fig. 1.4. Then, the equilibrium uniquely exists
and Y2e(γ0) = {0} if there is no solution of y2 = (max h(d0))f (y2, μ) except for
y2 = 0. There possibly exist multiple equilibria for such an activation function as
illustrated inFig. 1.4,which connects to the saddle-nodebifurcation and its robustness
analysis.
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1.3.2 Robust Hyperbolicity Analysis

From Theorem 1.1, we can evaluate the region that contains all potential equilibrium
points. Suppose that the number of the equilibria is constant for allΔ ∈ U (γ ). Then,
the set of potential equilibrium points associated with Y2ei(γ ) is evaluated by (1.4)
and (1.5), which are defined in the proof of Theorem 1.1 as

Xei(γ ) := {[ xe
T δe

T ]Tof (1.4) and (1.5) | y2ei ∈ Y2ei(γ )}.

In this subsection, we analyze hyperbolicity of potential equilibria in Xei(γ ), i =
{1, 2, . . . , N}.

We define robust hyperbolicity for eachXei(γ ), i = {1, 2, . . . , N} of the feedback
system (Σ,Δ).

Definition 1.2 (robust hyperbolicity) For a given γ > 0, the set Xei(γ ) is said to
be U (γ )-robustly hyperbolic if the following conditions hold.

(D1) The set Xei(γ ) is connected
(D2) The equilibrium [ xe

T δe
T ]T of (1.4) and (1.5) associatedwith y2ei(Δ) is hyper-

bolic for all Δ ∈ U (γ ).

In the work by the authors [26], the robust hyperbolicity is defined and its analysis
method is provided. The paper [26] assumes that the location of the unique equilib-
rium point xe is not affected by the uncertaintyΔ ∈ U (γ ). In other words, modeling
errors exist only at high-frequencies and Δ̄(0) = 0 holds. On the other hand, in this
chapter, the assumption of the steady state gain Δ̄(0) is removed. In that case, the
location and even existence of equilibria are uncertain as studied above.

Remark 1.3 The condition (D2) inDefinition 1.2 additionally implies that the dimen-
sion of the unstable manifolds at any equilibrium point [ xe

T δe
T ]T ∈ Xei(γ ) of the

feedback system (Σ,Δ) is constant for all Δ ∈ U (γ ) including the nominal case
that Δ = 0.

We derive a robust hyperbolicity condition for the set Xei(γ ). To this end, we
linearize the feedback system (Σ,Δ) at an equilibrium point [ xe

T δe
T ]T ∈ Xei(γ ).

The Jacobian matrix of the function f (y2, μ) for a fixed μ is denoted by

Jf (y2ei) = ∂f

∂y2

∣
∣
∣
∣
y2=y2ei

.

Suppose that I − Jf (y2ei)D22(μ) is nonsingular for all y2ei ∈ Y2ei(γ ), i.e., the
feedback loop in ΣL and f is well-posed. Then, the feedback system (Σ,Δ) is
linearized at the equilibrium point [ xe

T δe
T ]T, and is represented by the feedback

system (Σy2ei ,Δ) composed of the linearized system

Σy2ei :
{

ẋ = Â(μ)x + B̂(μ)u1,

y1 = Ĉ(μ)x + D̂(μ)u1,
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and the uncertainty Δ ∈ U (γ ), where

[
Â(μ) B̂(μ)

Ĉ(μ) D̂(μ)

]

= Fl

⎛

⎝

⎡

⎣
A(μ) B1(μ) B2(μ)

C1(μ) D11(μ) D12(μ)

C2(μ) D21(μ) D22(μ)

⎤

⎦ , Jf (y2ei)

⎞

⎠ ,

and Fl(X, Y) is the lower LFT representation as follows:

Fl(X, Y) = X12Y(I − X22Y)−1X21 + X11.

For a fixed steady state output y2ei and the linearized feedback system (Σy2ei ,Δ), a
robust hyperbolicity condition [26] is proposed based on the Nyquist stability crite-
rion [27]. The proof is essentially equivalent to that of the robust stability condition
[23, 24] except the assumption on stability and the norm of Σy2ei .

Theorem 1.2 [26] (linear robust hyperbolicity condition) Consider an equilibrium
xei and its corresponding steady state output y2ei in the feedback system (Σ,Δ)

for a fixed μ. Assume that the linearized system Σy2ei has no neutral pole and its
realization (Â(μ), B̂(μ), Ĉ(μ)) is controllable and observable. Then, for a given set
U (γ ), the set {xei}, that is, the equilibrium point xei, is U (γ )-robustly hyperbolic if
and only if

‖Σy2ei‖L∞ < 1/γ (1.7)

holds.

Proof (Sufficiency) We denote the transfer function matrix representation of Σy2ei

as
Σ̄y2ei(s) = Ĉ(μ)(sIn − Â(μ))−1B̂(μ) + D̂(μ).

Since ‖Σy2ei‖L∞‖Δ‖H∞ < 1 and

sup
Re[s]=0

ρ{Σ̄y2ei(s)Δ̄(s)} ≤ sup
Re[s]=0

σ {Σ̄y2ei(s)Δ̄(s)}

hold, there exists a positive constant ε1 such that

ρ{Σ̄y2ei(jω)Δ̄(jω)} ≤ 1 − ε1, ∀ω ∈ R.

Then, for some positive constant ε2,

|det{Ip − Σ̄y2ei(jω)Δ̄(jω)}| ≥ ε2, ∀ω ∈ R

holds. This implies that the linearized feedback system (Σy2ei ,Δ) is well-posed and
has no neutral pole.



1 Dynamic Robust Bifurcation Analysis 13

(Necessity) We suppose that (1.7) does not hold, that is, there exists ω1 such that

‖Σy2ei‖L∞ = σ {Σ̄y2ei(jω1)} ≥ 1/γ

holds to show that there exists Δ ∈ U (γ ) such that either a feedback system is
not well-posed or it has a neutral pole. First, by the singular value decomposition,
Σy2ei(jω1) can be represented by

Σ̄y2ei(jω1) = UΣgV∗, Σg =
⎡

⎣

σ1 0
. . .

0 0

⎤

⎦,

where U ∈ C
p×p, V ∈ C

q×q are unitary matrices and σ1 = ‖Σy2ei‖L∞ . Since all of
the diagonal elements of Σg other than the (1, 1) element are not necessary in the
following discussion, their descriptions are omitted. Next, we choose Δ̄(s) ∈ RH∞
such that

Δ̄(jω1) = VΣdU∗, Σd =

⎡

⎢
⎢
⎣

1/σ1 0 . . . 0
0 0
.
.
.

. . .
.
.
.

0 . . . 0

⎤

⎥
⎥
⎦

holds. Since 1/σ1 ≤ γ holds, Δ̄(s) ∈ U (γ ). In addition, by using E =
diag{ 1, 0,. . . , 0 } we have

det{Ip − Σ̄y2ei(jω1)Δ̄(jω1)} = det{I� − UΣgV∗VΣdU∗}
= |det(U)|2det{I� − E} = 0.

If ω1 = ∞, the feedback system (Σy2ei ,Δ) is not well-posed. Else if ω1 ∈ R,
det{Ip − Σ̄y2ei(jω)Δ̄(jω)} passes the origin of the complex plane and the feedback
system (Σy2ei ,Δ) has the neutral pole s = jω1. Then, the equilibrium is not U (γ )-
robustly hyperbolic. This completes the proof of Theorem 1.2. �


By Theorem 1.2, we can solve the problem of robust hyperbolicity analysis for
systems with dynamic uncertainties as well as the robust stability theorem [23]. The
theorem is a natural extension of the robust stability theorem [23]. In the above,
we use the L∞ norm to describe the condition of the theorem. The L∞ norm can
be defined for any hyperbolic linear time-invariant system, and is equivalent to the
H∞ norm for stable systems. Then, the condition of the theorem is reduced to the
well-known small-gain theorem [28].

Remark 1.4 (Computation of L∞ norm). To determine U (γ )-robust hyperbolicity
of an equilibrium of an uncertain system, we need to compute the L∞ norm of a
linear system. Some efficient L∞ norm computational algorithms are presented: for
example, the Hamiltonian matrix approach [29] and the Riccati equation and linear
matrix inequality approaches [30, 31].
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Remark 1.5 (Implication of L∞ norm). By simple calculations [23], we can show
that the L∞ norm of the linearized system Σy2ei is equivalent to the conditional L2
gain [32, 33]

sup
u∈L2cond\{0}

‖Σ̃y2ei u‖L2

‖u‖L2

, L2cond := {w ∈ L2 | Σ̃y2ei w ∈ L2},

where ‖ · ‖L2 is the L2 norm of a signal and Σ̃y2ei is the operator representation
of Σy2ei . The conditional L2 gain can be defined even for unstable and nonlinear
systems. This fact implies that it is possible to extend Theorem 1.2 as a condition
of linear systems for keeping the instability independently of uncertainties to that of
nonlinear systems.

From Theorems 1.1 and 1.2, we derive the robust hyperbolicity condition for the
nonlinear feedback system (Σ,Δ) with uncertainty-dependent equilibria.

Theorem 1.3 For a given set U (γ ), the set Xei(γ ) is U (γ )-robustly hyperbolic
if the set X2ei(γ ) is connected and the following conditions are satisfied for all
y2ei ∈ X2ei(γ ).

(C1) The linearized system Σy2ei has no neutral pole.
(C2) Realization (Â(μ), B̂(μ), Ĉ(μ)) is controllable and observable.
(C3) Inequality (1.7) holds.

We can numerically check (C1)–(C3) by partitioningXei(γ ). To check (C3), we
transform the linearized system (Σy2ei ,Δ) into another feedback form composed of
the linear system ΣL and the uncertainty diag{Jf (y2ei),Δ}. The uncertainty part has
block-diagonal structure and is included in the set diag{Jf (Xei(γ )),U (γ )}. Then,
we evaluate the hyperbolicity of the linear feedback system (ΣL, diag{Jf (y2ei),Δ})
by computing the structured singular value [34] ofΣL instead of the L∞ norm. Obvi-
ously, when the norm of Jf (y2ei) is sufficiently small, the theorem is corresponding
to the robust stability theorem [23] and the robust instability theorem [26, 35–37]
for uncertain linear systems.

1.3.3 Robust Bifurcation Analysis

We propose a method for robust bifurcation analysis that is derived by utilizing
Theorem 1.1 for equilibrium analysis and Theorem 1.3 for hyperbolicity analysis.
In the method, P̃PB(γ ) is defined as a region that includes the potential bifurcation
region PPB(γ ), i.e., PPB(γ ) ⊆ P̃PB(γ ).

Procedure for robust bifurcation analysis: Repeat the following Steps (i) and
(ii) for all parameter values μ ∈ P .
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(i) Solve the static equation (1.3) for all D0 = Δ̄(0) ∈ U0(γ ). If the number of
the real solutions y2ei(Δ) is constant for all Δ ∈ U (γ ) and each set Xei(γ ),
i = {1, 2, . . . , N} is connected, then, go to Step (ii). Otherwise μ ∈ PPB(γ ).

(ii) Define the linearized system Σy2ei and evaluate the L∞ norm for all y2ei ∈
Y2ei(γ ), i = {1, 2, . . . , N}. If all values of the L∞ norm are strictly less than
1/γ , then, μ ∈ P\P̃PB(γ ). Otherwise μ ∈ P̃PB(γ ).

By this procedure, we can evaluate the potential bifurcation regionPPB(γ )more
widely than the exact region. In general, to identify the type of bifurcation (saddle-
node-type, Hopf-type, and so on) that occurs inPPB(γ ), we need additional assump-
tions. For example, under the assumption that Δ̄(0) = 0, we can show that at a
saddle-node bifurcation point μSN for a nominal feedback system (Σ, 0) is robustly
a saddle-node bifurcation point for all uncertain feedback system (Σ,Δ). We can
prove this fact by showing that anyuncertain feedback system (Σ,Δ) satisfies saddle-
node bifurcation theorem (see e.g., Theorem2.2 in [1]) as long as Δ̄(0) = 0.

1.4 Examples of Robust Bifurcation Analysis

We illustrate a procedure of dynamic robust bifurcation analysis in the following
examples for normal forms of various types of bifurcation.

1.4.1 Robustness Analysis of Saddle-Node Bifurcation

Let us consider the followingnormal form for saddle-node bifurcationwith a dynamic
uncertainty:

ẋ = x2 + μ + u1, u1 = Δx, Δ ∈ U (γ ).

This uncertainmodel iswritten by the feedback form illustrated in Fig. 1.1To evaluate
the potential bifurcation region, (1) first we study the existence and location of
equilibria and (2) then testify the robust hyperbolicity of potential equilibria.

(1) Note that the equilibria are affected by the steady state gain D0 = Δ(0) ∈
U0(γ ) and are determined by the intersection of Δ0x and f (x) = x2 + μ. The
equilibria exist at

xei(D0) = −D0/2 ±
√

D2
0/4 − μ, i = 1, 2

forμ ≤ D2
0/4,whereas nopoint exists forμ > D2

0/4. For anyuncertaintyΔ ∈ U (γ ),
two equilibrium points encounter each other and vanish at μ ∈ [ 0, γ 2/4 ] along
the parameter changing as illustrated in Fig. 1.5. This implies that the saddle-node
bifurcation occurs, i.e., the number of the equilibria is varied by parameter variation,
on [ 0, γ 2/4 ] as long as Δ ∈ U (γ ).

http://dx.doi.org/10.1007/978-4-431-55013-6_2
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Fig. 1.5 Robust bifurcation analysis for saddle-node bifurcation (γ = 0.5, μ ∈ P := [−1, 1]):
The location and existence of the equilibria are affected by the uncertainties. The hyperbolicity of
equilibria can be impaired for some uncertainty in the parameter region [−3γ 2/4, 0 ] and they can
disappear and saddle-node bifurcation occurs in [ 0, γ 2/4 ]

(2) We further study the robust hyperbolicity of the equilibria for bifurcation
analysis. Even if the equilibria exist, bifurcation can occur by hyperbolicity being
impaired. Linearize the nonlinear feedback system at the points x = xe to obtain

Σy2ei :
{ ˙̃x = 2xex̃ + u1,

y1 = x̃ + xe,

where x̃ := x − xe. From Theorem 1.3 for a fixed μ, the equilibria xe1 and xe1 are
hyperbolic for all Δ ∈ U (γ ) if the L∞ norms of the linearized systems are strictly
less than 1/γ for all D0 ∈ U0(γ ). Therefore, we can show that the equilibria are
hyperbolic for all μ < −3γ 2/4 and there is no bifurcation point in the parameter
region, although bifurcation occurs atμ ∈ [ −3γ 2/4, γ 2/4 ] as illustrated in Fig. 1.5.

1.4.2 Robustness Analysis of Hopf Bifurcation

Consider the normal form for Hopf bifurcation with a dynamic uncertainty. The
uncertain system is represented by the feedback form that is illustrated in Fig. 1.1,
where ΣL , f , and Δ are given by

ΣL :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ =
[

μ −1
1 μ

]

x +
[
0
1

]

u1 + u2

y1 = [
1 0

]
x

y2 = x

, f (y) = −|y|22y, Δ ∈ U (γ ).
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When u1 = 0, the differential equation composed of ΣL and f has the unique
equilibrium at the origin for any parameter μ ∈ R. The existence and location of the
equilibrium are independent of the feedback-type uncertainty. We perform dynamic
robust bifurcation analysis of the origin. To this end, we have the linearized system
Σy2ei that is the same as ΣL to compute the L∞ norm

‖Σy2ei‖L∞ =
{
1/|2μ|, 0 < |μ| ≤ 1,

1/(μ2 + 1), |μ| > 1.

Then, we evaluate the potential bifurcation region for the origin by

PPB(γ ) ⊆
{

[ −γ /2, γ /2 ], 0 < γ ≤ 2,

[ −√
γ − 1,

√
γ − 1 ], γ > 2.

1.5 Conclusion

In this chapter, we integrated a concept of bifurcation in dynamical systems theory
and that of robustness analysis in control systems theory to propose dynamic robust
bifurcation analysis. In the analysis, given an uncertain system described by a model
set, we obtain an outer approximation of all the possible bifurcation points.

Acknowledgments The authors gratefully acknowledge Takayuki Arai, Masayasu Suzuki, and
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References

1. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press,
Boca Raton (1998)

2. Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd edn.
Springer, New York (2003)

3. Kuznetsov, Y.: Elements of Applied Bifurcation Theory, 3rd edn. Springer, New York (2004)
4. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature

403, 335–338 (2000)
5. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia

coli. Nature 403, 339–342 (2000)
6. Tyson, J.J., Chen, K., Novak, B.: Network dynamics and cell physiology. Nat. Rev. Mol. Cell

Biol. 2(12), 908–916 (2001)
7. Tyson, J.J., Chen, K., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory

and signaling pathways in the cell. Curr. Opin. Cell Biol. 15(2), 221–231 (2003)
8. Swat,M., Kel, A., Herzel, H.: Bifurcation analysis of the regulatorymodules of the mammalian

G1/S transition. Bioinformatics 20(10), 1506–1511 (2004)
9. Angeli, D., Ferrell Jr, J.E., Sontag, E.D.: Detection ofmultistability, bifurcations, and hysteresis

in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA 101(7),
1822–1827 (2004)



18 M. Inoue et al.

10. Fung, E., Wong, W.W., Suen, J.K., Bulter, T., Lee, S., Liao, J.C.: A synthetic gene-metabolic
oscillator. Nature 435, 118–122 (2005)

11. Wong, W.W., Tsai, T.Y., Liao, J.C.: Single-cell zeroth-order protein degradation enhances the
robustness of synthetic oscillator. Mol. Syst. Biol. 3, 130 (2007)

12. Chen, L., Wang, R., Li, C., Aihara, K.: Modeling Biomolecular Networks in Cells: Structures
and Dynamics. Springer, New York (2010)

13. Cosentino, C., Bates, D.: Feedback Control in Systems Biology. Chapman & Hall, CRC, Boca
Raton (2011)

14. Padirac, A., Fujii, T., Rondelez, Y.: Bottom-up construction of in vitro switchable memories.
Proc. Natl. Acad. Sci. USA 109(47), 19047–19048 (2012)

15. Dobson, I.: Observations on the geometry of saddle node bifurcation and voltage collapse in
electrical power systems. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 39(3), 240–243
(1992)

16. Dobson, I., Liming, L.: Computing an optimum direction in control space to avoid saddle node
bifurcation and voltage collapse in electric power systems. IEEETrans. Autom. Control 37(10),
1616–1620 (1992)

17. Ajjarapu, V., Lee, B.: Bifurcation theory and its application to nonlinear dynamical phenomena
in an electrical power system. IEEE Trans. Power Syst. 7(1), 424–431 (1992)

18. Varghese, M., Wu, F., Varaiya, P.: Bifurcations associated with sub-synchronous resonance.
IEEE Trans. Power Syst. 13(1), 139–144 (1998)

19. van denDriessche, P.,Watmough, J.:A simpleSIS epidemicmodelwith a backward bifurcation.
J. Math. Biol. 40(6), 525–540 (2000)

20. Dodds, P.S., Watts, D.J.: Universal behavior in a generalized model of contagion. Phys. Rev.
Lett. 92(21), 218701 (2004)

21. Gross, T.: DfLima, C.J.D., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev.
Lett. 96(20), 208701 (2006)

22. Wang,W.: Backward bifurcation of an epidemicmodelwith treatment.Math. BioSci. 201(1–2),
58–71 (2006)

23. Zhou, K., Doyle, J.C., Glover, K.: Robust and Optimal Control. Prentice Hall, Upper Saddle
River (1996)

24. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design, 2nd
edn. Wiley-Interscience, New York (2005)

25. Ikeda, K., Murota, Z.: Imperfect Bifurcation in Structures and Materials: Engineering Use of
Group-Theoretic Bifurcation Theory, 2nd edn. Springer, New York (2010)

26. Inoue,M., Imura, J., Kashima, K., Aihara, K.: Robust bifurcation analysis based on the Nyquist
stability criterion. In: Proceedings of 52nd IEEE Conference on Decision and Control, pp.
1768–1773 (2013)

27. Nyquist, H.: Regeneration theory. Bell Syst. Tech. J. 11(1), 126–147 (1932)
28. Zames, G.: On the input-output stability of nonlinear time-varying feedback systems, Parts I

and II. IEEE Trans. Autom. Control 11, 228–238 and 465–476 (1966)
29. Bruinsma,N.A., Steinbuch,M.:A fast algorithm to compute theH∞-normof a transfer function

matrix. Syst. Control Lett. 14(4), 287–293 (1990)
30. Willems, J.C.: Least squares stationary optimal control and the algebraic Riccati equation.

IEEE Trans. Autom. Control 16(6), 621–634 (1971)
31. Stoorvogel, A.A.: Stabilizing solutions of the H∞ algebraic Riccati equation. Linear Algebra

Appl. 240, 153–172 (1996)
32. Takeda, S., Bergen, A.R.: Instability of feedback systems by orthogonal decomposition of L2.

IEEE Trans. Autom. Control 18(6), 631–636 (1973)
33. Desoer, C.A., Vidyasagar, M.: Feedback Systems: Input-Output Properties, SIAM (1975)
34. Doyle, J.: Analysis of feedback systems with structured uncertainties. IEE Proc. D (Control

Theory Appl.) 129(6), 242–250 (1982)



1 Dynamic Robust Bifurcation Analysis 19

35. Inoue, M., Imura, J., Kashima, K., Arai, T., Aihara, K.: An instability condition for uncertain
systems toward robust bifurcation analysis. In: Proceedings of European Control Conference
2013, pp. 3264–3269 (2013)

36. Inoue, M., Imura, J., Kashima, K., Aihara, K.: Robust bifurcation analysis of systems with
dynamic uncertainties. Int. J. Bifurcat. Chaos 23(9), 1350157 (2013)

37. Inoue, M., Arai, T., Imura, J., Kashima, K., Aihara, K.: Robust stability and instability of non-
linear feedback system with uncertainty-dependent equilibrium. In: Proceedings of European
Control Conference 2014, pp. 1486–1491 (2014)


	1 Dynamic Robust Bifurcation Analysis
	1.1 Introduction
	1.2 Problem Formulation: Dynamic Robust  Bifurcation Analysis
	1.3 Equilibrium, Stability/Instability,  and Robustness Analysis
	1.3.1 Equilibrium Analysis
	1.3.2 Robust Hyperbolicity Analysis
	1.3.3 Robust Bifurcation Analysis

	1.4 Examples of Robust Bifurcation Analysis
	1.4.1 Robustness Analysis of Saddle-Node Bifurcation
	1.4.2 Robustness Analysis of Hopf Bifurcation

	1.5 Conclusion
	References


