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Preface

Recent advanced communication and information technologies have attracted our
attention to developments of highly dependable, strongly resilient, and energy-
efficient systems with applications to intelligent transportation systems (ITS), smart
grids, high-level medical diagnosis/treatment systems, and so on. Such systems in
general involve complex behavior induced by interactions among subsystems, and
complex network structure as well as a large number of components. We need to
analyze such complex behavior for capturing the intrinsic properties of the systems
and to design control systems for realizing the desirable behavior. Both dynamical
systems theory and control systems theory will play indispensable and central roles
in addressing such issues.

Dynamical systems theory originated from Newton’s motion equations in the
seventeenth century, and has been founded by Poincaré’s great contributions late in
the nineteenth century. After that, various mathematical methods such as ergodic
theory, stability theory of periodic solutions including equilibrium points, and
bifurcation theory for nonlinear dynamical systems have been developed, and since
the late 1970s, they have been extended to different research topics on more
complex phenomena/control such as bifurcations to chaos, chaos control, and chaos
synchronization.

On the other hand, James Watt’s steam engine at the industrial revolution in the
eighteenth century has opened the gate to feedback control, and Maxwell’s stability
analysis late in the nineteenth century, which theoretically analyzed the instability
phenomena of steam engines, was the occasion of developing control systems
theory. Continuing upon classical control theory dealing with control system design
mainly in the frequency domain since the 1920s, modern control theory has been
advancing since the 1960s, which enables us to analyze controllability/observability
and to design optimal control by means of state equations in the time domain.
Moreover, a deep understanding on robustness of the system behavior for dynamic
uncertainty including unmodeled dynamics in addition to parametric uncertainty
has been gained, and then robust control theory has been developed since the
1980s.
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The above two research fields, however, have been developing almost inde-
pendently so far, although there have been several successes to be related in both
fields such as Pontryagin’s maximum principle and R.E. Kalman’s pioneering
contribution on chaos and control theory. The main focus in dynamical systems
theory is nonlinear autonomous dynamics with a kind of unstable phenomena like
bifurcations and chaos, while the focus in control systems theory is feedback sta-
bilization of linear non-autonomous dynamics at an equilibrium point. This moti-
vates us to develop a new paradigm on analysis and control of complex/large-scale
dynamical systems throughout collaborative research between dynamical systems
theory and control systems theory.

This book, which is the first trial toward developments of such a new paradigm,
presents fundamental and theoretical breakthroughs on analysis and control of
complex/large-scale dynamical systems toward their applications to various engi-
neering fields. In particular, this book focuses on the following three topics:

1. Analysis and control of bifurcation under model uncertainty.
2. Analysis and control of complex behavior including quasi-periodic/chaotic

orbits.
3. Modeling of network complexity emerging from dynamical interaction among

subsystems.

According to the above three topics, this book is organized as follows: In Part I,
robust bifurcation analysis, which deals with bifurcation analysis for dynamical
systems subject to uncertainty due to unmodeled dynamics, is presented and various
kinds of bifurcation control methods based on the degree of stability are proposed.
Part II begins with the analysis of chaotic behavior of triangle-folding maps, and
presents novel attempts for controlling various kinds of complex behavior, namely
feedback stabilization of quasi-periodic orbits and spatial patterns, chaos control,
ultra-discretization based control, and control of unstabilizable switched systems.
Finally, Part III includes research topics on network model reduction and network
structure identification toward control of large-scale network systems.

This book can be beneficial to mathematicians, physicists, biophysicist as well as
researchers on nonlinear science and control engineering for a better fundamental
understanding of analysis and control synthesis of such complex systems.

We would like to thank the contributors: Shun-ichi Azuma, Ken’ichi Fujimoto,
Tomohisa Hayakawa, Yoshito Hirata, Natsuhiro Ichinose, Masaki Inoue, Daisuke
Ito, Masato Ishikawa, Takayuki Ishizaki, Kenji Kashima, Takuto Kita, Hiroyuki
Kitajima, Miki U. Kobayashi, Mio Kobayashi, Motomasa Komuro, Takuji Kou-
saka, Jun Nishimura, Toshiyuki Ogawa, Yasuaki Oishi, Masayasu Suzuki, Tomomi
Takegami, and Tetsuya Yoshinaga for writing excellent chapters.

This book is the outcome of the Japanese Research Project “the Aihara Inno-
vative Mathematical Modelling Project (2010.3–2014.3)”, one of top 30 projects of
“Funding Program for World-Leading Innovative R&D on Science and Technology
(FIRST Program)” initiated by the Council for Science and Technology Policy
(CSTP) in Japan. We would also like to express our sincere gratitude to all
members of the international advisory board of this project for their fruitful
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suggestions and encouragements toward the developments of this project: Shun-ichi
Amari, Miwako Doi, Hiroshi Fujii, Celso Grebogi, Seiichi Ishizu, Kunihiko
Kaneko, Hiroshi Kawakami, Hidenori Kimura, Yoshiki Kuramoto, Jürgen Kurths,
Henk Nijmeijer, Hugh Robinson, Ichiro Tsuda, Keiji Yamagami, and James
A. Yorke.

Tokyo, January 2015 Kazuyuki Aihara
Jun-ichi Imura
Tetsushi Ueta
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Robust Bifurcation and Control



Chapter 1
Dynamic Robust Bifurcation Analysis

Masaki Inoue, Jun-ichi Imura, Kenji Kashima and Kazuyuki Aihara

1.1 Introduction

In dynamical systems theory, bifurcation phenomena have been studied extensively
[1–3]. Bifurcation is a phenomenon whereby a slight parametric perturbation in a
dynamical system produces qualitative changes in structure of the solutions. It can be
interpreted as bifurcation that because of a slight parameter change a stable equilib-
rium of differential equations is suddenly destabilized, and a stable periodic orbit can
arise near the equilibrium. In order to analyze such phenomena, bifurcation theory
has been studied and widely used for analysis and synthesis of complex behavior in
many research fields; systems biology and synthetic biology [4–14], power system
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analysis [15–18], epidemic model analysis [19–22], and so on. For example, bifurca-
tion theory has contributed to recent breakthroughs in systems biology and synthetic
biology. Bifurcation analysis methods have been adopted to study the functions or
characteristics of artificial bio-molecular systems, such as bio-molecular oscillators
[4, 10, 11] and bio-molecular switches [5, 9, 14]. In addition, the robustness of such
functions is identified with the volume of a parameter region in which the system
has oscillatory property or bistable equilibria.

Conventional bifurcation theory is not always applicable to the analysis and syn-
thesis of dynamical systemswith uncertainties. Bifurcation analysis methods assume
that mathematical models such as differential equations are completely known.
Hence, they are not applicable to dynamical systems with uncertainties, in particular,
large dynamic uncertainties . However, practical systems in the real world inevitably
involve not only static but dynamic uncertainties [23, 24]. In order to apply the the-
ory to such real-world systems, bifurcation analysis methods for uncertain dynamical
systems are required.

In this chapter, we study local bifurcation of an equilibrium for systems with
dynamic uncertainties. Note that a bifurcation point, i.e., a parameter value on which
bifurcation occurs, depends on each model in general. If a system contains uncer-
tainties and is described by a model set, we cannot find the specific bifurcation point.
Therefore,we evaluate the potential bifurcation region: the parameter region that con-
sists of all possible bifurcation points for a givenmodel set. In other words, the region
consists of all parameter points on which bifurcation can potentially occur. Evaluat-
ing the potential bifurcation region is referred to as the dynamic robust bifurcation
analysis problem in this chapter. To this end, we first propose a condition for exis-
tence of equilibria independently of uncertainties and evaluate their location. Then,
we derive a condition for robust hyperbolicity of potential equilibrium points, which
implies that the dimension of unstable manifolds is independent of uncertainties.
We consider parameter-dependent nonlinear systems with dynamic uncertainties,
and using the robust hyperbolicity condition we identify the region that contains all
potential bifurcation points. Finally, illustrative examples for robustness analysis of
normal forms for various types of bifurcation are presented.

Notation: The symbols σ {·} and ρ{·} represent the maximum singular value and
the spectrum radius of a matrix, respectively. RH∞ is the space that consists of all
proper and complex rational stable transfer function matrices. The H∞ norm and L∞
norm of a linear system S are defined by

‖S‖H∞ := sup
Re[s]>0

σ {S̄(s)}, ‖S‖L∞ := sup
Re[s]=0

σ {S̄(s)},

where S̄(s) is a transfer function matrix representation of S. The poles (system poles)
of a linear system ẋ = Ax are defined by the roots of the characteristic polynomial
φ(s) := det (sI − A). In addition, a stable pole, an unstable pole, and a neutral pole
are defined as poles lie in the open left half-plane, open right half-plane, and the
imaginary axis of the complex plane, respectively.
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1.2 Problem Formulation: Dynamic Robust
Bifurcation Analysis

Consider the feedback system (�,Δ) illustrated in Fig. 1.1. In the figure, Σ is the
nominal dynamical system composed of the linear dynamical system ΣL and the
nonlinear static function f . The linear system ΣL is described by the state equations

ΣL :

⎧
⎪⎨

⎪⎩

ẋ = A(μ)x + B1(μ)u1 + B2(μ)u2,

y1 = C1(μ)x + D11(μ)u1 + D12(μ)u2,

y2 = C2(μ)x + D21(μ)u1 + D22(μ)u2,

(1.1)

where x ∈ R
n is the state, u1 ∈ R

q and u2 ∈ R
m are the inputs, y1 ∈ R

p and
y2 ∈ R

� are the outputs, respectively, μ ∈ P ⊂ R
r is a static bifurcation parameter,

and A ∈ R
n×n, B1 ∈ R

n×q, B2 ∈ R
n×m, C1 ∈ R

p×n, C2 ∈ R
�×n, D11 ∈ R

p×q,
D12 ∈ R

p×m, D21 ∈ R
�×q, and D22 ∈ R

�×m are parameter-dependent matrices.
The input-to-output responses of the system ΣL can be characterized by the transfer
function representation as follows:

[
ȳ1(s)
ȳ2(s)

]

= Σ̄L(s)

[
ū1(s)
ū2(s)

]

, Σ̄L(s) :=
[

Σ̄L11(s) Σ̄L12(s)
Σ̄L21(s) Σ̄L22(s)

]

,

Σ̄Lij(s) = Ci(μ)(sIn − A(μ))−1Bj(μ) + Dij(μ),

(i, j) = (1, 1), (1, 2), (2, 1), (2, 2),

where s ∈ C and ū1(s), ū2(s), ȳ1(s), and ȳ2(s) represent the Laplace transformations
of the signals u1(t), u2(t), y1(t), and y2(t), respectively. The function f : R� ×R

r →
R

m is in C2(R� × R
r,Rm) and satisfies

u2 = f (y2, μ).

The symbolΔ in Fig. 1.1 expresses a dynamical systemaswell, but exact dynamics
and even the dimension of the inner state of Δ are uncertain. This Δ is called a
dynamic uncertainty. If there is no assumption on the dynamic uncertainty Δ, it is

Fig. 1.1 Feedback
representation of an
uncertain dynamical system:
A feedback system is
composed of the linear
dynamical system ΣL ,
nonlinear function f , and
dynamic uncertainty Δ
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impossible to further analyze the feedback system illustrated in Fig. 1.1. We assume
that the uncertainty is in the class of linear time-invariant systems.

Δ :
{

δ̇ = Adδ + Bdy1,
u1 = Cdδ + Ddy1,

(1.2)

where δ ∈ R
k is the state of Δ and the matrices Ad ∈ R

k×k , Bd ∈ R
k×p, Cd ∈ R

q×k ,
and Dd ∈ R

q×p are uncertain. Then, the input-to-output responses of Δ can be
characterized by the transfer function matrix Δ̄(s) := Cd(sI − Ad)−1Bd + Dd . In
addition, assume that the uncertainty Δ belongs to the given set of linear time-
invariant systems as

Δ ∈ U .

Discussion below is independent of the realization of Δ. The approach of this
chapter uses only an input-output relation of the uncertainty as Δ ∈ U . Although
we assumed above that the dynamic uncertainty Δ is a linear dynamical system for
simplifying discussion below, we can extend the results of the paper to nonlinear
uncertain cases.

For the uncertain feedback system (Σ,Δ), we consider the bifurcation analysis,
i.e., qualitative change of the flow by parametric variations in μ. In this formulation,
the uncertain feedback system (Σ,Δ) is described by amodel set. Since a bifurcation
point depends on each model, we cannot find a specific bifurcation point for such
a model set (see Fig. 1.2). For uncertain dynamical systems, the location and even
existence of equilibrium points are uncertain as well. We consider the following
dynamic robust bifurcation analysis problem of identifying the sets of all potential
bifurcation points for a given model set.

Definition 1.1 (Potential Bifurcation Region) For a given parameter regionP and a
given set of dynamic uncertaintiesU , the potential bifurcation regionPPB ⊆ P is
the set of parameter points that are bifurcation points of the feedback system (Σ,Δ)

for some Δ ∈ U .

Problem 1.1 (Robust Bifurcation Analysis) Consider the feedback system (Σ,Δ)

and Δ ∈ U . Then, find the potential bifurcation region PPB ⊆ P .

standard  bifurcation diagram 

uncertainty 
exists 

robust bifurcation diagram 

bifurcation point 

potential equilibria 

potential bifurcation points? 

p

x

p

x

Fig. 1.2 Bifurcation analysis: A pitchfork bifurcation diagram for a nominal dynamical system
is illustrated in the left figure. A robust bifurcation diagram for an uncertain dynamical system is
illustrated in the right figure, where the location and hyperbolicity of the equilibria are uncertain
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In dynamical systems theory, there is a similar concept called imperfect bifurcation
[25], which is a bifurcation phenomenon for dynamical systems with small uncer-
tainties. The uncertainties treated in the imperfect bifurcation problem are restricted
to the ones represented by a finite number of uncertain parameters. Thus, our formu-
lation covers a much wider class of uncertainties including dynamic uncertainties.

Bifurcation is defined as qualitative change of the structure of the solution in the
state space by small parametric variation inμ ∈ P (see e.g., [3]). In such phenomena,
we focus only on local bifurcation of an equilibrium. Suppose that for the feedback
system (Σ,Δ) and at a parameter point μ1 ∈ R, the number of equilibria is constant
and they are robustly hyperbolic for all Δ ∈ U . Further suppose that at a point
μ2( �= μ1) ∈ R there exists Δ such that the number of equilibria is varied from
the nominal system (Σ, 0) or an equilibrium loses hyperbolicity. Then, a potential
bifurcation point is included in ( μ1, μ2 ].

In addition, at a bifurcation point, an equilibrium for a dynamical system
disappears or loses its hyperbolicity. Therefore, we evaluate the potential bifurca-
tion region by finding the existence and location of an equilibrium and testifying
its hyperbolicity for the feedback system (Σ,Δ). The content of the next section is
composed of the three parts: Sect. 1.3.1 equilibrium analysis for the feedback system
(Σ,Δ), Sect. 1.3.2 hyperbolicity analysis, and Sect. 1.3.3 a solution to the dynamic
robust bifurcation analysis.

In the following, we assume that the uncertainty Δ is in the set of norm-bounded
linear stable systems U (γ ) as follows:

U (γ ) := { S̄(s) ∈ RH∞ : ‖S‖H∞ ≤ γ },

where a positive constant γ is an upper bound of the maximum gain of Δ. The set
U (γ ) can represent signal distortions, unknown signal delays, approximation errors
from PDEs to ODEs, and truncated errors of high index ODEs as long as their gains
are bounded [23, 24]. Utilizing this characterization by the value of γ , we solve the
dynamic robust bifurcation analysis problem.

Some types of bifurcation phenomena, such as saddle-node bifurcation, are said
to be robust. We qualitatively know the fact that if the constant γ is small so that
Δ ∈ U (γ ) has little effect to the dynamics of the feedback system (Σ,Δ), then, the
same bifurcation can occur generically by parametric variations in μ. On the other
hand, in this chapter, we will propose an analysis method to quantitatively evaluate
the parameter points that can be a bifurcation point for some Δ.

1.3 Equilibrium, Stability/Instability,
and Robustness Analysis

In Sects. 1.3.1 and 1.3.2, the parameter value of μ is fixed at a non-bifurcation point
inP . We first consider the uncertain feedback system (Σ,Δ) to derive an existence
condition for an equilibrium [ xe

T δe
T ]T. Then, we derive a robust hyperbolicity

condition for nonlinear systems with uncertainty-dependent equilibria.
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1.3.1 Equilibrium Analysis

We evaluate the existence and location of equilibria in an uncertain feedback system
(Σ,Δ). They are dependent on the steady-state gain of Δ, i.e., Δ̄(0). To this end, we
make an assumption on the system ΣL .

(A1) ΣL has no neutral poles.
The assumption A1, i.e., hyperbolicity of the origin of ΣL , is a technical assump-

tion that is used only for simplifying an existence condition of equilibria. This
assumption can be satisfied in any uncertain feedback system applying the loop
transformation technique to the feedback loop in ΣL and f .

If A1 holds, the matrix A(μ) is nonsingular. Then, we can evaluate the steady
state gain of Σ̄L(s) as

Σ̄L(0) = −
[

C1(μ)

C2(μ)

]

A−1(μ)
[

B1(μ) B2(μ)
] +

[
D11(μ) D12(μ)

D21(μ) D22(μ)

]

.

The steady state gain of Δ̄(s) can also be defined as

Δ̄(0) = −CdA−1
d Bd + Dd ∈ U0(γ ),

U0(γ ) := {D0 | σ̄ (D0) ∈ [ −γ, γ ]}.

We focus on the steady state output y2 = y2e to derive an existence condition
for an equilibrium [ xe

T δe
T ]T. In the following, we consider the static nonlinear

equation

y2 = Fu(ΣL(0), D0)f (y2, μ), (1.3)

where D0 ∈ R
q×p is a constant matrix and Fu(X, Y) is the upper LFT representation

of matrices X and Y as follows:

Fu(X, Y) = X21Y(I − X11Y)−1X12 + X22.

We also define the matrix

M(D0) := Fu

{[
Σ̄L11(0) Σ̄L12(0)
B1(μ) B2(μ)

]

, D0

}

to state the conditions of a theorem. We derive a condition for the existence of
equilibria as follows.

Theorem 1.1 For a given γ > 0, assume that A1 and σ̄ {Σ̄L11(0)} < 1/γ . Then,
for a fixed μ ∈ P , (T1) holds.

(T1) The feedback system (Σ,Δ) has no equilibrium for all Δ ∈ U (γ ) if and only
if (1.3) admits no real solution for all D0 ∈ U0(γ ).
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In addition, suppose that the matrix M(D0) is of full column rank for all D0 ∈ U0(γ ).
Then, (T2) holds.

(T2) The feedback system (Σ,Δ) has N(≥ 0) isolated equilibria for all Δ ∈ U (γ )

if and only if (1.3) admits N isolated real solutions y2 = y2(D0) for all D0 ∈
U0(γ ).

Proof From A1, at the steady state, we have

xe = −A−1{B1Δ̄(0)y1e + B2f (y2e, μ)}, (1.4)

δe = −A−1
d Bdy1e, (1.5)

[
y1e

y2e

]

= Σ̄L(0)

[
u1e

u2e

]

, u1e = Δ̄(0)y1e.

From the assumption that σ̄ {Σ̄L11(0)} < 1/γ holds, the matrix Fu(�̄L(0), D0) is
well-defined, and we can derive the static equations (1.3) and

y1e = Σ̄L12(0){Iq − Δ̄(0)Σ̄L11(0)}−1f (y2e, μ).

Then, for fixed Δ̄(0) and μ, all equilibria [ xT
e δT

e ]T can be parametrized only by the
steady state output y2e as (1.4) and (1.5). The existence of a real solution y2e of (1.3)
is equivalent to the existence of an equilibrium [ xe

T δe
T ]T. From this equivalence,

we can prove (T1).
By using the representation M(D0), the equilibrium xe of (1.4) can be writ-

ten as xe = −A−1(μ)M(Δ̄(0))f (y2e). From the assumption that M(D0) is of full
column rank for all D0 ∈ U0(γ ), the map from f (y2e) to xe is one-to-one. In
other words, two equilibria xe and x′

e( �= xe) are distinguishable by two vectors
f (y2e, μ) and f (y′

2e, μ)(�= f (y2e, μ)). In addition, a solution of the static equa-
tion (1.3) is determined by an intersection of linear and nonlinear functions. Then,
f (y2e, μ) �= f (y′

2e, μ) if and only if y2e �= y′
2e. The number of the isolated real solu-

tions y2e of (1.3) is equivalent to that of the isolated equilibria xe. This completes the
proof of Theorem 1.1. �


A solution of the static equation (1.3) with D0 = Δ(0) ∈ U0(γ ) is denoted by
y2ei(Δ), i = {1, 2, . . . , N}. The sets of such potential steady state outputs y2ei(Δ),
i = {1, 2, . . . , N} for all Δ ∈ U (γ ) are denoted by

Y2ei(γ ) := {y2ei(Δ) | Δ ∈ U (γ )}, i = {1, 2, . . . , N}. (1.6)

In the next subsection, we analyze hyperbolicity of the equilibria determined by the
elements of Y2ei(γ ).

To evaluate the setY2ei(γ ), we need to solve the nonlinear static equation (1.3) for
all D0 ∈ U0(γ ). In general, it is hard to precisely solve such equations. However, in
the case that f is monotonic, we can easily solve the equation. See the following two
remarks and two examples with single-input and single-output nonlinear feedback
systems.
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Fig. 1.3 Equilibrium
analysis for a monotonically
decreasing function: The
potential equilibrium of the
system is defined by the
intersection of the uncertain
function f (y2) and the
straight line y2. A unique
equilibrium exists for any
uncertainty

Fig. 1.4 Equilibrium
analysis for a monotonically
increasing function: The
potential equilibria of the
system is defined by the
intersections of the uncertain
function f (y2) and the
straight line y2. There can
exist three equilibria for
some uncertainty

Remark 1.1 Assume that f (y2, μ), y2 ≥ 0, � = m = 1 is a positive and monotoni-
cally decreasing function as illustrated in Fig. 1.3. In that case, there exists a unique
equilibrium. In addition, we can evaluate Y2e1(γ ) as follows. First, we evaluate the
range of the function

h(d0) =
{

d0Σ̄L21(0)Σ̄L12(0)

1 − d0Σ̄L11(0)
+ Σ̄L22(0)

}

for all d0 ∈ [ −γ, γ ]. If min h(d0) > 0 holds, then Y2e1(γ ) is given by [ y2emin,

y2emax ], where y2emin and y2emax are the unique solutions of y2=(min h(d0))f (y2, μ)

and y2 = (max h(d0))f (y2, μ), respectively. We can evaluate Y2e1(γ ) by simple
calculations.

Remark 1.2 Assume that f (y2, μ), y2 ≥ 0, � = m = 1 is monotonically increasing
and satisfies f (0) = 0 as illustrated in Fig. 1.4. Then, the equilibrium uniquely exists
and Y2e(γ0) = {0} if there is no solution of y2 = (max h(d0))f (y2, μ) except for
y2 = 0. There possibly exist multiple equilibria for such an activation function as
illustrated inFig. 1.4,which connects to the saddle-nodebifurcation and its robustness
analysis.
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1.3.2 Robust Hyperbolicity Analysis

From Theorem 1.1, we can evaluate the region that contains all potential equilibrium
points. Suppose that the number of the equilibria is constant for allΔ ∈ U (γ ). Then,
the set of potential equilibrium points associated with Y2ei(γ ) is evaluated by (1.4)
and (1.5), which are defined in the proof of Theorem 1.1 as

Xei(γ ) := {[ xe
T δe

T ]Tof (1.4) and (1.5) | y2ei ∈ Y2ei(γ )}.

In this subsection, we analyze hyperbolicity of potential equilibria in Xei(γ ), i =
{1, 2, . . . , N}.

We define robust hyperbolicity for eachXei(γ ), i = {1, 2, . . . , N} of the feedback
system (Σ,Δ).

Definition 1.2 (robust hyperbolicity) For a given γ > 0, the set Xei(γ ) is said to
be U (γ )-robustly hyperbolic if the following conditions hold.

(D1) The set Xei(γ ) is connected
(D2) The equilibrium [ xe

T δe
T ]T of (1.4) and (1.5) associatedwith y2ei(Δ) is hyper-

bolic for all Δ ∈ U (γ ).

In the work by the authors [26], the robust hyperbolicity is defined and its analysis
method is provided. The paper [26] assumes that the location of the unique equilib-
rium point xe is not affected by the uncertaintyΔ ∈ U (γ ). In other words, modeling
errors exist only at high-frequencies and Δ̄(0) = 0 holds. On the other hand, in this
chapter, the assumption of the steady state gain Δ̄(0) is removed. In that case, the
location and even existence of equilibria are uncertain as studied above.

Remark 1.3 The condition (D2) inDefinition 1.2 additionally implies that the dimen-
sion of the unstable manifolds at any equilibrium point [ xe

T δe
T ]T ∈ Xei(γ ) of the

feedback system (Σ,Δ) is constant for all Δ ∈ U (γ ) including the nominal case
that Δ = 0.

We derive a robust hyperbolicity condition for the set Xei(γ ). To this end, we
linearize the feedback system (Σ,Δ) at an equilibrium point [ xe

T δe
T ]T ∈ Xei(γ ).

The Jacobian matrix of the function f (y2, μ) for a fixed μ is denoted by

Jf (y2ei) = ∂f

∂y2

∣
∣
∣
∣
y2=y2ei

.

Suppose that I − Jf (y2ei)D22(μ) is nonsingular for all y2ei ∈ Y2ei(γ ), i.e., the
feedback loop in ΣL and f is well-posed. Then, the feedback system (Σ,Δ) is
linearized at the equilibrium point [ xe

T δe
T ]T, and is represented by the feedback

system (Σy2ei ,Δ) composed of the linearized system

Σy2ei :
{

ẋ = Â(μ)x + B̂(μ)u1,

y1 = Ĉ(μ)x + D̂(μ)u1,
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and the uncertainty Δ ∈ U (γ ), where

[
Â(μ) B̂(μ)

Ĉ(μ) D̂(μ)

]

= Fl

⎛

⎝

⎡

⎣
A(μ) B1(μ) B2(μ)

C1(μ) D11(μ) D12(μ)

C2(μ) D21(μ) D22(μ)

⎤

⎦ , Jf (y2ei)

⎞

⎠ ,

and Fl(X, Y) is the lower LFT representation as follows:

Fl(X, Y) = X12Y(I − X22Y)−1X21 + X11.

For a fixed steady state output y2ei and the linearized feedback system (Σy2ei ,Δ), a
robust hyperbolicity condition [26] is proposed based on the Nyquist stability crite-
rion [27]. The proof is essentially equivalent to that of the robust stability condition
[23, 24] except the assumption on stability and the norm of Σy2ei .

Theorem 1.2 [26] (linear robust hyperbolicity condition) Consider an equilibrium
xei and its corresponding steady state output y2ei in the feedback system (Σ,Δ)

for a fixed μ. Assume that the linearized system Σy2ei has no neutral pole and its
realization (Â(μ), B̂(μ), Ĉ(μ)) is controllable and observable. Then, for a given set
U (γ ), the set {xei}, that is, the equilibrium point xei, is U (γ )-robustly hyperbolic if
and only if

‖Σy2ei‖L∞ < 1/γ (1.7)

holds.

Proof (Sufficiency) We denote the transfer function matrix representation of Σy2ei

as
Σ̄y2ei(s) = Ĉ(μ)(sIn − Â(μ))−1B̂(μ) + D̂(μ).

Since ‖Σy2ei‖L∞‖Δ‖H∞ < 1 and

sup
Re[s]=0

ρ{Σ̄y2ei(s)Δ̄(s)} ≤ sup
Re[s]=0

σ {Σ̄y2ei(s)Δ̄(s)}

hold, there exists a positive constant ε1 such that

ρ{Σ̄y2ei(jω)Δ̄(jω)} ≤ 1 − ε1, ∀ω ∈ R.

Then, for some positive constant ε2,

|det{Ip − Σ̄y2ei(jω)Δ̄(jω)}| ≥ ε2, ∀ω ∈ R

holds. This implies that the linearized feedback system (Σy2ei ,Δ) is well-posed and
has no neutral pole.
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(Necessity) We suppose that (1.7) does not hold, that is, there exists ω1 such that

‖Σy2ei‖L∞ = σ {Σ̄y2ei(jω1)} ≥ 1/γ

holds to show that there exists Δ ∈ U (γ ) such that either a feedback system is
not well-posed or it has a neutral pole. First, by the singular value decomposition,
Σy2ei(jω1) can be represented by

Σ̄y2ei(jω1) = UΣgV∗, Σg =
⎡

⎣

σ1 0
. . .

0 0

⎤

⎦,

where U ∈ C
p×p, V ∈ C

q×q are unitary matrices and σ1 = ‖Σy2ei‖L∞ . Since all of
the diagonal elements of Σg other than the (1, 1) element are not necessary in the
following discussion, their descriptions are omitted. Next, we choose Δ̄(s) ∈ RH∞
such that

Δ̄(jω1) = VΣdU∗, Σd =

⎡

⎢
⎢
⎣

1/σ1 0 . . . 0
0 0
.
.
.

. . .
.
.
.

0 . . . 0

⎤

⎥
⎥
⎦

holds. Since 1/σ1 ≤ γ holds, Δ̄(s) ∈ U (γ ). In addition, by using E =
diag{ 1, 0,. . . , 0 } we have

det{Ip − Σ̄y2ei(jω1)Δ̄(jω1)} = det{I� − UΣgV∗VΣdU∗}
= |det(U)|2det{I� − E} = 0.

If ω1 = ∞, the feedback system (Σy2ei ,Δ) is not well-posed. Else if ω1 ∈ R,
det{Ip − Σ̄y2ei(jω)Δ̄(jω)} passes the origin of the complex plane and the feedback
system (Σy2ei ,Δ) has the neutral pole s = jω1. Then, the equilibrium is not U (γ )-
robustly hyperbolic. This completes the proof of Theorem 1.2. �


By Theorem 1.2, we can solve the problem of robust hyperbolicity analysis for
systems with dynamic uncertainties as well as the robust stability theorem [23]. The
theorem is a natural extension of the robust stability theorem [23]. In the above,
we use the L∞ norm to describe the condition of the theorem. The L∞ norm can
be defined for any hyperbolic linear time-invariant system, and is equivalent to the
H∞ norm for stable systems. Then, the condition of the theorem is reduced to the
well-known small-gain theorem [28].

Remark 1.4 (Computation of L∞ norm). To determine U (γ )-robust hyperbolicity
of an equilibrium of an uncertain system, we need to compute the L∞ norm of a
linear system. Some efficient L∞ norm computational algorithms are presented: for
example, the Hamiltonian matrix approach [29] and the Riccati equation and linear
matrix inequality approaches [30, 31].
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Remark 1.5 (Implication of L∞ norm). By simple calculations [23], we can show
that the L∞ norm of the linearized system Σy2ei is equivalent to the conditional L2
gain [32, 33]

sup
u∈L2cond\{0}

‖Σ̃y2ei u‖L2

‖u‖L2

, L2cond := {w ∈ L2 | Σ̃y2ei w ∈ L2},

where ‖ · ‖L2 is the L2 norm of a signal and Σ̃y2ei is the operator representation
of Σy2ei . The conditional L2 gain can be defined even for unstable and nonlinear
systems. This fact implies that it is possible to extend Theorem 1.2 as a condition
of linear systems for keeping the instability independently of uncertainties to that of
nonlinear systems.

From Theorems 1.1 and 1.2, we derive the robust hyperbolicity condition for the
nonlinear feedback system (Σ,Δ) with uncertainty-dependent equilibria.

Theorem 1.3 For a given set U (γ ), the set Xei(γ ) is U (γ )-robustly hyperbolic
if the set X2ei(γ ) is connected and the following conditions are satisfied for all
y2ei ∈ X2ei(γ ).

(C1) The linearized system Σy2ei has no neutral pole.
(C2) Realization (Â(μ), B̂(μ), Ĉ(μ)) is controllable and observable.
(C3) Inequality (1.7) holds.

We can numerically check (C1)–(C3) by partitioningXei(γ ). To check (C3), we
transform the linearized system (Σy2ei ,Δ) into another feedback form composed of
the linear system ΣL and the uncertainty diag{Jf (y2ei),Δ}. The uncertainty part has
block-diagonal structure and is included in the set diag{Jf (Xei(γ )),U (γ )}. Then,
we evaluate the hyperbolicity of the linear feedback system (ΣL, diag{Jf (y2ei),Δ})
by computing the structured singular value [34] ofΣL instead of the L∞ norm. Obvi-
ously, when the norm of Jf (y2ei) is sufficiently small, the theorem is corresponding
to the robust stability theorem [23] and the robust instability theorem [26, 35–37]
for uncertain linear systems.

1.3.3 Robust Bifurcation Analysis

We propose a method for robust bifurcation analysis that is derived by utilizing
Theorem 1.1 for equilibrium analysis and Theorem 1.3 for hyperbolicity analysis.
In the method, P̃PB(γ ) is defined as a region that includes the potential bifurcation
region PPB(γ ), i.e., PPB(γ ) ⊆ P̃PB(γ ).

Procedure for robust bifurcation analysis: Repeat the following Steps (i) and
(ii) for all parameter values μ ∈ P .
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(i) Solve the static equation (1.3) for all D0 = Δ̄(0) ∈ U0(γ ). If the number of
the real solutions y2ei(Δ) is constant for all Δ ∈ U (γ ) and each set Xei(γ ),
i = {1, 2, . . . , N} is connected, then, go to Step (ii). Otherwise μ ∈ PPB(γ ).

(ii) Define the linearized system Σy2ei and evaluate the L∞ norm for all y2ei ∈
Y2ei(γ ), i = {1, 2, . . . , N}. If all values of the L∞ norm are strictly less than
1/γ , then, μ ∈ P\P̃PB(γ ). Otherwise μ ∈ P̃PB(γ ).

By this procedure, we can evaluate the potential bifurcation regionPPB(γ )more
widely than the exact region. In general, to identify the type of bifurcation (saddle-
node-type, Hopf-type, and so on) that occurs inPPB(γ ), we need additional assump-
tions. For example, under the assumption that Δ̄(0) = 0, we can show that at a
saddle-node bifurcation point μSN for a nominal feedback system (Σ, 0) is robustly
a saddle-node bifurcation point for all uncertain feedback system (Σ,Δ). We can
prove this fact by showing that anyuncertain feedback system (Σ,Δ) satisfies saddle-
node bifurcation theorem (see e.g., Theorem2.2 in [1]) as long as Δ̄(0) = 0.

1.4 Examples of Robust Bifurcation Analysis

We illustrate a procedure of dynamic robust bifurcation analysis in the following
examples for normal forms of various types of bifurcation.

1.4.1 Robustness Analysis of Saddle-Node Bifurcation

Let us consider the followingnormal form for saddle-node bifurcationwith a dynamic
uncertainty:

ẋ = x2 + μ + u1, u1 = Δx, Δ ∈ U (γ ).

This uncertainmodel iswritten by the feedback form illustrated in Fig. 1.1To evaluate
the potential bifurcation region, (1) first we study the existence and location of
equilibria and (2) then testify the robust hyperbolicity of potential equilibria.

(1) Note that the equilibria are affected by the steady state gain D0 = Δ(0) ∈
U0(γ ) and are determined by the intersection of Δ0x and f (x) = x2 + μ. The
equilibria exist at

xei(D0) = −D0/2 ±
√

D2
0/4 − μ, i = 1, 2

forμ ≤ D2
0/4,whereas nopoint exists forμ > D2

0/4. For anyuncertaintyΔ ∈ U (γ ),
two equilibrium points encounter each other and vanish at μ ∈ [ 0, γ 2/4 ] along
the parameter changing as illustrated in Fig. 1.5. This implies that the saddle-node
bifurcation occurs, i.e., the number of the equilibria is varied by parameter variation,
on [ 0, γ 2/4 ] as long as Δ ∈ U (γ ).

http://dx.doi.org/10.1007/978-4-431-55013-6_2
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Fig. 1.5 Robust bifurcation analysis for saddle-node bifurcation (γ = 0.5, μ ∈ P := [−1, 1]):
The location and existence of the equilibria are affected by the uncertainties. The hyperbolicity of
equilibria can be impaired for some uncertainty in the parameter region [−3γ 2/4, 0 ] and they can
disappear and saddle-node bifurcation occurs in [ 0, γ 2/4 ]

(2) We further study the robust hyperbolicity of the equilibria for bifurcation
analysis. Even if the equilibria exist, bifurcation can occur by hyperbolicity being
impaired. Linearize the nonlinear feedback system at the points x = xe to obtain

Σy2ei :
{ ˙̃x = 2xex̃ + u1,

y1 = x̃ + xe,

where x̃ := x − xe. From Theorem 1.3 for a fixed μ, the equilibria xe1 and xe1 are
hyperbolic for all Δ ∈ U (γ ) if the L∞ norms of the linearized systems are strictly
less than 1/γ for all D0 ∈ U0(γ ). Therefore, we can show that the equilibria are
hyperbolic for all μ < −3γ 2/4 and there is no bifurcation point in the parameter
region, although bifurcation occurs atμ ∈ [ −3γ 2/4, γ 2/4 ] as illustrated in Fig. 1.5.

1.4.2 Robustness Analysis of Hopf Bifurcation

Consider the normal form for Hopf bifurcation with a dynamic uncertainty. The
uncertain system is represented by the feedback form that is illustrated in Fig. 1.1,
where ΣL , f , and Δ are given by

ΣL :

⎧
⎪⎪⎨

⎪⎪⎩

ẋ =
[

μ −1
1 μ

]

x +
[
0
1

]

u1 + u2

y1 = [
1 0

]
x

y2 = x

, f (y) = −|y|22y, Δ ∈ U (γ ).
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When u1 = 0, the differential equation composed of ΣL and f has the unique
equilibrium at the origin for any parameter μ ∈ R. The existence and location of the
equilibrium are independent of the feedback-type uncertainty. We perform dynamic
robust bifurcation analysis of the origin. To this end, we have the linearized system
Σy2ei that is the same as ΣL to compute the L∞ norm

‖Σy2ei‖L∞ =
{
1/|2μ|, 0 < |μ| ≤ 1,

1/(μ2 + 1), |μ| > 1.

Then, we evaluate the potential bifurcation region for the origin by

PPB(γ ) ⊆
{

[ −γ /2, γ /2 ], 0 < γ ≤ 2,

[ −√
γ − 1,

√
γ − 1 ], γ > 2.

1.5 Conclusion

In this chapter, we integrated a concept of bifurcation in dynamical systems theory
and that of robustness analysis in control systems theory to propose dynamic robust
bifurcation analysis. In the analysis, given an uncertain system described by a model
set, we obtain an outer approximation of all the possible bifurcation points.

Acknowledgments The authors gratefully acknowledge Takayuki Arai, Masayasu Suzuki, and
Takayuki Ishizaki for their comments and fruitful discussion on this research.
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Chapter 2
Robust Bifurcation Analysis Based
on Degree of Stability

Hiroyuki Kitajima, Tetsuya Yoshinaga, Jun-ichi Imura
and Kazuyuki Aihara

2.1 Introduction

Consider nonlinear dynamical systems modelled by parameterised differential and
difference equations. When the values of the system parameters vary from those at
which the system is currently operated, it can exhibit qualitative changes in behaviour
and a steady-state may disappear or become unstable through a bifurcation [1, 2].
Bifurcation analysis is clearly useful and a bifurcation diagram composed of bifur-
cation sets projected into parameter space displays various nonlinear phenomena
in dynamical systems. On the other hand, when considering a steady-state which is
closely approaching a bifurcation point due to unexpected factors like environmental
changes, major incidents, and aging, self recovery is an important strategy for con-
structing a robust and resilient system. Traditional bifurcation analysis is not effective
for this purpose because the global features of a bifurcation diagram in parameter
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space needs to be computed to enable system behaviour to be totally understood with
variations in parameters treated as measurable and directly controlled variables.

We present an approach to analyzing the system parameters based on the idea of
characterising a steady-state with the degree of stability as a function of the parame-
ters. The robust bifurcation analysis defined in this chapter provides a direct method
for finding the values of the parameters at which the dynamical system acquires a
steady-statewith a high degree of stability using amethod of optimization; thismakes
it possible to avoid bifurcations caused by the adverse effects of unexpected factors,
without having to prepare the bifurcation diagrams that are required in advance for
methods using traditional bifurcation analysis. As a result, we can design a system
that is robust and resilient to unexpected factors.

The bifurcation control [3–10] also deals with modifications to bifurcation char-
acteristics. It requires a feedback system to be constructed by adding control input,
whereas our method uses prescribed parameters to optimize the stability.

In the following, after introducing the theoretical results [11] of robust bifurca-
tion analysis, we will present numerical experiments of continuous-time dynamical
systems. An example of representative results obtained in a model of the ventricular
muscle cell suggests that our method has a possibility to suppress the alternans and
reduce the risk of sudden death.

2.2 System Description and Robust Bifurcation Analysis

This section gives an exact definition of robust bifurcation analysis, which we
describe both for equilibria in continuous-time dynamical systems and fixed points
in discrete-time dynamical systems.

2.2.1 Continuous-Time Systems

We consider parameterised autonomous differential equations for continuous-time
systems described by

dx

dt
= f (x, λ), t ∈ R, (2.1)

where x(t) = (x1, x2, . . . , xN )T ∈ RN is a state vector, λ = (λ1, λ2, . . . , λM )T ∈
RM is a measurable and directly controlled parameter vector, and f is assumed to be
a C∞ function for simplicity. Suppose that there exists an equilibrium x∗ satisfying

f (x∗, λ) = 0, (2.2)
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and it can be expressed locally as a function of the parameters λ, namely x∗(λ). The
Jacobian matrix or the derivative of f with respect to x at x = x∗ denoted by

D(x∗(λ), λ) := ∂ f (x, λ)

∂x

∣
∣
∣
∣
x=x∗(λ)

(2.3)

gives information to determine the stability of the equilibrium. The eigenvalues μ of
D at x∗ are obtained by solving the characteristic equation

det(μI − D(x∗(λ), λ)) = 0, (2.4)

where I is the identitymatrix.We call x∗ a hyperbolic equilibrium of the system, if D
is hyperbolic, i.e., all the real parts of the eigenvalues of D are different from zero. If
all eigenvalues lie in the left-half plane, then the equilibrium is asymptotically stable.
A local bifurcation occurs if an equilibrium loses its hyperbolicity due to continuous
parameter variations. The generic bifurcations of an equilibrium are the saddle-node
or tangent bifurcation and the Hopf bifurcation.

Themain objective of bifurcation analysis is to find sets of bifurcation values. The
bifurcation sets can be obtained by solving simultaneous equations consisting of the
equilibrium equation in (2.2) and the characteristic equation in (2.4) for unknown
variables x∗ and λm for m = 1, 2, . . . , M . Thus, the bifurcation sets for all m’s need
to be computed to enable system behaviour to be totally understood with parameter
variations.

2.2.2 Discrete-time Systems

Next, let us consider parameterised difference equations for discrete-time systems

x(k + 1) = g(x(k), λ), k = 1, 2, . . . ,

or equivalently, a map defined by

g : RN × RM → RN ; (x, λ) �→ g(x, λ), (2.5)

where x(k) and x are state vectors in RN ,λ ∈ RM are the parameters, and the function
g is assumed to be C∞. Note that, for simplicity, we have used the same symbols
for the state variables x , the parameters λ, and others in both continuous-time and
discrete-time systems. A discrete-time system can be a Poincaré map to take periodic
solutions into consideration in autonomous or periodically forced nonautonomous
differential equations. The existence of a fixed point x∗ satisfying

x∗ − g(x∗, λ) = 0 (2.6)
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is assumed. The Jacobian matrix of g at the fixed point x∗ is indicated by

D(x∗(λ), λ) := ∂g(x, λ)

∂x

∣
∣
∣
∣
x=x∗(λ)

. (2.7)

The roots of the characteristic equation denoted by

det(μI − D(x∗(λ), λ)) = 0 (2.8)

become the characteristic multipliers of the fixed point. The fixed point is hyper-
bolic, if all absolute values of the eigenvalues of D are different from unity. If every
characteristic multiplier of the hyperbolic fixed point is located inside the unit circle,
then it is asymptotically stable. When the hyperbolicity is destroyed by varying the
parameters, a local bifurcation occurs. Generic bifurcations are the tangent, period-
doubling, and Neimark-Sacker bifurcations, which correspond to the critical distri-
bution of characteristic multiplier μ such that μ = +1, μ = −1, and μ = eiθ with
i = √−1, respectively. Further, a pitchfork bifurcation can appear in a symmetric
system as a degenerate case of the tangent bifurcation.

We can simultaneously solve equations consisting of the fixed point equation
in (2.6) and the characteristic equation in (2.8) with a fixed μ depending on the
bifurcation conditions to obtain unknown bifurcation sets x∗ and λm .

2.2.3 Robust Bifurcation Analysis

Let μmax(D) be the maximum value of the real parts (or the absolute values) of
eigenvalues with respect to the matrix D for a continuous-time system in (2.3)
(or a discrete-time system in (2.7)). We denote this as a function of the parame-
ters as follows

ρ(λ) := μmax(D(x∗(λ), λ)).

Consider that the dynamics f or g with parameter values λ∗ defines a system after
being affected by unexpected factors, and the steady-state x∗(λ∗) has a low degree of
stability, which means that the value of ρ(λ∗) is near the condition of a bifurcation.
Then, the purpose of robust bifurcation analysis is to find λ ∈ RM such that

ρ(λ) < ρ(λ∗)

for given λ∗ ∈ RM satisfying

∂ρ(λ)

∂λm

∣
∣
∣
∣
λ=λ∗

�= 0



2 Robust Bifurcation Analysis Based on Degree of Stability 25

for some m’s in {1, 2, . . . , M}. We assume that the unexpected factors do not change
during the process.

The corresponding eigenvalues can be used to make a contour along which the
real part of an eigenvalue is equal to zero to analyze the stability of an equilibrium
observed in a continuous-time system. This should be a curve in the parameter plane
defining the boundary of a region in which the equilibrium stably exists. The level
curves at a fixed maximum eigenvalue in the real part similarly imply the degree
of stability in parameter space. Robust bifurcation analysis provides a method for
finding the values of the parameters at which stable equilibrium has a higher degree
of stability. By obtaining a set of parameters

Λ := argmin
λ∈RM

ρ(λ) (2.9)

subject to ρ(λ) < ρ(λ∗), then it enables us to design a system that has a steady-state
with a high degree of stability. The same argument can be applied to a fixed point
observed in a discrete-time system by taking into consideration the absolute values
of eigenvalues instead of the real parts.

2.3 Method of Robust Bifurcation Analysis

We present a method for finding the set of parameters for the optimization problem
in (2.9), assuming that the characteristic multiplier with maximum absolute value is
real in the case of discrete-time systems.

Because the eigenvalues are not differentiable with respect to the parameters at
points where they coalesce, we consider the optimization problem below instead of
directly solving (2.9):

min
λ∈RM , ν≥ρ(λ)

J (λ, ν),

where

J (λ, ν) := det
(
ν I − D(x∗(λ), λ)

)
. (2.10)

The characteristic polynomial J is non-negative for ν ≥ ρ(λ) and the optimiza-
tion problem is formulated to minimise the maximum absolute value of eigenval-
ues of D(x∗(λ), λ) for discrete-time systems and the real parts of eigenvalues of
D(x∗(λ), λ) for continuous-time systems by varying the parameter λ. Note that the
method provides a uniform treatment of both continuous-time and discrete-time sys-
tems according to the above assumption on discrete-time systems, and that, when the
characteristic multiplier with maximum absolute value is negative for discrete-time
systems, the problem of optimization should be modified to maximise the minimum
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real characteristic multiplier (see Sect. 2.4.2 for an example). We use a continuous
gradient method to obtain the values of the parameters λ and the supplementary
variable ν. The descent flow is given by the initial value problem of the following
differential equations:

dλ

dτ
= −(ν − ρ(λ))

∂ J

∂λ

T
, (2.11)

dν

dτ
= −(ν − ρ(λ))

∂ J

∂ν
.

Here, the solution (λ(τ ), ν(τ )) is a function of the independent variable τ with the
initial conditions λ(0) = λ∗ and ν(0) > ρ(λ∗). When ν �= ρ(λ), the gradient parts
of the right hand sides in (2.11) are given by

∂ J

∂λm
= −tr

(

adj(ν I − D)
∂ D

∂λm

)

= −J tr

(

(ν I − D)−1 ∂ D

∂λm

)

, (2.12)

∂ J

∂ν
= tr (adj(ν I − D))

= J tr
(
(ν I − D)−1

)
, (2.13)

for m = 1, 2, . . . , M , where tr(·) and adj(·) correspond to the trace and adjugate. We
need the derivative of the (i, j) element of D in (2.12) with respect to the parameter
λm . For the difference system g, this is expressed by

∂

∂λm

∂gi

∂x j
=

N∑

n=1

∂2gi

∂x j∂xn

∂x∗
n

∂λm
+ ∂2gi

∂x j∂λm
.

Here, ∂x∗
n/∂λm , n = 1, 2, . . . , N can be obtained by differentiating the fixed point

equation in (2.6) with respect to λm . Then, we have

∂x∗

∂λm
=

(

I − ∂g

∂x

∣
∣
∣
∣
x=x∗

)−1
∂g

∂λm

∣
∣
∣
∣
x=x∗

.

A similar argument can be applied to the differential dynamics f .
Let us present a theoretical result for the behaviour of the solution to the dynamical

system in (2.11). Note that the subspace of the state (λ, ν) ∈ RM+1 satisfying ν =
ρ(λ) is an equilibrium set of (2.11). Therefore, the trajectories cannot pass through
the set, according to the uniqueness of solutions for the initial value problem. This
leads to the fact that, if we choose initial values (λ(0), ν(0)) with ν(0) > ρ(λ(0)),
any solution (λ(τ ), ν(τ )) stays in the subspace ν > ρ(λ) for all τ > 0. Under this
condition, the derivative of J along the solution to (2.11) is given by
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d J

dτ

∣
∣
∣
∣
(2.11)

=
(

∂ J

∂λ

∂ J

∂ν

)
⎛

⎜
⎝

dλ

dτ
dν

dτ

⎞

⎟
⎠

= −(ν − ρ(λ))

(∥
∥
∥
∥
∂ J

∂λ

∥
∥
∥
∥

2

2
+

(
∂ J

∂ν

)2
)

< 0,

where the last inequality is obtained because ∇ J �= 0 if ν > ρ(λ). Then, we can
see that the value of J (λ(τ ), ν(τ )) with J > 0, for all τ , monotonically decreases
as time passes.

An interior point method [12] is effective when implementing the algorithm to
solve the optimization problem.

2.4 Numerical Examples

Here, we present two representative examples (equilibrium points and periodic
solutions) of our robust bifurcation analysis for continuous-time systems. An exam-
ple of a discrete-time system is shown in [11].

2.4.1 Equilibrium Point

The first example involves the following two-dimensional differential equations,
known as the BvP (Bonhöffer-van der Pol) equations:

dx1
dt

= 3

2
(x1 − 1

3
x31 + x2), (2.14)

dx2
dt

= −2

3
(−λ1 + x1 + λ2x2).

The result with our method is shown in Fig. 2.1. A contour plot of an eigenvalue
with the maximum real part is also presented. The curve T indicates the saddle-node
bifurcation of an equilibrium. Equation (2.14) has three equilibria in the gradation
region. A pair of stable and unstable equilibria disappears at the saddle-node bifur-
cation. Here, we try to find the parameter values at which the equilibrium has a high
degree of stability. The eigenvalue is−0.04 at the initial parameter values λ∗ labeled
by a. The eigenvalue becomes −0.47 at the parameter value b after our method was
applied. Thus, we can avoid the occurrence of the saddle-node bifurcation and obtain
a high degree of stability by automatically changing the parameterswhen considering
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Fig. 2.1 Bold solid line indicates the trace of maximum eigenvalue of the equilibrium in BvP
equations. Contour plot represents the maximum real part of the eigenvalues, as scaled by the
gradation bar. The maximum eigenvalue is equal to 0 on the saddle-node bifurcation curve denoted
by T

that the situation of the equilibrium with a low degree of stability at the parameter
values λ∗ near a bifurcation is caused by the effect of unexpected factors.

Figure2.2 outlines the basins of attraction for the stable equilibrium before and
after our method was applied. The phase diagrams in Fig. 2.2a, b correspond to the
parameter values a and b in Fig. 2.1. If we put the initial states in the shaded region,
we can obtain the targeted equilibrium labeled e in Fig. 2.2 as a steady-state. We can
see that our method expanded the basins of attraction by comparing Fig. 2.2a, b.
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1
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(a) (b)

Fig. 2.2 Basins of attraction of equilibria for BvP equations. Red open and blue closed circles
correspond to stable and unstable equilibria. The red open circle with label e and the blue closed
circle are very close in a because the parameter value is near the saddle-node bifurcation. The stable
manifolds of the saddle-type equilibrium (the blue closed circle) form the basin boundary between
shaded and unshaded regions
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2.4.2 Periodic Solution

Next, we consider a periodic solution in (2.1).We can reduce it to a fixed point defined
by (2.6) by constructing a Poincaré map. Thus, we can use the method described
in Sect. 2.3. Here, we study a system of the Luo-Rudy (LR) model [13] with a
synaptic input (Isyn) described by the following 8-dimensional ordinary differential
equations:

C
dV

dt
= −(INa + ICa + IK + IK1 + IK p + Ib + Isyn),

dy

dt
= y∞ − y

τy
, (y = m, h, j, d, f, X), (2.15)

d[Ca]i

dt
= −10−4 ICa + 0.07(10−4 − [Ca]i ),

where ionic currents are given by

INa = 23m3hj (V − ENa), ICa = GCad f (V − ECa),

IK = G K X Xi (V − EK ), IK1 = G K1K1∞(V − EK1),

IK p = 0.0183K p(V − EK p ), Ib = 0.03921(V + 59.87),

Isyn = Gsyn(Vsyn − V )
τ1

τ2 − τ1

(

− exp

(

− t ′

τ1

)

+ exp

(

− t ′

τ2

))

.

Here, we define that the time t ′ is reset at every basic cycle length (BCL) defined
by the period of the external synaptic current Isyn . Detailed explanation and normal
parameter values for the LR model are given in [13].

The LR model is of the ventricular muscle cell. In a previous study, we clarified
alternans corresponding to a two-periodic state that appears by a period-doubling
bifurcation through changing the value of the parameter BCL. It is well known that
the alternans triggers cardiac electrical instability (ventricular arrhythmias) and may
cause sudden cardiac death. Thus, suppressing alternans is important for reducing the
risk of sudden death. Here, using our proposed algorithm we show the suppression
of the alternans.

Figure2.3 shows a result of maximising the smallest real characteristic multiplier
of the LRmodel in the parameter plane λ = (BCL, Gsyn). Initial parameter values are
marked by the closed circle, which is very close to the period-doubling bifurcation.
Then, the smallest real characteristic multiplier is −0.998. In Fig. 2.3, two-periodic
solutions generated by the period-doubling bifurcation exist in the shaded parameter
region. The waveform of the membrane potential after the period-doubling bifurca-
tion is shown in Fig. 2.4. This waveform shows a typical alternans. From this initial
point our algorithm changes the values of the parameters to avoid the bifurcation
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Fig. 2.3 Result of robust bifurcation analysis for the LR model. Initial parameter values are
Gsyn = 4.0, BCL = 362 and ν = −1.15. The solid and dashed curves indicate the period-
doubling bifurcation set in the parameter plane (BCL, Gsyn) and the trace of these parameter values
while our control method works. In the shaded region, stable two-periodic solutions generated by
the period-doubling bifurcation exist

Fig. 2.4 Waveforms of the
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(the trace is shown by the dashed curve.). After that, the smallest real characteristic
multiplier becomes −0.434. Thus, our method can avoid the alternans and reduce
the risk of sudden death.

2.5 Conclusion

Traditional bifurcation analysis in parameter space deals with contour or level sets of
the eigenvalue for a bifurcation, whereas our robust bifurcation analysis is used for
finding parameter sets that cause a gradient decrease in the bifurcating eigenvalue.
An automatic trace of the gradient based on our method can effectively construct a
robust system that has a steady-state with a high degree of stability.
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Chapter 3
Use of a Matrix Inequality Technique
for Avoiding Undesirable Bifurcation

Yasuaki Oishi, Mio Kobayashi and Tetsuya Yoshinaga

3.1 Introduction

A nonlinear dynamical system often shows a qualitative change in its solution due to
the change of the parameter value. This phenomenon is interesting from a theoretical
point of view and has been a subject of bifurcation analysis. From an engineering
point of view, however, such a qualitative change can be undesirable. For example,
an alternating pulse of the heart is claimed to be a consequence of bifurcation [1]
and thus it can be suppressed by keeping the heart system from making bifurcation.
In order to robustify a system in this sense, it was proposed in Chap.2 to define a
stability index and to update the parameter value so as tominimize this stability index.
Here, the stability index is the maximum over the absolute values of the eigenvalues
of the linearized dynamics. If the stability index is controlled small, the system is
expected not to make bifurcation. A difficulty here is that the stability index is not
differentiable in general with respect to the parameter. Indeed, in Chap.2, the stability
index was not directly minimized but a function closely related to it.

In this chapter, we trymore direct approachwith the technique of amatrix inequal-
ity, which is widely used in the field of control theory, and reduce the problem to a
differentiable minimization problem. The resulting problem can be solved with the
penalty method and gives an update rule of the parameters, which resembles that

Y. Oishi (B)

Department of Mechatronics, Nanzan University, Seireicho 27, Seto 489-0863, Japan
e-mail: oishi@nanzan-u.ac.jp

M. Kobayashi
Department of Systems and Control Engineering, Anan National College of Technology,
Aoki 265, Minobayashicho, Anan 774-0017, Japan
e-mail: kobayashi@anan-nct.ac.jp

T. Yoshinaga
Institute of Health Biosciences, Tokushima University, 3-18-15 Kuramoto,
Tokushima 770-8509, Japan
e-mail: yosinaga@medsci.tokushima-u.ac.jp

© Springer Japan 2015
K. Aihara et al. (eds.), Analysis and Control of Complex Dynamical Systems,
Mathematics for Industry 7, DOI 10.1007/978-4-431-55013-6_3

33

http://dx.doi.org/10.1007/978-4-431-55013-6_2
http://dx.doi.org/10.1007/978-4-431-55013-6_2


34 Y. Oishi et al.

of Chap. 2. The obtained update rule is tested with a simple dynamical system to
show its efficacy. Finally, generalization of this approach is considered for keeping
the system from falling into chaos. A related result of the same authors can be found
in [2].

The following notation is used. The transpose of a matrix or a vector is denoted
by T. The trace of a matrix is expressed by tr and a diagonal matrix is expressed by
diag. For a square matrix D, the symbol ρ(D) denotes the maximum of the absolute
values of the eigenvalues of D. For a symmetric matrix T , the matrix inequalities
T � O and T � O stand for positive definiteness (all the eigenvalues are positive)
and positive semidefiniteness (all the eigenvalues are nonnegative) of T , respectively.

3.2 Considered Problem

Consider a discrete-time dynamical system

z(k + 1) = f (z(k), λ) (k = 0, 1, 2, . . .) (3.1)

having a state z ∈ R
n and a parameter λ ∈ R

m . Here, f (z, λ) is some smooth
function. Suppose that a fixed point of this system, that is, a state zλ satisfying
zλ = f (zλ, λ), is obtained for any λ in some nonempty open set Λ ⊆ R

m and that
it is smooth as a function of λ. Then, for the Jacobian matrix of f (z, λ) at z = zλ,
that is,

D(λ) := ∂

∂z
f (z, λ)

∣
∣
∣
z=zλ

,

the maximum over the absolute values of its eigenvalues, i.e., ρ(D(λ)), is called the
stability index of the fixed point zλ. Indeed, it is smaller than unity if and only if
the fixed point zλ is asymptotically stable. In Chap.2, the following problem was
considered:

S : minimize ρ(D(λ)) in λ

subject to λ ∈ Λ.

If the parameter λ is updated so as to converge to a local optimal solution of the
problem, the dynamical system is driven to increase its stability. Hence, even if the
system is subject to unexpected change of the parameter, it is expected to recover its
stability.

http://dx.doi.org/10.1007/978-4-431-55013-6_2
http://dx.doi.org/10.1007/978-4-431-55013-6_2
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3.3 Proposed Method

Although the matrix D(λ) is smooth with respect to λ, the stability index ρ(D(λ)) is
not differentiable in general with respect to λ and hence its minimization needs some
special technique. In Chap.2, ρ(D(λ)) was not directly minimized but a smooth
function closely related to it.

In this chapter, we use the following result [3, Sect. 4.1.2].

Proposition For a square matrix D and a positive number ρ, there holds ρ(D) < ρ

if and only if there exists a symmetric matrix X that satisfies

(
ρ2X DT X
X D X

)

� O.

Use this result and rewrite ρ2 as α to have the following optimization problem
equivalent to S:

S′ : minimize α in (α, λ, X)

subject to λ ∈ Λ,

(
αX D(λ)T X

X D(λ) X

)

� O.

In this problem, both objective function and constraints are smooth functions of
the optimization variables (α, λ, X). Hence, a standard method can be used for the
optimization.

Although a similar technique with a matrix inequality is widely used in the field
of control theory [3, 4], the objective functions and the constraints are usually affine
in the design variables. Our problem S′ has a nonlinear matrix inequality constraint
and thus cannot be solved with the usual method in control theory. In this chapter,
we apply the penalty function method of Kočvara–Stingl [5] to solve S′. Its key idea
is to construct a penalty function that has a small value when the matrix inequality
constraint is satisfied and a large value when it is not satisfied. Adding this penalty
function to the objective function, we can performminimization without considering
the matrix inequality constraint explicitly.

The desired penalty function can be constructed as follows. First, we define a
function φp(t) having a positive scheduling parameter p by

φp(t) := p
( 1

t/p + 1
− 1

)
.

For t ≥ 0, the functionφp(t) approaches zero as p ↓ 0; for t < 0, it blows up to infin-
ity as p ↓ −t . On the other hand, let T denote the left-hand side matrix of the matrix
inequality constraint of S′, which is a symmetric matrix of order 2n. Suppose that this
T is diagonalized by some orthogonal matrix Q as T = Q diag(t1, t2, . . . , t2n)QT.
Here,wewrite thematrix Q diag(φp(t1), φp(t2), . . . , φp(t2n))QT asΦp(T ) and con-
sider tr(UΦp(T )) for some arbitrary positive definite matrix U . Then this function

http://dx.doi.org/10.1007/978-4-431-55013-6_2
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tr(UΦp(T )) can be used as the desired penalty function. Indeed, for T � O , the
function tr(UΦp(T )) converges to zero as p ↓ 0; for T 	� O , it blows up to infinity
as p ↓ p0, where p0 is some positive number.

Based on the discussion so far, we can expect that the problem S′ can be solved
by iteration of the following three steps:

1. Update (α, λ, X) so as to make α + tr(UΦp(

(
αX D(λ)T X

X D(λ) X

)

)) smaller,

2. Update U ,
3. Update p.

More concretely, the update in Step 1 is performed in the steepest descent direction
or in the Newton direction of the objective function with an appropriate step size.
The update in Step 2 is carried out so that the Karush–Kuhn–Tucker condition of S′
is satisfied. The update in Step 3 is performed so that p approaches zero. See [5] for
the details.

3.4 Extension

In the preceding problems S and S′, the availability of a fixed point zλ has been
assumed.When this assumption cannot bemade, the following problem is considered
instead:

R : minimize α in (z, α, λ, X)

subject to f (z, λ) − z = 0, λ ∈ Λ,
(

αX D(λ)T X
X D(λ) X

)

� O.

In this new problem, z becomes an optimization variable and the equality constraint
f (z, λ) − z = 0 is added.
Just as in the case of S, we can obtain an update rule of (z, α, λ, X). Here,

we decompose the newly added equality constraint into two inequality constraints
f (z, λ) − z ≥ 0 and − f (z, λ) + z ≥ 0, construct the corresponding penalty func-
tions for each, and add them to the objective function. A similar approach is possible
also for a periodic point in place of a fixed point.

For a continuous-time dynamical system ż = f (z, λ), the stability index should
be defined as the maximum over the real parts of the eigenvalues of the Jacobian
matrix D(λ) := (∂/∂z) f (z, λ)|z=zλ at a fixed point zλ. In order to minimize it, the
following optimization problem is considered:
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minimize α in (α, λ, X)

subject to λ ∈ Λ, X � O,

− X (D(λ) − α I ) − (D(λ) − α I )T X � O.

Application of the penalty function method gives an update rule of (α, λ, X) as
before.

3.5 Example

Consider a discrete-time dynamical system based on the Hénon map, that is,

(
x(k + 1)
y(k + 1)

)

=
(
1 + y(k) − ax(k)2

bx(k)

)

, (3.2)

which has the state z = (x y)T and the parameter λ = (a b)T. In the parameter
region Λ = {λ = (a b)T | (b − 1)2 + 4a > 0}, the system has a fixed point

zλ =
(

(b − 1 + √
(b − 1)2 + 4a)/2a

b(b − 1 + √
(b − 1)2 + 4a)/2a

)

.

The Jacobian matrix at this fixed point zλ is denoted by D(λ). The problem S′
is considered in this setting and solved with the method in Sect. 3.3. The result is
presented in Fig. 3.1a. Here, the horizontal plane stands for the space of the parameter
λ = (a b)T and the curved surface is the graph of the stability index ρ(D(λ)).
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Fig. 3.1 The stability index of a dynamical system based on the Hénon map together with the
trajectory of the parameter updated by the proposed method: a the case where the fixed point zλ is
available; b the case where the fixed point zλ is not available
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(The graph is drawn only for λ ∈ Λ.) On the horizontal plane, the trajectory of
the updated parameter λ is shown. It is seen from the figure that the stability index
ρ(D(λ)) is not differentiable at some point. Nevertheless, the parameter λ is updated
without any problem and reaches the neighborhood of a local optimum λ = (0 0)T.
Here, in Step 1 of the method, the steepest descent direction is employed with more
priority put on the stability of the convergence rather than on its speed. The step size
is chosen according to the Armijo rule. The initial value of the scheduling parameter
p is 100 and is updated by multiplication of 0.97 in Step 3. The additional constraint
λ ∈ Λ is guaranteed just by limiting update of the parameter λ in Λ.

Next we consider the case where a fixed point is not available and apply the
method of Sect. 3.3 to the problem R in Sect. 3.4. The result is presented in Fig. 3.1b.
Although the convergence is slower than in the previous case, the parameter success-
fully reaches the neighborhood of a local optimum λ = (0 0)T.

3.6 Avoidance of Chaos

The technique of a matrix inequality can be used for more general purpose. In this
section, we use it for minimizing the local expansion rate and preventing the system
from falling into chaos.

3.6.1 Method for Chaos Avoidance

Let the maximum Lyapunov exponent with respect to z0 be

γ (z0, λ) := lim
N→∞

1

N
log ρ(DN (z0, λ))

:= lim
N→∞

1

N
log ρ

(
D(zN−1, λ) · · · D(z1, λ)D(z0, λ)

)
,

where {z0, z1, . . . , zN−1} is the trajectory of the dynamical system (3.1) starting from
z0. In the special case that

{
z0, z1, . . . , z p−1

}
is a periodic orbit of period p, we have

γ (zk, λ) = 1

p
log ρ(D p(z0, λ)) (k = 0, 1, . . . , p − 1).

Since exact computation of themaximumLyapunov exponent γ (z0, λ) is difficult,
we may use instead a finite-time Lyapunov exponent, or the local expansion rate,
defined by

Γ (N , z0, λ) := 1

N
log ρ(DN (z0, λ))
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for some large positive integer N . The local expansion rateΓ (N , z0, λ) usually takes
a large value when the system shows chaotic behavior and thus is often regarded as
an index of chaos. If we update the parameter λ so as to minimize the local expansion
rate, the system is expected to avoid falling into chaos. Note that minimization of the
local expansion rate Γ (N , z0, λ) is equivalent to that of ρ(DN (z0, λ)), for which the
technique of a matrix inequality can be used. In particular, we consider the following
optimization problem:

minimize α in (α, λ, X)

subject to λ ∈ Λ,

(
αX DN (z0, λ)T X

X DN (z0, λ) X

)

� O.

3.6.2 Experimental Result

We try the proposed method with the system based on the Hénon map (3.2). In the
(a, b) parameter space, a grid equally spaced by 0.001 is taken. Each grid point is
chosen as an initial parameter λ0 and is updated according to the method given in the
previous section. Figure3.2a shows the result together with bifurcation parameter
sets. The symbols G p and I p denote tangent and period-doubling bifurcations for
p-periodic points, respectively. Chaotic behavior is observed in the shaded parameter
region. The parameters λ100 obtained after 100 updates are indicated by the small
dots. Four typical trajectories are presented by the solid lines with arrows. The ends
of each line correspond to the initial parameter λ0 and the final parameter λ100. The
updates are made in the direction of the arrows.

Fig. 3.2 Chaos avoidance in the case of the Hénon map: a distribution of the parameters after 100
updates; b the local expansion rate in the same parameter region
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Figure3.2b shows an overlapped image of the local expansion rate for attractors
and the bifurcation diagram of periodic points. The colored contour plot presents the
values of the local expansion rate, as indicated by the color bar. Cold color (blue)
expresses a small local expansion rate and then high stability. We see that the small
dots in Fig. 3.2a are mainly distributed in the region with a negative local expansion
rate in Fig. 3.2b. Thus our method operates the system to avoid chaos.

3.7 Conclusion

In thisChap.3, robustificationof a dynamical system is considered along the approach
in the previous chapter and a technique with a matrix inequality is introduced.
Although the stability index considered here is not differentiable in general, its opti-
mization can be formulated into a differentiable optimization problem. Since the
resulting optimization problem has a nonlinear matrix inequality constraint, we use
the penalty function method of Kočvara–Stingl to obtain an update rule of the para-
meter. The proposed method is applied to a dynamical system based on the Hénon
map and is shown to be efficient. It can be generalized for avoiding chaos.
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Chapter 4
A Method for Constructing a Robust System
Against Unexpected Parameter Variation

Hiroyuki Kitajima and Tetsuya Yoshinaga

4.1 Introduction

The aim of our study is to construct a system that is robust to sudden environmental
changes and major incidents. Such changes trigger instabilities in the system, called
bifurcations. In biological systems, for example, dynamical diseases such as Cheyne-
Stokes respiration and chronic granulocytic leukemia are caused by bifurcations due
to variations in system parameters [1, 2]. The ability to predict bifurcations in a
parameter space is very important to preventing such diseases. Several methods
of predicting and controlling bifurcations have proposed such as, using the aver-
aged harmonic method [3], constructing a feedback system [4–6], and minimizing
the maximum eigenvalues of symmetric matrices through optimization [7–9]. The
methods in cited studies aim to minimize the maximum eigenvalues of the linearized
system (Jacobian matrix), which correspond to rapid recovery from a perturbed state.
However, a parameter value with a minimum eigenvalue does not have the longest
margin to bifurcations in the parameter space. Dobson proposed a method of calcu-
lating the closest-bifurcation from the operating parameter values [10]. This method
and its extensions have been applied to hydraulic systems [11], gene systems [12],
power systems [13, 14], and bifurcations of arbitrary codimension [15]. Moreover,
another method using support vector machine (SVM) and particle swarm optimiza-
tion (PSO) was proposed [16]. However, in all of the above cases, the considered
bifurcations are only for equilibrium points.
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In this chapter, we propose a method to calculate the closest-bifurcation for
periodic solutions by constructing vector fields along bifurcation curves. Moreover,
we explain an extended version of the notation of the closest-bifurcation [10] to
search for the optimal parameter value meaning the farthest point from the bifurca-
tions in the parameter region under consideration, which has been published in [17].
As a result, we can set appropriate parameter values that correspond to constructing
a system which is robust to unexpected parameter changes.

4.2 Method

4.2.1 Dynamical System

We consider the following autonomous dynamical system:

dξ

dt
= fa(ξ, λ), ξ ∈ R

N+1, λ ∈ R
M , t ∈ R, (4.1)

where λ is a controllable parameter and ξ is a state variable.We assume that there
exists a periodic solution in (4.1) with an initial condition ξ = ξ0 at t = t0, denoted
by ξ(t) = ψ(t, ξ0, λ) for all t . We take a local section Γ , that the solution crosses
transversely, as follows:

Γ = {ξ ∈ R
N+1| z(ξ) = 0},

where z(ξ) is a scalar valued function of ξ in R
N+1. Let us define h as a local

coordinate of Γ

h : Γ → Π ⊂ R
N ; ξ �→ x = h(ξ)

and its inverse h−1 as an embedding map

h−1 : Π → Γ ; x �→ ξ = h−1(x),

where ξ satisfies z(ξ) = 0. Pick a point ξ ∈ Γ and let Π ⊂ Γ be some neighborhood
of x = h(ξ). Then the Poincaré map T is defined by the following composite map
for a point x ∈ Π :

T : Π → Π; x �→ h(ψ(τ(h−1(x)), h−1(x), λ)),

where τ denotes the time during which the trajectory emanating from a point ξ ∈ Γ

hits the local cross-section Γ again. The time τ is called the return time.
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Similarly, for a non-autonomous system,

dx

dt
= fn(x, λ, t), x ∈ R

N , λ ∈ R
M , (4.2)

we can construct the Poincaré map T as

T : R
N → R

N ; x �→ T (x, λ) = ψ(L , x, λ),

where L is the period of the function fn :

fn(x, λ, t + L) = fn(x, λ, t).

For a discrete-time system, the map T is directly obtained by

T : R
N → R

N ; x(k) �→x(k + 1) = T (x(k), λ) = fd(x(k), λ),

x ∈ R
N , λ ∈ R

M , k ∈ N.

For all dynamical systems, the fixed point of the map T is given by

F(x∗, λ) = x∗ − T (x∗, λ) = 0. (4.3)

In the differential equations, we can obtain a one-to-one correspondence between
the periodic solution of (4.1) or (4.2) and the fixed point of the map T . Hence, the
analysis of the periodic solution can be reduced to an analysis of the fixed point of the
map T . The characteristic multiplier μ of the fixed point x∗ is obtained by solving

G(x∗, λ) = det (D(λ) − μI ) = 0, (4.4)

where

D(λ) := ∂T (x, λ)

∂x

∣
∣
∣
∣
x=x∗

. (4.5)

If all absolute values of the characteristic multipliers are less than one, then the fixed
point is stable. The change in stability due to a parameter perturbation is called a
bifurcation. The codimension-one bifurcations are as follows: When μ = 1, μ = −1
and μ = exp(iθ)(θ �= 0, π), the tangent, period-doubling, and Neimark-Sacker
bifurcations occur, respectively.

4.2.2 Search for Optimal Parameter Values

Here, we describe our method of searching for the optimal parameter values that are
farthest points from bifurcations in the parameter region under consideration. For
this, we extend the idea of the closest-bifurcation method proposed by Dobson [10].
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This method determines the minimum distance to bifurcations along selected direc-
tions in the parameter space. It searches a local region of the parameter space in order
to find the point on a bifurcation surface. Its searching performance is determined
by the initial search direction and local topology of the bifurcation curve. A global
search was proposed by Kremer [11]. These methods use the normal vectors at a
bifurcation curve in a parameter plane. However, these calculation methods using
eigenvectors are only for equilibria.

Here, we show the method of calculating a normal vector to a bifurcation curve
for periodic solutions by constructing a vector field along the bifurcation curve. For
simplicity, we assume M = 2 (λ = (λ1, λ2)

T). Differentiating (4.3) and (4.4) yields

∂ F

∂x
dx + ∂ F

∂λ
dλ = 0,

∂G

∂x
dx + ∂G

∂λ
dλ = 0.

(4.6)

We can rewrite (4.6) as

dx1

A(x1)
= · · · = dxi

(−1)i−1 A(xi )
= · · · = dλ1

(−1)N A(λ1)
= dλ2

(−1)N+1 A(λ2)
, (4.7)

where

A(xi ) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂ F1

∂x1
· · · ∂̂ F1

∂xi
· · · ∂ F1

∂xN

∂ F1

∂λ1

∂ F1

∂λ2
...

...
...

...
...

∂ FN

∂x1
· · · ∂ FN

∂xi
· · · ∂ FN

∂xN

∂ FN

∂λ1

∂ FN

∂λ2

∂G

∂x1
· · · ∂G

∂xi
· · · ∂G

∂xN

∂G

∂λ1

∂G

∂λ2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

,

where the hat (̂ ) indicates the elimination of the column. Equating (4.7) to ds yields
the following vector equations along a bifurcation curve:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dxi

ds
= (−1)i−1 A(xi ), (i = 1, 2, . . . , N ),

dλ1

ds
= (−1)N A(λ1),

dλ2

ds
= (−1)N+1 A(λ2).

Thus, the normal vector to the bifurcation curve at (λ10 ,λ20 ) in the parameter plane
is given by

[
λ10

λ20

]

= ±
[ dλ2

ds
− dλ1

ds

]

= ±
[

A(λ20)

A(λ10)

]

. (4.8)
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Now let us outline our algorithm for obtaining the normal vector to the bifurcation
surface of periodic solutions. Note that this algorithm is also applicable to equilibria.
We use this normal vector to obtain the optimal parameter values. The procedure is
summarized as follows:

1. Set the initial parameter value at which a target solution is stable.
2. Using the normal vectors (4.8), find the closet-bifurcation point [10] by searching

several directions. To find a bifurcation point, we use the method described in
[18].

3. Change the parameter values in the opposite direction of the closet-bifurcation
obtained in Step 2.

4. Repeat Step 2 and Step 3.

4.3 Results

Here, we show the results of our method on discrete-time and continuous-time
systems.

4.3.1 Discrete-Time System

We find the parameter values with the largest margin to bifurcation sets in the
Kawakami map [19, 20]:

T : R
2 → R

2; (x1(k), x2(k)) �→ (x1(k + 1), x2(k + 1))

= (λ1x1(k) + x2(k), x1(k)2 + λ2)

There are three kinds of bifurcation in the parameter range: λ1 = [−2.0, 2.0] and
λ2 = [−2.0, 1.0], as shown in Fig. 4.1a. A stable fixed point exists in the shaded
region surrounded by these bifurcations. Note that although the bifurcations curves
are shown in Fig. 4.1a, we assume that the bifurcation structure is unknown. We only
know the operating point at which the system has a stable fixed point. In the parameter
region shown in Fig. 4.1a, our algorithm searches for the optimal parameter values,
which means the farthest point from the three bifurcations. The simulation results
are shown in Fig. 4.1a. Each circle labeled by A to D is an initial parameter value
of our four trials. From Fig. 4.1a, we can see that from any initial parameter value
in the shaded region, our method finds the optimal parameter values denoted by the
open circle corresponding to almost the center of the gray region. We consider that
if the parameter value is set near this point, we can construct a system that is robust
to parameter perturbation. Figure 4.1b shows the Euclidean distance between the
operating point and the closest bifurcation point as a function of iterations. Black
and blue curves correspond to those in Fig. 4.1a. The initial points are very close to
bifurcation points, however, our method can find the farthest point from bifurcations.
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Fig. 4.1 Results for Kawakami map. a Bifurcation diagram and result of our method. A stable
fixed point exists in the shaded region. The four points labeled by A–D are the initial parameter
values. From each initial value, we can obtain the optimal parameter values denoted by the open
circle. b Margin to bifurcations as a functional of iterations. Two curves correspond to the traces in
a with different initial values labeled by A and D

4.3.2 Continuous-Time System

An example of a continuous-time system is one described by Duffing’s equations:

dx1

dt
= x2,

dx2

dt
= −λ3x2 − x3

1 + λ2 + λ1 cos(t), (λ3 > 0).

In this system, the Neimark-Sacker bifurcation never appears, because using Liou-
ville’s theorem, the product of the two eigenvalues of the Jacobian matrix (4.5) is
given by exp(−2πλ3). Typical phenomena observed in this system include nonlinear
resonance and chaos due to successive period-doubling bifurcations [21, 22].

Figure 4.2a shows the results of searching for parameter values with the maximum
margin to bifurcations when λ3 = 0.1. In this parameter region, there are at most
three fixed points. Two of them are stable. The solid bifurcation curves in Fig. 4.2
are related to the fixed point which we treat here. Two initial values denoted by the
open and closed circles in Fig. 4.2a are chosen. From the open circle, our method
can obtain a local optimal parameter value. From the closed circle, our method
also reaches a local optimal parameter value: the farthest point from the bifurcations
denoted by the solid curves. To achieve a global search, we use the third parameter λ3.
Figure 4.2b shows the results when changing the value of parameter λ3. The closed
circle indicates the initial parameter values when λ3 = 0.1. From this point, we can
find the optimal parameter values denoted by the star. In this case, our method can
escape the complicated bifurcation area and reach parameter values far from them
when λ3 = 0.3.
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Fig. 4.2 Results for
Duffing’s equations. Solid
curves indicate the
bifurcation sets of the fixed
point corresponding to the
non-resonant state. Chaotic
states generated by
successive period-doubling
bifurcations exist in
period-doubling bifurcation
sets. a λ3 = 0.1. b Using the
third parameter λ3.
Bifurcation sets are for
λ3 = 0.3
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4.4 Conclusion

We proposed a method of determining parameter values that are far from bifurcations
in a parameter space. We described the method of calculating the normal vector to the
bifurcation curves for periodic solutions. Our decision method uses the normal vector
to find parameter values which are far from bifurcations. As illustrated examples,
we showed the results of discrete-time and continuous-time systems. Our method
could find optimal parameter values in both systems. Open problems are to extend
the method so that it can deal with complicated bifurcation structures in a parameter
plane and systems including uncertainty.

Acknowledgments The proposed method of this research has been published as a paper in IJMNTA
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Chapter 5
Parametric Control to Avoid Bifurcation
Based on Maximum Local Lyapunov
Exponent

Ken’ichi Fujimoto, Tetsuya Yoshinaga, Tetsushi Ueta
and Kazuyuki Aihara

5.1 Introduction

Discrete-time dynamical systems [2] are widely used for mathematical modeling of
various systems. In many cases, desired behavior in nonlinear discrete-time dynam-
ical systems corresponds to stable fixed and periodic points. The values of system
parameters can be determined through bifurcation analysis [9, 10, 15] in advance
so that desired behavior is produced in a steady state. However, when the parameter
values are set far from appropriate values for any reason, the systems may not work
correctly owing to undesirable behavior caused by bifurcations of desired behavior,
for example, as alternans in the heart model [14].

Control systems to avoid bifurcations can prevent the emergence of undesirable
states and keep proper states of dynamical systems. Here, we assume that desired
behavior corresponds to a stable periodic point and consider a problem of avoiding
its bifurcations in order to construct robust and resilient dynamical systems that are
controlled so as not to make bifurcations.
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Bifurcations of stable periodic points occurwhen their degree of stability (stability
index) defined in Chap.2 becomes one, i.e., their bifurcations can be avoided by
suppressing the stability index below one. However, as described in Chap. 3, the
optimization of the stability index has a difficulty because the stability index is not
differentiable with respect to system parameters in general.

In this chapter, by using the maximum Lyapunov exponent (MLE) [11, 13, 16]
that is related to the stability index [4, 5, 11, 12], we present a parametric controller
that can avoid bifurcations of stable periodic points for unexpected parameter vari-
ation [6]. In practice, we substitute the maximum local LE (MLLE) [1, 3] defined
in finite time to relieve a difficulty in computation of the MLE. Compared with the
stability index, using the MLLE has the following advantages [6]: simple gradient
methods can be used to optimize the MLLE, and the calculations of the MLLE and
control input to avoid bifurcations can be realized along the passage of time. Exper-
imental results applied to the Hénon map [7] to evaluate whether our parametric
controller is effective to avoid bifurcations are also presented.

5.2 Problem Statement

Consider a discrete-time dynamical system described by

x(t + 1) = f (x(t), p(t), q(t)), (5.1)

where t denotes the discrete time, x ∈ R
N representing the set of real numbers

is the vector of state variables, and p ∈ R
M and q ∈ R

L are time-variant system
parameters. Here, we assume that f is known and differentiable, all states are always
observable, and the values of p can be forcibly changed for any reason and are out
of control, but q is handleable. We also assume that these parameter values can be
changed only at t = mT (m = 0, 1, 2, . . .) where T represents an interval to get the
value of the MLLE and control input to avoid bifurcations, which are defined later.

When all parameter values are constant, fixed and periodic points of f are defined
as follows. If a point x∗ ∈ R

N satisfies x∗ − f (x∗, p, q) = 0, then x∗ is a fixed point
of f . In the same way, a periodic point with period n, i.e. an n-periodic point, of f
is defined as a point x∗ such that x∗ − f n(x∗, p, q) = 0 and x∗ − f k(x∗, p, q) �= 0
for k < n where f n denotes the nth iterate of f . By describing the Jacobian matrix
of f as

D f (x(t), p, q) = ∂

∂x
f (x(t), p, q), (5.2)

we introduce the characteristic equation of an n-periodic point x∗ as

χ(x∗, p, q, μ) = det
(
μI − D f n(x∗, p, q)

) = 0, (5.3)

where I denotes the N × N identity matrix;μ is an eigenvalue of D f n(x∗, p, q) and
is called the characteristic multiplier of x∗.

http://dx.doi.org/10.1007/978-4-431-55013-6_2
http://dx.doi.org/10.1007/978-4-431-55013-6_3
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The stability index of an n-periodic point (x∗) is defined by using the maximum
modulus of its characteristic multipliers, i.e., it is equivalent to the spectral radius of
the Jacobian matrix, ρ (D f n(x∗, p, q)), where ρ(·) represents the spectral radius of
a matrix. Therefore, a periodic point x∗ is stable if and only if ρ (D f n(x∗, p, q)) < 1
and bifurcations of a stable periodic point occur when ρ (D f n(x∗, p, q)) = 1. The
parameter values at which bifurcations occur can be numerically found by using a
powerful computing method [9, 15].

We now assume that desired behavior corresponds to a stable periodic point and
treat a situation that bifurcations of desired behaviormay emerge owing to the forcible
variation of p. For the situation,we consider avoiding bifurcations of desired behavior
by adjusting the values of q only when the parameter values approach any bifurcation
points. Therefore, this problem resembles the problems treated in Chaps. 2, 3 and 4.

5.3 Proposed Method

From the aforementioned assumptions, the values of p and q are constant for the
duration of interval T . When an initial value x(mT ) at t = mT (m = 0, 1, 2, . . .)
that converges to a stable periodic point and a small perturbation w(mT ) ∈ R

N to
x(mT ) are given, the MLLE is defined as

λ(x(mT ), p, q, T ) = 1

T

(m+1)T −1∑

t=mT

ln‖w(t + 1)‖, (5.4)

where ‖·‖ represents the Euclidean norm of a vector. The trajectory of w(t + 1) is
obtained from the linearized system defined by

w(t + 1) = D f (x(t), p, q) · ν(t), (5.5)

where ν(t) = w(t)/‖w(t)‖. This normalization is to relieve a computational difficulty
in (5.4). In the following, we simplify the notation of λ(x(mT ), p, q, T ) as λ.

The problem of avoiding bifurcations of stable periodic points can be formulated
as the minimization problem of an objective function defined by

G(λ) = 1

2
(λ − H(λ))2 , (5.6)

where H is a map described as

H(λ) =
{

λ if λ ≤ λ∗,
λ∗ otherwise.

(5.7)

http://dx.doi.org/10.1007/978-4-431-55013-6_2
http://dx.doi.org/10.1007/978-4-431-55013-6_3
http://dx.doi.org/10.1007/978-4-431-55013-6_4
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The user-defined parameter λ∗ is set to a negative value close to zero; it is used not
only to detect the approach of the values of p and q to any bifurcation points but also
a set point to control λ when λ∗ < λ < 0. Since λ is the function with respect to q,
we can obtain a gradient system of (5.6), i.e. the updating rule of q, as

q((m + 1)T ) − q(mT ) = −η
∂G(λ)

∂q
= −η(λ − λ∗) ∂λ

∂q
, (5.8)

where η is a positive parameter given by users. The formulas to calculate the values of
∂λ/∂q can be explicitly expressed [6, 8] and their computations can be realized in real
time without off-line calculation to find the exact position of stable periodic points to
be controlled objects. Note that the formulas we derived [6] can be commonly used
in a variety of nonlinear discrete-time dynamical systems. By updating the values of
q according to (5.8) only when λ∗ < λ < 0, the MLLE can remain a negative value,
i.e., bifurcations of stable periodic points can be avoided.

5.4 Experimental Results

To evaluate whether the proposed parametric controller is effective, we carried out
several experiments for stable periodic points observed in the Hénon map [7]. The
dynamics of the Hénon map is described as

x1(t + 1) = 1 + x2(t) − p(t) · x1(t)
2, (5.9a)

x2(t + 1) = q(t) · x1(t), (5.9b)

where x1 and x2 are state variables and t is the discrete time. We here assumed that
p and q correspond to out-of-control and control parameters, respectively. In the
following experiments, we set T = 500, η = 0.1, and λ∗ = −0.2 in (5.4) and (5.8).

Before carrying out experiments, we analyzed bifurcations on fixed and periodic
points observed in (5.9). As shown in Fig. 5.1, we found a fixed point, n-periodic

Fig. 5.1 Bifurcation
diagram on fixed and
periodic points in the Hénon
map, MLLE, and blue
horizontal and red diagonal
curves corresponding to
parameter variation without
and with control
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points (n = 2, 4, 8), and their period-doubling bifurcations where the solid curve
with Pn represents the set of bifurcation points of the n-periodic point. The stable
fixed point is present in the left-hand-side parameter regions of the curve P1 and
the stable n-periodic point exists in the parameter regions surrounded by the curves
of P

n
2 and Pn . The MLLE on the fixed and periodic points is indicated in color,

for example, the color in the parameter regions surrounded by the curves of P1 and
P2 shows the MLLE on the stable two-periodic point. The relationship between the
MLLE and colors is shown in the right bar graph. We note that these analyses are not
necessary to avoid bifurcations using our controller, i.e., it was carried out only to
demonstrate whether bifurcation points are avoided in space of system parameters.

When we set (p(0), q(0)) = (0.5, 0.3) corresponding to the point “a” in Fig. 5.1
and (x1(0), x2(0)) = (1.43, 0.0), the two-periodic point was observed in a steady
state. By decreasing the value of p with 0.0015 every T along the blue horizontal
line from the initial point “a”, the two-periodic point bifurcated on the curve P1 and
instead the fixed point appeared at t � 93T as shown by the blue trajectory of x1 in
Fig. 5.2a. To avoid the period-doubling bifurcation, the proposed controller adjusted
the value of q so as to keep λ � λ∗ after t = 42T (Fig. 5.2b). The trajectory of the
controlled parameter is also shown as the red diagonal curve branching from the blue
horizontal line with the point “a” in Fig. 5.1. Consequently, the stable two-periodic
point could be observed for the duration of 0 ≤ t ≤ 100T without bifurcating.

We also analyzed avoiding the period-doubling bifurcation of the stable four-
periodic point. The initial values were set to (x1(0), x2(0)) = (1.04,−0.18) and
(p(0), q(0)) = (0.95, 0.3) corresponding to the point “b” in Fig. 5.1. When we
changed the value of p along the blue horizontal line starting from the point “b”, we
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Fig. 5.2 Experimental results of bifurcation avoidance for a two-periodic point in the Hénon map
displayed as time series. The blue and red sequences correspond to the trajectories both without
and with control a case without control b case with control
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Fig. 5.3 Experimental results of bifurcation avoidance for a four-periodic point in the Hénon map
displayed as time series a case without control b case with control

observed the eight-periodic points and a chaotic state caused by a cascade of period-
doubling bifurcations across the curves of P4 and beyond (Figs. 5.1 and 5.3a).Hence,
the stable four-periodic point bifurcated and vanished at t � 70T owing to its period-
doubling bifurcation curve P4. In contrast, the red diagonal curve branching from
the blue horizontal line with the point “b” in Fig. 5.1 indicated that the proposed
controller was used to avoid the bifurcation curve of P4. As the results, as shown in
Fig. 5.3b, we could observe the four-periodic point for the duration of 0 ≤ t ≤ 100T .

5.5 Conclusion

In this chapter, we presented a parametric control system to avoid bifurcations of
stable periodic points in nonlinear discrete-time dynamical systems with parameter
variation. The parameter updating of our controller is theoretically derived from the
minimization of an objective function with respect to the MLLE. The computations
of the MLLE and parameter variation to avoid bifurcations can be realized in real
time without finding the exact positions of stable periodic points to be controlled
objects. Our experimental results showed that the proposed controller effectively
worked to avoid bifurcations of stable periodic points in the Hénon map. We note
that this control system can be also applied to avoid bifurcations of stable fixed
points. Further, the parameter-updating formulas we derived [6] can be widely used
to a variety of nonlinear discrete-time dynamical systems.
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Chapter 6
Threshold Control for Stabilization
of Unstable Periodic Orbits in Chaotic
Hybrid Systems

Daisuke Ito, Tetsushi Ueta, Takuji Kousaka, Jun-ichi Imura
and Kazuyuki Aihara

6.1 Introduction

Various deterministic dynamical systems including nonlinear electric circuits show
chaotic phenomena characterized by the sensitivity to small perturbations, posi-
tive Lyapunov exponents, and their complex orbit structure. It is well known that
an infinite number of unstable periodic orbits (UPOs)are embedded in a chaotic
attractor [1].

Based on the Poincaré mapping, a UPO in a continuous-time system can be
expressed as an unstable periodic point (UPP) in the corresponding discrete-time
system. The Ott-Grebogi-Yorke (OGY) method was the pioneering attempt to stabi-
lizeUPPs [2] by pushing the orbit near the stablemanifold of the target UPPwith very
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small parameter perturbations. If it fails, a retry in near future is expected because of
the recurrence property of the chaos, i.e., the uncontrolled orbit will comes close to
the target UPP again. With this recurrence, there is a possibility that stabilizing the
target UPP with a tiny control input, which is proposed to the distance between the
current state and the UPP. In the very small area around the target UPP, this kind of
problems can be considered by linear control theory. The controlling chaos by the
pole assignment method has been proposed [3]. The feedback gain of this controller
can be designed with assigned poles regarding the characteristic equation for the
variational equation [4, 5]. Extensions of the methods are applied to chaotic hybrid
systems [6]. In these conventional methods, the amplitude of the control input is
basically proportional to the error between the current state of the orbit and the UPP.
As mentioned above, the recurrence property of chaotic dynamics realizes that the
orbit will visit a neighborhood of the UPP in future, thus the control input can be
small at that moment.

Other nonlinear control schemes including the delayed feedback control [7] and
its extensions [8, 9] have been proposed. Related methods such as external force
control [10], and occasional proportional feedback [11–16] are also discussed from
a practical view point.

In these methods, the control input is basically added to the state or parameters
of the system. Thus the controller must vary these values which may be difficult to
change; e.g., in electrical circuits, the controller requires to change the amount of a
resistor or a capacitor quickly.

While, hybrid systems has been intensively studied for a decade [17]. In those
systems, a flow described by differential equations is interrupted by the discrete
events, and then an impulsive jumping or a switching of the governing differential
equations happens. Thus the flow may changes non-smoothly, and it may cause
peculiar bifurcations [18]; e.g., in chaotic spiking oscillators [19], state-dependent
switching generates two different flowswhere a bifurcation phenomena and a chaotic
response are guaranteed theoretically. In general, the switching mechanism is not
explicitly described in the differential equations, but it affects certainly dynamical
behavior of the system [20, 21]. In electric circuits, a variable threshold is realized by
an analog switch (multiplexer); therefore, to choose the threshold value as a control
input is reasonable.

For a specific hybrid system, the controlling chaos based on the linear control
theory can be realized by applying the Poincaré section on the border [6]. UPPs
in the derived discrete-time system are controlled with the same framework of the
conventional control method, i.e., the control input is added into a system parameter
or the state as a small perturbation successively. In other words, the whole control
system spends a certain amount of energy until the control scheme completes the
stabilization.

A threshold value in the given hybrid system is not used as the control parameter
because dynamical affection with perturbed threshold values has not been evaluated
yet. In the previous study [20] we clarified the derivatives and variational equations
of the given hybrid systems about threshold values. Thereby we apply these results
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to controlling chaos; namely, we try to design a control scheme with variations of
threshold values theoretically.

Now let us restate our purpose in this chapter. We stabilize a UPO embedded
within a chaotic attractor in a hybrid system by varying its threshold values. The
control system compares the current state variable with the threshold value, and
updates the threshold value instantly and slightly. The orbit starting from the current
Poincaré section (the threshold value) does not receive any control until it reaches
the next section. Although Murali and Sinha [22] have proposed a chaos controller
by featuring the perturbation of attached threshold values, the objective system is not
a hybrid system and the proposed controller stabilizes UPOs by clipping the voltage
of a system with a simple circuit. Parameter values of the controller are provided
by trial and error. In our method, the control vector is computed systematically by
applying the linear control theory. We demonstrate control results of a 1D switching
chaotic system and a 2D chaotic neuron, and evaluate its control performances as
the controller by specifying basins of attraction. Moreover, a related experiment is
given for the former system.

6.2 Design of Controller with Perturbation
of the Threshold Value

Let us consider the n-dimensional and m-tuple differential equations described by

dx

dt
= fi (x), i = 0, 1, . . . , m − 1, (6.1)

where t ∈ R is time, x ∈ R
n is the state and fi : R

n → R
n is a C∞ class function.

Suppose that Πi is a transversal section to the orbit and set x0 = x(0) ∈ Π0, then
the solution of (6.1) is given by

x(t) = ϕ(x0, t).

Now we provide Πi with a threshold value as follows:

Πi = {
x ∈ R

n| qi (x, θi ) = 0
}
,

where qi is a differentiable scalar function, and θi is a unique parameter that defines
the position of Πi . Note that Πi becomes also a local section, and θi is independent
from the vector field in (6.1). When an orbit governed by fi reaches the section
Πi , the governing function is changed to fi+1. If the orbit passing through several
sections reaches Π0 again, then m local maps are defined as follows:
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T0 : Π0 → Π1,

x0 �→ x1 = ϕ0(x0, τ0),

T1 : Π1 → Π2,

x1 �→ x2 = ϕ1(x1, τ1),
...

Tm−1 : Πm−1 → Π0,

xm−1 �→ x0 = ϕm−1(xm−1, τm−1),

(6.2)

where τi is the passage time from Πi to Πi+1, and depends on the state xi and
the parameter θi+1 of the local section Πi+1. Assume that y(k) ∈ Σ ⊂ R

n−1 is
a location on local coordinates, then there is the projection satisfying η(x(k)) =
y(k). Let the composite map of Ti , i = 0, 1, . . . , m − 1 be the solution starting in
η−1(y(0)) = x(0) ∈ Π0. From (6.2), the Poincaré map T is given by the following
composite map:

T (y(k), θ0, θ1, . . . , θm−1) = η ◦ Tm−1 ◦ · · · ◦ T1 ◦ T0 ◦ η−1.

Thus

y(k + 1) = T (y(k), θ0, θ1, . . . , θm−1).

When the orbit starting from x0 ∈ Π0 returns x0 itself, this orbit forms a periodic
orbit and it is defined as the fixed point by using the Poincaré map T as follows:

y0 = T (y0, θ0, . . . , θm−1).

The corresponding characteristic equation is given by

χ(μ) = det

(
∂T (y0)

∂y0
− μI

)

= 0.

To apply the pole assignment method, the derivatives of the Poincaré map are
required to compute a control gain [3]. The equations in (6.2) are, in fact, differen-
tiable with respect to the state, thus each derivative is given as follows:

∂Ti

∂xi
=

⎡

⎢
⎣I − 1

∂qi+1

∂x

∂ϕi

∂t

∂qi+1

∂θi+1

∂ϕi

∂t

⎤

⎥
⎦

∂ϕi

∂xi
,

∂T

∂y0
= ∂η

∂x

(
m∏

i=1

∂Tm−i

∂xm−i

)
∂η−1

∂y
, (6.3)
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∂Tj−1

∂θ j
= −1

∂q j

∂x

∂ϕ j−1

∂t

∂q j

∂θ j

∂ϕ j−1

∂t
,

∂T

∂θ j
= ∂η

∂x

m− j∏

i=1

∂Tm−i

∂xm−i

∂Tj−1

∂θ j
. (6.4)

We can suppose here that (∂qi+1/∂x) × (∂ϕi/∂t) and (∂q j/∂x) × (∂ϕ j−1/∂t) are
non-zero unless the orbit and sections are crossed tangentially.

Suppose that ξ(k) is a small perturbation and u(k) is intended to be a control
input defined later. When the parameter θ j is chosen as a controlling parameter, the
variational equations around the fixed point are expressed as

y(k) = y∗ + ξ(k), θ j (k) = θ j + u(k). (6.5)

After one iteration of T , we have

y(k + 1) = T (y∗ + ξ(k), θ j + u(k))

≈ y∗ + ∂T

∂y∗ ξ(k) + ∂T

∂θ j
u(k).

Therefore we obtain the difference equation defined by the derivative of T as follows:

ξ(k + 1) = Dy∗ξ(k) + Dθ j u(k), (6.6)

where Dy∗ = ∂T/∂y∗ and Dθ j = ∂T/∂θ j . Note that (6.6) holds when the state y(k)

is located to be adjacent to the fixed point y∗.
To stabilize ξ(k) at the origin, a state feedback control is designed as follows [5]:

u(k) = K Tξ(k), (6.7)

where T is a transpose and K is an appropriate n − 1 dimensional vector designed
by the pole assignment method. Thus we have

ξ(k + 1) = [Dy∗ + Dθ j K T]ξ(k). (6.8)

The corresponding characteristic equation is given by

χ(μ) = det(Dy∗ + Dθ j K T − μI ) = 0. (6.9)

The stability condition at the origin is |μi | < 1, i = 1, 2, . . . , n − 1.
In the conventional chaos control methods, a control input is applied into the

specific system parameter as a small perturbation. During a transition state, the
control system consumes certain control energy given by integration of such per-
turbations even if small. Thus ε = ∫ ∞

0 ||u(t)||dt is regarded as controlling energy.
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Fig. 6.1 Relationship between the flow and sections. Our method adjusts the position of the local
section Π0 only. The state and vector fields are not affected by the control input

In our method, the control input u(k) is added into θ j ; see (6.5). Figure6.1 depicts
a schematic diagram of the method. The location of the section Π0 defined by θ0 is
shifted by u(k) instantly when the orbit ϕ0(t, x0) departs from Π0. No actual con-
trol input is added into the system. The state-feedback is utilized only to determine
the dynamic threshold value, thus the orbit starting from the current threshold value
reaches the next controlled threshold value without any control energy.

It is noteworthy that this is an energy-saving control scheme. For example, let us
suppose that we want to put a ball into a bucket with bouncing once on the wall. In
Fig. 6.2a, an electrical fan modifies the trajectory of the ball by blowing against it.
The fan consumes electrical energy continuously during transient. The conventional
methods look like this situation. On the other hand, changing the position of the wall

Fig. 6.2 Concepts of controlling schemes. In a conventional method, a controller, e.g. an electrical
fan, has to blow the ball to put it to the bucket. Therefore, it requires a powerful controller to move
a ball. In the case to use the threshold value as a perturbation parameter, the controller only move
the position of a wall or a goal, and does not influence the ball directly



6 Threshold Control for Stabilization of Unstable Periodic Orbits … 63

also provides the same effect with (a), i.e., the original position of the wall may cause
failure of the shoot, but a desirable trajectory can be realized by letting the wall to be
in a proper position, see Fig. 6.2b. Realistically, not a little effort is required to move
the wall compared with a short-time operation of the fan, however, in the electric
circuit, such movement of the wall is easily realized, e.g., by a change of the value
of the threshold for an operational amplifier. Note that no control energy consumed
during this scheme. Only small energy is required when the old threshold value is
updated. The orbit runs without any control until it reaches the next threshold value.

6.3 A Simple Chaotic System

Let us consider a simple interrupt chaotic system [23] shown inFig. 6.3 as an example.
The switch is flipped by a certain rule depending on the state and the period. Assume
that v is the state variable, and then the normalized equation is given as follows:

v̇ = −v + E,

if t = nρ then E ← E1, if v > Er then E ← 0

where n ∈ N, E1 and Er are a direct voltage bias and a switching threshold value,
respectively. ρ is the period of the clock pulse input. Figure6.4 illustrates the dynami-
cal behavior. If the Poincaré section is defined as Π = {v ∈ R; t = nρ}, trajectories
stroke two types of solutions (Fig. 6.5), and they can be solved exactly, see, [24].
Therefore the system can be discretized by the Poincaré section, and redefined as
follows:

v′(k + 1) = g(v′(k)) =
⎧
⎨

⎩

(v′(k) − E1)e−ρ + E1, if v′(k) < d,

Er
v′(k) − E1

Er − E1
e−ρ, otherwise,

(6.10)

d = (Er − E1)e
ρ + E1.

Fig. 6.3 Circuit model of an
interrupt chaotic system. ρ
and Er represent the period
of the clock pulse input and
the switching threshold
value, respectively

−

+



64 D. Ito et al.

Fig. 6.4 The switching behavior. When the capacitor voltage reaches to the threshold value Er ,
the switch is flipped to the position B. If the time t is ρ, the switch is flipped to the position A

Fig. 6.5 The sketch of a simple chaotic interrupt system. There are two types of trajectories depend-
ing on the initial value v′(k). If v′(k) is less than d, the trajectory reaches v′(k + 1) without inter-
ruption. Otherwise, the trajectory reaches the threshold value Er , and E is changed to zero

(a) (b) (c)

(d)

Fig. 6.6 a A sample trajectories of a chaotic attractor with E1 = 3, and Er = 2.5. b, c, and d:
Period 1, 2 and 4 UPOs embedded in the chaos, respectively

Note that v′(k) = v(kρ). The solution ψ is defined by (6.11):

ψ(v′(0), k) = v′(k), ψ(v′(0), 0) = v′(0) = v(0). (6.11)

A chaotic attractor and three UPOs with parameters E1 = 3, Er = 2.5 and
ρ = 0.606 are shown in Fig. 6.6. Table6.1 lists the periods, states and multipliers of
some UPOs. Each orbit is confirmed to be a UPO.
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Table 6.1 Periods, states, and multipliers of UPOs in Fig. 6.6b–d

Attractor Period v∗ μ

(b) UPO1 1 2.195202 −2.727643125796

(c) UPO2 2 1.794216 −1.488007404341

2.34221

(d) UPO4 4 1.580281 −11.070830176867

2.225503

2.112552

2.420642

From Eqs. (6.8) and (6.9), we can choose the control gain as

K = q − Dv∗

DEr

,

where Dv∗ = ∂T/∂v∗ and DEr = ∂T/∂ Er are derivatives of T , and can be calculated
as follows:

∂T

∂v∗ = ∂ψ

∂v∗ (v∗, p),
∂ψ

∂v∗ (v∗, k + 1) = ∂g

∂v′

∣
∣
∣
∣
v′=v′(i)

∂ψ

∂v∗ (v∗, k),

∂ψ

∂v∗ (v∗, 0) = I, (6.12)

∂T

∂ Er
= ∂ψ

∂ Er
(v∗, p),

∂ψ

∂ Er
(v∗, k + 1) = ∂g

∂v′

∣
∣
∣
∣
v′=v′(i)

∂ψ

∂v∗ (v∗, k) + ∂g

∂ Er

∣
∣
∣
∣
v′=v′(i)

,

∂ψ

∂ Er
(v∗, 0) = 0, (6.13)

where the symbol p ∈ N
+ is the period of the target trajectory, and q is a desirable

pole for the controlling, and |q| < 1 is required for stabilization. When the clock
pulse is input at t = kρ, u(t) is generated as K (v∗ −v′(k)) from (6.7), and it is added
to the switching threshold Er . Figure6.7 shows the behavior of u(t) and the system.
When u(t) is applied to the system, the threshold value is changed, and the behavior
of the system is controlled.

6.3.1 Numerical Simulation

We show some results of the chaos control by referring to Fig. 6.8, where each graph
shows a transition response of the orbit and the threshold value. From this figure,
we confirm that each UPO is controlled to become a stable periodic orbit by several
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Fig. 6.7 Controller affects the switching threshold Er , thus the control input u(t) biases Er . By
doing this, the controller can control the trajectory without any effect on the dynamical equations
and vector fields

Fig. 6.8 Transition
responses of controlled
UPOs and the threshold
values. a Period-1,
b period-2 and c period-4
solutions shown in Table6.1
are stabilized. Note that u(t)
does not affect the state and
vector fields directly

(a)

(b)

(c)

renewals of u(t). The UPO4 in Fig. 6.8c has a longer renewal span than other UPOs
because a renewal span depends on the period of the target UPO.

Figure6.9 shows basins of attraction of UPOs with our controller in the q-v(0)
plane. White regions in the figure indicate the initial values in which the UPO could
be stabilized, and black regions indicate failure of the controlling. This shows that
all UPOs could be stabilized easily with relatively small initial values. Additionally,
UPOs can also be stabilized at a negative initial value. However, in larger initial
values, the UPO4 could not be controlled. The pole assignment method renews the
control signal on a periodic basis only. Therefore, this technique is less effective for
long-period UPOs such as the UPO4.

Figure6.6a reveals that the chaotic attractor wanders within 1.3 < v(t) < 2.5.
The basin of attraction in this range is shown by white regions in Fig. 6.9. Thus the
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(a) (b) (c)

Fig. 6.9 Basins of attraction resulting from a control experiment. (White stabilizable regions and
black unstabilizable regions.) The horizontal and vertical axes are the parameter q of the controller
and the initial state of the system, respectively

UPO1 and the UPO2 are stabilized robustly. The threshold control performs well for
this simple chaotic system.

6.3.2 Circuit Implementation

Owing to the sample holder synchronized with a clock pulse, our controller is very
easy to implement, thuswe show the circuit implementation and experimental results.

Figure6.10 shows the circuit diagram of the system and the controller. The sub-
tractor and the inverter 1 generate u(t), and the adder and the inverter 2 add the
control input to the switching threshold. The switching threshold generated by this
controller is applied to the system as a perturbation of the reference value Er .

Fig. 6.10 Circuit diagram of a simple chaotic system and the proposed controller. The controller is
composed of four parts. The variable resistance defines the controlling gain, and the voltage source
is the target voltage v∗
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(a) (b) (c)

Fig. 6.11 Results of the laboratory experiments. a UPO1, b UPO2, and c UPO4. (For each shot:
Top row the clock pulse input, 2nd row the timing of the renewal of the controlling signal, 3rd row
the voltage of the capacitor [10V/DIV], and the bottom the control input voltage [200mV/DIV].
The horizontal axis time [(a, b) 200 and (c) 500ms/DIV].) The controlling started at 800 ms. The
circuit is quickly converged to each periodic orbit after the control transition

We use ICs TC4053BP and LM325M as the logic switch and the comparator in
this experiment.

Figure6.11 shows a transition response of the circuit experiment. In these figures,
the top, 2nd, 3rd and bottom time series show the clock pulse input, the timing of
the renewal of the control signal, the voltage of the capacitor as the orbit v and the
control signal, respectively. It is confirmed that control inputs converged to zero, and
orbits are certainly stabilized at UPOs.

6.4 Izhikevich Model

Let us consider the Izhikevich model [25] as the second example. As is well known
that this model is two dimensional, and behaves chaotically in certain parameter
setting [26]. The equations are given as follows:

ż(t) =
(
0.04v + 5v + 140 − w + I
a(bv − w)

)

,

if v = θ, then v ← c, w ← w + d,

where z = (v, w) is the state, and I , a, b, c, d and θ are parameters. Especially, c
and d show the jumping dynamics, and θ defines the threshold value of the jumping.
Figure6.12 illustrates the dynamical behavior.

A chaotic attractor and three UPOs that are involved in it with parameters a = 0.2,
b = 2, c = −56, d = −16, I = −99 and θ = 30 are shown in Fig. 6.13. Table6.2
lists the periods, states and multipliers of several UPOs. Each orbit is confirmed to
be a UPO.
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Fig. 6.12 The sketch of the typical behavior of the Izhikevich model. If the state z(t) reaches the
threshold value θ , the state z(t) = (θ, w(t)) jumps to z(t) = (c, w(t) + d)

(a)

(b) (c) (d)

Fig. 6.13 Phase portraits of a chaotic attractor and UPOs by the numerical simulation, where
a = 0.2, b = 2, c = −56, d = −16, I = −99, and θ = 30. These UPOs are embedded in the
chaotic attractor

6.4.1 Controller

The stabilizing control is applied to UPOs in Table6.2. The Poincaré section is
defined as: Π = {

z ∈ R
2| q(z) = v − θ = 0

}
.
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Table 6.2 Periods, states, and multipliers of UPOs in Fig. 6.13

Attractor Period w∗ (v∗ = c = 56) μ

UPO1 1 −111.734371227672 −2.192843924301

UPO2 2 −114.280257572631 −9.910331534347

−109.950121533113

UPO3 3 −114.603487249294 +25.322864600880

−112.427919143969

−109.602553091223

From (6.8) and (6.9), the control gain is computed as follows:

K = q − Dw∗

Dθ

,

where Dw∗ = ∂T/∂w∗ and Dθ = ∂T/∂θ . The derivatives of the Poincaré map are
obtained by (6.3) and (6.4). Now q is a desirable pole for the controller, and |q| < 1 is
required for stabilization. The control input u(k) is generated by the gain K ∈ R and
the state z(t) as K (w∗ − w(τ )) from (6.7). It is renewed after the jumping dynamics,
and added to the threshold value θ as a perturbation. Since θ is only referred as
the threshold value of the jumping dynamics, u(k) does not affect the dynamical
equations during the transition state.

6.4.2 Numerical Simulation

We show some results of the chaos control in Fig. 6.14, where each diagram shows
a transition response of the orbit and the threshold value with the controlling signal.
From these figures, we confirmed that each UPO has been controlled to become a
stable periodic orbit by several renewals of u(t). To prevent generating big amplitude
of the control, a limiter is provided in the controller. The condition is given as follows:

if |u(t)| ≥ 20 then u(t) ← 0.

Figure6.15 shows the basins of attraction of UPOs with our controller in the
q-w(0) plane. White regions in Fig. 6.15 indicate the initial values in which the UPO
can be stabilized, and black regions indicate failure of the controlling.

Figure6.13 reveals that the chaotic attractor wanders within −125 < w < −100
on the Poincaré section. The basin of attraction in this range is shown by the white
regions in Fig. 6.15. Thus UPOs are stabilized robustly, and the threshold control for
the piecewise nonlinear system performs well.
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(a)

(b)

(c)

Fig. 6.14 Transition responses of controlled UPOs and the threshold values. a Period-1, b period-2
and c period-3 solutions shown in Table6.2 are stabilized, and the final threshold value is 30 [mV].
Note that u(t) is not applied to the system as a continuous input, but only updates the threshold
value

(a) (b) (c)

Fig. 6.15 Basins of attraction resulting from a control experiment. (White stabilizable regions and
black unstabilizable regions.) The horizontal and vertical axes are the parameter q of the controller
and the initial state of the system, respectively

6.5 Conclusion

We have proposed a control method for UPOs embedded in hybrid chaotic systems
by variable threshold values. First, we have explained how to design the controlling
gain of assigning poles with the perturbation of a switching threshold value. The
pole assignment method requires the derivatives of the Poincaré map about thresh-
old values, for which we have proposed the technique to calculate. We have also
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demonstrated the design of a controller and numerical simulations of the controlling
for a 1D switching chaotic system and a 2D chaotic neuron model. Some simulation
results indicate that our controller stabilizes target UPOs well. Additionally, we have
implemented our controller in a real circuit and presented experimental results. From
them, it is confirmed that our controller can be implemented in a real circuit, and
also well performed without technical difficulties.

For modeling biological and medical systems, the hybrid dynamical systems are
widely used [27]. For example, Akakura et al. [28] reported that the intermittent
hormone therapy could be effective in the hormone treatment of prostate cancer.
This therapy switches the treatment on and off based on the observation of the serum
prostate-specific antigen (PSA) level. Therefore, the therapy can be represented as a
hybrid dynamical system, and some PSA levels are defined as the switching threshold
values. The mathematical modeling of the intermittent hormone therapy has been
investigated intensively [29]. Since our method is available for general piecewise
nonlinear systems and the threshold perturbation seems to be related to the intermit-
tent hormone therapy, it is worth investigating a possibility whether our method is
applicable for the prostate cancer treatment or not.
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Part II
Dynamic Attractor and Control



Chapter 7
Chaotic Behavior of Orthogonally
Projective Triangle Folding Map

Jun Nishimura and Tomohisa Hayakawa

7.1 Introduction

Chaotic behavior embedded in dynamical systems has been attracting huge attention
in the field of nonlinear dynamical systems theory since 1960s. Wide variety of
results have also been reported concerning chaotic systems in many areas such as
fundamental field of physics and biology as well.

One of themajor objectives of investigating chaos is to elucidate themechanism of
generating chaotic behavior. A mathematical approach to address analysis problems
of chaotic systems is to observe simple nonlinear dynamics and find key factors that
give rise to chaos. The simplicity of the nonlinear models to consider is central in
obtaining better understanding of complicated behaviors. Notable examples of such
relatively simple dynamic models are the logistic map, the tent map, the Horseshoe
map [12, 13], to cite but a few (see also [1–5, 7–9, 11] and the references therein).

In our earlier paper [6], we considered a simple folding map for equilateral trian-
gles (which we call the triangle folding map) that has sensitivity with respect to the
initial conditions. The operation is shown in Fig. 7.1 and defined by the the following
procedure:

[1] Fold along NL and bring A to M.
[2] Fold along LM and bring B to N.
[3] Fold along MN and bring C to L.
[4] Rotate LMN around its center by π radian.
[5] Enlarge LMN by double so that MNL coincides with ABC.

Specifically, we provided fixed point analysis and periodic point analysis associated
with this mapping operation by sequentially partitioning a restricted domain. Fur-
thermore, we discussed some connections of the foldingmap to the Sierpinski gasket,
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L

M

N

A

B C

L

M

N

Fig. 7.1 Triangle folding map [6]. The map was defined as a surjective map

which is well known to be composed of self-homothetic triangles, and proposed a
scheme to construct other interesting fractals by removing certain regions of the
equilateral triangle.

In this article, we introduce a bifurcation parameter for the folding angle and
generalize this triangle folding map so that the operation in [6] reduces to a special
case of the new map. In particular, we call the operation the orthogonally projective
triangle folding map and provide a similar analysis given in [6] in terms of the fixed
points. We note that the preliminary results of this article can be found in [10].

7.2 Orthogonally Projective Triangle Folding Map

For the orthogonally projective triangle foldingmap, consider the equilateral triangle
ABC given by [4] in Fig. 7.1. In order to introduce the bifurcation parameter in the
folding operation, let θ be the folding angle in operation [2] and [3] in Fig. 7.1
and the sequence of operation is given by Fig. 7.2.

After the folding operation above, the resulting triangle in [5] becomes identical
to the equilateral triangle in [1]. We denote this folding operation [1]–[5] by
F : T → T . For example, the point P ∈ T shown in [1] of Fig. 7.3 is mapped by

Fig. 7.2 Orthogonally projective triangle folding map. The triangle folding map in Fig. 7.1 is
modified to introduce the bifurcation parameter θ . The case of θ = 0 corresponding to the the
triangle folding map defined in Fig. 7.1
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P

F(P)

Fig. 7.3 Visualization of the mapping scheme for a given point in T . This map will be redefined
from the map from D to D as in Definition 7.1

Fig. 7.4 Mapping with small θ

the function F to another point F(P) in [5]. For the case where the folding angle

θ is small, i.e., cos−1 1
3 < θ <

π

2
, the operation is shown in Fig. 7.4. Note that the

operation given by Fig. 7.1 corresponds to the case of θ = 0. It is immediate that the
map F is surjective as discussed below.

Now, it is important to note that there are several variations of prescribing the
operation from [3] to [4] in Fig. 7.2 in order to define the surjective map from
T to T . For example, by rotating the triangle by π

6 radian, instead of π radian,
counterclockwise (or clockwise), we can obtain a similar map to the original map
T . Or, more easily, the triangle in [3] can be flipped upside down to arrive at [4]
through which we can construct a surjective map fromT toT . This commonality is
due to the reflective and the rotational symmetry that the equilateral triangles possess
and it is preferable to characterize themap that describes the essential dynamics of the
folding operation. The following notion precludes the ambiguity of the operation F .

Definition 7.1 (Equivalence relation onT ) Consider themap F : T → T defined
by Fig. 7.2. Two points P,Q ∈ T are considered to be equivalent if P is transformed
to Q via rotation by 2π/3 or 4π/3 radians, or reflection with respect to the symmetric
axis of the equilateral triangle, or the combination of the rotation and the reflection.
Specifically, we denote by

equiv X � {t ∈ T : t has the equivalence relation with a point in X }, (7.1)

the equivalence set associated with the set X ⊂ T .

Note that the center of the equilateral triangle has its equivalence relation with
itself, and any point on the symmetric axis (except for the center) has 2 other points
(on the other symmetric axes) that have equivalence relation with it. Otherwise, a
point on T has 5 other points that have equivalence relation to each other (see
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Fig. 7.5 Equivalence
relation for the triangle
folding map. The 6 points in
the left triangle is identified
as the same point and hence
the top left point (marked in
red) in the left figure is
considered as the point in D
in the right figure

Fig. 7.6 Domain D in the
coordinate system

Fig. 7.5, left). In any case, it is important to note that any point P ∈ T has a unique
point inD that has the equivalence relation with P, where the closed subsetD ⊂ T
is given by partitioning T with the three symmetric axes (Fig. 7.5, right). Note that
the 6 partitioned sets are right triangles and are all identical to each other in the shape
and the size so that the choice of the partitioned set is not important.

Now, from the analysis above, we restrict the domain and the codomain into D ,
instead of the original equilateral triangle T , and define a new map f : D → D
associated with the folding map F under the equivalence relation given by Defini-
tion 7.1. Note that for a point R ∈ D , f (R) ∈ D has the equivalence relation with
F(R) ∈ T.

In order to describe the map f more clearly, we define the x-y coordinate system
to the triangle. Specifically, let the length of the edges of T be 2

√
3 and, as shown

in Fig. 7.6, let the center of the equilateral triangle be placed at the origin, and let
the bottom edge be parallel to the x-axis. In this case, the map f is described by a
piecewise affine function given in Definition 7.2 below.

For the statement of the following results, let the domainD be further partitioned
into the 4 closed subdomains Di , i = 0, 1, 2, 3, for the case of 0 ≤ θ < cos−1 1

3
as given by Fig. 7.7 (left) and the 2 closed subdomains Di , i = 2, 3, for the case of

cos−1 1

3
< θ <

π

2
as given by Fig. 7.7 (right).

Definition 7.2 (Orthogonally projective triangle folding map) For the point p =
[x, y]T in the closed domain D ⊂ R

2, the folding map f θ : D → D for the
equilateral triangle is given by

f θ (p) � f θ
i (p), p ∈ Dθ

i , i = 0, 1, 2, 3, (7.2)
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Fig. 7.7 Partitioned domains of D with respect to θ ; (left) 0 ≤ θ < cos−1 1
3 ; (right) cos−1 1

3
<

θ <
π

2
. When θ ↘ cos−1 1

3 , the domains Dθ
0 and Dθ

1 in the left figure degenerate

where

f θ
0 (p) �

[
2 0
0 2 cos θ

]

p − 1 + cos θ

4

[
0
2

]

,

f θ
1 (p) �

[
1

√
3 cos θ√

3 − cos θ

]

p + 1 + cos θ

4

[−√
3

1

]

,

f θ
2 (p) �

[ −1 −√
3 cos θ√

3 − cos θ

]

p + 1 + cos θ

4

[√
3
1

]

,

f θ
3 (p) �

[ −1
√
3√

3 1

]

p.

Since each subdomainDθ
i is defined as a closed set for all i = 0, 1, 2, 3, adjacent

domains share the points on their boundaries. Note, however, that themap f θ defined
in Definition 7.2 has no ambiguity in that when p ∈ (Dθ

i ∩ Dθ
j ) it follows that

f θ
i (p) = f θ

j (p) so that the point p on the intersection of the domains is mapped to
the same point in D .

Henceforth, for a subset S ⊂ D , f θ (S) denotes the set of points f (p), p ∈ D ,
which is also a subset of D .

7.3 Tetrahedron Map

In this section, we consider the special case of the orthogonally projective triangle
folding map. Specifically, consider the map f θ for the case of θ = cos−1 1

3 . This
value is the critical value for the expression of the piecewise affine function and the
folding in [2] of Fig. 7.3 is characterized by the tetrahedron as shown in Fig. 7.8.

For this specialized map, we write f 	 to denote f cos
−1 1

3 .
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Fig. 7.8 Regular
tetrahedron map (procedure
[2] of Fig. 7.3). This is the
special case of the
orthogonal triangle folding
map f θ with θ = cos−1 1

3

Definition 7.3 (Tetrahedron map) For the point p = [x, y]T in the closed domain
D ⊂ R

2, the tetrahedron map f 	 : D → D for the equilateral triangle is given by

f 	(p) � f 	
i (p), p ∈ Di , i = 2, 3, (7.3)

where

f 	
2 (p) � A	

2 p + b	
2 ,

f 	
3 (p) � A	

3 p,

A	
2 �

[

−1 −√
3

3√
3 − 1

3

]

, b	
2 � 1

3

[√
3
1

]

,

A	
3 �

[ −1
√
3√

3 1

]

.

7.3.1 Fixed Point and Periodic Point Analysis
on the Boundary of D

In this section, we restrict our attention on the boundary ∂D of the domain D and
provide analysis in regards to the fixed points and the periodic points. Specifically,
note that the folding map f maps every point on ∂D onto ∂D . In other words, the
set ∂D is a positively invariant set with respect to f .

For the analysis presented in this section, we define the map f 	
∂ : ∂D → ∂D as

f 	
∂ (p) = f 	

i (p), p ∈ (Di ∩ ∂D), i = 2, 3, (7.4)

where f 	
i (·), i = 2, 3, are given by (7.4). Furthermore, for the statement of the

following result, let the points A, B, C, D be placed on the boundary of D as shown
in Fig. 7.9.

Theorem 7.1 Consider the tetrahedron map f 	
∂ given by (7.4). For ∂D , let A,B,

C,D denote the points shown in Fig. 7.9. Then the map f 	
∂ : ∂D → ∂D satisfies the

following properties:
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Fig. 7.9 Definition of the points A, B, C, D on the boundary of D

Fig. 7.10 Themapping relation of the points on the boundary ofD for the maps f 	
∂ , ( f 	

∂ )2, ( f 	
∂ )3,

and ( f 	
∂ )4. The point B can be seen as a fixed point for the map ( f 	

∂ )k , k ∈ N

1. For k even, the k-times composite map ( f 	
∂ )k has 2k/2 fixed points on the edge

A-B.
2. For k even, the k-times composite map ( f 	

∂ )k has 2k/2 fixed points on the edge
B-D.

3. For k even, the k-times composite map ( f 	
∂ )k has 2k/2+1 − 1 fixed points on ∂D .

4. For k odd, the k-times composite map ( f 	
∂ )k has a unique fixed point on ∂D ,

which is the vertex B.

Proof The results can be shown from the relationship given in Fig. 7.10 where f∂ is
surjective from ∂D to ∂D . 
�

7.4 Extended Fixed Point and Periodic Point
Analysis for Tetrahedron Map

7.4.1 Geometric Interpretation of the Triangle Folding Map

In this section, we provide characterization of the fixed and the periodic points of
the tetrahedron map f 	 over the domain D and compute the Lyapunov exponent
of the map. In the following, we give mathematical representation of the partitioned
domains and characterize the relationship between the partitioned domains and the
map f 	.
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Fig. 7.11 Transition of D2 and D3. For both of the domains, they are mapped to the domain D

Definition 7.4 (Sequentially partitioned set by a sequence) For a given k ∈ N,
consider the collection of finite sequences Sk given by

Sk �
{

s = {si }k−1
i=0 : si ∈ {2, 3}, i = 0, 1, . . . , k − 1

}
. (7.5)

Then the subset Ds , where s = {s0, s1, . . . , sk−1} ∈ Sk , is defined as

Ds � {p ∈ Ds0 : f 	(p) ∈ Ds1 , ( f 	)2(p) ∈ Ds2 , . . . , ( f 	)k−1(p) ∈ Dsk−1}.
(7.6)

For simplicity of exposition, we write Di j ...k to denote D{i, j,...,k}.

Consider the partitioned domains for the map ( f 	)2. Note that f 	 maps D2 and
D3 to D (see Fig. 7.11).

In other words, by taking the inverse map in Fig. 7.11, we can characterize the
partitioned domains for the map ( f 	)2, which are shown in Fig. 7.12.
In a similar manner, it is possible to characterize the partitioned domains for the map
( f 	)k by applying the similar procedure [1] in Fig. 7.12 to the partitioned domains
for the map ( f 	)k−1. As an example, the partitioned domains for the map ( f 	)3 is
shown in Fig. 7.13.

In summary, the partitioned domains for f 	, ( f 	)2, ( f 	)3, ( f 	)4 are shown in
Fig. 7.14.

Remark 7.1 According to this definition, the notation Di used in the previous sec-
tions stands for D{i}.



7 Chaotic Behavior of Orthogonally Projective Triangle Folding Map 85

Fig. 7.12 Domain of ( f 	)2, which are twice inverse maps of the domain D . There are two cases
to be mapped to the domain D2 (above) and D3 (below)

Fig. 7.13 Domain of ( f 	)3. The domainsD223,D233,D323,D333 in [4] are mapped to the domains
D23 and D33 in [1] by f 	

Definition 7.5 Let k, l ∈ Z
+ and let u = {u0, u1, . . . , uk−1} ∈ Sk and v =

{v0, v1, . . . , vl−1} ∈ Sl . Then the operation ⊕ : Sk × Sl → Sk+l is defined as

u ⊕ v � {u0, u1, . . . , uk−1, v0, v1, . . . , vl−1} . (7.7)

Theorem 7.2 For any s ∈ Sk , k ∈ Z
+, it follows that

Π2(Ds) = Ds⊕{2}, (7.8)

Π3(Ds) = Ds⊕{3}. (7.9)

Next, we define a left shift operation for the sequence s.
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Fig. 7.14 Domains of Ds0,...,sk for k = 1, 2, 3, 4

Definition 7.6 (Left shift operation of sequences) For a given k ∈ N and the finite
sequence s = {s0, s1, . . . , sk−1} ∈ S , let i ∈ N be i < k. The left shift operation
for s is defined as the binary operation 
: S × N → S given by

s 
 i � {si , si+1, . . . , sk−1}. (7.10)

This definition makes it possible to simply represent the tetrahedron map for the
equilateral triangle.

Theorem 7.3 For a given k ∈ Nand the finite sequence s = {s0, s1, . . . , sk−1} ∈ S ,
let i ∈ N be i < k. Then it follows that

1. ( f 	)i (Ds) = Ds
i ,
2. ( f 	)i (p) ∈ Ds
i , p ∈ Ds .

Proof We show the case of i = 1 in (i) because the result of (i) can be shown by
applying the case of i = 1 and the result of (ii) is immediate from (i).

Note from Definition 7.4 that

f (Ds) = f 	 ◦ Πsn−1 ◦ · · · ◦ Πs1 ◦ Πs0(D)

= f 	 ◦ Πsn−1 ◦ · · · ◦ Πs1(Ds0)

= Πsn−1 ◦ · · · ◦ Πs1 ◦ f 	(Ds0).

Note that f 	(Ds0) = D for every s0 ∈ {2, 3}. Hence, it follows that

f 	(Ds) = Πsn−1 ◦ · · · ◦ Πs1(D) = Ds
1,

which completes the proof. 
�
The result (i) in Theorem 7.3 indicates the fact that applying the tetrahedron map

f is equivalent to shifting left the subscript s of Ds by 1, while (ii) suggests that the
mapped point ( f 	)k(p) of p ∈ D by ( f 	)k may be estimated.
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Theorem 7.4 (Grey code property) Let k ∈ Z
+. For the partitioned domainsDs and

Ds′ for the map ( f 	)k with s′ = {
s′
0, s′

1, . . . , s′
k−1

} ∈ Sk , there exists 0 ≤ α ≤ k −1
such that

sα �= s′
α, (7.11)

si = s′
i , i �= α, 0 ≤ i ≤ k − 1. (7.12)

Proof The result is proven by invoking induction. 
�

7.4.2 Periodic Points of the Tetrahedron Map

The main result of this section is shown in Theorems 7.5 and 7.6 below. Before
stating the result, we need to provide several preliminary lemmas.

Lemma 7.1 Let g	 denote ( f 	)k . Then, for any s ∈ Sk , k ∈ Z
+, the map g	

dom(Ds )
is bijective.

Lemma 7.2 Let l ∈ Z and k ∈ Z
+ be such that k is even and 0 ≤ l ≤ k, and let

s = {s0, s1, . . . , sk−1} ∈ Sk . Then it follows that

A	
sk−1

A	
sk−2

. . . A	
s0 = 2k

[
1 0
0 (−1/3)l

]

. (7.13)

Theorem 7.5 The k-times tetrahedron map ( f 	)k : D → D has a unique fixed
point on Ds , s ∈ Sk , k ∈ Z

+.

Proof The fixed point of the map ( f 	)k on Ds can be obtained by solving the
equation g	 = ( f 	)k(p) = p or, equivalently,

A	
sk−1

A	
sk−2

. . . A	
s0 p + C = p. (7.14)

Now, since
det

(
A	

sk−1
A	

sk−2
. . . A	

s0 − I
)

�= 0, (7.15)

it follows that (7.14) has a unique solution p. 
�
Lemma 7.3 Let p be the fixed point for ( f 	)k . Then there do not exist two distinct
sequences α and β of length k such that p ∈ Dα and p ∈ Dβ .

Theorem 7.6 The map ( f 	)k possesses 2k fixed points on D .

Proof It follows fromTheorem7.5 andLemma7.3 that ( f 	)k possesses a fixed point
on the boundary or the interior ofDs . Note that these fixed points are not shared by 2
different domains. Hence, the number of fixed points is equal to the number of the
partitioned domains. 
�
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Fig. 7.15 Domain separation and fixed points of f 	, ( f 	)2, ( f 	)3, ( f 	)4. There are 2 fixed
points for the map f 	 (left). Similarly, the fixed points for the map ( f 	)2 are shown in the middle
left figure but the ones in the left figure are also included in the figure. The same comment applies
to the figures for ( f 	)3 and ( f 	)4

7.4.3 Chaos by the Tetrahedron Map

In this section, we show that the tetrahedron map exhibits chaotic behavior.

Theorem 7.7 The tetrahedron map f 	 : D → D is topologically transitive on D
and possesses dense periodic points on D .

Hence, the tetrahedron map f 	 exhibits chaotic behavior on D .
Figure7.15 shows the partitioned domains and the corresponding fixed points for

f 	, ( f 	)2, ( f 	)3, ( f 	)4.

Theorem 7.8 Let k ∈ Z
+ and let i ≤ k be an integer. Furthermore, define the

circular function Circk
i : S k → S k given by

Circk
i (s) � {si , si+1, . . . , sk−1, s0, s1, . . . , si−1} . (7.16)

Then there exists s ∈ Sk such that

f 	(xs) = xCirck
1(s)

,

f 	(xCirck
1(s)

) = xCirck
2(s)

,

...

f 	(xCirck
k−1(s)

) = xCirck
k (s)

= xs,

where xs denotes a fixed point for the map ( f 	)k .
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Proof It suffices to show f 	(xs) = xCirck
1(s)

. For any s = {s0, s1, . . . , sk−1} ∈ Sk ,
it follows that

f 	
sk−1

◦ f 	
sk−2

◦ · · · ◦ f 	
s0 (xs) = xs,

and hence
f 	
s0 ◦ f 	

sk−1
◦ f 	

sk−2
◦ · · · ◦ f 	

s0 (xs) = f 	
s0 (xs).

On the other hand, it follows that for xCirck
1(s)

,

f 	
s0 ◦ f 	

sk−1
◦ f 	

sk−2
◦ · · · ◦ f 	

s1 (xCirck
1(s)

) = xCirck
1(s)

.

By comparing the above two equations, we obtain

f 	
s0 (xs) = xCirck

1(s)
,

and hence f 	(xs) = xCirck
1(s)

. 
�
Corollary 7.1 The number Tk of periodic orbits with the fundamental period k is
given by T1 = 2 and

Tk = 1

k

⎛

⎝2k −
∑

i∈Mk

iTi

⎞

⎠ . (7.17)

Figure7.16 shows the periodic orbits of period 1, 2, 3, and 4.

Fig. 7.16 Domain separation and true periodic orbits of f 	, ( f 	)2, ( f 	)3, ( f 	)4. There are 2, 1,
2, 3 periodic orbits for the periods 1, 2, 3, and 4, respectively
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7.5 Conclusion

In this article, we proposed a simple folding map associated with the equilateral
triangle and provided intensive analysis for the case where the folding leads to form
the tetrahedron. Specifically, we showed that each partitioned domain possesses a
unique fixed point for the map ( f 	)k and the labels of the domains satisfy the
grey code property. Furthermore, we showed that when θ is less than the value of
cos−1 1

3 , the f 	 exhibits chaotic behavior in the sense of Devaney. Future works
include investigating the connections and the differences between the folding map
and the well-known horseshoe map, which also has the notion of ‘folding’ in its
operation.
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Chapter 8
Stabilization Control of Quasi-periodic
Orbits

Natushiro Ichinose and Motomassa Komuro

8.1 Introduction

A quasi-periodic orbit possesses the properties of both a periodic orbit and a chaotic
orbit. Let xn be a quasi-periodic orbit in a discrete-time system. The quasi-periodic
orbit is aperiodic in the sense that we cannot choose a period d such that xn+d = xn .
Aperiodicity is the main property of a chaotic orbit. At the same time, the quasi-
periodic orbit is almost periodic in the sense that we can choose a recurrence time d
such that ||xn+d − xn|| < ε for a small positive ε and any n. Since the definition of
almost periodicity holds for a periodic orbit in which xn+d = xn , a periodic orbit is
a special case in almost periodicity.

In dynamical system theory, several control methods are available to stabilize
an unstable periodic orbit, such as the OGY method [10] and the delayed feedback
control [13]. In control theory, control methods to stabilize a fixed point (or an
equilibrium) have been discussed from various viewpoints. Especially, in discrete-
time systems, since a periodic orbit can be described by a fixed point by using
a composition of a map, the stabilization is reducible to that of a fixed point. In
this sense, the stabilization of a quasi-periodic orbit presents a challenging problem
because the stabilization is not reducible to a fixed point due to the aperiodicity of
the quasi-periodic orbit.

In general, quasi-periodic orbits are dynamics defined on a high-dimensional
invariant torus [2]. In this chapter, we focus on the simplest case of dynamics defined
on an invariant closed curve in discrete-time systems. In this case, a quasi-periodic
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orbit is characterized by its rotation number. We explain that a quasi-periodic orbit
is associated with an irrational rotation via its rotation number, which is reflected in
the design of control methods.

We apply the external force control, the delayed feedback control, and the pole
assignmentmethod, to stabilize an unstable quasi-periodic orbit. These control meth-
ods have been used to stabilize an unstable periodic orbit. We show that these control
methods are also applicable to an unstable quasi-periodic orbit.

8.2 Properties of Quasi-periodic Orbit on Invariant
Closed Curve

In this section, we summarize the properties of a quasi-periodic orbit on an invariant
closed curve. The rotation number introduced by Poincaré is an important invariant
in a quasi-periodic orbit on an invariant closed curve [14]. If a certain phase is
determined in the quasi-periodic orbit, the rotation number is defined by the average
phase difference for an iterate of a map. We consider a one-dimensional map:

θn+1 = f (θn),

where θn is the phase and f : S → S is the orientation preserving homeomorphism
of the circle S = R/Z. The circle S implies the set of real numbers modulo integers,
i.e., only the fractional part of the phase θn is considered. To calculate the phase
difference, we lift f to a map F : R → R such that f (θ) = F(θ) modulo integers
and F(θ + m) = F(θ) + m for any integer m. By considering the lifted dynamics
θn+1 = F(θn) and averaging the phase difference (θn+1 − θn), the rotation number
ω ∈ [0, 1] is calculated by:

ω = lim
N→∞

∑N−1
n=0 (θn+1 − θn)

N
= lim

N→∞
F N (θ0) − θ0

N
.

It has been proved that the rotation number ω is unique independently of the ini-
tial phase θ0. Although this is the simplest case of a one-dimensional system, sev-
eral numerical approximation methods of rotation numbers have been proposed
[1, 11, 14] and we can obtain the rotation number from higher-dimensional systems.

We consider an M-dimensional discrete-time system having a quasi-periodic orbit
on an invariant closed curve:

xn+1 = F(xn),

where xn ∈ R
M is the M-dimensional state vector and F : RM → R

M is the function
representing the system. If the rotation number is irrational, the quasi-periodic orbit
is topologically conjugate to the irrational rotation [9]:

θn+1 = θn + ω, (8.1)



8 Stabilization Control of Quasi-periodic Orbits 93

where θn ∈ S. If the state xn is in the quasi-periodic orbit, the following relation
holds:

xn = ψ(θn), (8.2)

where ψ : S → R
M is the homeomorphism from the phase to the state.

Using the irrational rotation, we can understand that the quasi-periodic orbit is
aperiodic. The irrational rotation (8.1) is solved as follows:

θn = θ0 + nω.

We first consider the case that ω is rational, i.e., ω = p/q for coprime integers p
and q. Then, θq = θ0 + p. In the circle S, the integer p implies zero because the
rotation returns to the same phase. Therefore, the dynamics are periodic (θq = θ0).
On the other hand, in the case of the irrational rotation number, nω is never an integer
for any n. Therefore, there is no period d such that θd = θ0 and xd = x0 from the
topological conjugacy (8.2).

We can also understand that the quasi-periodic orbit is almost periodic. The irra-
tional rotation number ω can be approximated by a rational number:

ω = p

q
+ ε,

where p and q are coprime integers. If we consider the period q, the following
relation holds:

θq = θ0 + p + qε.

Since the integer p is regarded as zero in S, the difference between these phases
is q|ε|. In general, we can choose a specific q such that the order of |ε| is limited
[8] by:

|ε| <
1

2q2 . (8.3)

Since the difference q|ε| is less than 1/(2q), we can obtain a smaller difference for a
larger q. From the topological conjugacy (8.2), we can choose a period q for a small
ε′ > 0 and any n:

||xn+q − xn|| < ε′.

Therefore, the quasi-periodic orbit is almost periodic in the period q.
The approximation theory of irrational numbers by rational numbers shows that a

continued fraction gives us a good representation [8]. The irrational rotation number
is represented by the infinite continued fraction:
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ω = 1

a1 + 1

a2 + 1

a3 + · · ·

,

where a1, a2, a3, . . . are positive integers. If we stop the continuation of fractions in a
finite order, the resulting continued fraction is a rational number. This finite continued
fraction is called a convergent. The convergent gives us a good approximation of the
irrational rotation number. Actually, the rational number p/q in which (8.3) holds
is a convergent [8]. Therefore, the almost periodicity of the quasi-periodic orbit is
associated with the continued fraction expansion of its rotation number.

8.3 Unstable Quasi-periodic Orbit

As an example of systems, we use a coupled map lattice with asymmetric connec-
tions [7]:

xn+1 = f (xn) + 1
2 (β − δ)( f (zn) − f (xn)) + 1

2 (β + δ)( f (yn) − f (xn)),

yn+1 = f (yn) + 1
2 (β − δ)( f (xn) − f (yn)) + 1

2 (β + δ)( f (zn) − f (yn)),

zn+1 = f (zn) + 1
2 (β − δ)( f (yn) − f (zn)) + 1

2 (β + δ)( f (xn) − f (zn)), (8.4)

where xn, yn, zn ∈ R are the states of the system and f is the logistic map f (x) =
1 − αx2. In this section, we discuss the mechanism for the generation of unstable
quasi-periodic orbits of the system.

If the three states synchronize, i.e., xn = yn = zn , the system (8.4) is reduced to
the one-dimensional logistic map:

xn+1 = f (xn).

Therefore, the system (8.4) has all possible solutions of the logistic map as the syn-
chronization solutions although those solutions may be unstable. Using the solutions
of the logistic map, we represent a synchronization fixed point as follows:

xn = yn = zn = x∗, x∗ = f (x∗) = −1 + √
4α + 1

2α
.

The stability of the fixed point is determined by the eigenvalues of a Jacobian matrix
of the system. The Jacobian matrix J ∗ at the fixed point is represented as follows:

J ∗ = γ

⎛

⎝
1 − β

β+δ
2

β−δ
2

β−δ
2 1 − β

β+δ
2

β+δ
2

β−δ
2 1 − β

⎞

⎠ ,
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where γ = f ′(x∗) = 1 − √
4α + 1. The Jacobian matrix has a real eigenvalue and

a conjugate pair of complex eigenvalues:

μ1 = γ, μ2,3 = γ
2 − 3β ± i

√
3δ

2
.

If the absolute values of all eigenvalues are less than one, the fixed point is stable.
We consider two cases in which the fixed point is destabilized by the distinct

settings of the eigenvalues: (a) |μ1| < 1 < |μ2,3| and (b) |μ1|, |μ2,3| > 1. We show
the dynamics of cases (a) and (b) in Fig. 8.1a and b, respectively. The dashed line
shows the synchronization set (xn = yn = zn) in which all synchronization solutions
occur. The fixed point exists in the synchronization set (shown as the gray dot). In
case (a), since the absolute value of the complex eigenvalue |μ2,3| is greater than
one, the Neimark-Sacker bifurcation occurs. Then, the system is desynchronized and
the stable quasi-periodic orbit emerges around the unstable fixed point (Fig. 8.1a).

In case (b), a quasi-periodic orbit exists similarly to case (a) because |μ2,3| > 1.
However, since μ1 is less than -1, the period-doubling bifurcation occurs at the same
time. The quasi-periodic orbit is stable on its stable manifold as shown in Fig. 8.1b.
However, the outer states except the stable manifold converge to the stable period-2
points. Therefore, this quasi-periodic orbit is unstable and has saddle-type instability.
Using the control methods, we aim to stabilize this unstable quasi-periodic orbit.

(a) (b)

Fig. 8.1 Stable and unstable quasi-periodic orbits of the coupledmap lattice (8.4). a The parameters
are fixed at (α, β, δ) = (0.7, 0.02, 0.5), in which the eigenvalues are |μ1| < 1 < |μ2,3|. The solid
circle shows the stable quasi-periodic orbit. The gray dot shows the unstable fixed point. The dashed
line shows the synchronization set. b (α, β, δ) = (0.79, 0.02, 0.06), in which |μ1|, |μ2,3| > 1. The
dotted circle shows the unstable quasi-periodic orbit. The period-2 points are stable in this case
(shown as black dots)



96 N. Ichinose and M. Komuro

8.4 External Force Control

The external force control was proposed by Pyragas to stabilize unstable periodic
orbits [13]. The feedback input is defined by the difference between the current state
and the external force that is the unstable periodic orbit itself. The control system is
defined by:

xn+1 = F(xn) + K un, (8.5)

where K is the matrix of the feedback coefficients, un is the feedback input,

un = yn − xn,

and yn is the external force. If the unstable periodic orbit is stabilized, the feedback
input vanishes (i.e., yn − xn = 0). Therefore, only a small external force is used to
stabilize the unstable periodic orbit [13].

To apply the external force control to stabilize the unstable quasi-periodic orbit,
it is necessary to determine the orbit itself in advance. If we find the stable manifold,
we would be able to determine the unstable quasi-periodic orbit because the orbit
is stable on it. In general, however, it is difficult to determine the stable manifold
analytically. Fortunately, a method that numerically estimates the orbit on the stable
manifold has been proposed based on a bisection method [6].

We consider two initial points on either side of the stable manifold and their
midpoint (Fig. 8.2).When each point is mapped by the system equation, themidpoint
and the initial point 2 approach each other, whereas the initial point 1 is separated
from them. Therefore, by observing the dynamics, we can identify the side on which
the midpoint is located relative to the stable manifold. We replace the initial points
with themidpoint and the initial point 1,which aremore proximately located on either
side of the stable manifold than the two initial points. These two points approximate

Fig. 8.2 Bisection method
to find the stable manifold.
The two initial points are
given. When each point is
mapped (shown as 0, 1, and
2), the midpoint and the
initial point 2 approach each
other. The initial point 1 and
the midpoint are more
proximately located on either
side of the stable manifold
than the two initial points

0

1

2

0

1

2

initial point 1

initial point 2

midpoint

period-2 point

period-2 point

stable manifold
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a point on the stable manifold with arbitrary precision by iterating this process.
Furthermore, by mapping the approximated point, we can obtain the orbit on the
stable manifold [6]. We use the unstable quasi-periodic orbit estimated numerically
by this bisection method as the external force yn .

To understand the structure of the external force control, we assume that the
external force yn is derived from a system identical to the control-free system:

yn+1 = F(yn). (8.6)

Note that (8.6) holds for the orbit yn , although it is unstable. We introduce the
following transformation [4, 12]:

Un = yn + xn

2
, Vn = yn − xn

2
.

The control system represented by (8.5) and (8.6) is rewritten as follows:

Un+1 = F(Un + Vn)/2 + F(Un − Vn)/2 + K Vn,

Vn+1 = F(Un + Vn)/2 − F(Un − Vn)/2 − K Vn . (8.7)

If the stabilization is achieved, Un = yn and Vn = 0.
This transformation has been discussed from the viewpoint of synchronization in

dynamical systems [4, 12]. In synchronization theory, the manifold Vn = 0 corre-
sponds to a synchronization hyperplane on which the two systems (8.5) and (8.6)
synchronize. If the origin of Vn is stable, i.e., the transverse direction of the synchro-
nization hyperplane is stable, the synchronization between the two systems is stable.
Although the driving orbit is assumed to be an attractor in synchronization theory,
this discussion holds even if it is an unstable orbit.

To evaluate the stability of the external force control, we calculate the Lyapunov
exponents of the subsystem (8.7). Since we evaluate the stability on Vn = 0, we
linearize (8.7) at the origin of Vn :

Vn+1 = (F ′(yn) − K )Vn, (8.8)

where F ′ is the Jacobian matrix of F . The largest Lyapunov exponent λ1 of (8.8) is
defined by:

λ1 = lim
N→∞

1

N
log

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

N∏

n=0

(F ′(yn) − K )v

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
,

for almost any vector v [3]. If the largest Lyapunov exponent is negative, the origin of
Vn is stable and hence the external force control stabilizes the unstable quasi-periodic
orbit. These Lyapunov exponents are called conditional Lyapunov exponents because
they are calculated for the subsystem driven by the external force [12].
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Fig. 8.3 Results of the external feedback control for the coupled map lattice (8.4). We show the
average feedback input (top) and the largest Lyapunov exponent (bottom) as a function of the
feedback coefficient k. The parameters are fixed at (α, β, δ) = (0.79, 0.02, 0.06)

In Fig. 8.3, we show the results of the external feedback control for the coupled
map lattice (8.4). We assume that the feedback input is given to only the state xn :

K =
⎛

⎝
k 0 0
0 0 0
0 0 0

⎞

⎠ , (8.9)

where k is the feedback coefficient. The average feedback input is defined by the
average of the input strength ||un||. If the average feedback input is sufficiently small,
the stabilization is achieved. In Fig. 8.3, the unstable quasi-periodic orbit is stabilized
when the largest Lyapunov exponent is negative.

8.5 Delayed Feedback Control

The delayed feedback control was also proposed by Pyragas to stabilize unstable
periodic orbits [13]. The feedback input un is defined by the difference between the
d-past state and the current state:

un = xn−d − xn,
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where d is equal to the period of the unstable periodic orbit. The control system
is the same as (8.5). Similarly to the external force control, if the stabilization is
achieved, the feedback input vanishes. However, whereas the external force control
requires the target orbit itself, the delayed feedback control does not require any
exact information of the unstable periodic orbit except its period.

Unfortunately, there is no delay d such that the feedback input vanishes in the
unstable quasi-periodic orbit because of its aperiodicity. However, since the quasi-
periodic orbit is almost periodic, we can choose a delay d in which the feedback input
is always small. The delayed feedback control may be applicable to the unstable
quasi-periodic orbit by using such a delay in the same way as the periodic case [5].

Using the unstable quasi-periodic orbit yn , we observe the average of the distance
||yn−d − yn|| between the d-past state and the current state. In Fig. 8.4, we show
the average distance for the coupled map lattice (8.4). When d ≤ 200, the delay
that gives the smallest distance is d = 59, which corresponds to a denominator of
a convergent explained in Sect. 8.2. In this sense, we can also choose such a delay
by using only the rotation number that generates convergents. We use the delays
giving the five smallest distances as the candidates for the feedback delay (circles in
Fig. 8.4).

In Fig. 8.5, we compare the unstable quasi-periodic orbit to an orbit of the delayed
feedback control with the delay d = 59. The matrix of the feedback coefficients K is
the same as (8.9). In this case, the stabilization is achieved in the sense that the orbit of
the delayed feedback control lies in the neighborhood of the unstable quasi-periodic
orbit. However, since the feedback input does not vanish, the difference between the
two orbits does not disappear.

In Fig. 8.6, we show the average feedback input for d = 59, 175, and 177. The
other candidates d = 118 and 116 are even numbers and the system has stable period-
2 points. Since the feedback input vanishes for the period-2 points in these cases, we
exclude them. Whereas the average feedback input of d = 59 is sufficiently small,
the stabilization is not achieved for d = 175 and 177.

Fig. 8.4 Average distance
between d-past state and
current state for the coupled
map lattice (8.4). When
d ≤ 200, the delays giving
the five smallest distances
are 59, 118, 175, 177, and
116 (indicated by circles).
The parameters are fixed at
(α, β, δ) =
(0.79, 0.02, 0.06)
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Fig. 8.5 Unstable
quasi-periodic orbit (solid
circle) and orbit of the
delayed feedback control
(dashed circle) for the
coupled map lattice (8.4).
The orbits are projected onto
the x–y plane. A partial area
of the orbits is enlarged to
indicate the difference
between them. The delay is
d = 59 and the feedback
coefficient is k = −0.4. The
parameters are fixed at
(α, β, δ) =
(0.79, 0.02, 0.06)
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Fig. 8.6 Average feedback
input of the delayed feedback
control for the coupled map
lattice (8.4). We use the
delays d = 59, 175, and 177.
The profiles of d = 175 and
177 almost overlap with each
other. The parameters are
fixed at (α, β, δ) =
(0.79, 0.02, 0.06)
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From the viewpoint of the stabilization of the unstable quasi-periodic orbit, a
smaller feedback input is required. We here attempt to realize a small feedback input
by usingmultiple feedback delays. Asmentioned in Sect. 8.2, the quasi-periodic orbit
is topologically conjugate to the irrational rotation.We consider a delayed phase θn−d

in the phase domain. Using the irrational rotation, we can represent the current phase
by the delayed phase:

θn = θn−d + dω, (8.10)

where ω is the rotation number. Let 〈dω〉 be the fractional part of dω. Intuitively, the
phase difference between θn and θn−d is defined by 〈dω〉 from (8.10). However, we
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require that the phase difference represents the lead and lag of the delayed phase for
the current phase. Therefore, we define the phase difference by:

D(θn, θn−d) =
{ 〈dω〉 if 〈dω〉 < 0.5

〈dω〉 − 1 otherwise
. (8.11)

We consider two delays, d1 and d2, and their phase differences from the current
phase:

D1 = D(θn, θn−d1), D2 = D(θn, θn−d2).

From the definition of the phase difference (8.11), D1 and D2 are constant and
independent of time n. If both delays give small feedback inputs, D1 and D2 are also
small.

The state of the quasi-periodic orbit is represented by the phase via the homeo-
morphism ψ . Thus, we represent the current state yn by using a linear interpolation
of the delayed phases:

yn = ψ(θn) ≈ ψ(θn−d2) − ψ(θn−d1)

θn−d2 − θn−d1
(θn − θn−d1) + ψ(θn−d1). (8.12)

Equation (8.12) can be rewritten by using the phase differences D1 and D2 (Fig. 8.7):

yn ≈
(

1 − D1

D1 − D2

)

yn−d1 + D1

D1 − D2
yn−d2 , (8.13)

where yn−d1 = ψ(θn−d1) and yn−d2 = ψ(θn−d2). As shown in Fig. 8.7, the interpo-
lated state is closer to the current state yn than either of the delayed states yn−d1 and
yn−d2 if D1 and D2 are sufficiently small. Therefore, by using two delays, we can
obtain a smaller feedback input than that of a single delay.

Fig. 8.7 Linear interpolation
of current state. Although the
homeomorphism ψ is a
vector function, we show
only a component in it. The
phase domain is enlarged at
the current phase θn . The
interpolated state is closer to
the current state than either
of the delayed states
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Since D1 and D2 are constant, we introduce a constant parameter τ :

τ = D1

D1 − D2
. (8.14)

Using (8.13), we construct the feedback input:

un = (1 − τ)xn−d1 + τ xn−d2 − xn .

Note that we require no information of the homeomorphismψ in the feedback input.
The parameter τ can be determined if the rotation number ω is given.

In the unstable quasi-periodic orbit of Fig. 8.5, the rotation number is estimated
to be ω ≈ 2622/5335 = 0.491 . . .. Using (8.11), we calculate the phase differ-
ences of the delayed states from the current state (Table8.1). To apply the linear
interpolation method to the delayed states, it is necessary that the phase differ-
ences of the two delays have different signs. Therefore, we use pairs of the delays
(d1, d2) = (59, 175), (59, 116), (118, 175), (175, 177), and (177, 116). Although
the above condition holds for the pair (d1, d2) = (118, 116), we exclude this pair
because the feedback input vanishes for the stable period-2 points. The parameter τ

is calculated for each pair by using (8.14).
In Fig. 8.8, we show the results of the delayed feedback control with the two

delays. Since the feedback input is sufficiently small except that for the case of
(d1, d2) = (175, 177), the stabilization is achieved. In the delays except (175, 177)
and (177, 116), we obtain a smaller feedback input than that of the single delay.

Table 8.1 Phase differences of delayed states for the coupled map lattice (8.4)

Delay d 59 118 175 177 116

Phase difference D (×10−3) −3.19 −6.37 7.50 −9.56 10.7

Parameters (α, β, δ) = (0.79, 0.02, 0.06)

Fig. 8.8 Average feedback
input of the delayed
feedback control with two
delays for the coupled map
lattice (8.4). The pairs of
numbers show the delays
(d1, d2). For comparison, we
show the profile of the single
delay d = 59 (dashed
curve). The parameters are
fixed at (α, β, δ) =
(0.79, 0.02, 0.06)
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8.6 Pole Assignment Method

As mentioned in Sect. 8.3, in the coupled map lattice, if the absolute value of the
complex eigenvalue |μ2,3| at the fixed point is greater than one, the quasi-periodic
orbit occurs. At the same time, if the absolute value of the real eigenvalue |μ1| is
greater than one, the period-2 points are stable and the quasi-periodic orbit is unstable.
Therefore, if we can stabilize only the real eigenvalueμ1, a stable quasi-periodic orbit
is realized. This type of control method is known as the pole assignment method and
is widely used in control theory [15].

The eigenvalues of the Jacobian matrix J ∗ at the fixed point are given by solutions
of s in the following equation:

det(s I − J ∗) = 0,

where I is the identity matrix, det(·) implies the determinant of a matrix, and the
left side of the equation corresponds to the characteristic polynomial of J ∗. Thus, if
μ1, μ2, . . . , μM are the eigenvalues of J ∗, the characteristic polynomial is given by:

det(s I − J ∗) = (s − μ1)(s − μ2) · · · (s − μM ).

Since a quasi-periodic orbit is assumed to exist, there is at least a conjugate pair of
complex eigenvalues whose absolute values are greater than one. We here assume
that only μ1 is an unstable real eigenvalue (|μ1| > 1). The aim of the control is to
replace μ1 with a stable real eigenvalue μ̂ where |μ̂| < 1. If such a fixed point is
realized, its characteristic polynomial is expressed by:

q(s) = (s − μ̂)(s − μ2)(s − μ3) · · · (s − μM ). (8.15)

The feedback input is defined by the difference between the fixed point and the
current state:

un = x∗ − xn,

where x∗ is the fixed point. The control system is the same as (8.5). Then, the
characteristic polynomial of the control system is given by:

rK (s) = det(s I − F ′(x∗) + K ). (8.16)

If we can design the feedback coefficients K such that rK (s) = q(s), the fixed point
of the control system (equivalent to x∗) has the objective eigenvalues. It is necessary
that all coefficients of rK (s) and q(s) are equivalent. Since we do not change the
eigenvalues except μ1, the quasi-periodic orbit can be stabilized.

Strictly speaking, this control method does not imply the stabilization of the
unstable quasi-periodic orbit itself. Since x∗ is a constant and xn is a quasi-periodic
orbit, the feedback input is large and hence the controlled quasi-periodic orbit is
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obviously distinct from the unstable quasi-periodic orbit. However, since the control
can be carried out by using only the information of the fixed point, the design of the
control system is markedly simple in comparison with the previous control methods.

In the coupledmap lattice,we consider a restrictedmatrix of feedback coefficients:

K = k

⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ .

We find the feedback coefficient k such that rK (s) = q(s) holds. For example, the
coefficients of s2 in rK (s) and q(s) are respectively given by:

3k − 3γ (1 − β), γ (3β − 2) − μ̂.

Since these coefficients are equivalent to each other, we obtain the feedback coeffi-
cient k:

k = γ − μ̂

3
.

This relationship holds for the other coefficients of the characteristic polynomials.
Although this is a restricted case, the necessary and sufficient conditions for the
existence of K and the efficient design methods in general cases have been discussed
in control theory [15].

In Fig. 8.9, we show an orbit of the pole assignmentmethod. Although a difference
from the unstable quasi-periodic orbit is noticeable, a stable quasi-periodic orbit can
be observed by using the pole assignment method. Since the feedback coefficient is

Fig. 8.9 Unstable
quasi-periodic orbit (solid
circle) and orbit of the pole
assignment method (dashed
circle) for the coupled map
lattice (8.4). The orbits are
projected onto the x–y plane.
The controlled eigenvalue is
assigned to μ̂ = −0.9 and
the feedback coefficient is
calculated to be
k = −0.0465. The
parameters are fixed at
(α, β, δ) =
(0.79, 0.02, 0.06)
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Fig. 8.10 Bifurcation diagrams of control-free system (top) and control system by the pole assign-
ment method (bottom). We use α as the bifurcation parameter. Boxes show orbits on the x–y plane
for corresponding α shown by vertical dashed lines. The controlled eigenvalue is μ̂ = −0.9. The
other parameters are fixed at (β, δ) = (0.02, 0.06)

determined directly from the system parameters, the control method can be applied
to a variety of parameter values more easily than the previous methods. In Fig. 8.10,
we compare the bifurcation diagram of the control system to that of the control-
free system. In the control-free system, the period-doubling bifurcation to chaotic
orbits is observed. In the control system, a quasi-periodic orbit on an invariant closed
curve, which is the target orbit, can be observed for a wide range of parameter values.
However, besides the invariant closed curve, we observe a period-2 quasi-periodic
orbit (double closed curves) and a chaotic orbit. Since this control method does not
stabilize the quasi-periodic orbit directly, nor does it prevent the orbit from changing
its stability, the orbit stabilization is not always guaranteed. In general, this control
method is applicable to only parameter values in neighborhood of the Neimark-
Sacker bifurcation in which the unstable quasi-periodic orbit does not disappear.

8.7 Conclusions

We have applied three control methods, the external force control, the delayed feed-
back control, and the pole assignment method, to stabilize an unstable quasi-periodic
orbit. From the viewpoint of stabilization control, the reproducibility of the unstable
quasi-periodic orbit is an important factor. In the delayed feedback control, however,
there is an inevitable difference between the controlled and unstable quasi-periodic
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Table 8.2 Reproducibility of unstable quasi-periodic orbit and prior knowledge of control

External force control Delayed feedback control Pole assignment

Reproducibility High Middle Low

Prior knowledge Large (orbit) Middle (rotation number) Small (fixed point)

orbits because a quasi-periodic orbit is almost periodic and there is a delay mismatch
between the delayed state and the current state. In the pole assignment method, since
the control is applied to a fixed point, the stabilization of the unstable quasi-periodic
orbit is indirect and an intrinsically distinct quasi-periodic orbit is stabilized.

On the other hand, prior knowledge required to stabilize the unstable quasi-
periodic orbit is also an important factor. The external force control is the most
direct method for the stabilization. However, this method requires the unstable quasi-
periodic orbit itself as the external force constructed in advance. In the delayed feed-
back control, although calculation of the rotation number from the unstable quasi-
periodic orbit is required, suitable delays may be found by applying the delayed
feedback control exhaustively to many delays. On the other hand, since the pole
assignment method involves the control to a fixed point, we can apply advanced con-
trol theory in which the control is feasible even if there is no adequate knowledge of
the system. In Table8.2, we summarize the three control methods from the viewpoint
of the reproducibility of the unstable quasi-periodic orbit and the prior knowledge to
control it. Since these factors have a trade-off relationship, it is necessary to choose
a method by considering the required reproducibility.
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Chapter 9
Feedback Control Method Based
on Predicted Future States for Controlling
Chaos

Miki U. Kobayashi, Tetsushi Ueta and Kazuyuki Aihara

9.1 Introduction

Control theory is established and interdisciplinary fields in engineering, physics, life
science and mathematics and so on. The main purpose of control theory is to make
a system desirable by putting inputs to the system.

In the past two decades, chaos control for changing a chaotic state to a periodic
state in a system got attention in control theory [1]. There are two main methods of
chaos control. The strategy of both control methods is that a chaotic state is changed
to a periodic state in a system by stabilizing an unstable periodic orbit embedded in
a chaotic attractor. The first one which was proposed by Ott, Grebogi and Yorke (the
OGY method) is based on the stable manifold structure of an unstable periodic orbit
embedded in a chaotic attractor [2]. The advantage of this method is that the control
method is available with small control inputs. However, the OGY method requires
the solution of the unstable periodic orbit, which is very hard in experiments. Many
extensions and applications of the OGY method have been studied [1, 3, 4]. The
second one which was proposed by Pyragas (the DFC method) is based on the time-
delayed control inputs [5]. The DFCmethod is the simple but efficient tool to control
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a chaotic state to a periodic one [1, 6–8]. In contrast to the former one, the DFC
method can be easily applied to experiments, because the solution of the unstable
periodic orbit is not required. However, it is difficult to analyze the linear stability for
a systemwith delayed feedback control inputs due to infinite dimension of the system
with the inputs. Furthermore, there is the limitation in the DFC method that unstable
periodic orbits with an odd number of real Floquet multipliers greater than unity
cannot be stabilized with the DFC method [9, 10]. Recently, several methods are
proposed in order to circumvent this limitation, e.g. by suitable choices of feedback
gain [11] and an oscillating feedback [12].

The prediction-based feedback control is also presented as a method for refuting
the odd-number limitation [13, 14]. In the prediction-based feedback control, the
control inputs u(k) for stabilization of an unstable periodic orbit with the period
T are determined by the difference between the future state and the current state:
u(k) = K (x(k +T )− x(k)), where x(k) denotes a state vector in a chaotic system at
time k and K is a feedback gain. Note that x(k + T ) is the future state of the variable
x(k) in the systemwithout control inputs. One of the advantages of thismethod is that
the stability analysis for the prediction-based feedback control method is easier than
that for the delayed feedback control method. Because the dimension of a system
with the prediction-based feedback control inputs is the same with the dimension of
the original system without the control inputs. Control parameters, e.g. the control
gain, can be set up easily with the stability analysis. However, the exact future states
in a chaotic system cannot be predicted in general because of unpredictability in a
chaotic system. Without knowing the perfect model of the chaotic system, it would
be impossible to predict the exact future state.

In order to avoid the difficulty, we propose a combined method of the prediction-
based feedback control method and the nonlinear time series analysis for the
prediction of future states in a system. Namely, we introduce the control inputs
u(k) = K (x p(k + T ) − x(k)), where x p(k + T ) is the state vector in a system
without control inputs at k + T which is predicted with a time series analysis. The
difference from the prediction-based feedback control method is that our control
inputs are based not on the exact future state x(k + T ) but on the predicted future
state x p(k + T ). There are many nonlinear time series analyses for the prediction of
states in chaotic systems [15, 16]. In this chapter, we use the method of analogues
which is the most fundamental method [17].

This chapter is organized as follows. In Sect. 9.2, we propose a new method for
controlling chaos. In our method, we introduce control inputs on the basis of the
predicted future states with the method of analogues which is one of the nonlinear
time series analyses. In Sect. 9.3, we validate performance of our method by applying
it to the logistic map and the Hénon map. Finally, in Sect. 9.4, we summarize our
results.
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9.2 Method

We consider an n-dimensional chaotic dynamical system with a p-dimensional
control inputs u(t):

x(k + 1) = f (x(k), u(k)). (9.1)

We choose control inputs to stabilize an unstable periodic orbit with period T which
is embedded in a chaotic attractor as follow:

u(k) = K (x p(k + T ) − x(k)),

where K is a feedback gain and x p(k + T ) is a predicted T -future state of the
variable x(k) in the system without control inputs. When the control inputs are
chosen as u(t) = K (x(k − T ) − x(k)), this control scheme corresponds to the
delayed feedback control method [5], and when the control inputs are chosen as
u(t) = K (x(k + T ) − x(k)), this control scheme corresponds to the prediction-
based feedback control method [13, 14]. Note that x(k + T ) is the future state of the
variable x(k) in the system without control inputs, that is x(k + T ) = f T (x(k), 0).

In order to perform our control method, we predict a T -future state of the
variable xsystem(k) in the system without control inputs, that is xsystem(k + 1) =
f (xsystem(k), 0), by using the method of analogues which is a nonlinear time series
analysis proposed by Lorenz as follows [17]. We define x p(k + T ) as the pre-
dicted future state of xsystem(k) in the system without control inputs. First, we
obtain time series data xdata(k) in a chaotic dynamical systemwithout control inputs,
xdata(k + 1) = f (xdata(k), 0)(0 ≤ k < tp). The parameter tp indicates the number
of the data. Note that the initial condition of the time series data xdata(0) is not nec-
essarily the same with the initial condition of the system variables xsystem(0). Our
purpose is to predict a future state of xsystem(k) in the system without control inputs
from the time series data xdata(k). Next, we find the nearest state xdata(k∗) from
the state vector x(k) in the controlled system (Eq. (9.1)) in the sense of the Euclid-
ean distance from the time series data xdata(k)(0 ≤ k < tp). Finally, we assume
xdata(k∗ + T ) as the predicted future state xsystem(k + T ) in the system without con-
trol inputs. Namely, we use xdata(k∗ + T ) as the predicted future state x p(k + T ).
We apply x p(k + T ) which is obtained by the method of analogues to the control
inputs; namely, u(k) = K (x p(k + T ) − x(k)).

Here, we demonstrate the prediction with the method of analogues to discuss the
accuracy of the method. Let’s consider the logistic map; x(k + 1) = 3.99x(k)(1 −
x(k)). Now, we predict the future state of the variables xsystem(k) from the time
series data xdata(k), (0 ≤ k < tp) by using the method of analogues. We take
0.31 as the initial condition of time series data xdata(k) we use to predict dynamics
of the logistic map. Namely, in order to obtain the data xdata(k), we calculate the
system xdata(k + 1) = f (xdata(k), 0), (0 ≤ k < tp) with xdata(0) = 0.31, where
f (x(k), 0) = 3.99x(k)(1− x(k)). As a test, we predict xsystem(T ) (xsystem(k + 1) =
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Table 9.1 Dependence of the prediction error on the number of data tp

tp xdata(0) xsystem(0) Error between exact
and predicted future
states

T = 1

1000 0.31 0.21 0.001

100 0.31 0.21 0.004

50 0.31 0.21 0.0252

10 0.31 0.21 0.151

T = 5

1000 0.41 0.11 0.002

100 0.41 0.11 0.061

50 0.41 0.11 0.048

10 0.41 0.11 0.945

T = 10

10,000 0.41 0.11 0.003

1000 0.41 0.11 0.198

100 0.41 0.11 0.536

xdata(0) is the initial condition of the time series data we use for the prediction. xsystem(0) is the
current state in the system we try to predict, that is we predict the state vector xsystem(T )

3.99xsystem(k)(1− xsystem(k)), xsystem(0) = 0.21) from the time series data xdata(k)

(0 ≤ k < tp) by the method of analogues. It is clear from Table9.1 that the accuracy
of the prediction become better and better as the number of data tp gets larger and
larger. Furthermore, longer time series data are needed in order to predict the longer-
term future state.

The advantage of our control method is that we do not need to know the exact
future states in a system without the control inputs, because we use the predicted
future state x p(k +T ) in stead of the exact future states x(k +T ). Thus, we can apply
our method to experiments when we have long time series data in the experiments.

9.3 Application

9.3.1 Logistic Map

We stabilize unstable periodic orbits in the logistic map x(k +1) = ax(k)(1− x(k))

by our method which is explained in Sect. 9.2. It is found that the logistic map with
some parameter a shows chaos. In this chapter, a is chosen as 3.99. The behavior of
x(k) with a = 3.99 is shown in Fig. 9.1. It shows that the system is fully developed
chaos.
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Fig. 9.1 Left Uncontrolled behavior x(k)with a = 3.99. The system shows fully developed chaos.
Right Distribution function of uncontrolled behavior

The controlled system is described as follow:

x(k + 1) = ax(k)(1 − x(k)) + K (x p(k + T ) − x(k)),

where x p(k + T ) is the predicted future state of x(k) in the system without control
inputs, and K is a feedback gain. Since control inputs should be put in a neighborhood
of the target orbit, we use the following switching control:

u(k) =
{

K (x p(k + T ) − x(k)), if |x(k − T ) − x(k)| ≤ 0.1,
0, otherwise.

(9.2)

As a numerical example, we demonstrate the stabilization of a fixed point xfp of
the logistic map. In order to determine a suitable feedback gain K , we perform the
stability analysis of the fixed point in the system with the control inputs based on the
exact future state. In the case of the control inputs based on the exact future state,
we can solve the stability analysis easily. Here, we perform the stability analysis of a
fixed point xfp of the logistic map. The controlled system is described by x(k +1) =
ax(k)(1 − x(k)) + K (ax(k)(1 − x(k)) − x(k)). The linearized system around the
fixed point xfp is given by

δx(k + 1) = (−2a(1 + K )xfp + a + aK − K )δx(k),

where δx(k) = x(k) − xfp. If K satisfies the following inequality

|(−2a(1 + K )xfp + a + aK − K )| < 1,

the fixed point xfp is locally stable. In this chapter, in the case with a = 3.99, the
fixed point xfp = 0.7493, and K is chosen as−0.5 as the inequality is hold. Note that
in our control scheme, this choice of K is neither a necessary nor sufficient condition
for the stability of the fixed point, because our control inputs are not based on the
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Fig. 9.2 Left Controlled behavior x(k) with a = 3.99, K = −0.5, and tp = 1000. Right Distribu-
tion function of controlled behavior
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Fig. 9.3 Left Controlled behavior x(k) with a = 3.99, K = −0.5, and tp = 50. Right Distribution
function of controlled behavior

exact future state but the predicted future state. However, it must be valid to choose
K as the inequality is hold, if the prediction is good enough.

Figure9.2 (left) shows the controlled behavior x(k) with a = 3.99 where the
prediction is estimated with time series data with tp = 1000. The variable x(k) of
the controlled system is static. Figure9.2 (right) shows the distribution function of
x(k) after putting the control inputs. The distribution has the sharp peak around the
fixed point xfp = 0.7493. The distribution function indicates that the unstable fixed
point in the uncontrolled system can be stabilized and the attractor in the controlled
system is the fixed point.

Figure9.3 (left) shows controlled behavior x(k) with a = 3.99 where the pre-
diction is estimated with time series data with tp = 50. The variable x(k) of the
controlled system is not static but oscillate chaotically. In fact, the distribution func-
tion of x(k) distributes around the fixed point xfp = 0.7493 in Fig. 9.3 (right). From
the distribution function, it is clear that the controlled system is still chaotic. How-
ever, the distribution function is bounded in a narrow region, which means that this
chaos is much “weaker” than one in the original system without the control inputs
(see Fig. 9.1 (right)). In this sense, the control is still successful.
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Fig. 9.4 Upper left Controlled behavior x(k) with a = 3.99, K = −0.5, and tp = 10. Upper right
Distribution function of controlled behavior. Lower left Control input behavior

Figure9.4 (upper left) shows the controlled behavior x(k) with a = 3.99 where
the prediction is estimated with time series data with tp = 10. The variable x(k) of
the controlled system oscillates chaotically. The distribution function of x(k) shows
fully developed chaos as in Fig. 9.4 (upper right). In this case tp = 10, the control
inputs is applied to the system many times (see Fig. 9.4 (lower left)), but the control
fails because of the small number of data.

We discuss how long the time series data we use for the prediction should be
to stabilize the fixed point. Table9.2 shows dependence of the success rate of our

Table 9.2 Dependence of the success rate of the method on the number of data tp

The number of data tp The success rate of the method with various
time series data (%)

1000 100

500 100

100 100

50 60

20 30

10 0

We define that the control becomes successful when the dispersion of the distribution of controlled
behavior is smaller than 0.01
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method on the number of data tp. We define that the system is successfully controlled
when the dispersion of the variable x(k) in the controlled system is less than 0.01.
We discuss the rate that the method becomes successful by using 10 different time
series data which are calculated with randomly chosen 10 different initial conditions.
We define the rate as the percentage that the control trials with 10 time series data
become successful. From Table9.2, the method is completely available when the
number of data tp is larger than 100.

In the case a = 3.99, the correlation time of this system is about 8. It is indicated
that system does not become chaotic by using time series data with longer time than
the correlation time.

9.3.2 Hénon Map

Here, we stabilize unstable periodic orbits in the Hénon map x(k + 1) = 1.4 −
x(k)2 + 0.3y(k), y(k + 1) = x(k). The Hénon map is a typical non-hyperbolic
chaotic map (see Fig. 9.5).

we use the following switching control as is the case in the logistic map:

u(k) =
{

K (x p(k + T ) − x(k)), if |x(k − T ) − x(k)| ≤ 0.1,
0, otherwise.

(9.3)

Fig. 9.6 (left) shows the controlled behavior x(k) with K = −0.5 where the pre-
diction is estimated with time series data with tp = 1000. Figure9.6 (right) shows
the distribution function of x(k) which has the sharp peak around the fixed point
xfp = 0.63. The distribution function indicates that the unstable fixed point in the
controlled system is stabilized and the attractor in the controlled system is the fixed
point.

Figure9.7 (left) shows controlled behavior x(k) with K = −0.5 where the pre-
diction is estimated with time series data with tp = 100. The variable x(k) of the
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of the controlled behavior

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0  100  200  300  400  500

x(
k)

k

 0
 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

-1 -0.5  0  0.5  1

di
st

ri
bu

ti
on

 o
f x

, P
(x

)

x(k)
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of the controlled behavior

controlled system is not static but oscillate chaotically. In fact, the distribution func-
tion of x(k) distributes around the fixed point ffp = 0.63 in Fig. 9.7 (right). From
the distribution function, it is clear that that the controlled system is still chaotic.
However, the distribution function is bounded in a narrow region, which means that
chaos is much “weaker” than the original system without the control inputs as the
same with the logistic map.

Figure9.8 shows controlled behavior x(k) with K = −0.5 where the prediction
is estimated with time series data with tp = 10. The variable x(k) of the controlled
system oscillates chaotically. The distribution function of x(k) shows fully developed
chaos in Fig. 9.8 (right). In this case tp = 10, the control fails because of the lack of
the enough number of data.

We discuss how long the time series we use should be to stabilize the fixed point.
Table9.3 shows dependence of the success rate of our method on the number of data
tp. We define that the system is successfully controlled when the dispersion of the
variable x(k) in the controlled system is less than 0.01. The rate that the control trials
become successful is defined by the same way with the logistic map. From Table9.3,
the method is completely available when the number of data tp is larger than 200.
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Table 9.3 Dependence of the success rate of the method on the number of data tp

The number of data tp The success rate of the method with various
time series data (%)

1000 100

500 100

200 100

100 80

50 30

20 0

10 0

We define that the control becomes successful when the dispersion of the distribution of controlled
behavior is smaller than 0.01

9.4 Conclusions

We have proposed a new control method with a combination of the prediction-based
feedback control method and the method of analogues which is one of nonlinear time
series analyses.

The prediction-based feedback control method is useful when we can obtain the
exact future states of a system. In general, it is impossible to obtain the exact future
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states in a chaotic system, especially in experiments, due to its orbital instability. On
the other hand, ourmethod is applicable even ifwe do not know the exact future states.
The only necessary information for our control scheme is enough long time series
data in the system to predict future states. Whether our scheme becomes successful
or not depends on how good we can predict the future states in the system. In this
chapter, we use the method of analogues in order to predict the future states. The
method is the simplest method for the prediction of time series in chaotic systems.
Nevertheless, our control scheme with the method of analogues is useful in chaotic
systems. When we use more advanced methods for the prediction, e.g. the nonlinear
time series analysis based on radial basis function [16], our control scheme must be
improved.

The Prediction-based control method can be also applied to continuous-time
chaotic systems [18]. We will report applications of our method to continuous-time
chaotic systems and chaotic systemswith a large degrees of freedom in another paper.
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Chapter 10
Ultra-discretization of Nonlinear Control
Systems with Spatial Symmetry

Masato Ishikawa and Takuto Kita

10.1 Introduction

Nonlinear control systems, as well as nonlinear dynamical systems in general,
are usually referred to nonlinear ordinary differential equations expressed by ẋ =
f (x, u), where x ∈ M is its state, M is a smooth manifold of states, u ∈ U ⊂ R

m

is the control input included in the set of admissible controls U , and f if a smooth
mapping f : M × U → T M .

Now, let us think of its discrete alternative in full sense, i.e., behavior of a system
whose variables are all discrete with respect to spacio-temporal axes. Suppose Md is
a finite set corresponding to a discrete version of the state space, Ud is also a finite set
of admissible control symbols. Then consider a discrete-valued difference equation

x[k + 1] = fd(x[k], u[k]), x ∈ Md , u ∈ Ud , fd : Md × Ud → Md

where k ∈ Z denotes the time step instead of the continuous time t ∈ R. This
approach is often called em ultra-discretization, mainly along the context of math-
ematical analysis of integrable systems such as various soliton equations [3]. The
prefix ultra-distinguishes the problem from so-called discrete-time systems, in the
sense that the dependent variable x is supposed discrete, as well as the independent
variable k. Upon facing to these ultra-discrete control systems, we are naturally led
to discuss which sort of controller design framework (i.e., how to design a state
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feedback law u[k] = k(x[k]) to fulfill the design requirement) can be established.
This is the central motivation in this chapter.

It would be technically possible to develop systems theory for general class of
Md , Ud and fd . However, in this chapter, we dare to confine ourselves to a specific
class of systems in the following manners:

• Md is not only a mere collection of elements, but is associated with some structure
such as symmetry.

• There exist some first principles behind the system dynamics. In other words, fd

should be derived from some discrete version of first principles, not by straight-
forward discretization of f (see Fig. 10.4 below).

From these points of view, in this chapter, we consider to discuss discrete-valued
alternative of planar locomotion of rigid bodies. Planar locomotion is inherently
symmetric under isometric transformation, i.e., invariant under action of translation
and rotation without mirror reflection. The set of such a transformation is identi-
fied with the special Euclidean transformation group, say SE(2), parameterized by
{(x, y, θ)|x ∈ R, y ∈ R, θ ∈ S} � R

2 × S. The configuration space of the vehicle
SE(2) is supposed to be discretized as a hexagonal cellular space [6], while the shape
space (or joint space, usually referred to T

n) is also discretized as Z
n
6 of modular

arithmetic.
Control problems in planar locomotion have been attracting much interest of

nonlinear control theorists and robotics researchers since early 90s. Some notable
properties of such a system include: (1) the set of equilibria forms a submanifold of
the state space rather than an isolated point, (2) any equilibrium cannot be asymp-
totically stabilized by continuous state feedback as pointed out by Brockett [2], (3)
nevertheless the equilibrium can be reached from its neighborhood if it satisfies
the Lie algebra rank condition [10]. As the conventional control theory of planar
locomotion is based on nonintegrable nature of kinematic constraints, we start from
considering a discrete-valued version of nonholonomic constraints (an integer-valued
equation of integer variables), then discuss how the admissible motion that satisfies
the constraint look, compared to the continuous ones. Here we re-emphasize that the
issue addressed here is (relevant, though) different from a discretization of contin-
uous nonlinear systems or nonlinear sampled-data systems [1, 7, 9, 13]. In other
words, the resulting behavior can rather be viewed as a special class of cellular
automata [11, 12]. Our standpoint is just to observe what should happen, starting
from the discrete constraints as principal rules. This chapter partially includes the
results obtained by the authors, reported in [4].

In the rest of the chapter, t ∈ R denotes the time in continuous case, while k ∈ Z

denotes the time step in discrete case. Moreover, we often use the following short-
form notation, Ci := cos θi , Si := sin θi , Ci j := cos(θi −θ j ) and Si j := sin(θi −θ j )

to save the space.
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10.2 Basic Properties on the Hexagonal Cellular Space

10.2.1 Coordinate Settings

Suppose a tessellation of two-dimensional euclidean space R
2 with unit hexagons,

as shown in Fig. 10.1. Let O be a center of a hexagon. The x-axis is the line passing
through O which is assumed perpendicular to the edge of a hexagon, while y-axis
passes through one of its vertex (alternative definition can be possible). Here we
introduce the following three constants will play important roles throughout this
chapter,

α = 1

2
, β =

√
3

2
, γ = π

3
,

which satisfy following elementary relations

α2 + β2 = 1, α2 − β2 = −α.

Each cell is identified with the (x, y)-position of its center, e.g., (α, β), (1 + α, β)

or (2, 2β) in Fig. 10.1.
For θ refers to an angle on this space, it should be confined to 0,±γ,±2γ,±3γ,

. . ., where 3γ and −3γ are identified to each other. As slight abuse of notation, we
identify γ i (i ∈ Z) with i itself, as long as it causes no confusion. In other words,
the space of angles is identified with the set of integers modulo 6:

Z6 = {0, 1, 2, 3, 4, 5} ≡ {0,±1,±2, 3},

The integer 3 ∈ Z6 will be treated as discrete counterpart of π ∈ S. Similarly, cos θ

actually implies cos γ θ for any discrete angle θ ∈ Z6. The cosine and sine of discrete
angles are summarized in Fig. 10.2. Fundamental trigonometric identities, such as
angle addition formulae, naturally hold as in the continuous case.

Fig. 10.1 Coordinate
settings on the hexagonal
cellular space and the unitary
constants used for the
coordinates

O
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Fig. 10.2 Cosine (left) and sine (right) functions defined on the hexagonal cells. The symbols shown
in the cells indicate values of functions at corresponding direction (e.g., cos(1) = α). Symbols shown
between two cells indicate their differences (e.g., cos(2) − cos(1) = (−α) − α = −1.)

In summary, we define the whole configuration space of planar rigid body, say
SEH (2), as follows:

SEd(2) =
⎧
⎨

⎩

⎡

⎣
x
y
θ

⎤

⎦ =
⎡

⎣
nx + odd(y)α

nyβ

nθ

⎤

⎦

∣
∣
∣
∣
∣
∣
nx , ny ∈ Z, nθ ∈ Z6

⎫
⎬

⎭
� Z × Z × Z6,

(10.1)

where odd(y) is 1 if y is an odd integer, 0 otherwise.

10.2.2 Basics of Difference Calculus in Concern

For a function f (θ), we define

�θ f := f (θ + �θ) − f (θ),

where |�θ | ≤ 1. �θ f is simply denoted by � f if the argument is obvious. Note
that � f depends on both θ and �θ . By definition, � f = 0 if �θ = 0.

Differentiation of trigonometric functions are derived as follows. First, note that
cosine and sine of small angles are formulated by (see Fig. 10.2)

cos �θ = 1 − α�θ2, sin �θ = β�θ (if |�θ | ≤ 1).

Therefore

cos(θ + �θ) − cos θ = cos θ cos �θ − sin θ sin �θ − cos θ

= − sin �θ sin θ + (cos �θ − 1) cos θ

= −β�θ sin θ − α�θ2 cos θ,
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Table 10.1 Discrete version of calculus; differences of trigonometric functions for |�θ | = 1

� cos θ

θ = −2 θ = −1 θ = 0 θ = 1 θ = 2 θ = 3

�θ = 1 (i.e., cos(θ + 1) − cos θ) 1 α −α −1 −α α

�θ = −1 (i.e., cos(θ − 1) − cos θ) −α −1 −α α 1 α

� sin θ

�θ = 1 (i.e., sin(θ + 1) − sin θ) 0 β β 0 −β −β

�θ = −1 (i.e., sin(θ − 1) − sin θ) β 0 −β −β 0 β

sin(θ + �θ) − sin θ = sin θ cos �θ + cos θ sin �θ − sin θ

= sin �θ cos θ + (cos �θ − 1) sin θ

= β�θ cos θ − α�θ2 sin θ.

Thus we have the basic difference formulae

� cos θ = −β�θ sin θ − α�θ2 cos θ, (10.2)

� sin θ = β�θ cos θ − α�θ2 sin θ. (10.3)

In contrast to continuous differentiation, we should note that the differences are
neither linear nor symmetric with respect to �θ , due to the presence of �θ2. This
asymmetry will yield the discrepancy between the continuous and discrete cases in
the following discussion. Moreover, differential algebraic relations such as (sin θ)′ =
cos θ and (cos θ)′ = − sin θ do not hold in the discrete case, while the following
phase shift relations are satisfied (Table 10.1):

� cos θ = cos(θ + 2�θ),

� sin θ = sin(θ + 2�θ).

10.3 Locomotion Under Nonholonomic Constraints

10.3.1 Derivation of the Continuous Single-Cart Model

Let us start with a simple example concerning planar locomotion of single rigid body,
which we call a single cart, shown in Fig. 10.3(left). The state vector of this system
is ξ = (x0, y0, θ0) ∈ X , X := SE(2) where (x0, y0) implies its position and θ0
implies its orientation angle relative to the x-axis. We assume that the cart is not
permitted to slide sideways. This means the nonholonomic constraint

ẏ0 cos θ0 − ẋ0 sin θ0 = 0 (10.4)
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admissible cell

admissible
direction

inadmissible
direction

admissible cell

Fig. 10.3 Single cart: nonholonomic constraint imposed by the rolling wheels

should be satisfied. The state equation, derived from the kinematic relation, is given
by the following differential equation

ξ̇ = g1(ξ)u1 + g2(ξ)u2, (10.5)

g1(ξ) :=
⎛

⎝
cos θ0
sin θ0

0

⎞

⎠ , g2(ξ) :=
⎛

⎝
0
0
1

⎞

⎠ ,

where u1 ∈ R is the forwarding velocity and u2 ∈ R is the heading angular velocity.
Each point ξ ∈ X can be an equilibrium by setting u = 0. Brockett’s stabilizability
theorem [2] tells us that this system is not asymptotically stabilizable by any smooth
time-invariant state feedback law. This system, in turn, is called controllable if any
two equilibria can be reached from each other [10]. This is indeed satisfied since its
controllability Lie algebra

C (ξ) := span{g1(ξ), g2(ξ), [g1, g2](ξ)} (10.6)

has dimension 3 at ∀ξ ∈ X , where

[g1, g2](ξ) := ∂g2

∂ξ
g1 − ∂g1

∂ξ
g2 =

⎛

⎝
sin θ0

− cos θ0
0

⎞

⎠ .

10.3.2 Derivation of the Discrete Version

Now let us discuss what happens if the single cart is placed on the hexagonal cellular
space (Fig. 10.3, right). The state vector of this system is ξ = (x0, y0, θ0) as the same
as in the continuous case, but it must be an element of X = SEH (2).

Next, let us think of a condition which prevents the cart from sliding sideways.
Let �x0 denote the progress of the variable x0 from the current step k to the next
step k + 1, i.e.,
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�x0 = x0[k + 1] − x0[k]. (10.7)

�y0 and �θ0 are defined in the same manner. Then the discrete version of the
nonholonomic constraint is given by

�y0 cos θ0 − �x0 sin θ0 = 0. (10.8)

Suppose u1 ∈ {−1, 0, 1} is the forwarding velocity and u2 ∈ {−1, 0, 1} is the heading
angular velocity. Then the state equation of the cart is immediately obtained as

⎛

⎝
�x0
�y0
�θ0

⎞

⎠ =
⎛

⎝
cos θ0
sin θ0

0

⎞

⎠ u1 +
⎛

⎝
0
0
1

⎞

⎠ u2, (10.9)

or equivalently,

�ξ = g1(ξ)u1 + g2(ξ)u2, (10.10)

g1(ξ) :=
⎛

⎝
cos θ0
sin θ0

0

⎞

⎠ , g2(ξ) :=
⎛

⎝
0
0
1

⎞

⎠ .

The process of this derivation is summarized in Fig. 10.4. What we have derived
here is an integer-valued difference equation that satisfies the discrete nonholonomic
constraint (10.8), which should be distinguished from a direct discretization of the
continuous differential equation (10.5) although it apparently seems to be.

ġ =

⎡
⎣

cos θ
sin θ

0

⎤
⎦u1+

⎡
⎣

0
0
1

⎤
⎦u2

ẏ cos θ − ẋ sin θ = 0

Δg =

⎡
⎣

cos θ
sin θ

0

⎤
⎦u1 +

⎡
⎣

0
0
2

⎤
⎦u2

Δy cos θ − Δx sin θ = 0

Fig. 10.4 Overview of the discretization approach in this work. At first, the continuous constraint
(nonholonomic velocity constraint) is replaced by its discrete couterpart, then the description of
dynamics (state equation) is derived which conform to the constraint
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Fig. 10.5 Primitive periodic input patterns. Sequence of control inputs u1[k], u2[k] ∈ {1, 0,−1}
are chosen so that each of their average over a period is zero

10.3.3 Holonomy and the Lie Bracket Motion

Using the discrete model of a single cart obtained above, let us investigate discrete
version of holonomy, i.e., the net effect of periodic inputs. Figure 10.5 shows primitive
8 patterns of four step periodic input signals with unit amplitude. The input (a′) is
the time-reversal signal of (a′) and vice versa, and so for other pairs.

Figure 10.6 shows the effect of these inputs starting from the origin. The effect
of (a′) is just the opposite to that of (a) and so for the other pairs. In essence, the
holonomy is split into two types, the effect of (a)(b) and that of (c)(d).

As an analogy from the continuous case, we expect it possible to analyze this
effect by some discrete counterpart of Lie bracket. For this purpose, let us first define
discrete version of Jacobian matrix.

�g1 = g1(ξ + �ξ) − g1(ξ) =
⎛

⎜
⎝

−β�θ0S0 − α�θ2
0 C0

β�θ0C0 − α�θ2
0 S0

0

⎞

⎟
⎠ ,

Fig. 10.6 Effect of Lie
bracket; motions of the
single cart resulting from the
periodic input patterns

initial state: 

(a) or (b)
corresponds to

 (c) or (d)
corresponds to

 (c') or (d')
corresponds to

(a') or (b')
corresponds to
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where S0 = sin θ0, C0 = cos θ0. The problem here is that �g1 is not linear with
respect to �ξ due to the presence of �θ2

0 . Now, let us remember that �θ2
0 may

be replaced by the linear term, i.e., �θ2
0 = �θ0 if �θ0 ≥ 1, while �θ2

0 = −�θ0
if �θ0 ≤ −1. Then this leads us to define two branches of Jacobians J+(g1) and
J−(g1), as follows:

J+(g1) :=
⎛

⎝
0 0 −βS0 − αC0
0 0 βC0 − αS0
0 0 0

⎞

⎠ , J−(g1) :=
⎛

⎝
0 0 −βS0 + αC0
0 0 βC0 + αS0
0 0 0

⎞

⎠ ,

which enable us to rewrite �g1 as

�g1 =
{

J+(g1)�ξ, if �θ0 ≥ 0,

J−(g1)�ξ, if �θ0 ≤ 0.

Using J+ and J−, we can define the following two branches of Lie brackets:

[g1, g2]+(ξ) := J+(g2)g1 − J+(g1)g2 =
⎛

⎝
βS0 + αC0

−βC0 + αS0
0

⎞

⎠ ,

[g1, g2]−(ξ) := J−(g2)g1 − J−(g1)g2 =
⎛

⎝
βS0 − αC0

−βC0 − αS0
0

⎞

⎠ .

Their values at ξ = 0 are:

g1(0) =
⎛

⎝
1
0
0

⎞

⎠ , g2(0) =
⎛

⎝
0
0
1

⎞

⎠ , [g1, g2]+(0) =
⎛

⎝
α

−β

0

⎞

⎠ , [g1, g2]−(0) =
⎛

⎝
−α

−β

0

⎞

⎠ ,

which are consistent with the actual displacements shown in Fig. 10.6.

10.4 Connected Rigid Bodies: Locomotion Under
both Nonholonomic and Holonomic Constraints

10.4.1 Cart-Trailer Systems

In this section, we consider planar locomotion of multiple rigid bodies connected to
each other. Suppose a cart towing 
 trailers as shown in Fig. 10.7(left). Each of the
carts 0, . . . , 
 − 1 has a free joint on the center of its wheel axis, which connects the
following cart to itself. The length of each connecting link is supposed to be 1. The
state vector is



130 M. Ishikawa and T. Kita

continuous
case

discrete
case

each pair should lie
in neighboring cells

Fig. 10.7 Cart-trailer system is composed of a heading cart with articulated trailers, which under-
goes holonomic constraints due to rigid linkage

ξ = (x0, y0, θ0, . . . , θ
)
T ∈ X ,

X := SE(2) × T

−1,

where (x0, y0) denotes the position of the truck (cart 0) and θi denotes the orientation
of the cart i for i = 0, . . . , 
. This system undergoes 
+1 nonholonomic constraints

ẏi cos θi − ẋi sin θi = 0, i = 0, . . . , 
 − 1 (10.11)

and 
 holonomic constraints of rigid linkage as well:

{
xi = xi+1 + cos θi+1,

yi = yi+1 + sin θi+1,
i = 0, . . . , 
 − 1.

We also have to pay attention to the joint limitation

|θi+1 − θi | < π, i = 0, . . . , 
 − 1.

By taking all the constraints into account, the state equation is obtained as

ξ̇ = g1(ξ)u1 + g2(ξ)u2, (10.12)

g1(ξ) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

cos θ0

sin θ0

0

− sin(θ1 − θ0)

− sin(θ2 − θ1) cos(θ1 − θ0)

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, g2(ξ) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

1

0

0
...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where u1 is the forwarding velocity and u2 is the heading angular velocity of the
truck (cart 0). It is easy to show that this system is also controllable by analyzing its
controllability Lie algebra.

10.4.2 Derivation of the Discrete Version

Now let us turn to consider the discrete counterpart (Fig. 10.7, right). Each cart
is placed on the hexagonal cells, thus each joint angle is the difference between
adjoining cart orientation, e.g., θi+1 − θi . We also assume that the joint angles are
limited to

|θi+1 − θi | < 3, i = 0, . . . , 
 − 1.

The state vector is

ξ = (x0, y0, θ0, . . . , θ
)
T ∈ X ,

X := SEH (2) × Z

−1
6 .

Control inputs are assigned to the velocity of the trucks, i.e., u1 is the forwarding
velocity and u2 is the heading angular velocity of the front cart, respectively:

�x0C0 + �y0S0 = u1,

�θ0 = u2of. (10.13)

Nonholonomic constraint for the wheels are

�yi Ci − �xi Si = 0, i = 0, . . . , 
. (10.14)

Holonomic constraints for rigid linkage are

{
xi−1 = xi + Ci ,

yi−1 = yi + Si ,
i = 1, . . . , 
. (10.15)

The holonomic constraints should be kept satisfied in every step; hence the constraints
in the next step

{
(xi−1 + �xi−1) = (xi + �xi ) + cos(θi + �θi ),

(yi−1 + �yi−1) = (yi + �yi ) + sin(θi + �θi )
(10.16)
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should also hold for i = 1, . . . , 
. The state vector of this system is

ξ = (x0, y0, θ0, . . . , θ
) ∈ SEH (2) × Z

−1
6 .

In order to obtain a difference equation for this system, we have to eliminate
�x1, . . . ,�x
, �y1, . . . ,�y
, x1, . . . , x
, y1, . . . , y
 from (10.13)–(10.16) and
derive explicit expression of �ξ . (We eliminate 4
 variables from 5
 + 3 equa-
tions, resulting in 
 + 3 solutions). First, substituting (10.2), (10.3) and (10.15) into
(10.16), we have

{
�xi−1 = �xi − β�θi Si − α�θ2

i Ci ,

�yi−1 = �yi + β�θi Ci − α�θ2
i Si ,

or equivalently,

{
�xi = �x0 + ∑i

j=1

(
β�θi Si + α�θ2

i Ci
)
,

�yi = �y0 + ∑i
j=1

(−β�θi Ci + α�θ2
i Si

)
.

Computing �yi−1Ci − �xi−1Si leads us

�yi−1Ci − �xi−1Ci = �yi Ci − �xi Si + β�θi = β�θi ,

where the nonholonomic constraints (10.14) are used. Thus �θi can be obtained by
recursive computation

β�θi = �yi−1Ci − �xi−1Si

= �y0Ci − �x0Si −
i−1∑

j=1

(
β�θ j (Ci C j + Si S j ) + α�θ2

j (Si C j − Ci S j )
)

= −Si0u1 −
i−1∑

j=1

(
β�θ j Ci j − α�θ2

j Si j

)
, (10.17)

where Ci j = cos(θi − θ j ), Si j = sin(θi − θ j ).

10.4.2.1 Single Trailer

The simplest case is a single trailer system (
 = 1), whose state vector is ξ =
(x0, y0, θ0, θ1)

T. The state equation is given by

�ξ = g1(ξ)u1 + g2(ξ)u2,
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initial posture

reference
          path

final posture

initial

step 1 step 2 step 3

step 4 step 5 step 6

Fig. 10.8 Backward parking of the single trailer for linear reference path. The vehicle moves
rightward in parallel from the initial position

g1(ξ) =

⎛

⎜
⎜
⎜
⎝

C0

S0

0

−S10/β

⎞

⎟
⎟
⎟
⎠

, g2(ξ) =

⎛

⎜
⎜
⎜
⎝

0

0

1

0

⎞

⎟
⎟
⎟
⎠

. (10.18)

Forwarding motion this trailer system is not difficult to imagine from the single
cart case. Backward motion is also possible, e.g., by a skillful steering shown in
Fig. 10.8.

10.4.2.2 Double Trailers

When the cart is towing two trailers, i.e., if 
 = 2, the state vector is ξ =
(x0, y0, θ0, θ1, θ2). Behavior of the first four state variables is as exactly the same as
in the previous case (10.18), while �θ2 can be derived using (10.17) as follows:

β�θ2 = −S20u1 − β�θ1C21 − α�θ2
1 S21

= −S20u1 + βS21C10u1β − α

β2 S21S2
10u2

1

= −S21C10u1 − α

β2 S21S2
10u2

1.

Note that the state equation is not linear with respect to u1 any longer; this implies
the system behavior changes depending on the sign of u1.
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Fig. 10.9 Trailer with
off-axle hitching; the joint is
located in the middle of two
carts

front cart

rear cart

joint occupies a cell
behind the front cart

10.4.2.3 Trailer with Off-Axle Hitching

Suppose that the hinge joint is not precisely at the center of the rear axis (see
Fig. 10.9). This configuration is so-called off-axle hitching, where its behavior is
slightly different from the previous case. In this case, the holonomic constraint (10.15)
is replaced by

{
xi−1 = xi + Ci + Ci−1,

yi−1 = yi + Si + Si−1,
i = 1, . . . , 
. (10.19)

The state equation is obtained by solving (10.19) and (10.14) for (�x0,�y0,�θ0,

. . . ,�θ
). The single trailer case (
 = 1) is given as follows:

�ξ =

⎛

⎜
⎜
⎜
⎜
⎝

C0

S0

0

−S10/β

⎞

⎟
⎟
⎟
⎟
⎠

u1 +

⎛

⎜
⎜
⎜
⎜
⎝

0

0

u2

−C10u2 − αS10u2
2/β

⎞

⎟
⎟
⎟
⎟
⎠

. (10.20)

Unlike the on-axle case, the right-hand side is not linear in u2 any longer, and the
steering input u2 affects both �θ0 and �θ1.

10.5 Reachability Issues

Now we proceed to discuss a crucial problem to observe the region that the mobile
robots can reach from given initial state. In the case of continuous systems, we could
apply continuous-valued inputs to mobile robots. In the discrete-valued cases, how-
ever, we can give only discrete-valued inputs and robots placed on the hexagonal
cellular space. This causes essential differences of reachable state between continu-
ous systems and discrete-valued nonholonomic mobile robot systems. In this section,
we define a stepwise reachability set as the collection of all reachable states within
the given number of steps.
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10.5.1 Definitions

We restart with a slightly general formulation of system dynamics, where the state
equation of a discrete-valued nonholonomic mobile robot systems is expressed as
the following difference equation of integral values:

ξ [k + 1] = ξ [k] + �ξ = G(ξ [k], u[k]). (10.21)

Let {u[k]|k ∈ Z+} be a series of inputs to be applied. Then the stepwise evolution
of the system state is given by

ξ [1] = G(ξ [0], u[0]) = G1(ξ [0], u[0]),
ξ [2] = G(ξ [1], u[1]) = G2(ξ [0], u[0], u[1]),

...
...

ξ [k] = G(ξ [k − 1], u[k − 1]) = Gk(ξ [0], u[0], . . . , u[k − 1]),

where Gk is recursively defined by

Gk+1(ξ [0], u[0], . . . , u[k−1]) := G(Gk−1(ξ [0], u[0], . . . , u[k − 2]), u[k − 1]),
G1(ξ [0], u[0]) := G(ξ [0], u[0]).

Definition 10.1 (Stepwise Reachability Set) For the integer-valued difference equa-
tions (10.21), the k-stepwise reachability set from the state ξ [0], denoted by
Λ(ξ [0], k), is defined as

Λ(ξ [0], k) := {Gk(ξ [0], u[0], . . . , u[k−1]), u[ j] ∈ Ω, j = 0, . . . , k−1},

where Ω is the set of all admissible inputs.

Definition 10.2 (Neighborhood) For an integer-valued state ξ ∈ Z
N , its neighbor-

hood is defined as

N (ξ) := {ξ + (δ1, . . . , δN )T, δi ∈ {−1, 0, 1}, i = 1, . . . , N }.

10.5.2 Application

Let us turn to consider how the k-stepwise reachability set grows as k increases, when
applied to the case of wheeled mobile robot we discussed in Sect. 10.3. Figure 10.10
shows a visualization of the k-stepwise reachability set of the single cart from ξ [0] =
(0, 0, 0)T.

In Fig. 10.10, thick-lined hexagons imply the reachable cells by k steps for k =
1, 2, 3, 4. These cells contain some colored triangles, which imply the reachable
“orientation” by k steps. For instance, the 1-step reachability set consists of
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(0, 0, 0)T, (0, 0, 1)T, (0, 0,−1)T, (1, 0, 0)T, (−1, 0, 0)T.

At k = 1, the cart can move only in the initial orientation due to the nonholonomic
constraint (10.8), namely, it cannot step sideways. Next, in the 2-stepwise reachability
set, the cart can move to cells around the initial cell. However, the orientation of the
cart is different from the initial orientation. Therefore, the cart can not take any
state. Finally, the 4-stepwise reachability set shows that the cart can move to all
the neighboring cells around the initial one with arbitrary orientations there. This
analysis results in the fact

arg min
k

{Λ(ξ [0, k]) ⊇ N (ξ [0])} = 4.

This indicates us a sufficient condition for controllability. By repeating these primitive
motions to neighboring cells, each of which is composed of 4 steps at most, the state
of the single cart can be transferred to any desired state in the whole hexagonal space.
In addition, the 4-step reachability set in Fig. 10.10 indicates the same property as
the continuous case that it is easy for the cart to move in the same direction as the
initial orientation.

Initial state

Reachable states up to step 2

Reachable states up to step 3

Reachable states up to step 4
(all neighboring cells are reachable with arbitrary orientation)

Fig. 10.10 Stepwise reachability set planar locomotion under discrete nonholonomic constraint.
the grey triangles indicate the reachable states (considering its position and orientation) within the
specified steps. All the neighboring cells are reachable up to 4 steps with arbitrary orientation
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10.6 Other Possibilities of Cellular Tesselation

Thus far, we adopt regular hexagons for spatial discretization, mainly focusing on
its preferable properties such as isotropy, e.g., distance between neighboring centers
is always 1. Of course, this is not the only choice. The R

2 can also be filled with
regular squares or regular triangles as shown in Fig. 10.11. In this final section, let
us pursuit the possibility of square tesselation.

Positions of the cells can be addressed by the usual Cartesian coordinate system
(Fig. 10.11). Here we have two choices in defining adjacency; one is the so-called
Neumann neighborhood, where each square cell is adjacent to 4 cells via its edges
(i.e., its top, bottom, right and left sides). Then the discrete space is associated with
4 directions, namely,

SEN (2) =
⎧
⎨

⎩

⎛

⎝
x
y
θ

⎞

⎠ =
⎛

⎝
nxα

nyβ

nθ γ

⎞

⎠

∣
∣
∣
∣
∣
∣
nx , ny ∈ Z, nθ ∈ Z4

⎫
⎬

⎭
� Z × Z × Z4,

where Z4 = {0, 1, 2, 3} ≡ {0,±1, 2} and α = 1, β = 1, γ = π
2 . The other is the

so-called Moore neighborhood, where each square cell is adjacent to 8 cells via its
vertices as well as edges (i.e., all the surrounding cells). Then the discrete space is
associated with 8 directions, namely,

SEM (2) =
⎧
⎨

⎩

⎛

⎝
x
y
θ

⎞

⎠ =
⎛

⎝
nxα

nyβ

nθγ

⎞

⎠

∣
∣
∣
∣
∣
∣
nx , ny ∈ Z, nθ ∈ Z8

⎫
⎬

⎭
� Z × Z × Z8,

where Z4 = {0, 1, 2, 3, 4, 5, 6, 7} ≡ {0,±1,±2,±3, 4} and α = 1, β = 1, γ = π
4 .

The cosine and sine function and its derivatives can be defined as before, shown
in Fig. 10.12 and Tables 10.2 and 10.3. Note that all the values concerned here are
limited to +1, 0,−1.

Fig. 10.11 Alternate choices of regular tessellations for R2 (left triangular, right square)
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Fig. 10.12 Cosine and sine on square cells (left Neumann, right Moore)

Table 10.2 Discrete trigonometric calculus on square cells (Neumann neighborhood)

� cos θ

θ = −1 θ = 0 θ = 1 θ = 2

�θ = 1 1 −1 −1 1

�θ = −1 −1 −1 1 1

� sin θ

�θ = 1 1 1 −1 −1

�θ = −1 1 −1 −1 1

Table 10.3 Discrete trigonometric calculus on square cells (Moore neighborhood)

� cos θ

θ = −3 θ = −2 θ = −1 θ = 0 θ = 1 θ = 2 θ = 3 θ = 4

�θ = 1 1 1 0 0 −1 −1 0 0

�θ = −1 0 −1 −1 0 0 1 1 0

� sin θ

�θ = 1 0 0 1 1 0 0 −1 −1

�θ = −1 1 0 0 −1 −1 0 0 1

Now the discrete version of nonholonomic wheel constraint for a single cart is
expressed as

�y0 cos θ0 − �x0 sin θ0 = 0

for both cases of the Neumann and Moore neighborhood. This leads us to derive the
corresponding cart kinematics

�ξ = g1(ξ)u1 + g2(ξ)u2, (10.22)

g1(ξ) :=
⎛

⎝
cos θ0
sin θ0

0

⎞

⎠ , g2(ξ) :=
⎛

⎝
0
0
1

⎞

⎠ ,

which is apparently the same as the hexagonal version (10.10). Notable difference
can be found in the corresponding Lie-bracket motions, as shown in Fig. 10.13
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Fig. 10.13 Lie bracket motions of the single cart on square cells (Neumann neighborhood)

Fig. 10.14 Lie bracket motions of the single cart on square cells (Moore neighborhood)

and Fig. 10.14. In particular, for the case of Moore neighborhood, the net effects are
different between θ = 0, 2, 4, 6 and θ = 1, 3, 5, 7, depending on multi-valuedness
of the corresponding Lie bracket operations (see Fig. 10.6 for comparison).

10.7 Conclusion

In this chapter, we discussed possibility of discrete-valued version of locomotion
of rigid bodies on the horizontal plane. We showed that, many intrinsic properties
consistent with the continuous case can be derived starting from simply defined
discrete constraints. We also examined the k-stepwise reachability set Λ(ξ [0], k)

for these systems, to confirm possibility to maneuver the system state to any states.
Other cases including both holonomic and nonholonomic constraints, and alternate
possibilities on cellular tessellation were also discussed.

We showed only a clue to respond to the authors’ primitive motivations in this
chapter. It is not surprising that a lot of unsolved problems to be discussed are left for
the future works; For example, stability and stabilization issues are not discussed at
all. Characterization of stability must be crucial in developing theoretical analysis of
system behavior. The typical Lyapunov approach may have a difficulty, in the sense
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that the converse theorem is not likely to hold in discrete-valued (i.e., discontinuous)
cases. Moreover, discrete version of Brockett’s theorem [2] must be a quite interesting
issue. Other topics contain control design theory, e.g., design of discontinuous, time-
varying or hybrid controllers have been central issues of continuous nonholonomic
systems. Some ideas of existing design approaches, e.g., time-varying approaches
[8], may remain effective in discrete cases.

The authors believe it important to discuss if there exists any underlying mechan-
ics/physics as first principle, i.e., discrete equivalents of energy, Lagrangian,
Hamiltonian or variational principle that are consistent with the current results.
It would also be interesting to relate it with discrete mechanics proposed by
Marsden et al. [5]. The current work can be considered a Lebesgue-type approach to
discrete mechanics, in contrast that the aforementioned one [5] can be regarded as a
Riemann-type approach.

The authors expect the current work to be a first step toward establishment of
discrete-valued nonlinear system theory under spatial symmetry.

Acknowledgments The authors are grateful to continuous encouragement by Professor Koichi
Osuka.
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Chapter 11
Feedback Control of Spatial Patterns
in Reaction-Diffusion Systems

Kenji Kashima and Toshiyuki Ogawa

11.1 Introduction

There have been plenty of studies on pattern formation such as thermal
convection problems, Turing patterns in reaction-diffusion systems, phase transi-
tions in material sciences, and so on (see [1]). There, one can tune a parameter so
that the uniform stationary solution loses its stability against perturbations with cer-
tain non-zero wavelength. As a result, a spatially non-uniform stationary solution
may appear. Thus the local bifurcation analysis is a first step to understand the onset
of the pattern formation.

Let us consider an activator-inhibitor system of reaction-diffusion equations as
follows.

{
ut = DuΔu + f (u, v),
vt = DvΔv + g(u, v), x ∈ Ω.

(11.1)

Here, the typical reaction part of (11.1) is the following:

{
f (u, v) = u − u3 − v,
g(u, v) = 3u − 2v.

(11.2)
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This reaction-diffusion system (11.1) has a trivial stationary solution u = v = 0
under the Neumann boundary condition:

∂u

∂n
= ∂v

∂n
= 0, x ∈ ∂Ω

or the periodic boundary condition. Here, Ω is a bounded interval or a rectangle in
R or R2. Although the origin u = v = 0 is asymptotically stable under the ODE:

{
u̇ = f (u, v),
v̇ = g(u, v),

(11.3)

it might be possible to become unstable in the sense of (11.1). This is the so-called
Turing instability or diffusion induced instability which is realized by taking the
diffusion constants appropriately as we shall review in the following section.

Once we understand the linearized instability mechanism it turns out that non-
trivial patternsmay appear from the trivial solution by a standard bifurcation analysis.
As one can see in Fig. 11.1, solutions of (11.1) may become closer and closer to stripe
patterns. Now if the non-linear terms are not symmetric as in (11.2) and moreover
they include quadratic terms as

{
f (u, v) = u − u3 − au2 − v,
g(u, v) = 3u − 2v,

(11.4)

the dot-like patterns may appear rather than stripe.

Fig. 11.1 Time sequences of the numerical simulation for (11.1) and (11.4) in a square region with
the periodic boundary condition. The coefficient of the quadratic term a = 0 and a = 0.1 for the
upper and lower lines, respectively. The columns correspond to the time sequences t = 4, 10, 20, 50
from the left to right and only the value of u is displayed
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In Sect. 11.2, after reviewing the Turing instability from the linearized analysis
we introduce the idea which helps us understand the Turing instability mechanism
more clearly. In fact we can consider that the inhibitor in the 2-component reaction-
diffusion system plays a role of negative global feedback to the activator. By extend-
ing this idea we can construct 3-component reaction-diffusion systems which have
different types of instabilities.

Since we are considering the bounded interval or a rectangle with Neumann or
periodic boundary conditions the problem has the so-called SO(2) symmetry which
basically comes from translation invariance. Therefore at the bifurcation point more
than one critical modes may interact with each other. As a result, different types of
patterns emerge simultaneously. However, the stability of these solutions depends
on the nonlinear terms. Now the question is whether we can stabilize each non-
trivial pattern or not. Section11.3 is devoted to partially answer to this question. We
formulate and solve a feedback stabilization problem of unstable non-uniform spatial
pattern in reaction-diffusion systems. By considering spatial spectrum dynamics,
we obtain a finite dimensional approximation that takes over the semi-passivity of
the original partial differential equation. By virtue of this property, we can show
the diffusive coupling in the spatial frequency domain achieves the desired pattern
formation.

11.2 Pattern Formation by Global Feedback

11.2.1 Turing Instability

Turing instability is known to be the fundamental mechanism for the onset of pattern
formations. Let us first review the reason why the uniform stationary solution u =
v = 0 in the reaction-diffusion system (11.1) loses its stability. In fact the linearized
stability of the Fourier mode with wavenumber k is characterized by the matrix:

Mk =
(

fu − k2Du fv

gu gv − k2Dv

)

.

Since the fixed point u = v = 0 is assumed to be stable in the sense of the ODE
(11.3), it turns out that traceM0 = fu + gv < 0 and det M0 = fu gv − fvgu > 0 hold
true. Therefore, Mk has real part positive eigenvalues if and only if det Mk < 0, and
Mk has one real positive eigenvalue in this case. Now det Mk is given by

det Mk = fu gv − fvgu − (Dv fu + Du gv)k
2 + Du Dvk4.

Therefore, if Dv fu + Du gv > 0 and (Dv fu + Du gv)
2 − 4( fu gv − fvgu)Du Dv > 0

hold, then det Mk < 0 for some non-zero wavenumber k and, as a result, Mk has a
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Fig. 11.2 Two types of neutral stability curves. The onset of the pattern formation can be observed
when the neutral stability curve has the shape as in the right figure

positive eigenvalue. We have only to take Dv sufficiently large compared to Du to
satisfy these conditions. At the moment of stability change the Fourier mode with a
wave-number k ≈ kc = (

fu gv− fvgu
Du Dv

)1/4 may become unstable.

11.2.2 Interpretation of Turing Instability by Global Feedback

We shall introduce the idea that one can control the onset of pattern formation by a
global feedback (see also [2]). Or we can even explain the Turing instability mecha-
nism from the viewpoint of global feedback. Suppose we observe pattern formation
from a uniform rest state by changing a parameter p. More precisely, the uniform
stationary solution is stable when p is less than a critical value p∗ and becomes
unstable against certain wavenumber k∗ > 0 when p > p∗. Therefore pattern for-
mation can be observed in the system where the neutral stability curve p = φ(k)

has the property such that φ(k) attains its minimum at k∗ (see Fig. 11.2). Here, the
neutral stability curve is the stability boundary in the (k, p)-plane. In other words, it
is equivalent to say that the uniform stationary solution is stable against perturbations
of wavenumber k when p < φ(k) and it is unstable when p > φ(k). Let us consider
the following scalar reaction-diffusion equation as a simple example

ut = Duxx + pu, (11.5)

where D is a diffusion constant and p is a parameter. Since it is equivalent to

dũ

dt
= (p − Dk2)ũ

by Fourier transformation, the neutral stability curve is p − Dk2 = 0. Now, it is
clear that φ(k) = Dk2 does not attain its minimum at positive k and the instability
for k = 0 takes place earlier than any other non-trivial perturbation. Therefore we
can not observe pattern formations in scalar reaction-diffusion equations.
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Since the scalar reaction-diffusion equation is not sufficient to produce the onset
of patterns as we saw above let us consider the following activator-inhibitor type
reaction-diffusion equations:

{
ut = D1uxx + pu − sw,

τwt = D2wxx + u − w.
(11.6)

Here, s is assumed to be positive so that species w has negative feedback effect to
the species u. On the contrary, u gives positive effects to w. Moreover suppose that
the time constant for w is sufficiently small. Let us just plug 0 into τ for simplicity.
Then we have the following equations by using the Fourier transformation.

⎧
⎨

⎩

dũ

dt
= (p − D1k2)ũ − sw̃,

0 = (−1 − D2k2)w̃ + ũ.
(11.7)

Since w̃ is solved as w̃ = ũ

1 + D2k2
, it turns out that the system (11.7) is equivalent

to the following scalar equation:

dũ

dt
=

(

p − D1k2 − s

1 + D2k2

)

ũ.

Therefore the neutral stability curve is given by

p = φ(k) := D1k2 + s

1 + D2k2
. (11.8)

Moreover we have the following inequality:

p = D1

D2
(1 + D2k2) + s

1 + D2k2
− D1

D2

≥ 2

√
D1s

D2
− D1

D2
.

Since the last equality holds true if and only if (1 + D2k2)2 = D2s

D1
, we have

Theorem 11.1 The following two conditions are equivalent to each other for the
system (11.6):

• The neutral stability curve p = φ(k) attains its minimum at k = k0 > 0.
• The constants s, D1, and D2 satisfy

D2s

D1
> 1. (11.9)
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Fig. 11.3 The neutral
stability curve (11.8). Here,
D1 = 0.1, D2 = 1, and
s = 5

k

p

Therefore the neutral stability curve has the desired property when the condition
(11.9) is satisfied (see Fig. 11.3).

We can study the bifurcation structure for the system (11.6) with nonlinear terms:

{
ut = D1uxx + pu − sw + f (u, w)

τwt = D2wxx + u − w
(11.10)

on a finite interval x ∈ [0, L] with periodic boundary condition. Here, f (u, w)

denotes higher order terms of u, w. Notice that the bifurcation structure with the
Neuman boundary condition is included in the periodic case. By the periodicity we
have only to consider countable Fourier modes with the fundamental wavenumber
k0 = 2π

L . We need to take into account wavenumber of the form k = mk0 where
m ∈ Z. It is convenient to draw the neutral stability curves Cm for each mode m > 0
in the (k0, p)-plane:

Cm := {(k0, p)|p = φ(mk0)}.

If the condition (11.9) is satisfiedwe can conclude that three different neutral stability
curves don’t intersect at the same point except for (0, 0). This means at most two
Fourier modes can be critical at the same time. We call these intersection points
degenerate bifurcation points. Moreover, it turns out that there are only degenerate
bifurcation points with adjacent modes n, n +1 on the first instability (see Fig. 11.4).
Therefore the dynamics near the first instability point is governed by the normal form
as follows:

Theorem 11.2 Assume the condition (11.9) is satisfied for (11.6). Suppose the sys-

tem size L > 2π
√

D1D2
s D2−D1

(k0 <

√
s D2−D1

D1D2
) there is one critical point p where the

first instability takes place for n mode (n > 0). There are the following two cases:

(I) m = ±n are the only critical modes.
(II) m = ±n,±n′ are the only critical modes.
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Fig. 11.4 The neutral
stability curves Cm for
m = 0, 1, 2 and 3 modes
(from black to light gray). It
turns out that more modes
become unstable when
k0 = 2π/L is small

k 0

p

Here, n′ = n + 1 or n′ = n − 1. Dynamics of the solutions to (11.10) close to first
instability points can be reduced to those on the center manifolds. Moreover they
are generically governed by the normal form by taking appropriate real numbers
a, b, c, d.:

(I) α̇n = λαn + a|αn|2αn + O(4),

(II)

{
α̇n = λαn + (a|αn|2 + b|αn′ |2)αn + O(4),

α̇n′ = μαn′ + (c|αn|2 + d|αn′ |2)αn′ + O(4).

Here, {αm ∈ C; |m| = n} and {αm ∈ C; |m| = n, n′} are the critical modes for the
cases (I) and (II), respectively. Moreover, n is assumed to be larger than 1 in the case
(II).

Proof Since (11.10) is translation invariant the center manifold and its dynamics
can be constructed so that they have SO(2) symmetry. Therefore the normal form
dose not have quadratic terms.

Remark 11.1 Dynamics close to the degenerate point between 1 and 2 is the excep-
tion of the above theorem. Armbruster, Guckenheimer and Holmes [3] studied the
interaction of two steady-state bifurcations in a system with O(2)-symmetry, assum-
ing 1:2 resonance for the wavenumbers associated with the critical modes. They
found there are rich variety of dynamics in the 1:2 resonance normal form:

ȧ1 = a1a2 + a1(μ1 + e11|a1|2 + e12|a2|2),
ȧ2 = ca2

1 + a2(μ2 + e21|a1|2 + e22|a2|2)

when the coefficient of the quadratic term c is negative. However, in this case, the
two coefficients of quadratic terms have the same sign and, as a result, c = +1 which
means there are no nontrivial dynamics.

Notice that we solved (1 − D2∂
2
x )w = u in the Fourier space. Since the inverse

Fourier image of
1

1 + D2k2
is e

− |x |√
D2 , w can be written as
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w = 1

2π

∫ +∞

−∞
e
− |x−y|√

D2 u(y)dy.

Theorem 11.3 The reaction-diffusion system (11.6) is equivalent to the following
equation when τ = 0:

ut = D1uxx + pu − s

2π

∫ +∞

−∞
e
− |x−y|√

D2 u(y)dy. (11.11)

It should be mentioned that Britton [4] studied the ecological pattern formation
also with global feedback. In the population growth model it is natural that intra-
specific competition for resources depends not simply on population density at one
point in space and time but on a weighted average involving values at all previous
points and at all points in space. Therefore he considered

ut = DΔu + u [p + αu − (1 + α)G ∗ ∗u] (11.12)

instead of

ut = DΔu + u(p − u), (11.13)

where, G ∗ ∗u is a weighted average of u:

G ∗ ∗u :=
∫

R

∫ t

−∞
G(x − y, t − s)u(y, s)dsdy.

Here, G is assumed to be positive, L1 and moreover,

∫

R

∫ t

−∞
G(x, t)dtdx = 1.

Notice that the Eq. (11.12) is equivalent to (11.11) when G(x, t) = δ(t)G̃(x) with
an appropriate G̃. Also (11.12) is equivalent to (11.14) when G(x, t) = δ(x)δ(t).

11.2.3 0:1:2-Mode Interaction

We have seen in the previous subsection that the normal form analysis for double
degenerate bifurcation points is sufficient to study the Eq. (11.10). On the other hand,
we can realize the triple degeneracy if we take another component into account in a
three component system as follows:
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k

p

0

s-r

Fig. 11.5 The neutral stability curves Cm = {(k0, p)|p = φ(mk0)} for m = 0, 1, 2 modes (black,
gray, light gray, respectively). Here, φ is given by (11.15). Three curves C0, C1, C2 intersect at
the same point for k0 	= 0 by taking the constants s, t, D1, D2, D3 appropriately. For instance,
s = 5, t = 3.88, D1 = 0.1, D2 = 2.0, D3 = 40.0 in the figure

ut = D1uxx + pu − sv + rw,

τvt = D2vxx + u − v,
τwt = D3wxx + u − w.

(11.14)

Here, τ is again assumed to be small positive number. We also assume negative
feedback (s > 0) effect from v and positive feedback (r > 0) from w. As a conse-
quence of similar discussions in the previous subsection the neutral stability curve
for (11.14) is given by

p = φ(k) := D1k2 + s

1 + D2k2
− r

1 + D3k2
. (11.15)

Now, by taking D3 
 D2 
 1 we can tune the parameters so that the system (11.14)
has triple degeneracy of 0:1:2 modes (see Fig. 11.5). The degenerate dynamics by
0:1:2 modes has been studied also by using the normal form analysis. In fact, Smith,
Moehlis and Holmes [5] studied the generic quadratic normal form:

ȧ0 = μ0a0 + 2(B1|a1|2 + B2|a2|2),
ȧ1 = a1a2 + a1(μ1 − B1a0),
ȧ2 = −a2

1 + a2(μ2 − B2a0).

They conclude there are a wide variety of dynamics including heteroclinic cycles.
On the other hand, Ogawa and Okuda [6] studied the cubic normal form also with
resonance terms under the up-down symmetry:

ż0 = (μ0 + a1z20 + a2z21 + a3z22)z0 + a4z21z2,
ż1 = (μ1 + b1z20 + b2z21 + b3z22)z1 + b4z0z1z2,
ż2 = (μ2 + c1z20 + c2z21 + c3z22)z2 + c4z0z21
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and they showed the existence of oscillatory bifurcation from the 1-mode stationary
solution not only in the general normal form but also in a particular 3-component
reaction-diffusion system.

11.2.4 Wave Instability

Let us introduce pattern formation by an oscillatory instability. We shall start with a
2-dimensional ODE system which has the Hopf bifurcation point:

(
u̇
v̇

)

=
(

p −p
q −1

) (
u
v

)

+
(

O(2)
O(2)

)

.

Here, q > 1 is a given constant and we control the parameter p. The linearized

matrix M =
(

p −p
q −1

)

has a characteristic polynomial λ2 − (traceM)λ + detM .

Therefore M has a pair of purely imaginary eigenvalues when p = 1. Now we are
interested in the bifurcation in the following reaction-diffusion system:

(
ut

vt

)

=
(

D1uxx

D2vxx

)

+
(

p −p
q −1

) (
u
v

)

+
(

f (u, v)
g(u, v)

)

. (11.16)

Here, f, g are assumed to consist of higher order terms of u and v. It turns out from
the linearized eigenvalue problem about 0 the stability of the trivial solution against
perturbation with wavenumber k can be controlled by the matrix

Mk =
(

p − D1k2 −p
q −1 − D2k2

)

.

Since the oscillatory instability takes place when traceMk = 0, the neutral stability
curve for the Hopf bifurcation is given by p = 1+ (D1 + D2)k2. Therefore, we can
not observe any stable spatially non-trivial oscillating patten.

Let us introduce the third component w which has the negative feedback effect to
the activator u and consider the following three component reaction-diffusion system
instead of (11.16):

⎛

⎝
ut

vt

τwt

⎞

⎠ =
⎛

⎝
D1uxx

D2vxx

D3wxx

⎞

⎠ +
⎛

⎝
p −p −s
q −1 0
1 0 −1

⎞

⎠

⎛

⎝
u
v
w

⎞

⎠ +
⎛

⎝
f (u, v)
g(u, v)

0

⎞

⎠ . (11.17)

Here, we also assume τ > 0 is sufficiently small. By a similar argument to (11.7)
we can obtain the linearized matrix for the wavenumber k when τ = 0 as follows:
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Ak =
(

p − D1k2 − s
1+D3k2

−p

q −1 − D2k2

)

.

Thus, a necessary condition for the Hopf instability is given by

traceAk = p − 1 − (D1 + D2)k
2 − s

1 + D3k2
= 0.

Let us also call it the neutral stability curve for the Hopf instability

p = φ(k) := 1 + (D1 + D2)k
2 + s

1 + D3k2
, (11.18)

although it is just a necessary condition. Because it has the same form as (11.8) we
have the following theorems.

Theorem 11.4 The following two conditions are equivalent to each other for the
system (11.17):

• The neutral stability curve p = φ(k) attains its minimum at k = k0 > 0.
• The constants s, D1 and D2 satisfy

s D3

D1 + D2
> 1. (11.19)

Theorem 11.5 The reaction-diffusion system (11.17) is equivalent to the following
equations when τ = 0:

ut = D1Δu + pu − pv + O(2) − s

2π

∫ +∞

−∞
e
− |x−y|√

D3 u(y)dy,

vt = D2Δv + qu − v + O(2).
(11.20)

We may have spatio-temporal oscillating patterns if the system (11.17) satisfies the
condition (11.19) and this is called “wave instability” (see also [7]).

If we consider the system on a finite interval (0, L) similarly to the above discus-
sion there are three cases in the sense of bifurcation analysis.

Theorem 11.6 Assume the condition (11.19) is satisfied for (11.17). For a given
system size L (or fundamental wavenumber k0) there is one critical point p where
the first instability takes place for n mode (n > 0). There are the following three
cases:

(I) m = ±n are the only critical modes.
(II) m = 0,±n are the only critical modes.
(III) m = ±n,±n′ are the only critical modes.

Here, n′ = n + 1 or n′ = n − 1 and all the critical modes are of the Hopf type.
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We need to distinguish two critical modes {αm ∈ C; |m| = n} in this case since
they are the Hopf type critical modes. We introduce the normal form only for the
case (I) for the simplicity.

Theorem 11.7 Under the same setting asTheorem 11.6 dynamics of the solutions to
(11.17) close to first instability points can be reduced to those on the center manifolds.
Moreover they are generically governed by the normal form by taking appropriate
real numbers a, b in the case (I):

{
α̇n = μαn + (a|αn|2 + b|α−n|2)αn + O(4),
˙α−n = μα−n + (b|αn|2 + a|α−n|2)α−n + O(4).

Notice that we don’t need any non-resonance condition in this theorem in con-
trast to the standard double Hopf theorem since we have SO(2) symmetry. We can
conclude that there are two typical oscillating solutions: rotating wave and stand-
ing wave solutions. Stability for both solutions depends on the normal form coef-
ficients a, b. It turns out from simple calculations that (a, b) = (−3,−6) when
f (u, v) = −u3, g(u, v) = 0. Therefore the rotating wave solution is stable while the
standing wave solution is unstable in this case (Fig. 11.6).

Notice that thewave instability criterion depends on s, D3 and D1+D2. Therefore
we can realize the situation where both Turing and wave instabilities take place at
the same value of p by changing the ratio between D1 and D2 without changing
D1 + D2. We draw the neutral stability curves for Turing instability (detAk = 0)
and wave instability (traceAk = 0) in Fig. 11.7 .

Again it should be mentioned that Gourley and Britton [8] studied the similar 2-
component reaction-diffusion system with the global feedback from the population
dynamics.

Fig. 11.6 Numerical simulations for (11.17) under the parameters L = 2π, p = 2.01, q =
1.5, s = 2.0, D1 = 0.8, D2 = 0.2, f (u, v) = −u3, and g(u, v) = 0 in the upper figure.
Therefore the standing wave is unstable and the solution converges to the rotating wave. By taking
another nonlinear terms such as f (u, v) = 0 and g(u, v) = uv
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Fig. 11.7 Two curves of detAk = 0 (upper curve) and traceAk = 0 (lower) are described
in the (k, p)-plane. Parameter sets are (s, D1, D2, D3, τ ) = (0.6, 0.24, 0.76, 50, 0.1) and
(s, D1, D2, D3, τ ) = (20, 0.2, 0.23, 1, 0.01) in left and right figures, respectively

11.2.5 Summary

In this section we introduce the idea that helps us understand the mechanism of the
Turing instability from the viewpoint of global feedback. It turns out that not only
the Turing instability but also other instabilities relating to pattern formation can be
obtained by the global feedback although it might not be described in the system
explicitly.

11.3 Selective Stabilization of Turing Patterns

11.3.1 Reaction-Diffusion Systems

In this section, we consider (11.1) with

{
f (u, v) = a11u − a12v − u3,

g(u, v) = a21u − a22v,
(11.21)

where the spatial domain Ω := [0, Lx ] × [0, L y] with the periodic boundary condi-
tion. We denote (Fig. 11.8)

z(t, x, y) =
[

u(t, x, y)

v(t, x, y)

]

∈ R
2.

This reaction-diffusion system has a trivial equilibrium pattern

zeq(x, y) ≡ 0 on Ω. (11.22)
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Fig. 11.8 Oscillating patterns observed when both Turing and wave instabilities coexist. Vertical
and horizontal axis denote the interval (0, L) and time, respectively

Even if the reaction term is globally stable, this trivial equilibrium of reaction-
diffusion system is not necessarily stable [9].

Consider the spatial Fourier transform

zm(t) :=
[

um(t)
vm(t)

]

:=
∫

Ω

z(t, x, y)pm(x, y)∗dxdy ∈ C
2 (11.23)

for wave number m = (mx , my) ∈ Z
2, where

pm(x, y) := 1
√

Lx L y
e
2π j ( mx x

Lx
+ my y

L y
)
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and p∗
m is its complex conjugate. This satisfies

z(t, x, y) =
∑

m∈Z2

zm(t)e
2π j ( mx x

Lx
+ my y

L y
)
.

Note that

zm = z∗−m for all m ∈ Z
2 (11.24)

since the dynamics of our interest is real-valued. Then, it is useful to investigate the
dynamics of each spatial component {zm(t)}m∈Z2 instead of {z(t, x, y)}(x,y)∈Ω .

Let us consider the localized dynamics around the trivial pattern zeq . It should be
emphasized that each wave number has its decoupled local dynamics:

d

dt
zm(t) = Am zm(t), (11.25)

Am := A − sm D =:
[

ā11 −a12
a21 −ā22

]

, (11.26)

A :=
[

a11 −a12
a21 −a22

]

, D :=
[

Du 0
0 Dv

]

, (11.27)

sm :=
(
2πmx

Lx

)2

+
(
2πmy

L y

)2

. (11.28)

Note that when Du 	= Dv, stability of A does not necessarily guarantee stability of
Am . In such a case, the corresponding spatial wave pm grows around the zeq . Further
discussion on the pattern formation needs to consider the effect of nonlinearity.

11.3.2 Problem Formulation

Let us formulate a stabilization problem of unstable spatial patterns. We define the
set of wave numbers for which the local dynamics is unstable: We assume that the
finite set M ⊂ Z

2 satisfies

1. Am has at least one eigenvalue in C+ if m ∈ M ,
2. Am is stable if m /∈ ±M := {±m : m ∈ M }, and
3. if m ∈ M , then −m /∈ M .

Because Am = A−m and (11.24), we imposed the condition (3) in order to avoid
redundancy. It should be emphasized that sm1 = sm2 can hold for m1 	= m2.

Next, for the feedback control problem [10], we assume that we can observe and
also manipulate u in a spatially distributed manner. Thus, the controlled reaction-
diffusion system is given by
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⎧
⎨

⎩

ut = DuΔu + f (u, v) + w,

vt = DvΔv + g(u, v), (x, y) ∈ Ω.

w = W (u),

(11.29)

Problem 11.1 Let θm ∈ R, m ∈ M be given. Under definitions and assumptions
above, find a feedback control law W (·) such that
1. z does not diverge,
2. zm for m /∈ ±M asymptotically vanishes,
3. e jθm zm for m ∈ M converges to the same nonzero value, and
4. w(t, x, y) asymptotically vanishes.

11.3.3 Feedback Control of Center Manifold Dynamics

In view of the assumption on the stability of Am , let us assume that zm is negligible
for m /∈ ±M to avoid infinite-dimensionality [11]. We analyze the dynamics that
zm should obey when there exists no third order resonance: If n1, n2, n3 ∈ M
satisfy n1 + n2 + n3 = m ∈ ±M , then at least one of ni ’s is equal to m.

By putting zm ≈ 0 for m /∈ ±M , the wave number m component appears
only from the combination (n1, n2, n3) = (m, n,−n) and its permutation, where
n ∈ ±M is arbitrary. Therefore, we obtain the following approximation in the
spatial frequency domain:

d

dt

[
um

vm

]

= Am

[
um

vm

]

+

⎡

⎢
⎢
⎣

−um

⎛

⎝3|um |2 + 6
∑

n 	=m

|un|2
⎞

⎠

0

⎤

⎥
⎥
⎦ +

[
wm

0

]

, (11.30)

where

wm(t) :=
∫

Ω

w(t, x, y)p∗
m(x, y)dxdy.

Now, Problem 11.1 is naturally rephrased in this domain:

Problem 11.2 Consider the complex-valued system (11.30) and θm ∈ R, m ∈ M .
Then, find a feedback control law

wm(t) = Wm((un(t))n∈M )
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such that,

(1′) zm is ultimately bounded, that is, there exists (initial state independent) R > 0
such that

lim sup
t→∞

‖zm‖ < R for all m ∈ M , (11.31)

(3′-a)

lim
t→∞ |e jθm zm(t) − e jθn zn(t)| = 0 for all m, n ∈ M , (11.32)

(3′-b) the origin is locally unstable, and
(4′)

lim
t→∞ wm(t) = 0 for all m ∈ M . (11.33)

For this problem, we can simply obtain a desired control law by considering the
specific structure of Problem 11.2.

Theorem 11.8 For Problem 11.2, consider the following diffusive coupling on M

wm(t) = σ
∑

n∈M ,n 	=m

γmn(e jθn− jθm un(t) − um(t)), (11.34)

where γmn ≥ 0. If γmn is associated to a strongly connected1 graph onM , then there
exists σ > 0 such that the control law (11.34) with any strength σ > σ satisfies the
following:

• the condition (1′) in Problem 11.2 holds.
• If sm = s̄ (see (11.28) for the definition) for all m ∈ M , then (3′-a), (3′-b), (4′)

are also satisfied.

Proof Whenwe redefine e jθm zm as zm , this theorem is equivalent to [12, Theorem1].

As a next step, we need to embed this proposed control law onto the original
partial differential equation. The corresponding input pattern should be given as

w(t, x, y) := 2σ
∑

m∈M
Re

⎛

⎝pm

⎛

⎝
∑

n 	=m, n∈M
γmn(e

j (θn−θm )un − um)

⎞

⎠

⎞

⎠ , (11.35)

where um for m ∈ M is defined by (11.23). We have already verified numerically
that this control law achieves the expected pattern formation.

1 For any mi , m j ∈ M , there exists a sequence {i1, i2, . . . , iK } on M such that γik ,ik+1 > 0 for all
k = 1, . . . , K − 1 and i1 = i , iK = j .
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11.3.4 Numerical Example

The simulation in this section is executed under the following parameter settings:
We take

A =
[
1 −1
3 −2

]

, (11.36)

Du = 0.2, (11.37)

Dv = 1.5, (11.38)

and

Lx = 8π√
1.8

, L y = Lx√
3
. (11.39)

For these parameters, Am has one (real) unstable eigenvalue for m = ±mi

m1 = (4, 0), m2 = (2, 2), m3 = (2,−2), (11.40)

and Am stable otherwise.
The initial patterns are randomly generated but sufficiently close to zeq . We can

expect this reaction-diffusion system can generate three roll patterns corresponding
to mi ’s in (11.40). Figure11.9 is the snapshots of u(t, x, y) for the uncontrolled
(w = 0) reaction-diffusion dynamics. Actually, all of observed patterns (including
transient ones) look like superpositions of these roll patterns.

Next, we attempt to stabilize another spacial pattern by feedback control. We
implement the distributed actuation (11.35) where

θm1 = 0, θm2 = 2π/3, θm3 = 4π/3

Fig. 11.9 Spatial pattern formation in uncontrolled reaction-diffusion systems. Depending on the
initial profile, only one of the three base roll patterns appears. a t = 0. b t = 3000. c t = 3500.
d t = 3600. e t = 3700. f t = 4000. g t = 4300. h t = 5000



11 Feedback Control of Spatial Patterns in Reaction-Diffusion Systems 159

Fig. 11.10 Spatial pattern formation in controlled reaction-diffusion systems. Independent of the
initial profile, the rotational symmetry is achieved. a t = 0. b t = 2000. c t = 2500. d t = 2750.
e t = 3000. f t = 3500. g t = 4000. h t = 5000

and

γmn = 1, m 	= n, σ = 0.1. (11.41)

Figure11.10 shows the snapshots of u(t, x, y) for the controlled dynamics. We can
observe the convergence to another spatial pattern consisting of the three spatial
spectra.

11.3.5 Summary

In this section, we formulated a feedback stabilization problem of unstable non-
uniform spatial pattern in the reaction-diffusion systems. This problem was solved
in the finite dimensionally approximated system. The proposed law, which is a dif-
fusive coupling in the spatial spectrum, achieves desired spectrum consensus while
preserving the instability of the trivial equilibrium pattern.

Acknowledgments The authors would like to thank Mr. Yusuke Umezu of Graduate School of
Engineering Science, Osaka University for his help for numerical simulation of the controlled
reaction-diffusion dynamics.
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Chapter 12
Control of Unstabilizable Switched Systems

Shun-ichi Azuma, Tomomi Takegami and Yoshito Hirata

12.1 Introduction

In the past half a century, the control theory has focused on stabilization problems
of stabilizable systems, for which a number of results have been derived so far. On
the other hand, the control of unstabilizable systems, which has never been actively
studied in the control community, has become increasingly important in a wide range
of applications. For instance, as easily imagined, cancer treatment with medication
is a kind of “control” but the controlled object is often an unstabilizable system in
the sense that cancer cells may not be stopped from growing by medication. For such
an application, it is strongly desired to delay cancer cell growth for the extension
of life.

This paper thus addresses a control problem of a class of unstabilizable systems.
The systems to be studied are switched systems with controlled switching, which
can describe, for example, the aforementioned cancer dynamics. For the systems, we
aim at delaying the divergence as long as possible.

First, we formulate a divergence delay problem and explain its hardness. Next,
we propose an approximate solution based on discrete abstraction. The proposed
framework reduces the divergence delay problem into the longest path problem of
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a directed graph, which allows us to approximately solve the hard problem in an
efficient way. The proposed framework is then applied to the scheduling problem of
intermittent androgen suppression to delay the relapse of prostate cancer. By using
the mathematical model given by Hirata et al. [1, 2], it is demonstrated that, compared
with the continuous treatment, the relapse of prostate cancer is delayed for more than
10 years for a patient.

Finally, it should be noticed that this paper is based on our preliminary version
[3] published in a conference proceedings.

Notation: Let R, R+, and N be the real number field, the set of positive real
numbers, and the set of natural numbers (note that 0 /∈ N), respectively. The logarithm
of a to base 10 is simply denoted by log a. For the vector x and the matrix M , we
use ‖x‖ and ‖M‖ to represent the ∞-norm (the induced norm for M).

12.2 Problem Formulation

12.2.1 Unstabilizable Switched Systems

Consider the switched system

Σ :
{

x(t + 1) = As(t)x(t),
y(t) = Cx(t),

(12.1)

where x(t) ∈ Rn is the state, s(t) ∈ S := {0, 1, . . . , m − 1} is the input, y(t) ∈ R
is the output (which is scalar-valued), and As ∈ Rn×n (s = 0, 1, . . . , m − 1) and
C ∈ R1×n are constant matrices.

For the system Σ and a given time interval {0, 1, . . . , τ }, we denote by x(t, x0, στ )

the state x(t) for the time t ∈ {0, 1, . . . , τ }, the initial state x(0) = x0 ∈ Rn , and
the input sequence (s(0), s(1), . . . , s(τ − 1)) = στ ∈ Sτ . The corresponding output
y(t) is represented by y(t, x0, στ ), i.e., y(t, x0, στ ) = Cx(t, x0, στ ) from (12.1).

The switched system Σ is said to be unstabilizable if there exists an x0 ∈ Rn such
that

lim
t→∞ ‖y(t, x0, σ∞)‖ = ∞ (12.2)

for every σ∞ ∈ S∞, where S∞ := ∏∞
i=1 S = S × S × · · · .
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12.2.2 Divergence Delay Problem

In this paper, we consider a problem of delaying the divergence of the unstabilizable
switched system Σ . The problem is formulated as follows.

Suppose that τ ∈ N, γ ∈ R+, x0 ∈ Rn , and στ ∈ Sτ are given for the unstabi-
lizable system Σ . If γ ≤ y(t, x0, στ ) holds for some t ∈ {0, 1, . . . , τ }, we denote
by J (x0, στ ) the minimum t ∈ {0, 1, . . . , τ } such that γ ≤ y(t, x0, στ ). Otherwise
(i.e., γ > y(t, x0, στ ) for every t ∈ {0, 1, . . . , τ }), let J (x0, στ ) := τ . The number
J (x0, στ ) quantifies the slowness of the divergence of the unstabilizable system Σ

for the initial state x0 and the input sequence στ . Then the divergence delay problem
is described as follows.

Problem 12.1 For the unstabilizable system Σ , suppose that τ ∈ N, γ ∈ R+, and
x0 ∈ Rn are given. Then, find an input sequence στ ∈ Sτ maximizing J (x0, στ ). ��

Since Sτ is a finite set of cardinality mτ , Problem 12.1 is a combinatorial opti-
mization problem whose feasible solution set exponentially grows with τ . So it is in
general hard to derive a solution for a large τ . This motivates us to find a sub-optimal
solution.

12.3 Discrete Abstraction of Switched Systems

In order to derive a sub-optimal solution to Problem 12.1, we introduce the following
system as an approximation of the system Σ :

Σd :
{

z(t + 1) = Q(As(t)z(t)),
w(t) = Cz(t),

(12.3)

where z(t) ∈ Rn is the state, s(t) ∈ S := {0, 1, . . . , m − 1} is the input, w(t) ∈ R
is the output, Q : Rn → Z is a quantizer for a (given) discrete set Z ⊂ Rn , and As

(s = 0, 1, . . . , m − 1) and C are the constant matrices given for (12.1).
Since z(t + 1) ∈ Z by the quantizer Q, the state z always takes a value on the

discrete set Z. That is, the system Σd is a discrete-state system. Such a discrete
abstraction technique has been proposed in [4] and it can be easily shown that, if a
sufficiently fine quantizer is employed as Q, Σd can capture the dynamics of Σ in a
finite time interval.

In a similar way to Sect. 12.2, the divergence delay problem is formulated for
the system Σd . We use z(t, z0, στ ) and w(t, z0, στ ) to express the state z(t) and the
output w(t) for the time t ∈ {0, 1, . . . , τ }, the initial state z(0) = z0 ∈ Z, and the
input sequence (s(0), s(1), . . . , s(τ −1)) = στ ∈ Sτ . Moreover, we similarly define
the notion of unstabilizability and the number J (z0, στ ) for the output w(t, z0, στ ).
Then the divergence delay problem for Σd is given as follows.
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Problem 12.2 For the unstabilizable system Σd , suppose that τ ∈ N, γ ∈ R+, and
z0 ∈ Z are given. Then, find an input sequence στ ∈ Sτ maximizing J (z0, στ ). ��

12.4 Divergence Delay Control Based on Discrete
Abstraction

Now, we give a solution to Problem 12.2 as an approximate solution to Problem 12.1.
It is clear that the discrete-state system Σd in (12.3) corresponds to the edge-

labeled directed graph G (which is an infinite graph) with

• the node set Z,
• the edge set

⋃
s∈S{(z, z+) ∈ Z × Z | z+ = Q(As z)}, and

• the labeling function L which maps the edge (z, z+) to s ∈ S satisfying z+ =
Q(As z).

The graph G represents all the state transitions of Σd , where the edge labels corre-
sponds to the input for the transition. An example of G is shown in Fig. 12.1. Note for
G that the nodes are of outdegree m and there may exist multiple edges of different
labels.

For the graph G, we further introduce the directed graph Gγ (which is unlabeled)
given by removing all the edge labels and performing the vertex contraction with
respect to all the nodes z ∈ Z satisfying Cz ≥ γ . The resulting contracted node is
denoted by zγ . The graph Gγ is illustrated in Fig. 12.2.

Then the following result is obtained.

Fig. 12.1 Example of graph
G for m = 2. It represents all
the state transitions of Σd
where the edge labels
corresponds to the input for
the transition
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Fig. 12.2 Example of graph Gγ . It is generated from G so as to remove all the edge labels and
perform the vertex contraction with respect to all the nodes z ∈ Z satisfying Cz ≥ γ . a Graph G
and nodes z ∈ Z satisfying Cz ≥ γ . b Graph Gγ

Theorem 12.1 For the unstabilizable system Σd , consider the directed graph Gγ .
Let (z0, z∗

1, z∗
2, . . . , z∗

p, zγ ) be a longest path from node z0 to node zγ (in Gγ ). Then
the following statements hold:
(i) A solution to Problem 12.2 is given by

σ ∗
τ =

⎧
⎨

⎩

(L(z0, z∗
1), L(z∗

1, z∗
2), L(z∗

2, z∗
3), . . . , L(z∗

τ−1, z∗
τ )), if p + 1 ≥ τ,

(L(z0, z∗
1), L(z∗

1, z∗
2), L(z∗

2, z∗
3), . . . , L(z∗

p−1, z∗
p), L(z∗

p, zγ ),

sp+2, sp+3, . . . , sτ−1), otherwise,

(12.4)

where L is the labeling function of the the edge-labeled directed graph G, z∗
τ expresses

zγ only if p + 1 = τ , and (sp+2, sp+3, . . . , sτ−1) ∈ Sτ−p−1 is arbitrarily given.
(ii) The number J (x0, σ

∗
τ ) is given by

J (x0, σ
∗
τ ) =

{
τ, if p + 1 ≥ τ,

p + 1, otherwise.
(12.5)

��
It follows from this result that Problem 12.2 is reduced into the longest path

problem for the directed graph Gγ .
It is well-known that there exist efficient solutions to the longest path problems for

acyclic graphs (see e.g., [5]). Moreover, Gγ is acyclic if Q is appropriately selected
(so that, in G, there exists no self-loop for the nodes z satisfying Cz ≥ γ ). So, as long
as n is not so large (i.e., Σ is a low-dimensional system), the proposed framework
gives an efficient approximate solution to Problem 12.1.
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12.5 Application to Optimal Scheduling Intermittent
Androgen Suppression for Treatment
of Prostate Cancer

Let us apply the proposed framework to the scheduling problem of intermittent
androgen suppression (ISA) to delay the relapse of prostate cancer [1, 2, 6].

ISA is a treatment of prostate cancer which alternately starts and stops andro-
gen suppression in certain periods. The key point for success is the scheduling of
the on-treatment period and off-treatment period. So the scheduling problem is an
important issue of ISA. On the other hand, in ISA, the dynamics of tumor progression
switches between the on-treatment mode and off-treatment mode, which implies that
the dynamics is modeled as a switched system.

Here, we deal with this scheduling problem for patients whose relapse cannot be
avoided but can be delayed by the intermittent androgen suppression (called Type 2
in [1]) as the divergence delay problem.

12.5.1 Mathematical Model of ISA

A mathematical model [6] of the tumor progression dynamics is given by (12.1)
where n = 3, m = 2, x(t) := [x1(t) x2(t) x3(t)]T, and

A0 :=
⎡

⎣
a011 a012 0

0 a022 0
0 0 a033

⎤

⎦ , A1 :=
⎡

⎣
a111 0 0
a121 a122 0
a131 a132 a133

⎤

⎦ ,

C := [1 1 1].

Here, the unit of t is the month, xi (t) (i = 1, 2, 3) are the amount of three kinds of
cancer cells, u(t) is the input expressing the on-treatment and off-treatment modes,
and y(t) (= x1(t) + x2(t) + x3(t)) corresponds to (an approximated value of) the
prostate specific antigen (PSA) level. The matrices As (s = 0, 1) are for the on-
treatment period and for the off-treatment period, respectively, and the elements
a0i j and a1i j are constant numbers which depend on patients. For example, they
are given by a011 := 1.1374, a012 := 3.1466, a022 := 1.2538, a033 := 0.7802,
a111 := 8.833 × 10−2, a121 := 3.8767 × 10−3, a122 := 8.6119 × 10−1, a131 :=
8.3344 × 10−6, a132 := 2.9161 × 10−3, and a133 := 1.2059, which are used in this
paper.
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12.5.2 Sub-optimal Scheduling Based on Discrete Abstraction

For the above system, let us consider Problem 12.1 for τ = 200 (approximately 17
years) and γ = 1.

We first introduce the discrete-state system Σd with the discrete set Z ⊂ R3 and
the quantizer Q : R3 → Z. The set Z is given by Z := Z1 × Z2 × Z3, where

Z1 :=
{

10−8, 10−8+ 8
300 , 10−8+2 8

300 , . . . , 10−8+300 8
300

}
,

Z2 :=
{

10−3, 10−3+ 3+log 0.3
300 , 10−3+2 3+log 0.3

300 , . . . , 10−3+300 3+log 0.3
300

}
,

Z3 :=
{

10−2, 10−2+ 2
300 , 10−2+2 2

300 , . . . , 10−2+300 2
300

}
.

Meanwhile,

Q(μ) :=
⎡

⎣
argminz1∈Z1 s.t. z1≥μ1

‖ log μ1 − log z1‖
argminz2∈Z2 s.t. z2≥μ2

‖ log μ2 − log z2‖
argminz3∈Z3 s.t. z3≥μ3

‖ log μ3 − log z3‖

⎤

⎦ ,

where μi ∈ R is the i-th element of μ ∈ R3.

Then a solution to Problem 12.2 is given as Fig. 12.3 by solving the longest path
problem for Gγ . The computation time is approximately 8 (min) by the computer
with Intel Core i7-3960X processor (3.3GHz) and a 64GB memory unit. In this case,
the output w(t) of Σd is shown in Fig. 12.4. We see that the relapse of prostate cancer
is delayed for more than 10 years and the solution delivers high performance in the
approximate model.

Now, we apply the solution in Figure 12.3 to the original switched system. Fig. 12.5
depicts the output y(t) (i.e., the PSA level). It is observed that the relapse of prostate
cancer is delayed for more than 10 years also in the original system, and we can
conclude that the proposed framework is useful in the medical application.



168 S. Azuma et al.

Fig. 12.3 Treatment
schedule. It is given by
solving the longest path
problem for the graph Gγ
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Fig. 12.4 PSA level for
discrete-state system model.
The relapse of prostate
cancer is delayed for more
than 10 years in the
approximate model
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Fig. 12.5 PSA level for
original switched system
model. The relapse of
prostate cancer is delayed for
more than 10 years even in
the original system
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12.6 Conclusion

A control problem has been considered for unstabilizable switched systems. We
have established a discrete-abstraction-based framework to approximately solve the
problem. The performance is demonstrated for the scheduling problem of intermittent
androgen suppression to delay the relapse of prostate cancer. We hope that our result
is a foundation of control of unstabilizable systems.

In the future, it is expected to establish an exact and practical solution to the
problem, since this paper has given an approximate solution. Also, the result should
be extended to a more general class of unstabilizable systems.
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Chapter 13
Clustered Model Reduction of Large-Scale
Bidirectional Networks

Takayuki Ishizaki, Kenji Kashima, Jun-ichi Imura
and Kazuyuki Aihara

13.1 Introduction

Dynamical systems that appear in both science and engineering are often modeled as
interconnected systems. Examples of such interconnected systems include social net-
works, computer networks, biological networks and so forth [4, 11], whose intercon-
nection topology is complex and large-scale in general. An approximation method is
often used to relax their complexity [1, 13]. During the approximation, it is important
to retain specific system properties/structures, such as stability and interconnection
topology, for practical analyses and syntheses. In view of this, network structure-
preserving model reduction is required and expected to be an efficient tool to simplify
the analysis as well as control of large-scale interconnected systems.

In the literature, several network structure-preserving model reduction methods
can be found. For instance, a Krylov projection method for interconnected systems
is proposed in [15], where a block-diagonally structured projection is performed for
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each subsystem to retain the interconnection topology among subsystems. However,
since complete knowledge on the partition of the whole system into subsystems
is necessary in advance, this method cannot deal with network systems in which
subsystem partition is not apparent. As a similar way, a structured balanced truncation
method for interconnected systems is proposed in [14], where the balanced truncation
is performed for each subsystem. It should be noted that both of [15] and [14] do
not theoretically discuss a relation between the subsystem partition and the resultant
error caused by the the balanced truncation of each subsystem.

Against this background, the authors have developed a clustered model reduc-
tion method for interconnected linear systems, in which first-order subsystems are
coupled over large-scale networks [7–9]. In this method, we introduce the notion of
cluster reducibility, which is defined as the uncontrollability of disjoint subsets of
state variables, called clusters. Furthermore, we provide an algorithm to find a set
of reducible clusters. The aggregation of the reducible cluster produces an approx-
imate model that preserves the interconnection topology among clusters as well as
the stability of systems, with the provision of an error evaluation in terms of the
H2/H∞-norm. In this chapter, we overview the clustered model reduction method
for bidirectional networks proposed in [9], and show several new numerical experi-
ments from a viewpoint of the growth of computation time and comparison between
a scale-free network and the Erdö-Rényi network. Furthermore, we provide detailed
proofs to make the theoretical results easily comprehensible.

Notation. We denote the set of real numbers byR, the set of nonnegative real numbers
by R≥0, the n-dimensional identity matrix by In , the i th column of In by en

i , the
cardinality of a set I by |I |, the l2-induced norm of a matrix M by ‖M‖, and
the maximum and minimum eigenvalues of a symmetric matrix M by λmax(M)

and λmin(M), respectively. For a set of natural numbers I ⊆ {1, . . . , n}, let en
I ∈

R
n×|I | denote the matrix composed of the column vectors of In compatible with I ,

and the l∞-induced norm of a matrix M ∈ R
n×m is defined by

‖M‖l∞ := max
i∈{1,...,n}

m∑

j=1

|Mi, j |,

where Mi, j denotes the (i, j)-element of M . A matrix M is said to be Metzler if all the
off-diagonal entries of M are nonnegative. Furthermore, we denote the block diagonal
matrix having matrices M1, . . . , Mn on its block diagonal by diag(M1, . . . , MN ).
Finally, the H∞-norm of a stable transfer matrix G is defined by

‖G(s)‖H∞ := sup
ω∈R

‖G( jω)‖.
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13.2 Preliminaries

In this chapter, we deal with the following linear system evolving over bidirectional
networks:

Definition 13.1 A linear system

Σ : ẋ = Ax + Bu, A ∈ R
n×n, B ∈ R

n (13.1)

is said to be a bidirectional network if A is symmetric.

For simplicity, we consider only single-input systems while a similar result can be
obtained also for multi-input systems. Examples of bidirectional networks include a
kind of reaction-diffusion systems evolving over a network that is given by

ẋi = −ri xi +
n∑

j=1, j �=i

ai, j (x j − xi ) + bi u, i ∈ {1, . . . , n}, (13.2)

where ri denotes the reaction rate of xi , and ai, j = a j,i for i �= j denotes
the diffusion intensity between xi and x j . This system is often used as a primal
model that represents diffusion processes evolving over a complex network [12]. Let
R := diag([r1, . . . , rn]) be a reaction matrix and L := {Li, j } be a weighted graph
Laplacian given by

Li, j =
{ −ai, j , i �= j,
∑n

j=1, j �=i ai, j , i = j.

By using them, (13.2) is expressed as a bidirectional network with

A = −(R + L ), B =
⎡

⎢
⎣

b1
...

bn

⎤

⎥
⎦

and the state vector x := [x1, . . . , xn]T. Note that (13.2) is stable if at least one ri is
strictly positive, all ai, j are nonnegative, and the associated graph is connected.

For the arguments below, we introduce the following state-space realization having
a positive tridiagonal structure:

Definition 13.2 Let Σ in (13.1) be a bidirectional network. A coordinate transforma-
tion x̃ = HTx by a unitary matrix H ∈ R

n×n is said to be positive tridiagonalization
if the system matrices Ã := HT AH ∈ R

n×n and B̃ := HT B ∈ R
n≥0 of

Σ̃ : ˙̃x = Ãx̃ + B̃u (13.3)
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are in the form of

Ã =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1 β1
β1 α2 β2

. . .
. . .

. . .

. . .
. . . βn−1

βn−1 αn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B̃ =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

β0
0
0
...

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(13.4)

with βi ≥ 0 for all i ∈ {0, . . . , n − 1}. Moreover, Σ̃ in (13.3) is referred to as a
positive tridiagonal realization.

Note that this realization belongs to a class of (internally) positive systems [2, 3,
5] because Ã is Metzler and the entries of B̃ are all nonnegative. Based on this fact,
the following result is proven:

Proposition 13.1 Let Σ̃ in (13.3) be a positive tridiagonal realization, and define

X̃(s) := (s In − Ã)−1 B̃. (13.5)

Then, it follows that
‖X̃i (s)‖H∞ = −eT

i Ã−1 B̃ (13.6)

for all i ∈ {1, . . . , n}.
Furthermore, it has a tridiagonal structure representing serially cascaded

autonomous systems equipped with a boundary input. The existence and unique-
ness of positive tridiagonalization are shown as follows:

Proposition 13.2 For every bidirectional network Σ in (13.1), there exists a unitary
matrix H ∈ R

n×n for positive tridiagonalization. Furthermore, for

i∗ :=

⎧
⎪⎨

⎪⎩

min
i∈{1,...,n−1}{i : βi = 0}, if

n−1∏

i=1

βi = 0,

n, otherwise,

(13.7)

the submatrix Hen
1:i∗ ∈ R

n×i∗ is uniquely determined among all transformation
matrices.

Towards eigenvalue computation and model reduction, effective tridiagonaliza-
tion procedures for large matrices, e.g., the Householder transformation and the con-
troller Hessenberg transformation [6, 16], have been widely studied in the control
and numerical linear algebra communities. From the structure of Ã and B̃ in (13.4),
we see that i∗ in (13.7) coincides with the dimension of the controllable subspace of
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Σ . In view of this, we see that the uniqueness of Hen
1:i∗ in Proposition 13.2 corre-

sponds to the uniqueness of the transformation matrix for positive tridiagonalization
for the controllable subspace of Σ .

In fact, most positive tridiagonalization procedures can be implemented without
computationally expensive operations. For instance, the complexity of the primary
algorithm based on the Householder transformation is at most (2/3)n3 even for dense
matrices. Furthermore, it is known that the computation can be done in linear time
by explicitly considering the sparsity of matrices. In this sense, positive tridiagonal-
ization can be implemented even for large-scale bidirectional networks.

13.3 Clustered Model Reduction

13.3.1 Problem Formulation

In this section, we provide a clustered model reduction method that can preserve
the interconnection topology among clusters while guaranteeing a specified error
precision. To formulate a clustered model reduction problem, we first introduce the
following notion of network clustering:

Definition 13.3 Let L := {1, . . . , L}. The family of an index set {I[l]}l∈L is called
a cluster set, each of whose elements is referred to as a cluster, if each element
I[l] ⊆ {1, . . . , n} satisfies

⋃

l∈L
I[l] = {1, . . . , n}, I[l] ∩ I[l ′] = ∅, l �= l ′.

Furthermore, an aggregation matrix compatible with {I[l]}l∈L is defined by

P := Πdiag(p[1], . . . , p[L]) ∈ R
n×L , (13.8)

where p[l] ∈ R
|I[l]| such that ‖p[l]‖ = 1, and the permutation matrix Π is defined as

Π := [eI[1] , . . . , eI[L] ] ∈ R
n×n, eI[l] ∈ R

n×|I[l]|.

In this definition, the aggregation matrix P clearly satisfies PT P = IL , i.e., all
column vectors of P are orthonormal. Using the aggregation matrix P in (13.8), we
define the aggregated model of Σ in (13.1) by

Σ̂ :
{

ξ̇ = PT AP ξ̇ + PT Bu,

x̂ = Pξ,
(13.9)
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where PT AP is symmetric and stable. Note that each state of the aggregated model
Σ̂ represents an approximant of the clustered states, given by eT

I[l] x ∈ R
|I[l]|. The

trajectory of each state of Σ̂ aims to trace the trajectory of a kind of centroid com-
patible with the clustered states of Σ .

In this notation, we formulate the following clustered model reduction problem
addressed below:

Problem 13.1 Let Σ in (13.1) be a stable bidirectional network. Given a constant
ε ≥ 0, find an aggregated model Σ̂ in (13.9) such that

‖G(s) − Ĝ(s)‖H∞ ≤ ε (13.10)

where

G(s) := (s In − A)−1 B, Ĝ(s) := P(s IL − PT AP)−1 PT B (13.11)

denote the transfer matrices of Σ and Σ̂ , respectively.

In traditional model reduction methods, each state of the reduced model is usually
obtained as a linear combination of all states of the original system [1]. This can be
rephrased as that the projection matrix has no specific sparse structure. Note that the
aggregation matrix (13.8) is block-diagonally structured. In this sense, our problem
formulation clearly contrasts with the traditional model reduction problems.

13.3.2 Exact Clustered Model Reduction

In this subsection, we consider the case where no approximation error is caused by the
cluster aggregation. To do this, we introduce the following notion of the reducibility
of clusters:

Definition 13.4 Let Σ in (13.1) be a stable bidirectional network. A cluster I[l]
is said to be reducible if there exist a scalar rational function G
[l] and a vector

η[l] ∈ R
|I[l]| such that

eT
I[l] G(s) = η[l]G
[l](s), (13.12)

where G is defined as in (13.11).

This definition of cluster reducibility represents that the states corresponding to
I[l] have the same trajectories for all input signals. The following theorem shows
that the cluster reducibility can be characterized by using positive tridiagonalization
of bidirectional networks:
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Theorem 13.1 Let Σ in (13.1) be a stable bidirectional network. Consider its pos-
itive tridiagonal realization Σ̃ in (13.3) with the transformation matrix H ∈ R

n×n,
and define

Φ := Hdiag(− Ã−1 B̃). (13.13)

Then, a cluster I[l] is reducible if and only if there exist a row vector φ
[l] ∈ R
1×n

and a vector η[l] ∈ R
|I[l]| such that

eT
I[l]Φ = η[l]φ
[l]. (13.14)

In addition, if (13.14) holds, then η[l] coincides with a multiple of

−eT
I[l] A−1 B.

Moreover, if all clusters I[l] are reducible, then the aggregated model Σ̂ in (13.9)
given by p[l] = ‖η[l]‖−1η[l] is stable and satisfies

G(s) = Ĝ(s), (13.15)

where G and Ĝ are defined as in (13.11).

Proof [Proof of the equivalence between (13.12) and (13.14)] We prove here that
(13.12) implies (13.14). For the proof of the converse direction, see the proof of
Theorem 13.2 because this is a special case of Theorem 13.2. Note that, if the
equivalence is proven, we can confirm that η[l] is a multiple of −eT

I[l] A−1 B by
substituting s = 0 to (13.12).

Consider i∗ in (13.7) that corresponds to the dimension of the controllable sub-
space of Σ , and define

K := {1, . . . , i∗}, K := {i∗ + 1, . . . , n}.

Note that, owing to the uncontrollability, X̃k(s) ≡ 0 for all k ∈ K , where X̃k denotes
the kth entry of X̃ in (13.5). Thus, it follows that

X̃(s) =

⎡

⎢
⎢
⎢
⎣

X̃1(s)
...

X̃i∗(s)
0

⎤

⎥
⎥
⎥
⎦

= diag(Ii∗ , 0)

⎡

⎢
⎢
⎢
⎣

X̃1(s)
...

X̃i∗(s)
0

⎤

⎥
⎥
⎥
⎦

= eK eT
K X̃(s). (13.16)

By definition, we have

G(s) = H(s In − Ã)−1 B̃ = H X̃(s).
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From this relation with (13.16), we see that (13.12) can be rewritten as

eT
I[l] HeK eT

K X̃(s) = η[l]G
[l](s). (13.17)

Note that each of functions X̃k for k ∈ K , i.e., each element of eT
K X̃(s), is linearly

independent since any two of them do not have the same relative degree. This can be
confirmed by the serially cascaded structure of the positive tridiagonal realization.
Thus, the equality in (13.17) with a scalar rational function G
[l] implies that the rank

of eT
I[l] HeK ∈ R

|I[l]|×i∗ must be one, and there exists a row vector h
[l] ∈ R
1×i∗

such that
eT
I[l] HeK = η[l]h
[l]. (13.18)

Furthermore, since X̃(0) = − Ã−1 B̃, it follows from (13.16) that

diag(− Ã−1 B̃) = eK eT
K diag(− Ã−1 B̃).

Multiplying (13.18) by eT
K diag(− Ã−1 B̃) from the right side, we have

eT
I[l] HeK eT

K diag(− Ã−1 B̃) = η[l]h
[l]eT
K diag(− Ã−1 B̃).

Note that the left-hand side is equal to eT
I[l]Φ. Thus

φ
[l] = h
[l]eT
K diag(− Ã−1 B̃) ∈ R

1×n

satisfies (13.14). Hence, it follows that (13.12) implies (13.14).
[Proof of (13.15)] Let p[l] ∈ R

|I[l]|×(|I[l]|−1) be an orthogonal complement of
p[l], and define

P := Πdiag(p[1], . . . , p[L]) ∈ R
n×(n−L), (13.19)

which is an orthogonal complement of P in (13.8). Note that p[l] is allowed to be

empty if |I[l]| = 1. The similarity transformation of the error system G − Ĝ yields

V AeV −1 =
[

PT AP PT AP P
T

0 A

]

, V Be =
[

0
B

]

, CeV −1 =
[

P P P
T
]
,

(13.20)
where

Ae :=
[

A 0
0 P APT

]

, Be :=
[

B
−P B

]

, Ce := [ In PT
]

and

V =
[

P IL

In 0

]

, V −1 =
[

0 In

IL −P

]

.
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From the block triangular structure of V AeV −1 with the structure of V Be and CeV −1,
we see that the error system is factorized as

G(s) − Ĝ(s) = Ξ(s)P P
T

G(s), (13.21)

where
Ξ(s) := P(s IL − PT AP)−1 PT A + In .

Note that pT[l]η[l] = 0 from p[l] = ‖η[l]‖−1η[l]. Hence, the reducibility of all clusters
implies that

P
T

G(s) = 0.

This guarantees (13.15). �

Theorem 13.1 shows that the cluster reducibility is characterized by linear depen-
dence among the row vectors of Φ. However, the cluster reducibility is generally
restrictive for the reduction of dimensions. This is because it represents a kind of
structured uncontrollability representing that the controllable subspace of eT

I[l] x is
one-dimensional.

13.3.3 Approximation Error Evaluation for Clustered
Model Reduction

Aiming at significant dimension reduction, let us relax the cluster reducibility through
its equivalent representation in (13.14). To this end, we introduce the following
weaker notion of cluster reducibility:

Definition 13.5 Let Σ in (13.1) be a stable bidirectional network. Consider its pos-
itive tridiagonal realization Σ̃ in (13.3) with the transformation matrix H ∈ R

n×n ,
and define Φ in (13.13). A cluster I[l] is said to be θ -reducible if there exists a row
vector φ
[l] ∈ R

1×n such that

∥
∥
∥eT

I[l]Φ − η[l]φ
[l]
∥
∥
∥

l∞
≤ θ, θ ≥ 0, (13.22)

where η[l] = −eT
I[l] A−1 B.

In Definition 13.5, the constant θ represents the degree of cluster reducibility. It
can be easily verified that the θ -reducibility is equivalent to the cluster reducibility if
θ = 0. For the proof of Theorem 13.2 below, we first prepare the following lemma:
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Lemma 13.1 Let A = AT ∈ R
n×n be stable and B ∈ R

n×m. Then, it follows that

‖(s In − A)−1 B‖H∞ = ‖A−1 B‖.

Proof Denote f (s) := (s In − A)−1 B. By definition of the H∞-norm, it follows
that ‖ f (s)‖H∞ ≥ ‖ f (0)‖. Let γ be such that ‖ f (0)‖ < γ . To prove ‖ f (s)‖H∞ ≤
‖ f (0)‖, it suffices to show that ‖ f (s)‖H∞ < γ , or equivalently, all eigenvalues of

J (γ ) :=
[

A −γ −1 B BT

γ −1 In −AT

]

are not on the imaginary axis [1]. By the symmetry of A, we have

J 2(γ ) =
[

A2 − γ −2 B BT ∗
0 A2 − γ −2 B BT

]

.

Note that the block-diagonal entries

A2 − γ −2 B BT = A(In − γ −2 f (0) f T(0))AT

are symmetric and positive definite since γ > ‖ f (0)‖. Therefore, all eigenvalues of
J 2 are positive real. This implies that all eigenvalues of J are nonzero real. Hence,
the claim follows. �

Now, we are ready to evaluate the approximation error caused by the aggregation
of θ -reducible clusters as shown in the following theorem:

Theorem 13.2 Let Σ in (13.1) be a stable bidirectional network. Consider its pos-
itive tridiagonal realization Σ̃ in (13.3) with the transformation matrix H ∈ R

n×n.
If all clusters I[l] are θ -reducible, then the aggregated model Σ̂ in (13.9) given by
p[l] = ‖η[l]‖−1η[l] is stable and satisfies

‖G(s) − Ĝ(s)‖H∞ ≤ √
α‖(PT AP)−1 PT A‖θ, (13.23)

where G and Ĝ are defined as in (13.11) and α :=∑L
l=1|I[l]|(|I[l]| − 1).

Proof In the same notation as that in the proof of Theorem 13.1, it follows from
(13.21) that

‖G(s) − Ĝ(s)‖H∞ ≤ ‖Ξ(s)‖H∞‖P P
T

G(s)‖H∞ . (13.24)

First, let us prove that

‖Ξ(s)‖H∞ = ‖(PT AP)−1 PT A‖.
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Let

J (γ ) :=
[

PT AP −γ −1 PT AAT P
γ −1 IL −PT AT P

]

.

The inequality ‖Ξ‖H∞ < γ holds if and only if γ > ‖In‖ = 1 and the Hamiltonian
γ 2(γ 2 − 1)−1 J (γ ) of Ξ has no eigenvalue on the imaginary axis [1]. Note that this
J (γ ) coincides with the Hamiltonian of

Ξ̂(s) := (s IL − PT AP)−1 PT A. (13.25)

Therefore, we see that ‖Ξ‖H∞ < γ is equivalent to γ > 1 and ‖Ξ̂‖H∞ < γ . For
the latter inequality, it follows that

‖Ξ̂(0)‖ = ‖(PT AP)−1 PT A(P PT+ P P
T
)‖ = ‖PT+Z‖ = λ

1
2
max(IL +Z ZT) > 1,

where we have used PT ZT = 0 for Z := (PT AP)−1 PT AP P
T

. Hence, ‖Ξ‖H∞ <

γ if and only if ‖Ξ̂‖H∞ < γ for all γ ≥ 0, or equivalently ‖Ξ‖H∞ = ‖Ξ̂‖H∞ .
Thus, using Lemma 13.1, we obtain

‖Ξ(s)‖H∞ = ‖Ξ̂(0)‖ = ‖(PT AP)−1 PT A‖. (13.26)

Next, let us evaluate ‖P P
T

G‖H∞ . From

‖P P
T

G(s)‖H∞ = sup
ω∈R

λ
1
2
max(G

T(− jω)P P
T

P P
T

G( jω)) = ‖P
T

G(s)‖H∞ ,

where the second equality comes from P
T

P = In−L , it follows that

‖P P
T

G(s)‖H∞ =

∥
∥
∥
∥
∥
∥
∥
∥

⎡

⎢
⎢
⎣

pT[1]eT
I[1] G(s)
...

pT[L]eT
I[L] G(s)

⎤

⎥
⎥
⎦

∥
∥
∥
∥
∥
∥
∥
∥
H∞

≤
√∑L

l=1 ‖pT[l]eT
I[l] G(s)‖2

H∞ .

For the evaluation of ‖pT[l]eT
I[l] G‖H∞ , we first prove that

‖CG(s)‖H∞ ≤ √
p ‖CΦ‖l∞ (13.27)

for any C ∈ R
p×n . Note that

‖CG(s)‖H∞ ≤
√
√
√
√

p∑

k=1

‖Ck G(s)‖2
H∞ ≤ √

p max
k

‖Ck G(s)‖H∞ ,
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where Ck ∈ R
1×n denotes the kth row of C . Furthermore, it follows that

Ck G(s) =
n∑

i=1

Ck,i

n∑

j=1

Hi, j X̃ j (s),

where Hi, j and Ci, j denote the (i, j)-elements of H and C , respectively, and X̃ j

denotes the j th element of X̃ defined as in (13.5). Therefore, we have

‖Ck G(s)‖H∞ =
∥
∥
∥
∥
∥
∥

n∑

i=1

Ck,i

n∑

j=1

Hi, j X̃ j (s)

∥
∥
∥
∥
∥
∥
H∞

≤
n∑

j=1

∣
∣
∣
∣
∣
∣

n∑

i=1

Ck,i Hi, j

∣
∣
∣
∣
∣
∣

X̃ j (0) = ‖CkΦ‖l∞ .

By the definition of the l∞-induced norm, we see that

max
k

‖CkΦ‖l∞ = ‖CΦ‖l∞ .

This proves (13.27).
Using (13.27) with C = pT[l]eT

I[l] ∈ R
(|I[l]|−1)×n , we have

‖pT[l]eT
I[l] G(s)‖H∞ ≤ √|I[l]| − 1‖pT[l]eT

I[l]Φ‖l∞ .

Let
Δ[l] := eT

I[l]Φ − η[l]φ
[l].

Note that the assumption of θ -reducibility means that ‖Δ[l]‖l∞ ≤ θ . Then, from the
fact that pT[l] p[l] = 0 and p[l] = ‖η[l]‖−1η[l], it follows that

pT[l]eT
I[l]Φ = pT[l]Δ[l].

Hence, we have

‖pT[l]eT
I[l]Φ‖l∞ ≤ ‖pT[l]‖l∞‖Δ[l]‖l∞ ≤ √|I[l]|‖pT[l]‖θ ≤ √|I[l]|θ,

where the second inequality stems from ‖M‖l∞ ≤ √
m‖M‖ for any M ∈ R

n×m and
the third from ‖p[l]‖ = 1. Finally, we have

‖P P
T

G(s)‖H∞ ≤
√
√
√
√

L∑

l=1

|I[l]|
(|I[l]| − 1

)
θ, (13.28)

which proves the claim. �
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Theorem 13.2 shows a linear relation between the approximation error caused by
cluster aggregation and the parameter θ expressing the degree of cluster reducibility.
Thus, we can use θ as a criterion to regulate the the approximation error of the
resultant aggregated model. Therefore, we can conclude that Theorem 13.2 gives a
reasonable cluster determination strategy.

In what follows, based on the premise that θ ≥ 0 is given and Φ in (13.13) is
calculated in advance, we propose an algorithm to construct a set of θ -reducible
clusters. Assume that a set of clusters I[1], . . . ,I[l−1] are already formed. Let

N := {1, . . . , n}\
l−1⋃

i=1

I[i].

When we construct a new cluster I[l], we first select an index j ∈ N . Then, we
find all indices i ∈ N such that

∥
∥
∥φi − ηiη

−1
j φ j

∥
∥
∥

l∞
≤ θ, (13.29)

where φi ∈ R
1×n denotes the i th row vector of Φ and ηi ∈ R denotes the i th entry of

η = −A−1 B. Note that (13.29) is identical to give φ
[l] = η−1
j φ j for (13.22). Thus,

we can verify that the cluster I[l] is actually θ -reducible.

13.4 Numerical Example: Application to Complex
Networks

We consider a diffusion process evolving over the Holme-Kim model [4] composed of
1000 nodes and 2000 edges, whose interconnection topology is depicted in Fig. 13.1.
This network is an extension of the Barabási-Albert model, which is one of the well
known complex network models and has a scale-free and small-world property as well
as a high cluster coefficient. We give the bidirectional network Σ in (13.1) as follows.
The input affects only one node, i.e., B = [1, 0, . . . , 0]T. For A ∈ R

1000×1000 in
(13.2), we randomly choose ai, j from (0, 1] if nodes i and j for i �= j are connected,
otherwise they are given as 0, and we give r1 = 1 and ri = 0 for all i ∈ {2, . . . , 1000}.

We apply our clustered model reduction method to this bidirectional network
evolving over the Holme-Kim model. When θ = 1.5 and θ = 3.0, we obtain 47-
dimensional and 27-dimensional aggregated models shown in Figs. 13.2 and 13.3,
respectively. Comparing Figs. 13.2 and 13.3 with Fig. 13.1, we see that the inter-
connection topology of the aggregated models is much simpler than the original
network. Since their relative approximation error ‖G − Ĝ‖H∞/‖G‖H∞ is 0.060
and 0.091, we can conclude that our clustered model reduction method successfully
extracts meaningful inter-cluster connections in the sense of input-to-state mapping
approximations.
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Fig. 13.1 Interconnection
topology of the original
bidirectional network
evolving over the
Holme-Kim model. This
network is composed of 1000
nodes and 2000 edges, and
the nonzero edge weights are
randomly chosen from (0, 1]

Fig. 13.2 Interconnection
topology of the aggregated
model. The resultant network
is composed of 47 clusters
(47 nodes). Meaningful
inter-cluster connections in
the sense of input-to-state
mapping approximations are
highlighted as bold lines

Next, we show the resultant computation time to construct aggregated models
varying the dimensions of the original systems. Figure 13.4 shows the plot of the
computation time versus the dimensions of the original systems, which are given in
the same way as that to obtain the 1000-dimensional system above. From this figure,
we see that the total calculation time grows in O(n3), which is mainly composed of
computation to perform network clustering and positive tridiagonalization. This is
implemented in Matlab 2011b on a computer equipped with Intel Core i7 CPU-
2620M, 2.60 GHz, RAM 16 GB, and a 64-bit operating system.

Finally, we compare the Holme-Kim model with the Erdö-Rényi model from a
viewpoint of the degree of local uncontrollability. Figure 13.5 shows the plots of
resultant relative errors caused by applying our clustered model reduction for 1000-
dimensional network systems evolving over the Holme-Kim model (solid lines)
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Fig. 13.3 Interconnection topology of the aggregated model The resultant network is composed of
27 clusters (27 nodes). Meaningful inter-cluster connections in the sense of input-to-state mapping
approximations are highlighted as bold lines

0

100

200

300

400

500

600

700

800

900

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

C
al

cu
la

tio
n 

tim
e 

(s
ec

)

Dimension of the original system

Clustering

Tridiagonalization

Others
Total

Fig. 13.4 Calculation time to construct aggregated model.The line with squares corresponds to the
calculation of positive tridiagonal realization, the line with triangles corresponds to that of cluster
construction, and the line with diamonds corresponds to the construction of a 1000-dimensional
aggregated model

and the Erdö-Rényi model (dashed lines). To make the comparison fair, we give
2000 edges for both networks, which are produced by standard algorithms [4]. From
Fig. 13.5, we see that the approximation errors for the Holme-Kim model are gen-
erally smaller than those for the Erdö-Rényi model. This result indicates that our
clustered model reduction is more effective for scale-free networks. This is related
to the fact shown in [10] that the degree of controllability of scale-free networks is
generally less than that of the Erdö-Rényi network.
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Fig. 13.5 Comparison of
resultant approximation
errors. The approximation
errors for the Holme-Kim
model (solid lines) are
generally smaller than those
for the Erdö-Rényi model
(dashed lines)
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13.5 Conclusion

In this chapter, we have overviewed a clustered model reduction method [8, 9] for
interconnected linear systems evolving over undirected networks, which belongs to
a kind of structured model reduction. In this type of structured model reduction, net-
work clustering is performed according to a notion of uncontrollability of local states,
called cluster reducibility. It is shown that the cluster reducibility is characterized
based on positive tridiagonalization, and the aggregation of the reducible clusters
yields an aggregated model that preserves an interconnection structure among clus-
ters. Furthermore, we have shown that the approximation error caused by the cluster
aggregation can be evaluated in terms of the H∞-norm. Finally, in the numerical
examples, we have applied our clustered model reduction to systems evolving over
the Holme-Kim model and the Erdö-Rényi model, and have compared these models
from a viewpoint of the degree of local uncontrollability.
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Chapter 14
Network Structure Identification
from a Small Number of Inputs/Outputs

Masayasu Suzuki, Jun-ichi Imura and Kazuyuki Aihara

14.1 Introduction

In recent years, interest in analysis and control of large-scale network (NW) systems
has been increasing rapidly.Against this background, developingmethods to identify,
we also say reconstruct, theNWstructures, is required, and in fact, various interesting
studies have been reported so far [1, 2, 4, 6, 7, 10, 11, 13–16, 18–20]. However,
many methods proposed in such studies are based on the assumption that the state
of every node can be accessible, that is, one can manipulate or monitor all the states
[15, 18]. Since it is difficult to satisfy the above assumption in terms of technical and
financial costs, inventing structure identification procedures using relatively smaller
number of actuators/sensors than that of the states is quite important.

The NW structure reconstruction belongs to a class of the identification of gray-
box models, and it has some features different from that of black-box models. In
particular, we encounter the issues on identifiability for gray-box models [8, 9], and
have been trying to overcome this problem by various approaches. The common

M. Suzuki (B)

Graduate School of Engineering, Utsunomiya University,
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way is to assume that the NW structure is sparse [1, 6], which often makes a sense,
in particular, in biology. Some studies consider different types of NW systems: For
example, in [10, 11], the class of NW topology has been restricted to the tree-type
for the problem to be identifiable. In fact, Gonçalves and Warnick have shown that
even if a problem is limited to reconstructing a NW structure among measurable
nodes, one cannot uniquely reconstruct such a structure only from input/output data
of the NW system [2, 4, 20]. Thus, we need to prepare some knowledge of the NW
structure in advance, or to collect some other kinds of time-series data other than
input/output data for the original NW system.

The gene-knock-out procedure in experimental biologymay be a strong candidate
following the later requirement. It is known that the gene-knock-out procedure works
well to estimate the functions of nodes in gene networks where some specified nodes
are killed (knocked-out), and the functions of the nodes are inferred by observing
the difference between the original NW system and the knocked-out NW systems.
Motivated by this operation, novel methods to identify NW structures have been
proposed [4, 14, 17].

In this chapter, two approaches to identify NW structures are introduced. The first
is a characteristic-polynomial-based method using the knock-out procedure, where
we focus on a NW system that consists of identical multi-dimensional subsystems.
We start to show what can be reconstructed from input/output data of the knocked-
out NW systems and give some formulas based on [17]. One of keys is to use
the generalized frequency variable, which enables us to treat the multi-dimensional
subsystems as one-dimensional ones. Then, we demonstrate how the strength of a
specified edge is estimated even if we do not know any information on the other
nodes. Although some results shown here and in [17] are extensions for results in
[14], the proposedmethod can be applied for a wider class of systems, and it provides
a procedure to identify the connectivity between specified nodes.

The second approach focuses the reconstruction of the “dynamical structure func-
tion” that is defined as a structure of transfer functions with respect to measurable
nodes. As explained later, this NW structure differs from usual NW graphs like a sta-
tic adjacency matrix, and resides in between the transfer function of the NW system
(the NW structure is invisible) and its realization with meaningful state valuables
(the original NW structure completely appears). In [2], a necessary and sufficient
condition for the reconstruction of the dynamical structure function was shown, and
a special choice of control inputs that satisfies the conditionwas given. In this chapter,
the formulation and some results in [2] will be introduced with comparison to the
first approach.

The rest of this chapter is organized as follows: In Sect. 14.2, we introduce
characteristic-polynomial-based method using knock-out procedure to identify the
weight of edge between two specified subsystems. In Sect. 14.3, the problem to recon-
struct the dynamical structure function is formulated for the NW of one-dimensional
subsystems, and its analysis results are shown.
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14.2 Characteristic-Polynomial-Based NW Structure
Identification using Knock-Out

14.2.1 Problem Formulation

Consider a networked system consisting of the following N identical sub-
systems, each of which is a multi-dimensional, linear time-invariant, and single-
input-single-output system:

Σk :
{

ẋk = Axk + bvk,

zk = cxk,
k ∈ {1, . . . , N },

where xk(t) ∈ R
q , vk(t) ∈ R, and zk(t) ∈ R. We denote by S the set of the indices

{1, . . . , N }. The input to each subsystem is given by

vk =
∑

l∈S

Lkl zl + Bku, k ∈ S,

where u(t) ∈ R
m is an external input, and Lkl ∈ R and Bk ∈ R

1×m denote the
strength of direct connections to Σk from the output of Σl and an external input u,
respectively. In this section, we consider the matrix [Lkl ] to be given as a weighted
graph Laplacian, that is, Lkl = Llk ≥ 0 for k �= l and Lkk = −∑

l∈S\{k} Lkl hold.1

In addition, we suppose that the output of the NW system, y(t) ∈ R
p, is given by

y =
∑

k∈S

Ck zk,

where Ck ∈ R
p, k ∈ S are constant vectors. Thus the input u and output y are added

and measured via the subsystems’ input and output ports, respectively. By using the
Kronecker product, the NW system is described as follows:

Σ :
{

ẋ = (IN ⊗ A + L ⊗ bc)x + (B ⊗ b)u,

y = (C ⊗ c)x,

where x(t) = [
x1(t)T · · · xN (t)T

]T ∈ R
Nq , B := [

BT
1 · · · BT

N

]T ∈ R
N×m , and

C = [C1 · · · CN ] ∈ R
p×N .

Knocking-out subsystem k is to keep the state xk a steady value (e.g., the origin
of the subspace). Denote by Δ ∈ 2S and |Δ| a set of the indices of subsystems to be
knocked-out and its cardinal number, respectively. Then, the state of the knocked-out
NW system ΣΔ, which is defined by removing the state variables of knocked-out
subsystems as

1 For the sake of consistency with the description in the next section, the adjacency matrix L has
the reverse sign against the usual Laplacian matrix.
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xΔ :=
[
xT
1 · · · xT

i−1 xT
i+1 · · · xT

j−1 xT
j+1 · · · xT

N

]T
, i, j, . . . ∈ Δ

satisfies

ΣΔ :
{

ẋΔ = (IN−|Δ| ⊗ A + LΔ ⊗ bc)xΔ + (BΔ ⊗ b)u,

y = (CΔ ⊗ c)xΔ,

where BΔ, CΔ, and LΔ are defined by removing columns, rows, and both corre-
sponding to Δ, from B, C , and L , respectively. Since ∅ ∈ 2S and Σ∅ = Σ , we also
regard the original NW system Σ as one of knocked-out NW systems for the sake
of a simple description.

Now, we have the following assumptions:
Assumption For the NW system Σ ,

A1. the number N and coefficients (A, b, c) of the subsystems are known,
A2. L is a weighted graph-Laplacian,
A3. L , B, and C are unknown other than the above knowledge, and
A4. the NW systems including knocked-out NW systems, which are used for the

identification, are stable, controllable, and observable.

In the rest of this section, we address the following problem:

Problem 14.1 For given indices k and l (k ≤ l), and under Assumption A1–4,
identify the weight of the edge between subsystem Σk and subsystem Σl , Lkl , from
input/output data of knocked-out NW systems.

Nabi-Abdolyousefi and Mesbahi have proposed an identification method of the
NW structure for a consensus-type undirectional NW system consisting of one-
dimensional subsystems [14]. In addition to Assumption A1– 4, the literature [14]
assumes that (A, b, c) = (0, 1, 1) and L ·1N×1 = 0, which means that the dynamics
of the NW system Σ is given by (L , B, C). In [14], the transfer function matrix
(s IN − L)−1 is identified by using knocked-out NW systems, and then, the NW
structure L is estimated. In this section, we will extend the method in [14] to be
able to apply to NW systems that consist of multi-dimensional subsystems, and also,
introduce a procedure to identify the connectivity strength between two specified
subsystems.

14.2.2 Representation Using the Generalized Frequency
Variable

For the subsystem (A, b, c), denote by h(s), d(s), and n(s) the transfer function, its
denominator, and numerator, respectively: That is, h(s) = c(s Iq − A)−1b, d(s) =
det[s Iq − A], and n(s) = cadj[s Iq − A]b. The transfer function G of the NW system
Σ can be represented by using the generalized frequency variable φ(s) := 1/h(s)
as follows [3, 12]:
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Theorem 14.1 For the NW system Σ , the following holds:

G(s) = C(φ(s)IN − L)−1B. (14.1)

This theorem states that the transfer function G(s) is equivalent to the transfer func-
tion of the system (L , B, C) (i.e., C(s IN − L)−1B), whose variable s is replaced by
φ(s). For the identification of the NW structure, we focus on the inverse matrix part
(φ(s)IN − L)−1.

The Meaning of (φ(s)IN − L)−1

The (k, l)-entry of (φ(s)IN − L)−1 corresponds to the right-hand-side of (14.1)
whose B and C matrices are chosen as

B = [0 · · · 0
l

1̌ 0 · · · 0]T and C = [0 · · · 0
k

1̌ 0 · · · 0].

Since G(s) = (C ⊗ c)(s INq − IN ⊗ A − L ⊗ bc)−1(B ⊗ b), it turns out

[(φ(s)IN − L)−1]kl = [0 · · · 0
k
č 0 · · · 0](s INq − IN ⊗ A − L ⊗ bc)−1

× [0 · · · 0
l

b̌ T 0 · · · 0]T.

Therefore, this (k, l)-entry implies a transfer function from the input2 that is added
to subsystem Σl to the output of subsystem Σk (see Fig. 14.1, and also compare to
Fig. 14.3).

In the next two subsections, we consider how to identify the transfer function
(φ(s)IN − L)−1 and how to extract the weight of a specified edge from this transfer
function.

14.2.3 Identification Method

14.2.3.1 How to Identify (φ(s)IN − L)−1

A key idea is to use the fact that knocking-out subsystems {Σk}k∈Δ corresponds to
considering an inner dynamics described by IN−|Δ| ⊗ A + L{Δ} ⊗ bc. In addition,
we apply a formula

det
[
φ(s)IN−|Δ| − LΔ

] = det
[
s I(N−|Δ|)q − (IN−|Δ| ⊗ A + LΔ ⊗ bc)

]

n(s)N−|Δ| . (14.2)

2 This does not mean that there is a real input port.
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Fig. 14.1 The transfer function [(φ(s)IN − L)−1]kl means the transfer function from wl to zk .
This block diagram depicts the inner dynamics of the whole NW system. Here, symbol “∗” denotes
indices (1, . . . , k −1, k +1, . . . , l −1, l +1, . . . , N ); e.g., Lk∗ denotes [Lk1 · · · Lk N ], where (k, k)

and (k, l)-entry are removed

Note that the numerator of the right hand side of (14.2) is the characteristic polynomial
of ΣΔ.

First, we focus on the diagonal of (φ(s)IN − L)−1. Since the kth diagonal of
(φ(s)IN − L)−1 can be calculated as

[
(φ(s)IN − L)−1

]

kk
= adjkk[φ(s)IN − L]

det[φ(s)IN − L]
= det

[
φ(s)IN−1 − L{k}]

det[φ(s)IN − L] ,

we have the following from (14.2):

Theorem 14.2 For the NW system Σ ,

[
(φ(s)IN − L)−1

]

kk
= n(s) det

[
s I(N−1)q − (IN−1 ⊗ A + L{k} ⊗ bc)

]

det[s INq − (IN ⊗ A + L ⊗ bc)] (14.3)

holds.

A calculation procedure for the off-diagonals of (φ(s)IN − L)−1, which is more
complicated than that for the diagonal, is given as follows:

Theorem 14.3 For the NW system Σ , the following holds:

[
(φ(s)IN − L)−1

]2

kl
= n(s)2Ψkl(s)

(
det[s INq − (IN ⊗ A + L ⊗ bc)])2

, k �= l,
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where

Ψkl(s) = det
[
s I(N−1)q −

(
IN−1⊗ A+L{k} ⊗ bc

)]

× det
[
s I(N−1)q −

(
IN−1⊗ A+L{l} ⊗ bc

)]

− det
[
s INq − (IN ⊗ A + L ⊗ bc)

]

× det
[
s I(N−2)q −

(
IN−2 ⊗ A + L{k,l} ⊗ bc

)]
.

This relation can be derived from a special version of the Jacobi’s identity for deter-
minants [5]

det
[

M−1
]

({k,l},{k,l}) = det M(S\{k,l},S\{k,l})
det M

,

and (14.2) and (14.3). Here, M is a square non-singularmatrix, and M(S1,S2) denotes
a matrix including entries of M in which the rows and columns are specified byS1
and S2. Note that to derive the formula in Theorem 14.3, the symmetric property
of the NW was used. Thus for the calculation of a off-diagonal, four characteristic
polynomials of the original NW system Σ , NW systems Σ {k} and Σ {l} in which
subsystem k and l are knocked-out, respectively, and NW system Σ {k,l} in which
both k and l are knocked-out.

14.2.3.2 Identification of the Weight of a Specified Edge

Suppose thatwederived a rational functionmatrix F(s) as a result of the identification
of (φ(s)IN − L)−1:

(φ(s)IN − L)−1 = F(s) for each s. (14.4)

Then, by substituting some value s̄ for (14.4), L can be derived as L = F(s̄)−1 +
φ(s̄)IN . However, this requires the calculation of the inverse matrix, which means
that all entries of F(s) have to be used in general: i.e., one has to identify them. On
the other hand, we often encounter situations in which the identification of the whole
NW structure is not necessary, namely, just want to estimate the connectivity strength
between specified subsystems. For such a case, it is meaningful to estimate the target
with few procedures as possible. In this subsection, it is shown that the weight of
edge Lkl between subsystems Σk and Σl can be extracted from the (k, l)-entry of
(φ(s)IN + L)−1 in fact.

As mentioned in Sect. 14.2.2, the (k, l)-entry of (φ(s)IN − L)−1 is the transfer
function from the input for subsystem Σl to the output of subsystem Σk . Therefore
this entry can be represented as follows:
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[
(φ(s)IN − L)−1

]

kl
= Lkl + Lk∗Θ{k,l}(s)L∗l

Γ (s)
, (14.5)

Γ (s) =
[
φ(s) − Lkk − Lk∗Θ{k,l}(s)L∗k

]

×
[
φ(s) − Lll − Ll∗Θ{k,l}(s)L∗l

]

−
[

Llk + Ll∗Θ{k,l}(s)L∗k

]

×
[

Lkl + Lk∗Θ{k,l}(s)L∗l

]
,

Θ{k,l}(s) =
(
φ(s)IN−2 − L{k,l})−1

.

Let the transfer function of the subsystem be given as

h(s) =
∑ f

i=0 βi si

∑e
i=0 αi si

,

where α0 = 1. Denote by r the relative degree of h(s), i.e., r = e − f . Then, taking
into account the fact that Θ{k,l} is strictly proper, we find that the relative degree of
the rational function of (14.5) is equal to 2r if Lkl �= 0, and larger than 2r if Lkl = 0.
Consequently, it turns out that

lim
s→∞ s2r

[
(φ(s)IN − L)−1

]

kl
= β2

f Lkl (14.6)

holds, which can be used to extract Lkl from
[
(φ(s)IN − L)−1

]

kl . From Theorem
14.3, what can be derived from input/output identification for knocked-out NW sys-
tems is the square of a rational function corresponding to [(φ(s)IN +L)−1]kl , Fkl(s)2.
Note that L2

kl = lims→∞ s4r Fkl(s)2/β4
f . Then denoting by νkl the coefficient of the

2(Nq − 2r)-order term of the numerator of Fkl(s)2, we find L2
kl = νkl/β

4
f . Since

Lkl ≥ 0, k �= l, we have

Lkl =
√

νkl

β2
f

. (14.7)

Next we consider a problem to extract the weight of the self-loop, Lkk , from the
diagonal entry

[
(φ(s)IN − L)−1

]

kk . For the diagonal entry, we have

[
(φ(s)IN − L)−1

]

kk
= 1

φ(s) − Lkk − Lk∗Θ{k}(s)L∗k
.
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Note that the form of this rational function differs from that of (14.5), and the relation
of (14.6) is invalid for the diagonal case. However, it is still possible to extract Lkk ifφ
is known. In fact, applying the following recursive calculation to

[
(φ(s)IN − L)−1

]

kk

⎧
⎪⎪⎨

⎪⎪⎩

H0(s) = sr−1
[
(φ(s)IN − L)−1

]

kk ,

Hn(s) = s Hn−1(s) − ξn−1, n = 1, . . . , r,
ξ0 = β f ,

ξn = β f −n − ∑n−1
k=0 αe−n+kξk, n = 1, . . . , r,

(14.8)

where βl (l < 0) is zero when r > f , we derive

Hr (s) =
(
β2

f Lkk + ξr

)
se−1 + (less than (e − 1)-order terms)

∑e
i=0 αi si −

(∑ f
i=0 βi si

)
[Lkk + Lk∗Θ{k}(s)L∗k]

,

and

lim
s→∞ s Hr (s) = β2

f Lkk + ξr . (14.9)

Thus, one can extract Lkk from
[
(φ(s)IN − L)−1

]

kk using the information on φ(s).

14.2.3.3 Algorithm (Summary)

Summarizing the above discussion, we derive an algorithm as follows:

Algorithm From the knowledge of subsystem (A, b, c), calculate the transfer func-
tion h(s) = n(s)/d(s).
〈〈 Case k = l 〉〉
d1 For the NW system Σ and knocked-out NW system Σ {k}, identify their charac-

teristic polynomials, and denote them as p(s) and pk(s), respectively.
d2 Calculate n(s)pk(s)/p(s), and denote it by Fkk(s), which is an estimate for

[(φ(s)IN − L)−1]kk .
d3 Calculate (14.8) for Fkk instead of [(φ(s)IN − L)−1]kk . Then, from (14.9), we

derive an estimate for Lkk as

L̃kk = −ξr + lims→∞ s Hr (s)

β2
f

.

〈〈 Case k �= l 〉〉
o1 For the NW systemΣ , knocked-out NW systemsΣ {k},Σ {l}, andΣ {k,l}, identify

their characteristic polynomials, and denote them as p(s), pk(s), pl(s), and
pkl(s), respectively.
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o2 Calculate n(s)2[pk(s)pl(s) − p(s)pkl(s)], and let ν̃kl be the coefficient of its
2(Nq − 2r)-order term, which is an estimate for the corresponding coefficient
for the numerator of [(φ(s)IN − L)−1]2kl .

o3 From (14.7), we derive an estimate for Lkl as

L̃kl =
√

ν̃kl

β2
f

.

14.3 Identification of a Transfer Characteristic
Among Measurable Nodes

In this section, we discuss a NW structure reflecting transfer characteristics among
measurable nodes inwhich other unmeasurable nodes are treated together as a hidden
subsystem. We start to define the NW structure, and confirm its meaning. Then, the
identification problem will be formulated, and some analysis results will be shown.

14.3.1 Network System and Its Dynamical Structure Function

Consider N one-dimensional systems

Σk :
{

ẋk = αk xk + vk,

zk = xk,
k ∈ S = {1, . . . , N },

where xk(t) ∈ R, vk(t) ∈ R and zk(t) ∈ R are the state, the input and the output,
respectively. Suppose that these systems construct aNW.The input to each subsystem
is given by

vk =
∑

l �=k

Lkl zk + Bku,

where u(t) ∈ R
m is an external input, and Lkl ∈ R and Bk ∈ R

1×m denote the
connectivity strength to subsystem Σk from the output of subsystem Σl and u,
respectively. Moreover, suppose that the output signals of p (≤ N ) subsystems are
measurable Without loss of generality, one can consider Σk , k = 1, . . . , p to be the

measurable subsystems. Letting B1 :=
[

BT
1 · · · BT

p

]T
, B2 :=

[
BT

p+1 · · · BT
N

]T
,

and Lkk := αk , and defining a weighted adjacency matrix by

A =
[

A11 A12
A21 A22

]

:= [Lkl ]k,l∈S,
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we derive the following representation of the NW system:

Σ :

⎧
⎪⎪⎨

⎪⎪⎩

[
ẏ
ẋh

]

=
[

A11 A12
A21 A22

] [
y
xh

]

+
[

B1
B2

]

u,

y = [I 0]
[

y
xh

]

,

(14.10)

where y = [x1 · · · x p]T and xh = [x p+1 · · · xN ]T.
Applying the Laplace transformationL to (14.10) under the assumption that the

initial value is zero, and canceling variable Xh (:= L {xh}), we have

sY (s) = [A11 + A12(s I − A22)
−1A21]Y (s) + [B1 + A12(s I − A22)

−1B2]U (s),
(14.11)

where Y = L {y} and U = L {u}. Let

W (s) = A11 + A12(s I − A22)
−1A21,

V (s) = B1 + A12(s I − A22)
−1B2,

and define a diagonal matrix D consisting of the diagonal of W by

D(s) = diagk∈{1,...,p}{Wkk(s)}.

Then transform (14.11) as follows:

Y (s) = Q(s)Y (s) + P(s)U (s),

where

Q(s) = (s I − D(s))−1(W (s) − D(s)), (14.12)

P(s) = (s I − D(s))−1V (s). (14.13)

Note that the diagonal elements of Q are zero. The function Q, P , and the pair (Q, P)

are called the internal structure function, control structure function, and dynamical
structure function, respectively.

The meaning of these functions will be explained below. To this end, we denote
by Σm and Σh a sub-NW consisting of the measurable subsystems {Σk}p

k=1 and
one consisting of the hidden subsystems {Σk}N

k=p+1, respectively. Furthermore, let

Lk∗ := [Lk,p+1 · · · Lk N ], and L∗l := [L p+1,l · · · L Nl ]T. Then, the NW system Σ

can be regarded as a closed-loop system as shown in Fig. 14.2.
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Fig. 14.2 Block diagram of
the NW system Σ . The NW
is divided into the sub-NW
of the measurable nodes,
Σm , and that of the hidden
nodes, Σh . The symbol “∗”
denotes indices
(p + 1, . . . , N ); e.g., Lk∗
denotes [Lk,p+1 · · · Lk N ]

The meaning of the inner structure function Q

The rational function Qkl (1 ≤ k, l ≤ p, k �= l) can be calculated as

Qkl(s) = [(s I − D(s))−1]kk Wkl

=
1

s−Lkk

1 − 1
s−Lkk

· Lk∗(s I − A22)−1L∗k
︸ ︷︷ ︸

(i)

·
[

Lkl + Lk∗(s I − A22)
−1L∗l

]

︸ ︷︷ ︸
(ii)

.

The part of (i) means the transfer function of a closed-loop system that consists of
subsystemΣk and sub-NW of the hidden subsystems,Σh , from an input to the inner
state. The part of (ii) is the sum of two transfer operator from xl to the input for Σk :
One is the feedthrough operator (i.e., constant scalar Lkl ), and the other is the transfer
operator viaΣh (i.e., Lk∗(s I − A22)

−1L∗l ). Then it turns out that Qkl corresponds to
the transfer function from xl to xk in the block diagram shown in Fig. 14.3. In other
words, Qkl implies the transfer function of the sub-NW system derived by removing
measurable subsystems other than Σk and the external input ports from the whole
NW system in Fig. 14.2.

Thus, as explained in [2], the matrix Q represents a weighted adjacency matrix
among “measurable” nodes. The weights are strictly proper transfer functions, and
hence, this representation of Q preserves the causality of the measurable variables.
Moreover, it can be said that, this representation is indirect in the sense that mea-
surable nodes may influence each other through hidden nodes, while it is direct in
the sense that each weight does not depend on any other measurable nodes. Transfer
function

[
(φ(s)IN − L)−1

]

kl in Sect. 14.2 does not have the later property, because[
(φ(s)IN − L)−1

]

kl includes the dynamics of subsystems other than Σk and Σl ,
regardless of whether they are measurable or not.
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Fig. 14.3 Block diagram
representing the (k, l)-entry
of the inner structure
function Q: the rational
function of Qkl is the
transfer function from xl to
xk in this diagram. Note that
Qkl does not include the
dynamics of Σl

The meaning of the control structure function P

In a similar way to the inner structure function, we find that Pkr (1 ≤ k ≤ p,
1 ≤ r ≤ m) can be calculated as

Pkr (s) = [(s I − D(s))−1]kk Vkr

=
1

s−Lkk

1 − 1
s−Lkk

· Lk∗(s I − A22)−1L∗k
︸ ︷︷ ︸

(i)

·
[
(B1)kr + Lk∗(s I − A22)

−1(B2)∗r

]

︸ ︷︷ ︸

(ii)′

.

Again, the part of (i) describes the same closed-loop ofΣk andΣh as above. The part
of (ii)′ is composed of the feedthrough-andΣh-through-operators fromur to the input
of Σk , i.e., (B1)∗r and Lk∗(s I − A22)

−1(B2)∗r , respectively. Thus Pkr corresponds
to the transfer function from ur to xk in Fig. 14.4, which does not include the inner
dynamics among the measurable nodes.

Fig. 14.4 The block
diagram representing
(k, r)-entry of the control
structure function P: The
rational function Pkr is the
transfer function from ur to
xk in this diagram. Two ur ’s
are identical
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14.3.2 Reconstruction of Dynamical Structure Function
from the Transfer Function of the NW System

14.3.2.1 Necessary and Sufficient Condition for the Reconstruction

Denote by G the transfer function of the NW system of (14.10) from the input u to
the output y. Since (I − Q(s))Y (s) = P(s)U (s),

G(s) = (I − Q(s))−1P(s) (14.14)

holds. Recall that G can be uniquely identified by using appropriate input/output
data in general. As we saw above, (Q, P) possesses valuable properties as a NW
structure, and hence, it makes a sense to discuss the reconstruction of (Q, P) from
G. Gonçalves and Warnick have formulated this problem in [2]. In the formulation,
“reconstruction” refers to (Q, P) being found as a pair of matrices specified from a
realization of G by (14.12) and (14.13). Therefore, the diagonal elements of Q must
be zero, and (Q, P) must be strictly proper. Unfortunately, for a given G, (Q, P) is
not uniquely determined in general. Thus, we have the following question:

Problem 14.2 Suppose that a p ×m transfer function G is given. When can (Q, P)

be reconstructed from G?

To find the reason why the existence of (Q, P) satisfying (14.14) is not unique,
consider a transformation of (14.14)

GT = MG[Q P]T, (14.15)

where

MG : Cp+m → C
m : w �→

[
GT I

]
w.

Since the nullspace of a linear operator MG is p-dimensional, there exist an infinite
number of pairs (Q, P) satisfying (14.14) in general.More specifically, the following
can be shown:

Proposition 14.1 (Gonçalves and Warnick [2]) Given a p × m transfer function
G, a set SG of dynamical structure functions (Q, P) that satisfy (14.14) can be
parameterized by p × p inner structure functions Q̃ as follows:

SG =
{

(Q, P) :
[

QT

PT

]

=
[

0
GT

]

+
[

I
−GT

]

Q̃T, Q̃ ∈ Q

}

.

Here, Q is a set of inner structure functions.

Since the diagonal of the inner structure function is zero, the choice of Q̃ has
p2 − p degree of freedom. Thus, if one has no information on the NW structure
in advance it is impossible to reconstruct (Q, P) from G. Conversely, when we
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know the component of (Q, P) in the nullspace of MG from a priori knowledge,
(Q, P) can be uniquely determined.

Theorem 14.4 (Gonçalves and Warnick [2]) Given a p × m transfer function G,
the dynamical structure function (Q, P) can be reconstructed (by some knowledge
of the structure) if and only if, for each column of [Q P]T, p−1 entries that uniquely
determine the components of the column in the nullspace of MG are known.

The necessary and sufficient condition in Theorem 14.4 can be checked using the
given transfer function G as follows. Suppose that γ and p − γ entries in kth rows
of Q and P , respectively, are known. Here, the known entries include Qkk (= 0).
Denote by S and T the indices of these known entries as

S := (
s1, . . . , sγ

)
, 1 ≤ s1 < · · · < sγ ≤ p, for Q,

T := (
t1, . . . , tp−γ

)
, 1 ≤ t1 < · · · < tp−γ ≤ m, for P.

Meanwhile, denote by S̄ and T̄ the indices of the other unknown entries as

S̄ := (
s̄1, . . . , s̄ p−γ

)
, 1 ≤ s̄1 < · · · < s̄ p−γ ≤ p, for Q,

T̄ := (
t̄1, . . . , t̄m−p+γ

)
, 1 ≤ t̄1 < · · · < t̄m−p+γ ≤ m, for P.

Furthermore, for index-sets E and F of length |E | and |F |, respectively, let G E F be
a |E | × |F | matrix arraying entries of G that are specified by E and F for the row
and column, respectively. Then transforming the following equation

MG
[

Qk∗ Pk†
]T = 0, ∗ = (1, . . . , p), † = (1, . . . , m),

we derive

[
QkS̄ PkT̄

]
[

GS̄T GS̄T̄
0 I

]

︸ ︷︷ ︸
(
)

= − [
QkS PkT

]

︸ ︷︷ ︸

known

[
GST GST̄

I 0

]

.

For any given entries [QkS PkT ], entries
[
QkS̄ PkT̄

]
are uniquely determined. This

means that a vector
[
Qk∗ Pk†

]T in the nullspace is determined, if and only if matrix
of (
) is non-singular. In summary, we have the following:

Proposition 14.2 The entries {Qks}s∈S and {Pkt }t∈T specify the components of kth
columns of [Q P]T in the nullspace of MG if and only if (p − γ ) × (p − γ ) transfer
function matrix GS̄T is nonsingular.

In the same way as above, we can calculate
[
QkS̄ PkT̄

]
by

[
QkS̄ PkT̄

] =
(

[
GkT GkT̄

] − [
QkS PkT

]
[

GST GST̄
I 0

])[
GS̄T GS̄T̄
0 I

]−1

when GS̄T is nonsingular.
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14.3.2.2 Reconstruction Using Independent Inputs to Measurable Nodes

As a special case, we suppose that m = p, G is nonsingular, the external inputs
are added to the measurable nodes independently, and moreover, these inputs do
not affect hidden nodes (i.e., B2 = 0). Without loss of generality, one can consider
that the inputs are numbered such that the control structure function P is diagonal.
Note that p2 − p off-diagonal entries are zeros. Since the condition of Theorem 14.4
holds, the dynamical structure function can be uniquely reconstructed. In fact, the
following is true.

Proposition 14.3 (Gonçalves and Warnick [2]) Assume that m = p, G is full rank,
and each external input is added to a measurable node independently. Then the
dynamical structure function can be uniquely determined. Moreover, letting H(s) :=
G(s)−1, we have

Qkl = − Hkl

Hkk
, Pkk = 1

Hkk
.

14.3.2.3 Extension to NW of Multi-Dimensional Subsystems

The discussions in this section can be extended to NW systems of multi-dimensional
subsystem (Λ, b, c). Consider the following NW system:

Σ :

⎧
⎪⎪⎨

⎪⎪⎩

[
ẋm

ẋh

]

=
(

IN ⊗ Λ +
[

A11 A12
A21 A22

]

⊗ bc

) [
xm

xh

]

+
[

B1
B2

]

u,

y = ([
Ip 0

] ⊗ c
)
[

xm

xh

]

.

Using the generalized frequency variable of the subsystem,φ(s) := 1/c(s I −Λ)−1b,
and (Q, P) of (14.12)–(14.13), we define

Q̂(s) = Q(φ(s)) and P̂(s) = P(φ(s)),

that is, Q̂(s) and P̂(s) are defined by replacing s of Q(s) and P(s) with φ(s). Recall
from Sect. 14.2.2 that the transfer function of Σ is given by G(φ(s)) (:= Ĝ(s)), in

which G is the transfer function of (14.10). Then it turns out that
(

Q̂, P̂
)
is the

dynamical structure function of the NW system Σ , and satisfies

Ĝ =
(

Ip − Q̂
)−1

P̂.

Since algebraic structure is the same as NW of one-dimensional subsystems, the
results shown above are still valid.
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14.4 Conclusions and Discussions

In this chapter, for linear NW systems with unmanipulable/unmeasurable nodes, a
problem to identify their NW structures was considered, and two approaches to the
problem were introduced. One was a characteristic-polynomial-based method using
the knock-out procedure, and the other was a study on the reconstruction of the
dynamical structure function.

The former focuses on a matrix (φ(s)I − L)−1, where L is the adjacency matrix
of NW system and φ(s) is the reciprocal number of the transfer function of nodes.
Preparing knocked-outNWsystems inwhich some subsystems are kept steady states,
and using the characteristic polynomials estimated by the existing system identifi-
cation method, entries of (φ(s)I − L)−1 can be calculated. Then, the weights of
the edges are individually extracted from the entries of (φ(s)I − L)−1. The main
advantage is that one can identify the strength of connectivity between two nodes
even if they are unmanipulable and unmeasurable. However, since this method is
on the basis of the identification of the characteristic polynomials, we assumed that
the NW system is controllable and observable to derive consistent estimates of the
characteristic polynomials. It is needed to investigate how the estimates are affected
by uncontrollable/unobservable modes, which is one of the future issues.

The second approach focuses on a NW structure reflecting transfer properties
among measurable nodes, which is called the dynamical structure function. The
hidden nodes are treated as a sub-NW system, and the dynamical structure function
does not give any information on the individual hidden nodes. Nevertheless, the
dynamical structure function preserves the original causality of the NW system.
Moreover, the reconstruction of the dynamical structure function is formulated as a
decomposition of the NW system’s transfer function, one needs not take into account
the controllable/observable property.
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