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Abstract Wediscuss recently developedmethods for the visualization of dynamical
systems which are based on the decomposition of the phase space of the system. The
information of the system is represented by a directed graph and then the graph
will be decomposed into smaller subsets which eventually defines a partition of the
phase space. Depending on the purpose of visualization and the nature of the system,
two different decompositions are introduced. The first decomposition algorithm is
called Conley-Morse decomposition, which decompose the system according to the
gradient-like structure of the system. On the other hand, the latter algorithm, an
application of the peer pressure clustering algorithm for directed graphs, decompose
each recurrent components of the system into further smaller non-invariant subsets
according to the similarity of the dynamical behavior.
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1 Introduction

An effective visualization of the global behavior of a dynamical system or a fluid
simulation inevitably involves a sort of the partition, or the decomposition of the
phase space of the system. This is because, in a generic dynamical system there
exist uncountably many orbits having “similar” dynamical behaviors. If we plot too
many of them then typically we end up with a picture carrying no information. For
example, Fig. 1 illustrates 300 (left) and 3,000 (right) different trajectories of the
standard map, the most important example of Hamiltonian dynamics, of length 100.
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Fig. 1 Plots of 300 (left) and 3,000 (right) orbits of (x, y) �→ (x + k sin y, x + y + k sin y), the
standard map with the parameter k = 0.971635. The map is

It easy to imagine that this problemwill bemore serious in higher dimensional spaces
where we can not use our geometric and physical intuition on the space.

Thus, a natural way to visualize the global behavior of the systems is to classify
the points in the phase space into a relatively small number of clusters, so that each
cluster corresponds to a particular dynamical behavior.

In following sections, we will explain two recently proposed ideas for obtaining
such a clustering of dynamical systems. In the next section, we will briefly review the
Conley-Morse decomposition, a decomposition of the phase space according to the
gradient-like structure of the system. Unfortunately this method does not work fine
for conservative dynamics such as Hamiltonian dynamics and hence we will discuss
another algorithm based on a graph clustering algorithm in the last section. This is a
work in progress in the JST CREST project [9].

2 Conley-Morse Decomposition

In this section, we discuss the method of the Conley-Morse decomposition [1, 2].
The key idea here is to find small subsets in the phase space which are invariant under
the dynamics, and then decompose the phase space into these subsets and connecting
orbits among them. These invariant subsets will be called Morse sets.

Historically, this idea was first applied to the gradient flows satisfying a certain
non-degeneracy condition byM.Morse. Here by a gradient flowwemean a flow on a
manifold M that is defined by the gradient vector field grad f for a smooth function
f : M → R. Note that in a gradient flow, there will be no periodic orbit (or, closed
orbit) nor chaotic orbit and thus Morse sets are just equilibrium points of the flow.
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Fig. 2 Collapsing strongly
connected components of G

Note that equilibrium points of the flow generated by grad f are exactly the critical
points of f .

Then C. Conley generalized the theory to arbitrary continuous dynamical systems
yielding the celebrated Fundamental theorem of dynamical systems, which says that
a dynamical system can always be decomposed into (possibly chaotic) Morse sets
and non-chaotic connecting orbit among them. In this generalized case, since the
dynamics is not assumed to be a gradient flow anymore, a Morse sets can be an
equilibrium point, a periodic orbit, or a chaotic invariant set such as the Lorenz
attractor. The fundamental theorem does not tell the detail of the dynamics inside
Morse sets (except the fact they should satisfy a sort of recurrence condition called
chain recurrence), but the point is thatwe can clearly separate chaotic andnon-chaotic
region of the dynamics.

When the dynamics enjoys the structural stability (essentially equivalent to the
property called uniform hyperbolicity), there exists finitely many Morse sets and
the dynamics on them can be described in a symbolic manner (Markov partition).
Unfortunately, there may be infinitely many Morse sets in general and in such a
case, the gradient structure outside the Morse sets will not be robust under small
perturbations. However, since we are mainly interested in the application to practical
problems in which noise and errors are inevitably involved, we can restrict ourselves
to finitely many larger Morse sets. In practice, this can be achieved by fixing the grid
size for our computation and ignoring Morse sets smaller than the grid size.

Given a dynamical system and a grid decomposition of the phase space, the first
step of the algorithm is to define a graph G whose edges imitate the dynamics.
Usually, we simply subdivide the phase space into small cubes using a uniform grid,
and then encode the dynamical behavior by looking how the image of each cube
intersects other cubes (see Arai et al. [2, 4], for example).

Then we can expect that a Morse set corresponds to a strongly connected com-
ponent in G. Given a directed graph G, a subset of vertices of G is called strongly
connected if for any v, w in the set, there exist directed paths from v to w and w to v.
It is well knows that there exist linear-time algorithms that can decompose a directed
graph G into strongly connected components.

By collapsing each strongly connected component of G to a single node, we
can obtain a much smaller graph G representing the structure of the Conley-Morse
decomposition (Fig. 2). Note that G could be very huge depending on the dimension
of the phase space and the size of the grid we are using, however, the graph G
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Fig. 3 The “bifurcation” diagram of the Leslie population model

obtained after collapsing would be much smaller than G. A node in the collapsed
graph corresponds to a Morse set of the system.

For each Morse set, we then compute the Conley index, which is an algebraic
topological invariant carrying the information of the dynamics in a neighborhood of
the Morse set [3, 6]. Finally, for each vertex of G we associate the Conley index of
the corresponding Morse set. The obtained data structure is called the Conley-Morse
graph and the corresponding decomposition of the system is called the Conley-Morse
decomposition.

Figure3 illustrates an example of the application of Conley-Morse decomposition
to the Leslie population model, a map defined by

f (x1, x2; θ1, θ2) = ((θ1x1 + θ2x2) · e−0.1(x1+x2), 0.7x1).

The map defines a dynamical system f : R2 → R
2 with two parameters θ1, θ2 that

represent the birth rate of the first and second generation, respectively. The figure
shows a decomposition of the parameter (θ1, θ2)-plane according to the obtained
Conley-Morse graph structure; adjacent boxes in the parameter spacewith equivalent
Conley-Morse graphs are plotted in the same color. A square, a filled circle, a hollow
circle in directed graphs indicates an attractor, a Morse set with non-trivial Conley
index, and a Morse set with trivial Conley index, respectively. If the Conley index
of a Morse set is non-trivial, then we can prove the Morse set is non-empty, that is,
there really exist some orbit completely contained in the Morse set. On the other
hand, if the Conley index is trivial, the Morse set might be empty; typically, this
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Fig. 4 Morse sets for a flow on the surface of a cooling jacket

Fig. 5 A close up view of Morse sets

happens when our gird size is too coarse to distinguish a very slow dynamics from
a true invariant set.

Although the algorithm works fine for the Leslie model and some other lower
dimensional problems, its computational cost is still expensive to be applied to more
practical problems. To overcome this computational difficulty, Szymczak et al. devel-
oped themethod of the piecewise constant approximation of a vector field [7, 8] using
the theory of differential inclusions. The trajectories in a piecewise constant vector
filed can be determined by simple geometric rules and hence we can avoid compu-
tationally expensive numerical integrations.

Figures4 and 5 show the result of the application of Szymczak’s idea to the vector
field on the surface of a cooling jacketwhich is induced by extrapolating data from3D
fluid simulation in the jacket (figures are provided by the courtesy of A. Szymczak).
Note that the original 3D flow does not have any attractors nor repellers since it is
incompressible, but the flow on the surface has a gradient-like structure illustrated
in the figures, which represents the dynamics vertical to the surface.
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3 Graph Clustering Algorithms

The idea of Conley-Morse decomposition that we have seen in the previous section
works generally well for dissipative dynamics, in which we can expect the existence
of attractors and repellers. On the other hand, in conservative systems, for example
in Hamiltonian dynamics, there is no attractor and repeller and thus typically the
Conley-Morse decomposition becomes a trivial one.

To obtain an effective visualization of conservative systems, therefore, another
criterion for the phase space partition is required. Note that if the system T : X → X
is ergodic, we can not use a function f : X → R to define such a partition of X
because for almost all initial point x ∈ X , the time average

lim
n→∞

1

n

i=n∑

i=0

f (T i (x))

takes the same value. This suggests that our criterion should be based on the finite-
time behavior of trajectories, rather than the asymptotic behavior as we have done in
the Conley-Morse decomposition.

Herewepropose a practical algorithmbased on a graph clustering algorithmcalled
Peer PressureClustering (PPC) [5].A graph clustering algorithms classifies the nodes
of a graph with respect to some similarity between nodes, where the similarity is
defined suitably depending on the purpose of the clustering. These algorithms have
been applied to the study of social networks, machine learning, data mining, pattern
recognition, image analysis, and bioinformatics.

At the initial condition of PPC algorithm, each node of the graph compose a clus-
ter to which only this node belongs. Then PPC iteratively refines the clustering so
that the connectivity inside a cluster will be higher than the connectivity between
different clusters. More precisely, in every iteration step, each node of the graph
decides to which cluster it should belong by feeling the pressure from its friends
(adjacent nodes); if there are many adjacent nodes that belong to a particular cluster,
then the node choose to belong the same cluster. Unfortunately, the convergence
of the algorithm is not guaranteed for a general graph; it may end up with a peri-
odic emergence of different clustering. However, in most of our cases the algorithm
stops after a small number of iterations and runs much faster than other clustering
algorithms such as Markov clustering.

In what follows, we apply PPC algorithm to the graph G obtained from a given
dynamics. The resulting clustering of G corresponds to a partition of the phase space
of the system. Since G imitates the behavior of the original dynamics, we can expect
that this partition of the phase space enjoys a property similar to the clustering of G;
the mixing inside a cluster should be stronger than mixing between different clusters.

Figure6 shows the result of PPC for a graph obtained from the standard map. We
note that quasi-periodic motions and chaotic motions are clearly separated by the
algorithm.We note that the directed graph obtained from the system is itself strongly
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Fig. 6 A clustering of the phase space of the standard map obtained by PPC algorithm

Fig. 7 The flow (top) and the results of coarser (bottom left) and finer (bottom right) PPC clustering

connected, and hence the Conley-Morse decomposition algorithm gives the trivial
decomposition, that is, the only non-empty Morse set is the entire phase space.

Figure7 shows a 2D numerical fluid simulation using the Lattice-Boltzmann
method and the result of PPC applied to it. Two PPC results are shown for different
values of a parameter in the algorithm that control the granularity of the clustering.
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