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Preface

Over the last decade, computer graphics (CG) modeling has developed consider-
ably, bringing greater fidelity and interaction in many applications. However,
subjects such as fluids and virtual humans continue to pose CG challenges. The
symposium ‘‘Mathematical Progress in Expressive Image Synthesis’’ (MEIS2013)
was held in Fukuoka, Japan, in October 21–23, 2013, as a unique venue where
mathematicians, CG researchers, and those who work in industry came together to
investigate these difficult subjects. Moreover, the symposium was intended to
trigger novel research directions such as exploring the mathematics of visual
perception.

This volume presents the papers selected from the MEIS2013 proceedings,
which was originally issued as MI Lecture Notes Vol. 50, Kyushu University,
2013. The book comprises five parts in order to organize the papers for mathe-
matical scientists, graphics researchers, and industry programmers as well. Part I
presents several mathematical frameworks and approaches relevant to CG and
vision issues on a widespread scale. Each theme of Part II–IV is a more specific
2D/3D CG issue regarding photorealistic rendering, texture and sound synthesis,
visual simulation of fluids, surface deformation/editing, and character locomotion.
Part V presents papers on how to utilize 2D image databases for practical appli-
cations. The underlying mathematical subjects involve discrete differential
geometry, Lie theory, computational fluid dynamics, function interpolation, and
learning theory. We therefore hope the readers will find themselves deeply
inspired through the harmony of mathematics and graphics research displayed in
this volume.

Tokyo, February 2014 Ken Anjyo
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Mathematical Approaches to Computer

Graphics and Vision



The Power of Orthogonal Duals (Invited Talk)

Mathieu Desbrun and Fernando de Goes

Keywords Orthogonal dual · Blue noise · Masonry structure · Discrete exterior
calculus

Triangle meshes have found widespread acceptance in computer graphics as a sim-
ple, convenient, and versatile representation of surfaces. In particular, computing on
such simplicial meshes is a workhorse in a variety of graphics applications. In this
context, mesh duals (tied to Poincaré duality and extending the well known relation-
ship between Delaunay triangulations and Voronoi diagrams) are often useful, be it
for physical simulation of fluids [4] or parameterization [7]. However, the precise
embedding of a dual diagram with respect to its triangulation (i.e., the placement of
dual vertices) has mostly remained a matter of taste or a numerical after-thought, and
barycentric versus circumcentric duals are often the only options chosen in practice.
In this talk we discuss the notion of orthogonal dual diagrams, and show through a
series of recent works that exploring the full space of orthogonal dual diagrams to a
given simplicial complex is not only powerful and numerically beneficial, but it also
reveals (using tools from algebraic topology and computational geometry) discrete
analogs to continuous properties.

Starting from a (primal) triangle mesh defined as a simplicial complex (i.e., a
piecewise linear approximation of a discrete orientable manifold surface of any topol-
ogy in R

3, with or without boundary), a family of intrinsic dual diagrams [9] can
be constructed through the addition of a weight per vertex [5]. The resulting dia-
grams can be intuitively understood as displacements of the canonical (Euclidean)

M. Desbrun (B) · F. de Goes
The Applied Geometry Lab, California Institute of Technology, 1200 E. California Boulevard,
Pasadena, CA 91125, USA
e-mail: mathieu@cms.caltech.edu

F. de Goes
e-mail: fdegoes@cms.caltech.edu

K. Anjyo (ed.), Mathematical Progress in Expressive Image Synthesis I, 3
Mathematics for Industry 4, DOI: 10.1007/978-4-431-55007-5_1,
© Springer Japan 2014



4 M. Desbrun and F. de Goes

(a) (b) (c)

Fig. 1 Orthogonal dual diagrams to primal simplicial meshes have recently been shown key in
a wide variety of applications in geometry processing and graphics, for flat & curved domains of
arbitrary topology. a Blue noise sampling. b Well-centered meshes. c Self-supporting structures

circumentric dual along the gradient of the function defined by the weights, resulting
in intrinsically straight dual edges that remain orthogonal to primal edges due to the
curl-free nature of any gradient field [3]. For surfaces of non-trivial genus, there are
additional displacement fields that are curl-free but are not gradients: they correspond
to the so-called harmonic 1-forms (of dimension β1, the first Betty number of the
surface). Therefore, the total space of orthogonal duals is, accounting for the gauge
of the gradient, of dimension β1 + V − 1 where V denotes the number of vertices in
the primal mesh. Note that once a dual diagram is defined through these coordinates,
close formulae for the signed measures of the dual elements (dual lengths, dual cell
areas) are available (Fig. 1).

This simple definition of orthogonal duals is surprisingly versatile in that it offers
efficient and foundational solutions to numerous applications, including:

• Blue noise sampling: Coined by Ulichney [11], the term blue noise refers to an
even, isotropic, yet unstructured distribution of points in (typically 2D) Euclidean
space. Blue noise was first recognized as crucial in dithering of images since it
captures the intensity of an image through its local point density, without introduc-
ing artificial structures of its own. It rapidly became prevalent in various scientific
fields, especially in computer graphics, where its isotropic properties lead to high-
quality sampling of multidimensional signals, and its absence of structure prevents
aliasing. However, the generation of high-grade blue-noise importance sampling
remains numerically challenging.
Our orthogonal duals offer a convenient solution to this common requirement. By
writing the density requirement as constraints on dual cell areas of the diagram
and using optimal transport to formally characterize the isotropy of a point distri-
bution, one ends up with an efficient optimization technique of point distributions
via a constrained minimization in the space of orthogonal dual diagrams. In this
application, the weights are crucial degrees of freedom to exactly enforce adapted
sampling, rendering the formulation not only well-posed but efficient as well. In
practice, the resulting blue noise point distributions outachieve previous methods
based on both spectral and spatial analyses [1].
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• Self-supporting structures: Masonry structures are arrangements of material
blocks, such as bricks or stones, that support their own weight. Constructing curved
vaults or domes with compression-only structures of blocks, further prevented
from slipping through friction and/or mortar, has been practiced since antiquity. It
is therefore no surprise that form finding and stability analysis of self-supporting
structures have been an active area of research for years. In particular, it has
been shown that equilibrium of a masonry structure is ensured if there exists an
inner thrust surface which forms a compressive membrane resisting the external
loads [6]. Discretizing the continuous balance equations relating the stress field
on the thrust surface to the loads has been, however, an open problem for years
with no fully satisfactory solution.
Our primal-dual structures offer, here again, an unexpected approach to this prob-
lem: a finite-dimensional formulation of the compressive stress field of these self-
supporting membranes represented a triangle meshes can be rigorously derived
through homogenization; moreover, equilibrium is guaranteed if (and only if) the
dual planar graph induced by vertex weights forms an orthogonal dual diagram—
corresponding to the force network at play within the membrane. Therefore, our
full characterization of orthogonal duals formally provides discrete (and exact)
analogs of continuous properties; in fact, the weight themselves correspond in this
context to the Airy stress function, a staple of static continuum mechanics. One
can thus derive computational form-finding tools to alter a reference shape into a
free standing simplicial structure, which turns out to improve upon previous work
in terms of efficiency, accuracy, and scalability [2].

• Meshing: Being able not only to choose primal vertex positions, but also a dual
diagram, opens up a series of possibilities in the context of meshing, i.e., turning
a 2D or 3D domain into a(n often simplicial) complex. A majority of meshing
approaches restrict the space of valid meshes to Delaunay triangulations because
they are abundantly vetted by theoretical guarantees; in practice, however, Delau-
nay conditions are often too restrictive to be valuable. Moreover, it is extremely
difficult in practice to construct “self-centered” Delaunay triangulations [10] for
which each circumcenter lies inside its associated tetrahedron: failure to satisfy this
property locally can lead to numerical degeneracies. Recent methods attempting to
optimize meshes to avoid this issue remain impractical for complex domains [12].
With the added flexibility offered by weights, one can much more easily optimize a
mesh to become well-centered by finding the weight assignment that results in dual
vertices closest to each triangle’s barycenter. Moreover, as our primal-dual struc-
tures are compatible with Discrete Exterior Calculus (DEC, a finite-dimensional
calculus inspired by Cartan’s exterior calculus), one can also optimize meshes
to make a particular discrete operator (e.g., the commonly-used Laplacian) both
better conditioned and with smaller error bounds [8].

Orthogonal duals have also a number of connections to other research fields, such as
circle packing and discrete conformal structures, which indicates that more results
are likely to come out in the next few years.
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Mathematical Models of Visual Information
Processing in the Human Brain
and Applications to Visual Illusions
and Image Processing

Hitoshi Arai

Abstract This chapter is a survey of a series of joint works of Shinobu Arai and me.
The main purpose of our study is to construct mathematical models of visual infor-
mation processing in the brain, and to give applications to study of visual illusions
and image processing. In this chapter I will describe a part of our simulations of
some visual illusions, creations of the so-called “fuyuu illusions”, and an application
to image processing.

Keywords Framelet · Pinwheel framelet · Image processing · Visual illusion

1 Introduction

On the past few decades, several studies have been made on mathematical models of
visual information processing in the human brain. Our new models are constructed
by using simple pinwheel framelets ([5]) and pinwheel framelets ([7]), which are new
classes of the so-called framelets. The general scheme of framelets was established
by Daubechies et al. [9]. Our simple pinwheel framelets and pinwheel framelets are
new framelets appropriate to study of vision. Before going to the main body of this
chapter, I will review (simple) pinwheel framelets.

H. Arai (B)

Graduate School of Mathematical Sciences, The University of Tokyo/JST CREST,
3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
e-mail: h-arai@ms.u-tokyo.ac.jp

K. Anjyo (ed.), Mathematical Progress in Expressive Image Synthesis I, 7
Mathematics for Industry 4, DOI: 10.1007/978-4-431-55007-5_2,
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Fig. 1 Maximal overlap version of the pinwheel framelet of degree 7 (level 2)

2 Pinwheel Framelets

Some filters have been well known as models of simple cells in V1. For example,
Gabor filters, DOG filters and ODOG filters. Recently R. Young pointed out that
Gaussian derivatives are more appropriate than these filters (see Young [13]). Adopt-
ing his theory, Escalante-Ramírez and Silván-Cárdenas [10] proposed a mutliresolu-
tion model which consists of Gaussian derivatives. However Gaussian derivatives are
not compactly supported: in other words, filters have infinite length in nature unless
the filters are cut artificially. On the other hand, our simple pinwheel framelets [5] and
pinwheel framelets [7] are produced by finite length filters (or compactly supported
functions). The Fig. 1 is the maximal overlap version of our pinwheel framelets of
degree 7 at the second level.

3 Simulations of Visual Illusions

Based on the maximal overlap version of our pinwheel framelet we constructed a
nonlinear model of visual information processing in the striate cortex. This model
produces computer simulations of several lightness illusions in a unified way: This
method covers the Hermann grid illusion, Mach band illusion, the Chevreul illusion
etc. Here I show as an example simulations of the Hermann grid illusion and some
variations.

The Hermann grid is shown in Fig. 2. In this image, small gray spots are perceived
at the intersections of white bands, however there are no such spots. (Note that the
illusion disappear in foveal vision.) Our simulation of the illusion is Fig. 3.
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Fig. 2 Hermann grid

Fig. 3 Simulation of the
Hermann grid illusion by
using our nonlinear model
with the pinwheel framelet of
degree 5

So far it was thought that the Hermann grid illusion is caused by lateral inhibition
in the retina ([8]). However as reported in Spillmann [11] and Wolfe [12], some
evidences of a postretinal contribution to the illusion were found: the illusion is
weakened when the grid is presented diagonally, and the strength of the illusion
is effected by the number of intersections (see Fig. 4). Our mathematical model
can simulate these phenomena. For example I show the simulation of the former
phenomenon in Fig. 5.
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Fig. 4 a Diagonally presented
Hermann grid, b Hermann grid
with one intersection of white
roads

Fig. 5 Simulation of
the diagonally presented
Hermann grid illusion by
using our nonlinear model
with the pinwheel framelet of
degree 5

4 Applications to Image Processing

Our nonlinear models of visual information processing in the brain have many appli-
cations not only to visual illusions, but also to image processing. A nonlinear model
which has given us simulations of several lightness illusions and some illusions
related to color perception provides a new method of sharpening of natural images.
Our method can sharpene the parts a person generally wants to see without losing
the overall image. For an example of our image processing, see [4]. This technique
is patent pending (H. Arai and S. Arai, JST).
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Fig. 6 Idea of transforming to fuyuu illusions

5 Creation of Visual Illusions

By one of our mathematical models of visual information processing, we can trans-
form usual images or designs to certain illusory images: still images and designs seem
to be moving, although they are at rest in the images (patent, H. Arai and S. Arai,
JST). We call illusions produced by our method “fuyuu illusions”. For examples of
our fuyuu illusions, see [4] or the following site:

Arai, H and Arai, S.: The Birth of “New Age Op Art”,—new op art born from
mathematical science of optical illusions (2011).
http://www4.ocn.ne.jp/~arai/Exhibition/VisualIllusions.html

Why can our mathematical model create such illusions? A main idea is indicated
in Fig. 6.

http://www4.ocn.ne.jp/~{}arai/Exhibition/VisualIllusions.html
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6 Other Results

We have other results related to mathematical models of visual information and
applications to image processing. For example, mathematical algorithm of creating
letter-row tilt illusions, noise reduction, edge detection, etc (patents, Arai and Arai,
JST).
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Decomposition and Clustering
for the Visualization of Dynamical Systems

Zin Arai

Abstract We discuss recently developed methods for the visualization of dynamical
systems which are based on the decomposition of the phase space of the system. The
information of the system is represented by a directed graph and then the graph
will be decomposed into smaller subsets which eventually defines a partition of the
phase space. Depending on the purpose of visualization and the nature of the system,
two different decompositions are introduced. The first decomposition algorithm is
called Conley-Morse decomposition, which decompose the system according to the
gradient-like structure of the system. On the other hand, the latter algorithm, an
application of the peer pressure clustering algorithm for directed graphs, decompose
each recurrent components of the system into further smaller non-invariant subsets
according to the similarity of the dynamical behavior.

Keywords Dynamical systems · Strongly connected components · Conley-Morse
decomposition · Graph clustering · Peer pressure clustering

1 Introduction

An effective visualization of the global behavior of a dynamical system or a fluid
simulation inevitably involves a sort of the partition, or the decomposition of the
phase space of the system. This is because, in a generic dynamical system there
exist uncountably many orbits having “similar” dynamical behaviors. If we plot too
many of them then typically we end up with a picture carrying no information. For
example, Fig. 1 illustrates 300 (left) and 3,000 (right) different trajectories of the
standard map, the most important example of Hamiltonian dynamics, of length 100.
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Fig. 1 Plots of 300 (left) and 3,000 (right) orbits of (x, y) ≈→ (x + k sin y, x + y + k sin y), the
standard map with the parameter k = 0.971635. The map is

It easy to imagine that this problem will be more serious in higher dimensional spaces
where we can not use our geometric and physical intuition on the space.

Thus, a natural way to visualize the global behavior of the systems is to classify
the points in the phase space into a relatively small number of clusters, so that each
cluster corresponds to a particular dynamical behavior.

In following sections, we will explain two recently proposed ideas for obtaining
such a clustering of dynamical systems. In the next section, we will briefly review the
Conley-Morse decomposition, a decomposition of the phase space according to the
gradient-like structure of the system. Unfortunately this method does not work fine
for conservative dynamics such as Hamiltonian dynamics and hence we will discuss
another algorithm based on a graph clustering algorithm in the last section. This is a
work in progress in the JST CREST project [9].

2 Conley-Morse Decomposition

In this section, we discuss the method of the Conley-Morse decomposition [1, 2].
The key idea here is to find small subsets in the phase space which are invariant under
the dynamics, and then decompose the phase space into these subsets and connecting
orbits among them. These invariant subsets will be called Morse sets.

Historically, this idea was first applied to the gradient flows satisfying a certain
non-degeneracy condition by M. Morse. Here by a gradient flow we mean a flow on a
manifold M that is defined by the gradient vector field grad f for a smooth function
f : M → R. Note that in a gradient flow, there will be no periodic orbit (or, closed
orbit) nor chaotic orbit and thus Morse sets are just equilibrium points of the flow.



Decomposition and Clustering for the Visualization of Dynamical Systems 15

Fig. 2 Collapsing strongly
connected components of G

Note that equilibrium points of the flow generated by grad f are exactly the critical
points of f .

Then C. Conley generalized the theory to arbitrary continuous dynamical systems
yielding the celebrated Fundamental theorem of dynamical systems, which says that
a dynamical system can always be decomposed into (possibly chaotic) Morse sets
and non-chaotic connecting orbit among them. In this generalized case, since the
dynamics is not assumed to be a gradient flow anymore, a Morse sets can be an
equilibrium point, a periodic orbit, or a chaotic invariant set such as the Lorenz
attractor. The fundamental theorem does not tell the detail of the dynamics inside
Morse sets (except the fact they should satisfy a sort of recurrence condition called
chain recurrence), but the point is that we can clearly separate chaotic and non-chaotic
region of the dynamics.

When the dynamics enjoys the structural stability (essentially equivalent to the
property called uniform hyperbolicity), there exists finitely many Morse sets and
the dynamics on them can be described in a symbolic manner (Markov partition).
Unfortunately, there may be infinitely many Morse sets in general and in such a
case, the gradient structure outside the Morse sets will not be robust under small
perturbations. However, since we are mainly interested in the application to practical
problems in which noise and errors are inevitably involved, we can restrict ourselves
to finitely many larger Morse sets. In practice, this can be achieved by fixing the grid
size for our computation and ignoring Morse sets smaller than the grid size.

Given a dynamical system and a grid decomposition of the phase space, the first
step of the algorithm is to define a graph G whose edges imitate the dynamics.
Usually, we simply subdivide the phase space into small cubes using a uniform grid,
and then encode the dynamical behavior by looking how the image of each cube
intersects other cubes (see Arai et al. [2, 4], for example).

Then we can expect that a Morse set corresponds to a strongly connected com-
ponent in G. Given a directed graph G, a subset of vertices of G is called strongly
connected if for any v, w in the set, there exist directed paths from v to w and w to v.
It is well knows that there exist linear-time algorithms that can decompose a directed
graph G into strongly connected components.

By collapsing each strongly connected component of G to a single node, we
can obtain a much smaller graph G representing the structure of the Conley-Morse
decomposition (Fig. 2). Note that G could be very huge depending on the dimension
of the phase space and the size of the grid we are using, however, the graph G
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Fig. 3 The “bifurcation” diagram of the Leslie population model

obtained after collapsing would be much smaller than G. A node in the collapsed
graph corresponds to a Morse set of the system.

For each Morse set, we then compute the Conley index, which is an algebraic
topological invariant carrying the information of the dynamics in a neighborhood of
the Morse set [3, 6]. Finally, for each vertex of G we associate the Conley index of
the corresponding Morse set. The obtained data structure is called the Conley-Morse
graph and the corresponding decomposition of the system is called the Conley-Morse
decomposition.

Figure 3 illustrates an example of the application of Conley-Morse decomposition
to the Leslie population model, a map defined by

f (x1, x2; θ1, θ2) = ((θ1x1 + θ2x2) · e−0.1(x1+x2), 0.7x1).

The map defines a dynamical system f : R2 → R
2 with two parameters θ1, θ2 that

represent the birth rate of the first and second generation, respectively. The figure
shows a decomposition of the parameter (θ1, θ2)-plane according to the obtained
Conley-Morse graph structure; adjacent boxes in the parameter space with equivalent
Conley-Morse graphs are plotted in the same color. A square, a filled circle, a hollow
circle in directed graphs indicates an attractor, a Morse set with non-trivial Conley
index, and a Morse set with trivial Conley index, respectively. If the Conley index
of a Morse set is non-trivial, then we can prove the Morse set is non-empty, that is,
there really exist some orbit completely contained in the Morse set. On the other
hand, if the Conley index is trivial, the Morse set might be empty; typically, this
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Fig. 4 Morse sets for a flow on the surface of a cooling jacket

Fig. 5 A close up view of Morse sets

happens when our gird size is too coarse to distinguish a very slow dynamics from
a true invariant set.

Although the algorithm works fine for the Leslie model and some other lower
dimensional problems, its computational cost is still expensive to be applied to more
practical problems. To overcome this computational difficulty, Szymczak et al. devel-
oped the method of the piecewise constant approximation of a vector field [7, 8] using
the theory of differential inclusions. The trajectories in a piecewise constant vector
filed can be determined by simple geometric rules and hence we can avoid compu-
tationally expensive numerical integrations.

Figures 4 and 5 show the result of the application of Szymczak’s idea to the vector
field on the surface of a cooling jacket which is induced by extrapolating data from 3D
fluid simulation in the jacket (figures are provided by the courtesy of A. Szymczak).
Note that the original 3D flow does not have any attractors nor repellers since it is
incompressible, but the flow on the surface has a gradient-like structure illustrated
in the figures, which represents the dynamics vertical to the surface.
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3 Graph Clustering Algorithms

The idea of Conley-Morse decomposition that we have seen in the previous section
works generally well for dissipative dynamics, in which we can expect the existence
of attractors and repellers. On the other hand, in conservative systems, for example
in Hamiltonian dynamics, there is no attractor and repeller and thus typically the
Conley-Morse decomposition becomes a trivial one.

To obtain an effective visualization of conservative systems, therefore, another
criterion for the phase space partition is required. Note that if the system T : X → X
is ergodic, we can not use a function f : X → R to define such a partition of X
because for almost all initial point x ∈ X , the time average

lim
n→∞

1

n

i=n∑

i=0

f (T i (x))

takes the same value. This suggests that our criterion should be based on the finite-
time behavior of trajectories, rather than the asymptotic behavior as we have done in
the Conley-Morse decomposition.

Here we propose a practical algorithm based on a graph clustering algorithm called
Peer Pressure Clustering (PPC) [5]. A graph clustering algorithms classifies the nodes
of a graph with respect to some similarity between nodes, where the similarity is
defined suitably depending on the purpose of the clustering. These algorithms have
been applied to the study of social networks, machine learning, data mining, pattern
recognition, image analysis, and bioinformatics.

At the initial condition of PPC algorithm, each node of the graph compose a clus-
ter to which only this node belongs. Then PPC iteratively refines the clustering so
that the connectivity inside a cluster will be higher than the connectivity between
different clusters. More precisely, in every iteration step, each node of the graph
decides to which cluster it should belong by feeling the pressure from its friends
(adjacent nodes); if there are many adjacent nodes that belong to a particular cluster,
then the node choose to belong the same cluster. Unfortunately, the convergence
of the algorithm is not guaranteed for a general graph; it may end up with a peri-
odic emergence of different clustering. However, in most of our cases the algorithm
stops after a small number of iterations and runs much faster than other clustering
algorithms such as Markov clustering.

In what follows, we apply PPC algorithm to the graph G obtained from a given
dynamics. The resulting clustering of G corresponds to a partition of the phase space
of the system. Since G imitates the behavior of the original dynamics, we can expect
that this partition of the phase space enjoys a property similar to the clustering of G;
the mixing inside a cluster should be stronger than mixing between different clusters.

Figure 6 shows the result of PPC for a graph obtained from the standard map. We
note that quasi-periodic motions and chaotic motions are clearly separated by the
algorithm. We note that the directed graph obtained from the system is itself strongly
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Fig. 6 A clustering of the phase space of the standard map obtained by PPC algorithm

Fig. 7 The flow (top) and the results of coarser (bottom left) and finer (bottom right) PPC clustering

connected, and hence the Conley-Morse decomposition algorithm gives the trivial
decomposition, that is, the only non-empty Morse set is the entire phase space.

Figure 7 shows a 2D numerical fluid simulation using the Lattice-Boltzmann
method and the result of PPC applied to it. Two PPC results are shown for different
values of a parameter in the algorithm that control the granularity of the clustering.
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Probable and Improbable Faces

J. P. Lewis, Zhenyao Mo, Ken Anjyo and Taehyun Rhee

Abstract The multivariate normal is widely used as the expected distribution of face
shape. It has been used for face detection and tracking in computer vision, as a prior
for facial animation editing in computer graphics, and as a model in psychological
theory. In this contribution we consider the character of the multivariate normal
in high dimensions, and show that these applications are not justified. While we
provide limited evidence that facial proportions are not Gaussian, this is tangential
to our conclusion: even if faces are truly “Gaussian”, maximum a posteriori and
other applications and conclusions that assume that typical faces lie near the mean
are not valid.

Keywords Principal component analysis (PCA) · Multivariate Gaussian (distrib-
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1 Introduction

In computer vision and graphics research, facial expression and identity are
commonly modeled as a high-dimensional vector space, often with a multidimen-
sional Gaussian density. This choice of representation has associated algorithmic
approaches such as linear interpolation and maximum a posteriori (MAP) solution
of inverse problems.

In this chapter we argue several things: (1) the linear and Gaussian assumptions
are not strictly correct. (2) Existing research that starts from these assumptions has
implicitly assumed a low dimensional setting. In high dimensions, common algorith-
mic approaches such as MAP may not be justified. (3) The problems resulting from
these assumptions are not just hypothetical, but are visible in a practical computation,
specifically interpolation of faces. Most importantly, we show that consideration of
these factors can result in an algorithm with visibly improved results.

2 Linear Models

The faces of realistic computer characters in movies are most often generated using
the “blendshape” representation [1, 4, 5, 13]. This is a linear representation of the
form f = Bw, where B is a linear but non-orthogonal basis having semantic meaning.
In computer vision, approaches such as active appearance models (AAM) [3] and
morphable models [2] use an orthogonal basis generated by principal component
analysis (PCA), and assume the multidimensional Gaussian prior. Bilinear (tensor)
face models have also been proposed [15]. Psychological research has also employed
such linear models with a multivariate Gaussian prior [14].

PCA assumes that the data is jointly Gaussian, in that the PCA basis vectors are the
eigenvectors of a covariance matrix that does not capture any non-Gaussian statistics.
The Gaussian assumption leads to a frequently employed prior or regularizer of the
form cT �−1c where c is the vector of PCA coefficients and � is the diagonal matrix
of eigenvalues (variances). The Gaussian assumption also naturally leads to the MAP
approach to regularising inverse problems. This approach selects model parameters
M as the mode of the posterior P(D|M)P(M) given data D. With a Gaussian model
the posterior also has a Gaussian form.

The appropriate number of dimensions for a linear facial model of expression
or identity has been variously estimated to be in the range 40–100 [7, 8, 11]. High
quality blendshape facial models used in movie visual effects often have on the order
of 100 dimensions [4].

In Fig. 1 we show that the common multidimensional Gaussian assumption is not
strictly accurate. This figure shows a kernel density plot of several simple measure-
ments of facial proportions measured from 359 selected photographs from the facial
database [12]. It is also somewhat obvious that a linear model is not entirely appro-
priate for facial expression. For example, the motion of the jaw has a clear rotational
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Fig. 1 Face proportions are not strictly Gaussian. Kernel density plots of (left) the distance between
the eyes versus the width of the mouth, (right) the width of the mouth versus the height of the mouth,
measured from a database of 359 faces

component. On the other hand, the widespread use of the blendshape representation
in movies (albeit sometimes with nonlinear correction terms [13]) is an argument
that linear models suffice even if they are not strictly accurate. It is less clear whether
a vector space model of facial identity is appropriate, or if a (nonlinear) manifold
assumption would be more accurate. While these comments call into question the
linear and Gaussian assumptions, existing research does not indicate whether these
objections are important in practical computations.

3 High-Dimensional Phenomena

High dimensional data is generally subject to a collection of nonintuitive phenom-
ena collectively known as the “curse of dimensionality” [16]. Examples of such
phenomena are that (a) in high dimensions, “all data is far away” with high prob-
ability (Fig. 2), (b) randomly chosen vectors are nearly orthogonal (Fig. 3), and
(c) the probability mass of the data is overwhelmingly located near the surface of the
hypervolume, with the interior of the volume essentially empty (Figs. 4 and 5).

Current face computation approaches generally overlook these phenomena. A
notable exception is [10], who described the following apparent paradox: the squared
Mahalanobis distance cT �−1c follows a β2 distribution with n degrees of freedom,

since it is the sum of i.i.d. squared Gaussian variables of variance
c2

i
ξi

. The expec-
tation of this distribution for d dimensions is d, thus we expect the length of the
standardized squared coefficient vector of a typical face to be d. However under the
multidimensional Gaussian model, the face at the origin (the mean face) is the most
probable, and the length of its squared coefficient vector is zero.

Patel and Smith [10] also state a hypothesis that faces should lie on the shell
of a hyperellipsoid dictated by the squared coefficient length. The resolution to the
apparent paradox is simply that it is the difference between the variance and mean.
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Fig. 2 The closest distance to the mean among 1,000 unit-variance multidimensional Gaussian
random variables (vertical axis) as a function of the dimension (horizontal axis). In 100 dimensions
every point in this simulation is more than six standard deviations from the mean

Fig. 3 In high dimensions, most data are nearly orthogonal. Histogram of the angles between all
pairs of 100 randomly chosen isotropic Gaussian random variables in 100 dimensions. The angles
cluster around π/2

A zero-mean random variable can (and typically does!) have a nonzero variance.
Randomly sampling from a multidimensional Gaussian will generate a sequence of
samples that have both the expected mean and variance of course.
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Fig. 4 Bottom the one dimensional Gaussian distribution, with the area between one and two
deviations indicated in red. This interval is equal to that of the unit radius. Top In two dimensions,
the area between one and two standard deviations (light blue) is relatively larger than the area of
the unit standard deviation disc (light orange). Figure is best viewed in the electronic version of
this document

Fig. 5 The point along the constraint (dark line) that has the highest probability is the red point.
In high dimensions however, the interior of the Gaussian is empty and the probability mass is
concentrated toward the outside

4 Discussion

Next we will verify the statement that high dimensional data is concentrated over-
whelmingly near the surface of the hypervolume. In the case of a uniformly distributed
random variable in a hypercube, this is easy to see. Consider a unit hypercube in d
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dimensions, that encloses a smaller hypercube of side 1− ε. As d ≈ →, the volume
of the enclosed hypercube is (1 − ε)d ≈ 0.

The fact that the multivariate Gaussian is a heavy tailed distribution in high dimen-
sions is less obvious. For example, [14] states, “even for a face space of high dimen-
sionality, the assumption of a multivariate normal distribution means that... There
will be many typical faces that will be located relatively close to the center”. How-
ever this phenomenon is at least intuitively suggested by comparing the one- and
two-dimensional Gaussian distributions (Fig. 4). In one dimension, the “volume” of
the interval between one and two standard deviations is equal to the radius of the unit
interval. In two dimensions the area of the annulus between one and two standard
deviations is relatively larger than the area of the unit disc. In higher dimensions the
trend continues, with the available volume overwhelmingly concentrated near the
outside.

Discussion of the multivariate Gaussian is simplified by a “whitening” transforma-
tion ci ≈ ci/

∈
ξi from the original hyperellipsoidal density to an isotropic density.

We can also consider a unit-variance density without loss of generality. In this case
the probability that a point is within a hypersphere of radius r is proportional to

r∫

0

Sd−1(r)G(r) = 2πd/2

φ(d/2)

r∫

0

rd−1G(r)dr

where d is the dimension, G(r) = 1∈
(2π)d

exp−r2/2 is the isotropic unit vari-

ance Gaussian density function, Sd−1(r) = 2πd/2rd−1

φ(d/2)
is the “surface area” of the

d-hypersphere, and φ is the Gamma function. This can be used to plot the tail prob-
ability that a point lies outside the unit hypersphere in various dimensions (Fig. 6).
While in one dimension the majority of the probability mass is within the unit
interval, in 100 dimensions the probability that a point is outside the unit hyper-
sphere is 1. to within machine precision! It may be worth contrasting the mode
of the high-dimensional Gaussian with the Dirac delta generalised function. The
delta function has zero width but unit volume when integrated over. In contrast, the
high-dimensional Gaussian has nonzero width near the origin, but negligible volume.

High dimensional data can also be tightly concentrated in a shell of relatively
narrow thickness. In the case of the multi-dimensional Gaussian, the majority of its
mass is concentrated within a shell centered at radius

∈
d . Figure 7 plots the radially

integrated unit variance Gaussian profile Sd−1(r)G(r) relative to the distance
∈

d
(i.e. with a change of variable r ≈ r

∈
d). The data is concentrated increasingly

around
∈

d (relative to the distance
∈

d itself) in high dimensions.
The observations collected above lead to the remarkable conclusion that algo-

rithms such as MAP may be nonsensical in high dimensions! This conclusion is
not widely known in the computer vision and graphics community, where MAP is
commonly used for face computations with models having 10–100 dimensions.1

1 In fact many results in statistics focus on the case where increasing amounts of data are available,
i.e. n/d ≈ → with n the number of data points. In our problem we may have n/d finite and small,
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Fig. 6 Probability that a sample from a unit variance Gaussian is outside the unit hypersphere for
various dimensions
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Fig. 7 The radially integrated Gaussian N (0, In) in various dimensions. Each subfigure shows the
radially integrated Gaussian profile Sd−1(r)G(r) (vertical axis) plotted in units of

∈
d (horizontal

axis). From left to right 1, 2, 10, and 100 dimensions. In high dimensions the probability concentrates
in a shell centered at radius

∈
d

However, our conclusion is supported in [6], where Mackay states “probability den-
sity maxima often have very little associated probability mass even though the value
of the probability density there may be immense, because they have so little associ-
ated volume... the locations of probability density maxima in many dimensions are
generally misleading and irrelevant. Probability densities should only be maximized
if there is good reason to believe that the location of the maximum conveys useful
information about the whole distribution.”

5 Example Computation: Interpolating in Face Space

Figure 8 contrasts two approaches to interpolating facial identity. The images are not
photographs but are synthesized with an AAM [9]. The face on the far left is generated
from a coefficient vector cl sampled from a multivariate Gaussian with the appropriate
variances (eigenvalues). The face on the far right is also randomly chosen, but its
coefficient vector cr is modified to constrain it to having a specified inner product
∞cl , cr 〉�−1 = −0.8 so as to place it on the opposite side of the coefficient volume. The
inner product uses the inverse eigenvalue-weighted norm ∞cl , cr 〉�−1 = cT

l �−1cr .
The dimensionality of the space (length of the coefficient vector) is 181.

The top rows in Fig. 8 shows linear interpolation through the Gaussian coefficient
space. The midpoint of this interpolation passes closer to the center (mean) face than

as in the case of a face model with several hundred training examples, each with 100 degrees of
freedom.
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Fig. 8 Interpolating between a randomly chosen face (left column) and a second face (right col-
umn) nearly on the opposite side of the hyperellipse of coefficients. Top row of each image: linear
interpolation of coefficients. The middle images lack distinctiveness. Bottom row of each image:
interpolating “around the hyperellipse”. Detail is preserved throughout the interpolation. Please
enlarge to see details

either end. This results in a somewhat “ghostly” face that lacks detail. The linear
interpolation also has the undesired result that (for example) interpolating from a
person of age 40 to a person of age 45 might pass through an intermediate face of
apparent age 25, if that is the mean age of the database underlying the AAM.

In the lower panels of Fig. 8 we interpolate “around” a hyperellipsoidal shell in
the coefficient space rather than across the volume. Given initial and final coefficient
vectors cl , cr , at each step a coefficient vector is generated that interpolates the norm
of these vectors (although in fact the difference in norm is expected to be small
due to phenomena mentioned above). This interpolation remains inside the high
probability shell of the hyperGaussian and generates distinctive faces throughout the
interpolation.

6 Conclusion

This chapter describes known high-dimensional phenomena that call into ques-
tion common assumptions underlying much computer vision, graphics, and psy-
chological research on face computation. In particular, we question approaches that
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assume that typical faces lie in the interior of a high-dimensional Gaussian density
(Fig. 5). The issue is not due to a bi- or multimodal distribution (as with a combined
distribution containing both women and men) but rather is a consequence of high
dimensionality. These objections are not merely hypothetical, but are visible in a
simple face computation. Our conclusion highlights the need to develop new algo-
rithms that address the intrinsically high-dimensional nature of facial identity and
expression.
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Appendix: Hyperellipsoidal Angle Calculation

The interpolations in Fig. 8 start with a randomly chosen coefficient vector y with
yi ∼ N (0,

∈
ξi ). This produces the first face. For the second face, we select a

coefficient vector x that has a specified Mahalanobis inner product with that of the
first face, x�−1y = c with c = −0.8 for example. To find x we solve a sequence of
problems

x ← arg min
x

(x − r)T �−1(x − r) + ξ(xT �−1y − c)

r ← x

xT �−1x

with r initialized to a random vector, in other words, find the vector that is closest to
r and has the desired Mahalanobis angle with y.

References

1. Anjyo K, Todo H, Lewis J (2012) A practical approach to direct manipulation blendshapes.
J Graph Tools 16(3):160–176

2. Blanz T, Vetter T (1999) A morphable model for the synthesis of 3d faces. In: Proceedings of
ACM SIGGRAPH, pp 187–194

3. Cootes TF, Edwards GJ, Taylor CJ (1998) Active appearance models. In: Burkhardt H, Neu-
mann B (eds) ECCV’98: computer vision. Proceedings of the 5th European conference on
computer vision, Volume II. Lecture notes in computer science vol 1407, Springer, Berlin

4. Lewis J, Anjyo K (2010) Direct manipulation blendshapes. Comput Graph Appl (special issue:
Digital Human Faces) 30(4):42–50

5. Li H, Yu J, Ye Y, Bregler C (2013) Realtime facial animation with on-the-fly correctives. ACM
Trans Graph 42:1–10

6. MacKay DJ (1996) Hyperparameters: Optimize, or integrate out? In: Heidbreder G (ed) Max-
imum entropy and Bayesian methods. Springer, New York, pp 43–59

7. Matthews I, Xiao J, Baker S (2006) On the dimensionality of deformable face models. CMU-
RI-TR-06-12



30 J. P. Lewis et al.

8. Meytlis M, Sirovich L (2007) On the dimensionality of face space. IEEE Trans Pattern Anal
Mach Intell 29(7):1262–1267

9. Mo Z, Lewis J, Neumann U (2004) Face inpainting with local linear representations. In: BMVC,
BMVA, pp 347–356

10. Patel A, Smith W (2009) 3D morphable face models revisited. In: Computer vision and pattern
recognition (CVPR), IEEE Computer Society, Los Alamitos, CA, USA, pp 1327–1334

11. Penev PS, Sirovich L (2000) The global dimensionality of face space. In: Proceedings of 4th
international conference automatic face and gesture recognition, pp 264–270

12. Phillips PJ, Wechsler H, Huang J, Rauss P (1998) The feret database and evaluation procedure
for face recognition algorithms. Image Vis Comput J 16(5):295–306

13. Seo J, Irving G, Lewis JP, Noh J (2011) Compression and direct manipulation of complex
blendshape models. ACM Trans Graph 30(6):164:1–164:10

14. Valentine T (2012) Face-space models of face recognition. In: Wenger M, Townsend J (eds)
Computational, geometric, and process perspectives on facial cognition: contexts and chal-
lenges, Scientific Psychology Series. Taylor & Francis, Oxford

15. Vlasic D, Brand M, Pfister H, Popovic J (2005) Face transfer with multilinear models. ACM
Trans Graph 24(3):426–433

16. Wang J (2011) Geometric structure of high-dimensional data and dimensionality reduction.
Springer-Verlag, Berlin, Heidelberg



Part II
Sound and Scene Rendering



Progress in Digital Sound Synthesis
for Physically Based Animation (Invited Talk)

Doug L. James

Keywords Sound synthesis · Sound rendering · Vibration analysis · Thin-shell
solids · Brittle structure

Natural sounds are all around us. The sound of my son struggling to get out of his wet
rain coat, or rain boots squeaking across the floor. The sound of lemonade pouring
into an ice-filled glass, or the ocean crashing at your feet. The sound of an agitated
shopping cart plunging down a flight of stairs, or the familiar roar of a camp fire.
Reality produces these sounds “for free,” but how can we best synthesize them in
future computer-simulated realities?

Decades of advances in computer graphics and physics-based simulation have
made it possible to convincingly animate a wide range of phenomena, such as con-
tacting rigid and deformable bodies, fracturing solids, splashing water, and roaring
fire. Such simulations will inevitably run in real time one day, paving the way for
interactive virtual environments. Unfortunately, the realities simulated by current
algorithms are essentially “silent movies,” with sound added as an afterthought.
Instead, sound recordings have been edited manually for pre-produced animations,
or triggered automatically in interactive settings. The former is labor intensive and
inflexible; and the latter may produce awkward, repetitive and/or implausible results.
Prior synthesis techniques lack the sophistication to sonify increasingly sophisticated
physics-based animations. This situation is a serious obstacle to our ultimate goal: to
build wonderous, real-time or off-line, multi-sensory experiences on future hardware
platforms where graphics, motion, and sound are synchronized and highly engaging.

In this talk, I will describe progress toward these synthesis goals by our group at
Cornell, and mention some of the many remaining challenges. I will discuss progress
on modeling sound for visually important phenomena such as rigid bodies [4, 5],
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Fig. 1 Representative images from [2, 6, 7]

flexible bodies [8], liquids [6], thin-shell solids [2], brittle fracture [7], fire [3], and
clothed virtual characters [1]. I will also highlight progress on mathematical methods
and computer algorithms for reduced-order vibration analysis (linear and nonlinear),
wave-based radiation analysis, precomputation techniques, reduced-order collision
processing, many-body sound problems, sound propagation and listening, and real-
time rendering. No prior knowledge of sound rendering will be assumed (Fig. 1).
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Efficient Image-Based Rendering
Method Using Spherical Gaussian

Kei Iwasaki

Abstract Image-based rendering methods have been widely used to render
realistic images of scenes illuminated by real-world, complex lighting. Recent
advances on image-based rendering methods have revealed that spherical Gaussian
functions have several nice properties for rendering and are suited to represent all-
frequency signals compactly and accurately such as complex environment lighting
and highly glossy BRDFs. This chapter introduces spherical Gaussians for efficient
image-based rendering methods.

Keywords Image-based lighting · Real-time rendering · Spherical Gaussian

1 Introduction

Image-based rendering methods that capture the surrounding environment, store it
as an environment map, and use it as the incident lighting (i.e. environment lighting)
have been used to render realistic images. Real-time rendering of scenes illuminated
by environmental lighting, is beneficial in many applications such as lighting/material
design, animation, and games. For photo-realistic rendering under environmental
lighting, the triple product of the environmental lighting, the BRDF, and the visibility
function is integrated. Integrating the triple product is computationally expensive and
this prevents from real-time rendering under all-frequency environment lighting.
To address this, we propose an efficient rendering method for scenes illuminated
by all-frequency environmental lighting. Our method uses spherical Gaussian (SG)
functions to efficiently integrate the triple product.
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2 Spherical Gaussian

A spherical Gaussian (SG) is a function over the unit sphere and a type of spherical
radial basis functions. A spherical Gaussian (SG) G(ωi ; ξ , β, μ) is represented by
the following equation:

G(ωi ; ξ , β, μ) = μ exp(β(ωi · ξ − 1)), (1)

where the unit vector ξ is the lobe axis, β is the lobe sharpness, and μ is the lobe
amplitude that consists of RGB components.

SG has nice properties for rendering. Firstly, the product of two SGs is represented
by another SG. That is, the product of two SGs is closed in SG basis.

G(ωi ; ξ1, β1, μ1) · G(ωi ; ξ2, β2, μ2) = G(ωi ; ξ3, β3, μ3), (2)

where the lobe axis ξ3, the lobe sharpness β3, and the lobe amplitude μ3 are calculated
by the following equations.

ξ3 = β1ξ1 + β2ξ2

||β1ξ1 + β2ξ2||
, (3)

β3 = ||β1ξ1 + β2ξ2|| (4)

μ3 = μ1μ2 exp(||β1ξ1 + β2ξ2|| − β1 − β2) (5)

Secondly, since SG is symmetric about the lobe axis, SG is easy to rotate just by
rotating the lobe axis as the following equation.

RG(ωi ; ξ , β, μ) = G(ωi ;Rξ , β, μ), (6)

where R is a rotation matrix.
Thirdly, the integral of SG over the unit sphere S2 is calculated analytically as the

following equation.

∫

S2

G(ωi ; ξ , β, μ)dωi = μ

2π∫

0

π∫

0

exp(β(cos ε − 1)) sin εdεdφ

= 2πμ

β
(1 − exp(−2β)).

Finally, the convolution of two SGs are calculated analytically as the following
equation.
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∫

S2

G(ωi ; ξ1, β1, μ1) · G(ωi ; ξ2, β2, μ2)dωi = 4πμ1μ2

exp(β1 + β2)

sinh(||β1ξ1 + β2ξ2||)
||β1ξ1 + β2ξ2||

.

Although the convolution of two SGs is calculated analytically as the above equa-
tion, it is not closed in SG basis. To address this problem, we have derived the SG
representation of the convolution of two SGs [1].

∫

S2

G(ωi ; ξ1, β1, μ1) · G(ωi ; ξ2, β2, μ2)dωi

= 4πμ1μ2

exp(β1 + β2)

sinh(||β1ξ1 + β2ξ2||)
||β1ξ1 + β2ξ2||

= 2πμ1μ2
exp(||ζ || − β1 − β2) − exp(−||ζ || − β1 − β2)

||ζ || , (7)

where ζ = β1ξ1 + β2ξ2. Here, we assume that both lobe sharpness values β1 and
β2 are not too small. In practice, this assumption is valid for rendering applications.
Then, we can assume that e−||ζ ||−β1−β2 ≈ 0. Next, ||ζ || can be represented as follows:

||ζ || =
√

β2
1||ξ1||2 + 2β1β2ξ1 · ξ2 + β2

2||ξ2||2

= (β1 + β2)

√

1 + 2β1β2(ξ1 · ξ2 − 1)

(β1 + β2)2 . (8)

By using this representation, the numerator in Eq. (7) can be calculated as follows:

exp(||ζ || − β1 − β2) = exp((β1 + β2)

(√

1 + 2β1β2(ξ1 · ξ2 − 1)

(β1 + β2)2 − 1

)
)

≈ exp((β1 + β2) · β1β2(ξ1 · ξ2 − 1)

(β1 + β2)2 )

= exp

(
β1β2

(β1 + β2)
(ξ1 · ξ2 − 1)

)
, (9)

where a linear approximation of the Taylor expansion
→

1 + x ≈ 1 + x/2 is used.
The denominator ||ζ || can be approximated with β1 + β2 , since 2β1β2(ξ1·ξ2−1)

(β1+β2)2 can
be considered as negligible. Finally, the convolution of two SGs can be represented
by a single SG as:

∫

S2

G(ωi ; ξ1, β1, μ1) · G(ωi ; ξ2, β2, μ2)dωi ≈ G

(
ξ1, ξ2,

β1β2

β1 + β2
,

2πμ1μ2

β1 + β2

)
.

(10)



40 K. Iwasaki

3 Image-Based Rendering Using Spherical Gaussian

The outgoing radiance L(x,ωo) at point x in the outgoing direction ωo under envi-
ronment lighting is calculated by the following equation.

L(x,ωo) =
∫

S2

L(ωi )V (x,ωi )ρ(x,ωi ,ωo) max(0, n(x) · ωi )dωi ,

(11)

whereS2 denotes the unit sphere inR3,ωi is the incident direction, L(ωi ) is the distant
lighting represented by the environment maps, V (x,ωi ) is the visibility function at x,
ρ is the BRDF, and n(x) is the normal at x. To simplify the notation, we omit x in the
following.Our method represents the BRDF ρ with ρ(ωi ,ωo) = kd + ksρs(ωi ,ωo)

where kd is a diffuse term and ksρs(ωi ,ωo) is a specular term. By substituting this
in Eq. (11), L(ωo) can be calculated from the sum of the diffuse component Ld and
the specular component Ls(ωo) as follows:

L(ωo) = kd Ld + ks Ls(ωo),

Ld =
∫

S2

L(ωi )V (ωi ) max(0,ωi · n)dωi , (12)

Ls(ωo) =
∫

S2

L(ωi )V (ωi )ρs(ωi ,ωo) max(0,ωi · n)dωi . (13)

To calculate Ld , our method approximates L(ωi ) and the cosine term max(0, n ·ωi )

with the sum of spherical Gaussians.
Our method represents the environmental lighting L as the sum of SGs; L(ωi ) ≈∑K
k=1 G(ωi ; ξ k, βk, μk) where K is the number of SG lobes. The cosine term is also

approximated by a single SG as G(ωi ; n, βc, μc). By substituting these terms into
Eq. (12), Ld is calculated by the following equation.

Ld ≈
K∑

k=1

∫

S2

G(ωi ; ξ k, βk, μk)G(ωi ; n, βc, μc)V (ωi )dωi . (14)

The product of two SGs can be represented with a single SG:

G(ωi ; ξ , β, μ) = G(ωi ; ξ k, βk, μk)G(ωi ; n, βc, μc), (15)

where the lobe sharpness β is ||βkξ k + βcn||, the lobe axis ξ is (βkξ k + βcn)/β,
and the amplitude μ is μkμceβ−βk−βc . The diffuse component Ld is calculated by
integrating the product of the visibility function V (ωi ) and the spherical Gaussian
G(ωi ; ξ , β, μ). The integral of the product of SG and the visibility function is
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efficiently computed by using spherical signed distance function [3] for static scenes
and by using integral spherical Gaussian [2] for dynamic scenes.

To calculate the specular component Ls , our method represents the BRDF ρ and
the cosine term as the sum of SGs. As [3], the BRDF ρ(ωi ,ωo) can be calculated
from the sum of the SGs as ρ(ωi ,ωo) ≈ ∑J

j=1 G(ωi ; ξ j , β j , μ j ), where J is the
number of SGs for ρ, and the lobe axis ξ j depends on the outgoing direction ωo. By
substituting this into Eq. (13), Ls(ωo) can be rewritten as:

Ls(ωo) ≈
J∑

j=1

∫

S2

L(ωi )G(ωi ; ξ j , β j , μ j )G(ωi ; n, βc, μc)V (ωi )dωi . (16)

Since the product of two SGs is also represented with a single SG G j (ωi ) =
G(ωi ; ξ ∈

j , β
∈
j , μ

∈
j ), Ls(ωo) can be rewritten as:

Ls(ωo) ≈
J∑

j=1

∫

S2

L(ωi )G j (ωi )V (ωi )dωi . (17)

Our method approximates the integral of the triple product as:

Ls(ωo) ≈
J∑

j=1

∫

S2

L(ωi )G j (ωi )dωi

∫
S2 G j (ωi )V (ωi )dωi∫

S2 G j (ωi )dωi
. (18)

The numerator
∫
S2 G j (ωi )V (ωi )dωi can be calculated in the same way as Ld and

the denominator
∫
S2 G j (ωi )dωi can be calculated analytically as 2π

β∈
j
(1−e−2β∈

j ). The

integral of the product of L and G is calculated as a 3D function 	L(ξ , β):

∫

S2

L(ωi )G(ωi ; ξ , β, μ)dωi = μ	L(ξ , β). (19)

Our method precomputes 	L(ξ , β) and stores the data as prefiltered environment
maps for various lobe sharpness β as [3]. Therefore, our method can change the
BRDFs (i.e. the SGs) at run-time. Since our method integrates the product of the
BRDF approximated by the SGs and the lighting, our method can represent highly
specular materials.
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Fig. 1 Rendering results of our method

4 Results and Conclusion

Figure 1 shows the rendering results of dynamic scenes illuminated by all-frequency
environment lighting. We have implemented our rendering algorithm on a standard
PC with an Intel Core i7 Extreme 965 CPU and a GeForce GTX 580 GPU. The
rendering frame rates are 2.5–40 fps. The image resolutions are 640 × 480. We have
proposed a real-time rendering method for fully dynamic scenes with highly specular
BRDFs illuminated by all-frequency lighting by using spherical Gaussians.
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A Lie Theoretic Proposal on Algorithms
for the Spherical Harmonic Lighting

Masato Wakayama

Abstract The spherical harmonics are the angular portion of the solution to the
Laplace equation in spherical coordinates and provide a frequency-basis for rep-
resenting functions on the sphere. The spherical harmonic lighting, as defined by
Robin Green at Sony Computer Entertainment in 2003, is a family of real-time ren-
dering techniques that may produce certain realistic shading and shadowing with
relatively small overhead lighting. All such spherical harmonic lighting techniques
involve replacing parts of standard lighting equations with spherical functions that
have been projected into a frequency space using the spherical harmonics as a basis
(or a weight space of irreducible finite dimensional representation of the rotation
group). In this chapter, using a group theoretical background of spherical harmonics
and rather simple realization of the space of functions on the two dimensional sphere
in the frame work of representation theory, we propose a possible geometry preserv-
ing algebraic/efficient computing, which might accelerate the (numerical and exact)
computations slightly for spherical harmonic lighting.

Keywords Spherical harmonic lighting · Global illumination ·
Spherical harmonics · Irreducible representation · Intertwiner ·
Casimir element · Legendre polynomials

1 Introduction

The spherical harmonics are the angular portion of the solution to the Laplace equa-
tion in spherical coordinates. A first successful use of the spherical harmonics in
computer graphics is found in [2], where they were used for interactive in-room
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lighting design. The spherical harmonic lighting, as defined by Robin Green at Sony
Computer Entertainment in 2003 [4], is a family of real-time rendering techniques
that may produce certain realistic shading and shadowing with relatively small over-
head lighting. All such spherical harmonic lighting techniques involve replacing
parts of standard lighting equations with spherical functions that have been pro-
jected into a frequency space (or, in our terminology, a weight space of irreducible
finite dimensional representation of rotation group) using the spherical harmonics as
a basis.

In this chapter, we first recall the basic notion/definition for representation the-
ory briefly and provide a group theoretical background of spherical harmonics, and
using this, we propose a possible geometry preserving algebraic/efficient computing,
which might accelerate the (numerical and exact) computations slightly for spherical
harmonic lighting [1, 4, 6, 7, 9] (see also [8, 10]) in some context. A mathematical
idea presented here, if it actually works in the rendering process in computer graph-
ics, would not be necessarily limited to the study of computer graphics, whence could
be applicable to other fields. Our proposal is based on Lie theory or Representation
theory of Lie groups. One of the general ideas or reason why this theory can work for
such applications is, practically, to providing simultaneous block-diagonalization of
matrices.

Spherical harmonics are orthogonal functions and span rotation invariant spaces
on the two dimensional sphere S2, allowing for efficient, alias-free least squares pro-
jection and reconstruction of spherical functions (= functions on the sphere). These
properties lead to a number of efficient operations for computing rotations, convolu-
tion, and double product integrals [6, 9]. As is well-known, spherical harmonics are
used extensively in various fields. They are a basis of the space L2 (S2) of the square
integrable functions on S2, as the name would suggest. They have been used to solve
problems in physics, such as in heat equations, the gravitational and electric fields.
They have also been used in quantum chemistry and physics to model the electron
configuration in atoms. For the spherical harmonic lighting, in place of the Fourier
series expansion on the Euclidean space, one uses the expansion by the spherical
harmonics, in other words, replaces exponential functions by the associated Legen-
dre functions (or Legendre spherical functions). From our current point of view, the
(usual) Fourier analysis is considered to be based on very simple representation the-
ory of abelian groups R

n , whereas the spherical harmonics is on the representation
theory of a non-commutative group SO(3), SO(n) being the rotation group of order n.

To be more explicit, we shall describe certain algebraic treatment for the com-
putation of harmonic expansions, which turns to be a part of the technique at the
spherical harmonic lighting, by the framework of harmonic analysis on the sphere
S2 ≈= SO(2)\SO(3). More precisely, one considers the irreducible decomposition of
the natural action defined by the right translation of SO(3) on L2(S2) (i.e. a part of
the theory of spherical harmonics) and translate/reformulate the problem into the dif-
ferent Hilbert space using another but unitarily equivalent realization of irreducible
representations on the space of polynomials with complex coefficients by the lan-
guage of the special unitary group SU(2) of degree two (see e.g. [3, 5, 11, 12]).
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Here the word “unitarily equivalent” means the isometry between two Hilbert spaces
with equivalent group actions.

2 Basic Notion for Representation Theory

One recalls here some of fundamental definitions and facts for representation theory
of topological groups or Lie groups (see e.g. [3, 5, 11]: these text books also provide
basic facts and terminologies about groups, Hilbert spaces, convergence of series,
etc.). The readers may assume that Lie groups considered in this chapter are given by
matrices groups such as SO(n), the orthogonal group O(n), the unitary group U (n),
the special linear group SLn(C), etc.

Definition 1 A unitary representation of a topological group G is a strongly contin-
uous homomorphism β of G into the group U (H) of unitary operators on a Hilbert
space H . Here, a mapping β : G → g ∈∞ β(g) ∈ U (H) is called a homomorphism
if it satisfies

β(gh) = β(g)β(h) (∼g, h ∈ G),

and a homomorphism β is called strongly continuous if the mapping g ∈∞ β(g)x is
a continuous mapping of G into H for all x ∈ H . Moreover, one sometimes denotes
the representation by a pair of the mapping β and representation space H as (β, H).

Definition 2 Two unitary representations (β1, H1) and (β2, H2) are called equiva-
lent if there exists an isometry (i.e. a bijective linear mapping preserving the norm)
A of H1 onto H2 satisfying

Aβ1(g) = β2(g)A (∼g ∈ G).

In this case, one writes (β1, H1) ≈= (β2, H2) (or simply H1 ≈= H2). Obviously, the
relation “≈=” is an equivalence relation.

Definition 3 Let (β, H) be a unitary representation of a group G. A closed linear
subspace V of H is called invariant under β if one has

β(g)V ← H (∼g ∈ G).

A unitary representation β is called irreducible if H 	= {0} and H and {0} are
the only invariant subspaces of H .

Non-irreducible unitary representations are “decomposed” into irreducible rep-
resentations. In a sense, the irreducible representations are the “atoms” of unitary
representations.

Definition 4 Let (β1, H1) and (β2, H2) be two unitary representations of G. A
linear map (not necessarily assuming an isomorphism) A : H1 ∞ H2 satisfying the
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relation in Definition 2, i.e. Aβ1(g) = β2(g)A (∼g ∈ G), is called an intertwiner (or
intertwining operator) between H1 and H2.

Proposition 1 Let (β1, H1) and (β2, H2) be two finite dimensional unitary repre-
sentations of G and A be an intertwiner between H1 and H2. Then, either A = 0 or
A is a linear isomorphism.

Proposition 2 Let (β, H) be a unitary representations of G. Then, a closed sub-
space V of H is invariant under β if and only if the orthogonal projection PV on V
commutes with β(g) for all g ∈ G. In this case, the orthogonal complement V ⊥ is
also invariant under β .

Let B(H) be the algebra of bounded linear operators on a Hilbert space H and M
be a subset of B(H). The commutant M ′ of M is defined by

M ′ = {L ∈ B(H) | LU = U L (∼U ∈ M)}.

Theorem 1 (Schur’s Lemma) Let (β, H) be a unitary representations of G and
M = {β(g) | g ∈ G}. Then, β is irreducible if and only if the commutant M ′ is equal
to the set C1 of scalar operators.

Theorem 2 Any unitary representation β of a compact group G is a (Hilbert space)
direct sum of finite-dimensional irreducible unitary representations. In particular,
any irreducible representation of a compact group is finite-dimensional.

3 Spherical Harmonics

The groups treated in the present and subsequent sections such as the special unitary
group SU(2) (of degree 2) and special orthogonal groups SO(2), SO(3) are compact.
Notice that since one always has an invariant inner product on the representation space
by the existence of the Haar measure (invariant measure), any finite-dimensional
representation of a compact group is assumed to be unitary [3, 11].

As a matrix group of degree 2, SU(2) acts on the vector space C
2: For g =⎛

a b
c d

⎝
=
⎛

ξ π

−π ξ

⎝
∈ SU(2) (|ξ|2 + |π|2 = 1, ξ, π ∈ C) the action is defined by

C
2 → z = (z1, z2) ∈∞ zg = (az1 + cz2, bz1 + dz2) ∈ C

2.

Note that the action satisfies z(g1g2) = (zg1)g2 (∼g1, g2 ∈ SU(2)) and z1 = z.
Let C[z1, z2] denote the polynomial algebra on C

2. Let Vm := C[z1, z2]m be the
subspace of homogeneous polynomials of degree m of C[z1, z2]. Then any polyno-
mial f in Vm can be written uniquely as a linear combination of m + 1 monomials
zk

1zm−k
2 (0 ≤ k ≤ m). Hence one defines an m + 1 dimensional representation

(βm, Vm) of SU(2) by
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(βm(g) f )(z) := f (zg).

The inner product defined by

(zk
1zm−k

2 , zε
1zm−ε

2 ) = k!(m − k)!φk,ε

is invariant under βm . In other words, equipped with this inner product, (βm, Vm)

turns to be a unitary representation of SU(2). One can prove the following theorem
by the representation theory of Lie algebra sl2(C) of SL2(C).

Theorem 3 For any non-negative integer m, the unitary representation (βm, Vm)

of SU(2) is irreducible. Moreover, any irreducible unitary representation of SU(2)

is equivalent to one of (βm, Vm).

Theorem 4 Let C[z]m be the space of polynomials in z of degree less than or equals

m. Then one defines the action ζm(g) of g =
⎛

ξ π

−π ξ

⎝
∈ SU(2) on C[z]m by

(ζm(g)p)(z) = (πz + ξ)m p

⎞
ξz − π

πz + ξ

⎠
(p ∈ C[z]m).

Equipped with the inner product defined by (zk, zε)m = k!(m−k)!
(m+1)! φk,ε, the represen-

tation (ζm, C[z]m) is unitarily equivalent to (βm, Vm).

Remark 1 The Hermitian inner product on C[z]m defined in the theorem above can
be expressed as follows:

(p1, p2)m = m + 1

β

∫

C

p1(z)p2(z)(1 + |z|2)−m−2dz.

The representation theory of the 3-dimensional rotation group SO(3) can be
derived from that of SU(2) described above, because SU(2) is a (double) covering
group of SO(3). To see this, recall the adjoint representation Ad of SU(2) defined by
Ad(g)U = gUg−1 (U, V ∈ g, g ∈ SU(2)) on the three dimensional real Lie algebra
g = su2(R) (identified to the tangent space of SU(2) at the identity 1 equipped with
the Lie bracket [U, V ] := U V − V U ). Then, one easily observes that the kernel of
Ad is given by {±1}. From this

SU(2)/{±1} ≈= SO(3).

As a vector space, su2(R) is spanned by

X = 1

2

⎛
0 −i
−i 0

⎝
, Y = 1

2

⎛
0 −1
1 0

⎝
, Z = 1

2

⎛
i 0
0 −i

⎝
.
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Notice that {X, Y, Z} is the orthogonal basis with respect to the inner product
〈A, B〉 := −2Tr(AB) (the Killing form, see [3, 11]). It follows immediately that
the map

g → x X + yY + zZ ∈∞ x = (x, y, z) ∈ R
3

is an isometry. This fact actually gives the following.

Theorem 5 For any non-negative integer ε, there exists an irreducible unitary rep-
resentation ρε of SO(3) which is given by

ρε ◦ Ad = ζ2ε(≈= β2ε).

Any irreducible unitary representation of SO(3) is equivalent to ρε for some ε. More-
over, if ε 	= m, then ρε is not equivalent to ρm.

Since the two dimensional sphere S2 is realized by a homogeneous space (actually
a compact Riemann symmetric space) of SO(3) as S2 ≈= SO(2)\SO(3) ≈= K\SU (2),

where K := {
⎛

eiθ/2 0
0 e−iθ/2

⎝
| 0 ≤ θ < 4β}, one can naturally define a unitary

representation of SO(3) on the space of square integrable functions L2(S2) on S2

by right translation. Actually, we will see the irreducible unitary representations of
SO(3) are realized on the space of harmonic polynomials or spherical harmonics
(thought as a well matched description).

Define a representation Tε of SO(3) on the spacePε of homogeneous polynomials
of degree ε in three variables x = (x, y, z) by

(Tε(g) f )(x) = f (xg).

Notice that Tε is not irreducible if ε ≥ 2, e.g. the space P2 contains the non-trivial
invariant subspace spanned by the quadratic form x2 + y2 + z2.

Let


 := ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

be the Laplacian on R
3. Define a space of harmonic polynomials of degree ε by

Hε = { f ∈ Pε | 
 f = 0}.

Note that dim Hε = 2ε + 1. Moreover, one knows the action of SO(3) (the right
translation Tε) commutes with 
, whence one can define a representation Uε by

Uε = Tε|Hε
.

Since any element f in Hε is a homogeneous polynomial of degree ε, for any
r ≥ 0 one has
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f (r x, r y, r z) = rε f (x, y, z).

Let K be the restriction of f to S2. Put

H̃ε := Hε|S2 = {K ( f ) | f ∈ Hε}.

Then the map K is a linear isomorphism of the vector space Hε onto H̃ε. The space
Hε is obviously recovered from H̃ε by the equation above. The elements of H̃ε

are called spherical harmonics of degree ε. Since the space H̃ε is stable under the
action Uε(g) (g ∈ SO(3)), (Uε, H̃ε) defines an irreducible unitary representation of
SO(3). Actually, one has the following.

Theorem 6 As an irreducible unitary representation of SO(3)

Uε
≈= ρε.

The inner product on H̃ε is naturally given by

( f, g)S2 =
∫

S2

f (x)g(x)dx,

where dx is the normalized measure on S2 given by dx = (4β)−1 sin θ dθdφ. Here

x = (x, y, z) = (r sin θ cos φ, r sin θ sin φ, r cos θ) (r > 0, (θ, φ) ∈ [0, 2β] × [0, β])

is the polar coordinates of R
3.

Theorem 7 The space H̃ε has an orthonormal basis {Y m
ε }−ε≤m≤ε defined by

Y m
ε (θ, φ) = (−1)m

√
(2ε + 1)(ε + m)!

(ε − m)! eimφ P−m
ε (cos θ),

where Pm
ε (x) is the associated Legendre function defined by

Pm
ε (x) = 1

2εε! (1 − x2)m/2 dε+m

dxε+m
(x2 − 1)ε.

These Y m
ε are the matrix elements of the representation (Uε, H̃ε) and called Legen-

dre’s spherical functions (see Theorem 8, Example 1).

Remark 2 There is a relation:

P−m
ε (x) = (−1)m (ε − m)!

(ε + m)! Pm
ε (x).
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Remark that several different normalizations are in common use (in quantum mechan-
ics, seismology, geodesy, magnetics, etc.) for the Laplace spherical harmonic func-
tions Y m

ε (θ, φ).

A square integrable periodic function f on R (= a function on the torus T := R/Z)
with the period 1 can be expressed as a Fourier series f (x) = ∑∞

n=0 ane2β inx (L2-
convergence). Representation theoretically, this amounts to saying that L2(T ) is
decomposed as the direct sum of the irreducible (1-dimensional) unitary represen-
tations R → x ∈∞ e2β inx ∈ U (1) (n ∈ Z) of R which is trivial on Z. In the same
way, since these representations Uε exhaust all (equivalence classes) of irreducible
unitary representations of SO(3) one obtains

L2(S2) = ∞
ε=0 ⊕ H̃ε (a direct sum).

This shows that a (square integrable, hence in particular, continuous) function on
the unit sphere S2 can be expanded by the spherical harmonics Y m

ε (θ, φ) (−ε ≤
m ≤ ε, ε = 0, 1, 2, . . .). This fact is the consequence of the following Peter-Weyl
theorem of compact group:

Theorem 8 Let Ĝ = {β} be the unitary dual of G, the set of all equivalence classes
of irreducible unitary representations of G. Take a representative (β, V ) of β (using
the same letter). Put dβ = dimC V . Let {v j }1≤ j≤d be the basis of V . Then the family
BG := {√dβ (β(g)vi , v j ) | β ∈ Ĝ, 1 ≤ i, j ≤ dβ } is a complete orthonormal family
of the Hilbert space L2(G) of all square integrable functions on G.

Example 1 The unitary dual ŜO(3) of SO(3) can be parametrized by the set Z≥0 of
non-negative integers ε. Since S2 ≈= SO(2)\SO(3), the Legendre spherical function
is given by a matrix element (ρε(g) f, f0), where f0 is an SO(2)-fixed vector, i.e.
ρε(k) f0 = f0 for k ∈ SO(2).

Remark 3 To illustrate the distributions of colors on the sphere determined by the
harmonics basis, usually one replaces the basis Y m

ε (θ, φ) by the real valued spherical
harmonics ym

ε (θ, φ) as follows.

ym
ε (θ, φ) :=

⎧
⎪⎨

⎪⎩

√
2 Re(Y m

ε ) (m > 0)

Y 0
ε (m = 0)√
2 Im(Y m

ε ) (m < 0)

.

The standard way to visualize the spherical harmonics can be seen in e.g. [6, 9].
For instance, one of those is to distort a unit sphere, by scaling each point radially by
the absolute value of the function and soloing it based on the sign. Figure 1 illustrates
such coloring only on the sphere for the first 5 spherical harmonics corresponding to
the irreducible representation (Uε, H̃ε) (ε = 0, 1, 2, 3, 4.) (Non-negative integers ε

are called the bands). The green parts indicate regions where the function is positive,
while white parts represent negative ones.
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Fig. 1 Number 2ε + 1 of the spheres in each horizontal row is the dimension of the irreducible
representation (Uε, H̃ε). (The figure is inspired from [6, 9])

4 Harmonic Expansions by Differentiation

Recall now the intertwiner Aε (and its inverse) between C[w]2ε and Hε. It is given
explicitly as (see [3])

(Aε p)(x) := 2ε + 1

β

∫

C

p(w)H(x, w)
ε
(1 + |w|2)−2ε−2dw,

where H(x, w) := (x + iy)w2 + 2z w − (x − iy) (cf. Remark 1). Notice that,
for w fixed, as a function of x = (x, y, z) ∈ R

3, one observes immediately that
H(x, w)ε ∈ Hε.

By this description, one may transform the stage of calculations from the one
using spherical harmonics to the one using simple monomials zm ∈ C[z]ε by The-
orem 5 together with Theorem 4. Namely, in some part of the spherical harmonic
lighting technique, one might avoid rather complicated recurrence formulas and/or
differential equation of the associated Legendre functions Pm

ε .
Recall the facts that in terms of the polar coordinate, 
 can be expressed as


 = 1

r2

∂

∂r

⎢
r2 ∂

∂r

⎣
+ 1

r2 
S2 ,
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S2 := 1

sin θ

∂

∂θ

⎢
sin θ

∂

∂θ

⎣
+ 1

sin2 θ

∂2

∂2φ
.

Notice that the last expression is actually known to be the image of the Casimir
element C ∈ Z U (so3), the center of the universal enveloping algebra U (so3)(≈=
U (su2)), under the (infinitesimal) right action by SO(3). Therefore, since the repre-
sentation Uε is irreducible, one finds that Yε(θ, φ) is the eigenfunction of 
S2 with
eigenvalue −ε(ε + 1) (by noticing that 
rε = ε(ε + 1)rε):


S2 Yε(θ, φ) = −ε(ε + 1)Yε(θ, φ).

At the harmonic expansion of a spherical function f , one practically considers
the approximation f̃N truncated by high frequency irreducible components Uε (ε ≥
N + 1):

f ≈ f̃N :=
N⎤

ε=0

⎤

|m|≤ε

am
ε Y m

ε ,

where we put am
ε = ( f, Y m

ε )S2 (but not computing here this integral). Let us consider
the situation that one may assume that f = f̃N for some large N . (Actually, what
one can detect practically is limited by bounded frequency components.)

Define the (projection) operator P N
ε :∑N

j=0 ⊕H j ∞ Hε by

P N
ε :=

N⎥

ε′=0, ε′ 	=ε


S2 + ε′(ε′ + 1)

−ε(ε + 1) + ε′(ε′ + 1)
.

It follows immediately that

P N
ε f̃N =

⎤

|m|≤ε

am
ε Y m

ε .

Then one has
am
ε = (P N

ε f̃N , Y m
ε )S2 = (A−1

ε P N
ε f̃N , zε−m)2ε.

Now we give an explanation how to obtain the inverse isomorphism A−1
ε from

the space Hε to C[w]m . Let F ∈ Hε. Write F as

F(x, y, z) = g0(x, y) + g1(x, y)z + · · · + gε(x, y)zε.

Note the fact that g j (x, y) ∈ C[x, y]ε− j (i.e., is a polynomial of homogeneous

degree ε − j). Put 
x,y := ∂2

∂x2 + ∂2

∂y2 . Then it is immediate that
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x,y F = 
x,y g0 + · · · + 
x,y gεzε,

∂2

∂z2 F = 2g2 + · · · + ε(ε − 1)gεzε−2.

Since gε (reps. gε−1) is a constant (resp. a linear function) and 
 = 
x,y + ∂2

∂z2 ,
one observes that F is a harmonic polynomial if and only if the following condition
are satisfied:

gk = − 1

k(k − 1)

x,y gk−2 (2 ≤ k ≤ ε).

Hence one finds that there is a one-to-one correspondence between Hε and C[w]2ε

as follows:

Hε → F ∈∞ (g0, g1) ∈ C[x, y]ε ⊕ C[x, y]ε−1 ≈= C[w]ε ⊕ C[w]ε−1

≈= C[w2]ε ⊕ wC[w2]ε−1 ≈= C[w]2ε

Notice that the latter three isomorphisms are obviously all algebraic. Since
g0 = F(x, y, 0) and g1 = ∂

∂z F(x, y, z)|z=0, using the reproducing kernel Kz(w) =
K (w, z) := (1 + zw)2ε (more precisely, the even and odd parts of the reproducing
kernels) of the Hilbert space C[w]2ε, one can essentially construct the inverse of the
intertwiner Aε.

This allows us to compute the coefficient am
ε from P N

ε f̃N avoiding numerical
integration process such as using Monte-Carlo integration by random numbers. (via
computing P N

ε f̃N (x, y, 0) and ∂
∂z P N

ε f̃N (x, y, z)|z=0. In other words, one may com-
pute the inner product of the right hand side in purely algebraic way. Therefore,
implementation of the idea provided in this section to computers for spherical har-
monic lighting would be desirable.
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Interactive Editing of Volumetric Objects
by Using Feature-Based Transfer Function
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Abstract This chapter focuses on the rendering of fluids represented by volumetric
datasets. Generally, volume data can be visualized by a volume rendering technique.
The result depends on the transfer function that converts a volume data into a colored
volume. However, it is often difficult to create desired images by manually adjusting
the transfer function. We propose an intuitive system that allows the user to directly
design the appearance of the volume by specifying colors of the volume with a set
of control points. The system solves an inverse problem to determine the transfer
function such that the color of the rendered image becomes the same as those of the
control points. In our method, the transfer function defined as a multi-dimensional
function of features computed from the input volume dataset. Our method represents
the transfer function as a linear combination of radial basis functions in order to
efficiently solve the inverse problem.
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1 Introduction

Volume data represented on a three-dimensional grid is one of the more prevalent
data structures in computer graphics. Volumetric objects, such as smoke and fire,
are important elements that enhance the realism of synthetic scenes, and these are
often represented by a type of volume data structure. Volume data can be visualized
by a volume rendering technique. The result depends on the transfer function that
converts a volume data into a colored volume. We focus on the design of the transfer
function.

A transfer function is often used to assign the color and the opacity to each voxel.
For example, a transfer function based on black body radiation is often used for
rendering fire or explosions. Artists sometimes design their own transfer functions
to produce the desired visual appearance of a volumetric object. However, this often
requires a tedious trial and error process. In order to facilitate this process, we propose
an interactive and intuitive system for editing the visual appearance by using a feature-
based transfer function.

The method proposed in this chapter allows the user to edit the visual appearance
of volumetric objects by setting control points to the rendered image directly. The
user does not have to deal with a transfer function. While the user edits the visual
appearance, our system inversely constructs the transfer function and the resulting
images are rendered in real-time. Also, we propose the feature-based transfer function
that computes the voxel properties from a set of features computed for each voxels.
An important assumption behind our method is that artists expect similar visual
appearances for regions with similar features. Our proposed system is achieved by
using a feature-based transfer function that the user edits are reflected automatically
in other regions having the same features. Examples of features include density,
temperature, and their spatial derivatives. It is also possible to use geometric features
such as the distance of each voxel above the bottom of the volume.

Our method represents the transfer function as a linear combination of radial basis
functions (RBFs) in order to solve the inverse problem. The weights for the RBFs
are computed by minimizing the difference between the edited image and the image
of the volumetric object. The image of the volumetric object is then represented by
a linear combination of basis images. Computing the transfer function is equivalent
to finding the weights that minimize the difference between the edited image and the
linear combination of basis images. This problem is represented by a simple matrix
equation that can be solved very efficiently.

2 Related Work

In the field of scientific visualization, many methods have been proposed for design-
ing transfer functions that can effectively visualize numerical simulations [2]. The
methods used in this field enable transfer functions to be constructed so that important
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information can be properly visualized. However, these methods are not designed to
edit the visual appearance of a volumetric object.

The user often needs to try different transfer functions repeatedly to create the
desired visual appearance. Marks et al. [5] proposed a system that aids trial and
error processes. This system creates a database of images by rendering the volume
data many times with different randomly generated transfer functions and the user
chooses one of them. However, it is not guaranteed that the desired result is always
included in the database.

Wu and Qu proposed an interactive system for designing transfer functions by
using genetic algorithms [6]. However, the computational cost of this method is too
expensive to provide the user with real-time feedback. Kaneda et al. [1] proposed a
method for rendering volume datasets efficiently by representing transfer functions
with Fourier basis functions. This method allows us to render the volume efficiently
even when the transfer function is modified. However, the user needs to try different
transfer functions many times to obtain the desired result.

Some image processing techniques, such as colorization method [4], can be used
to edit visual appearance of volumetric objects. In these methods, the user specifies
the colors and opacities of a sparse set of voxels and the method automatically
interpolates them for other voxels. However, it is not possible to directly edit the
visual appearance on the rendered image and, in addition, the computational cost is
too expensive for interactive editing.

The work related most closely to ours is the one recently proposed by Klehm
et al. [3]. The method determines the voxel properties so that the image of a volu-
metric object becomes the same as the user-specified image. However, in Klehm’s
method, the visual appearance of the object viewed from a certain viewpoint is com-
pletely different from the visual appearances viewed from other viewpoints. Neither
is the method suitable for dynamic volumetric objects. Furthermore, the method
requires solving a large set of equations, resulting in an expensive computational
cost. All the drawbacks of this method arise from the fact that the voxel proper-
ties are computed directly. Our method addresses these problems by introducing a
feature-based transfer function.

3 Proposed Method

Figure 1 shows an overview of our system. The input to the system is a volume dataset
and a precomputed radiance dataset. The volume dataset stores scalar values, such as
the density and temperature, for each voxel. The precomputed radiance dataset is used
to compute the intensity of each voxel in the volume. This dataset can be prepared
using any of the previous methods, e.g., [7]. In computing the radiance dataset, we can
take into account any lighting effects such as environmental illumination and multiple
scattering. The user needs to specify a view point to render the volume before editing.
Then the system computes a set of basis images in preprocess. Following the user’s
editing operations, our system constructs transfer functions by minimizing the energy
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Fig. 1 This figure shows an
outline of our system. By
using our system, user can
specifies desired color directly
on the screen. Then our system
computes transfer function by
using basis images and display
rendering result. Basis images
are created from volume data
and radians data in preprocess

functions that measure the differences between edited images and rendered images.
The minimization problem is solved by using the basis images and the resulting image
is displayed in real-time. Once a satisfactory visual appearance has been obtained, the
user can verify the appearances by viewing from different viewpoints. For dynamic
volumetric objects, the user can verify the visual appearance by observing different
frames. Details of our method are described in the following subsections. In Sect. 3.1,
we describe the volume rendering technique in our system. The basic idea in our
method is to represent the transfer function by radial basis functions. The transfer
function is determined by minimizing energy functions, and this is described in
Sect. 3.2.

3.1 Volume Rendering

Our method is based on an equation that is often used for real-time volume rendering.
The intensity of pixel p is expressed by the following equation.

I (p) =
tb∫

ta

h(f(x(t)))Iv(x(t))g(xa, x(t))dt, (1)

where h is a feature-based transfer function, f is a vector consisting of features of the
volume at x, and Iv is the intensity at point x toward the viewpoint. Iv is computed
by using the precomputed radiance dataset. The transfer function h is introduced to
modulate the intensity Iv .

xa and xb are the intersections between the viewing ray and the objects respectively
(see Fig. 2). We assume that the light is attenuated exponentially, that is, g is given by:
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Fig. 2 This figure shows an
overview of volume rendering
technique. Our method is
based on an equation that
is often used for real-time
volume rendering

g(xa, x(t)) = exp(−κτ(ta, t)), (2)

where κ is the attenuation ratio. τ(ta, t) = ∫ t
ta

ρ(s)ds is called the optical depth
where ρ is the density at a point inside the object. The visual appearance of the
volumetric object is designed by controlling κ and h.

3.2 Constructing the Transfer Function

The transfer function calculates intensity by future value of the volume at x. The
key idea in our method is to represent the transfer function h by using radial basis
functions (RBFs), φ. That is,

h(f(x)) =
n−1∑

i=0

wiφ(|f(x) − fi |), (3)

where n is the number of RBFs, wi is the weight for the i-th RBF and fi is the center
position of the i-th RBF in the multidimensional feature space. We use a Gaussian
RBF: φ(r) = exp(−cr2), where c is a user-specified constant. By substituting the
above equation into Eq. 1, we get:

I (p) =
n−1∑

i=0

wi bi (p), (4)

bi (p) =
tb∫

ta

φ(|f(x(t)) − fi |)Iv(x(t))g(xa, x(t))dt. (5)
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Before the user starts editing, our system computes bi (p) for each pixel using Eq. 5.
bi (p) is stored as the basis image. The basis images are created by rendering the
volumetric objects with a black background and by using φ as if it were a transfer
function (see Eq. 5). This process is accelerated by the GPU and the basis images are
created very quickly. The basis images need to be recomputed when the user changes
the parameter c of the RBFs, the attenuation ratio κ , or the viewpoint. Once the basis
images have been computed, the image I is efficiently created by the weighted sum of
the basis images using Eq. 4. We do not have to repeat the volume rendering process
to compute I . The weight wi for each RBF is computed by minimizing the energy
function using the least square method. The energy function, E , is defined by the
sum of differences between the user-specified intensities and the intensities of the
rendered image at the pixels p ∈ Q (see Eq. 4). That is,

E =
∑

p∈Q

(
Iu(p) −

n−1∑

i=0

wi bi (p)

)2

+
n−1∑

i=0

w2
i , (6)

where Iu is the intensity specified by the user at pixel p using control point. The
second term on the right is regularization term that is basically used to prevent
overfitting and makes the transfer function as smooth as possible.

4 Results

This section shows several examples generated by our method. The examples shown
in this section were computed on a desktop PC with an Intel Core i7 2600K (CPU)
and an NVIDIA GeForce GTX560 (GPU). Figure 3 shows examples of the edited
visual appearance of volumetric fire. The volume dataset stores the density and tem-
perature for each voxel. A temperature and a distance of each voxel above the bottom
of the volume were used as features. Figure 3a shows realistic fire that is created by
the user. In Fig. 3b, the transfer functions determined for the Fig. 3a were interpolated
for the other frames. In Fig. 3c, an artistic appearance has been created by making the
fire reddish around the bottom and bluish around the top. Our method interpolates
the user’s specifications smoothly and naturally. Our method can be applied to vari-
ous kind of volumetric objects. Figures 4 and 5 show examples of the edited visual
appearance of volumetric clouds and explosion, respectively. The volume dataset of
clouds stores the density for each voxel. The radiance dataset was prepared by taking
into account the intensity due to direct sunlight and environmental illumination from
a hemispherical light source with a uniform intensity distribution. These were stored
separately. To edit the visual appearance, the density and environmental illumination
were used. We prepared two different background images of the sky, and asked the
user to design the visual appearance such that the clouds were naturally composited
onto the background. Using our system, the user successfully designed such appear-
ances as shown in the figure. The volume dataset of explosion consisted of density
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Fig. 3 Application of our method to volumetric fire. a realistic fire designed by the user, b the same
fire as (a) rendered at a different frame, c artistic appearance designed by the user

Fig. 4 Application of our method to volumetric cloud. a clouds at daytime, b clouds at sunset

Fig. 5 Application of our method to volumetric explosion
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and temperature. The radiance dataset was precomputed by generating a set of point
light sources for voxels with high temperature. In Fig. 5, we used the radiance for
each voxel and the distance of each voxel above the bottom of the simulation space
to edit the visual appearance. The user placed a set of control points to specify the
colors as shown in the rightmost image, which corresponds to the last frame of the
animation. Although the visual appearance of the last frame of the animation only
was edited, similar appearances were generated for the other frames (the leftmost
and center images).

5 Conclusions and Future Work

In this chapter, we have proposed a method for interactively designing the visual
appearance of volumetric objects. A feature-based transfer function is introduced
to generate various visual appearance of a volumetric object. Since we use features
computed from the object, the visual appearance designed using an image rendered
from a certain viewpoint is reproduced even if the objects is viewed from different
viewpoints. For dynamic volumetric objects, the visual appearance designed for
a certain frame is automatically transferred to other frames through the transfer
function. Our method does not allow the attenuation ratio to be spatially variable.
The spatially variable attenuation ratio is useful for volumetric objects consisting of
multiple materials, e.g., smoke and fire. The user may want to adjust the amount of
smoke or fire by assigning different colors and attenuation ratios. Our future work
includes an extension of our method to editing such volumetric objects with multiple
materials.

References

1. Kaneda K, Dobashi Y, Yamamoto K, Yamashita H (1996) Fast volume rendering with
adjustable color maps. In: Proceedings of 1996 symposium on volume visualization, pp 7–14

2. Kindlmann G (2002) Transfer functions in direct volume rendering: design, interface, inter-
action. In: Proceedings of ACM SIGGRAPH course notes

3. Klehm O, Ihrke I, Seidel H, Eisemann E (2013) Volume stylize: tomography-based volume
painting. In: Symposium on interactive 3D graphics and games, pp 161–167

4. Levin A, Lischinski D, Weiss Y (2004) Colorization using optimization. In: Proceedings of
ACM SIGGRAPH 2004, pp 689–694, Aug 2004

5. Marks J, Mirtich B, Andalman B, Pfister H, Gibson G, Hodgins J, Kang T, Beardsley PA, Rum
W, Freeman W (1997) Design galleries: a general approach to setting parameters for computer
graphics and animation. In: Proceedings of ACM SIGGRAPH 1997, pp 389–400

6. Wu Y, Qu H (2007) Interactive transfer function design based on editing direct volume rendered
images. IEEE Trans Visual Comput Graph 13(5):1027–1040

7. Zhou K, Ren Z, Lin S, Bao H, Guo B, Shum H (2008) Real-time smoke rendering using
compensated ray marching. ACM Trans Graph 27(3) Article 36



Feature-Based Approach for the Interactive
Editing of Environmental Lighting Effects

Munehiro Tada, Yoshinori Dobashi and Tsuyoshi Yamamoto

Abstract In computer graphics, it is not always guaranteed to generate user-desired
shading effects by physically correct shading algorithms, due to the high computa-
tional cost and laborious work for parameter tuning. On the other hand, environmental
map is a popular technique to create realistic shading images with low computa-
tional cost. Therefore, many methods have been proposed for editing shading effects
obtained by environmental map. Since the methods edits the environmental map that
represents only lights locating infinitely far away, these cannot edit local lighting
effects, e.g., of spotlights. In this chapter, we propose an intuitive system that allows
the user to produce the desired shading effects. Our system allows the user to specify
desired-intensities at arbitrary positions on surfaces of objects, and design both local
and global shading effects intuitively.

Keywords Shading · Interactive editing · Environmental lights · Radial basis
function

1 Introduction

Recently, computer graphics techniques have been used in many applications such
as movies, games and commercial films. One of the most important techniques for
displaying realistic virtual objects is the ability to achieve appropriate shading. To
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create photorealistic results, many physically-correct methods have been proposed
[4, 12]. However, these physically correct methods require high computational cost,
which makes the parameter tuning process time consuming to obtain desired results.
To address this problem, image-based lighting (IBL) techniques have been proposed
to create realistic results with reasonable computational cost [2]. These techniques
employ environmental maps as virtual light sources [1]. Environmental maps are
used to model real-world lighting environment and reproduce complicated shading
effects caused by the natural illumination. One problem in these techniques is that
the results are often different from the user-desired shading effects. Therefore, many
methods have been proposed to address this problem [6, 7]. These methods allow the
user to edit environmental maps intuitively to create user-desired shading effeces.
Since the methods edits the environmental map that represents only lights locating
infinitely far away, these cannot edit local lighting effects, e.g., of spotlights. In this
chapter, we propose an editing system that allows the user to design both local and
global shading effects intuitively.

Our system is based on feature-based interpolation of intensities and enables the
user to edit shading effects obtained by environmental maps. In our system, the
user directly specifies desired intensities on arbitrary positions of surfaces by using
control points. Then, the shading effects are generated by feature-based interpolation
of the user-specified intensities. We use features that are often used in the shading
calculations, such as positions, normals, and visibilities, in order to produce plausible
shading effects. By taking into account of positions as features for interpolation, the
system achieves to edit shading effects locally. The interpolation function for the
intensities is represented by a linear combination of radial basis functions (RBFs).
The user can interactively add, move, or delete the control points, and the resulting
shading effects are displayed in real time. Furthermore, our system allows the user
to edit diffuse, and specular terms separately.

2 Previous Work

As we mentiond before, it is difficult to generate desired shading effects by using
physically-correct shading models. Therefore, various methods have been proposed
to edit shading effects even though the results are not physically-correct. Ritschel
et al. proposed an editing method for specular reflection [8]. However, this method
is limited to ideal specular reflections. Todo et al. proposed an editing method for
cartoon shading effects [11]. However, this method is not suitable for photorealis-
tic effects. Obert et al. proposed an editing method for shading effects by editing
visibility functions [5]. Ritschel et al. proposed a method for deforming on-surface
signals [9]. However these methods aim to deform shadow and shading, which makes
difficult to specify user-desired intensities on arbitrary positions of the objects to be
rendered. Methods for solving an inverse lighting problem for automatic placement
of light sources has been proposed [3, 10]. However, these methods cannot reflect
the user’s intention on the resulting image.
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Fig. 1 Overview of proposed method

In this chapter, we propose an interactive editing system for shading effects
obtained by environmental map. Okabe et al. proposed a method for calculating
an environmental light by solving inverse problem that can produce specified shad-
ing effects [6]. However, it is not guaranteed that the specified shading effects are
always achieved. Therefore, Pellacini proposed a method for modifying exiting envi-
ronmental map [7]. However, in these methods, it is difficult to edit shading effects
locally. Our system enables the user to edit shading effects locally.

3 Proposed Method

In our method, the intensity at point x on the object surfaces viewed from βo is
computed by using the following equation.

I (x, βo) = kd (x) Id (x) + ks (x) Is (x, βo) (1)

where Id and Is represent the intensities due to diffuse reflection and specular reflec-
tion, kd and ks are reflection coefficients for each reflection term respectively. Figure 1
shows an overview of our method. The user selects one of the two terms in Eq. (1)
and places multiple control points on the surfaces of objects to specify the desired
intensities at the positions of the control points. In Fig. 1, a single control point is
placed as indicated by the orange sphere. The color of the sphere corresponds to
the user-specified intensity. The red line indicates the normal direction at the control
point. Our system then computes intensities on the surfaces of objects by using offset
functions. Offset functions are determined by user-specified intensities and features
that are often used in the shading calculation such as normal, position, and visibility.
There are two offset functions corresponding to the two terms in Eq. (1). Id and Is

are represented by:
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Id (x) = Îd (x) + hd (x)

Is (x, βo) = Îs (x, βo) + hs (x, βo) (2)

where hd and hs are the offset functions. The offset functions are represented by
using RBFs. Îd and Îs are intensities before editing, and represented by:

Îd (x) =
∫

ξ

L (βi ) V (x, βi ) (nx , βi ) dβi

Îs (x, βo) =
∫

ξ

L (βi ) V (x, βi )
(
βr (nx , βi ) , βo

)s
dβi (3)

where ξ is a hemispherical domain, V is a visibility, βi is an incident direction, βr is
a direction of reflection, nx is a normal at point x , and s is a coefficient to determine
the shininess of specular reflections. In our system, visibility is precomputed at each
position. The user can interactively add, move, or delete the control points. During
the user’s operation, the offset functions are updated in real time and the resulting
shading effects are displayed.

4 Offset Functions

4.1 Constructing Offset Functions

The offset functions, hd and hs are constructed by using the user-specified intensities.
We will explain the construction of the offset function for the diffuse term, hd , only.
hs is constructed in the same way. Let us assume that the number of control points is
N , the user-specified intensity for each control point is I π

d (xi ) (i = 1, 2, . . . , N ), and
the position of the i-th control point is xi . The shading interpolator hd is represented
by:

hd (x) =
N∑

i=1

aiε (≈fd (xi ) − fd (x) ≈) (4)

where fd (xi ) is a feature vector at xi (see Sect. 4.2). ai is a coefficient for each
interpolation kernel ε, which is expressed by RBF. ε is given by:

ε (r) = exp
(
−r2

)
(5)

The Gaussian-type RBF is a continuous differentiable function and very popular as
interpolation function. ai is computed by using the least square method such that the
following function is minimized:



Feature-Based Approach for the Interactive Editing 67

arg min
ai

N∑

j=1

(
I π
d

(
x j

) −
(

Îd
(
x j

) + hd
(
x j

)))2
(6)

where Îd
(
x j

)
is diffuse component before editing. Our system computes ai in real-

time.

4.2 Feature Vectors

This section describes the features for the diffuse and specular terms. We employed
each terms before editing, Îd (x) and Îs (x, βo), as features to edit each term. In
addition to Îd (x) and Îs (x, βo), the coordinate px, the normal nx, and visibility
vector V (x) = (V (x, β1) , V (x, β2) , . . . , V (x, βn)) of the calculation point x are
also included in the feature vector. In our system, the dimensions of Îd (x), Îs (x, βo),
the coordinate px , the normal nx , and visibility vector V (x) are 1, 1, 3, 3, and 32
respectively. Use of the visibility vector V (x) enable the user to edit soft shadows.
Use of the coordinate px allows the user to edit the shading effects locally. Use of the
normal nx makes it possible to control the shading effects according to the direction
of surface. Consequently, the feature vectors, fd (x) and fs (x), are defined by:

fd (x) =
(

Îd (x)

φd
,

V (x)

φv
,

px

φp
,

nx

φn

)

fs (x, βo) =
(

Îs (x, βo)

φs
,

V (x)

φv
,

px

φp
,

nx

φn

)
, (7)

where φd , φs , φp and φn are coefficients to control the effect of each component and
are specified by the user. The user can enhance the effects of each component to
reduce corresponding coefficient.

5 Results

This section shows results produced by using our method. We used a desktop PC
with an Intel(R) Core(TM) i7-2600k 3.40GHz (CPU) and a NVIDIA GeForce GTX
560 (GPU). Our system is implemented on GPU and can interactively process at
higher than 20 fps.

Figure 2 shows examples of the edited shading effects on a sappho (left column),
a figurine (middle) and an armadillo. In Fig. 2, images in upper row show shad-
ing results before editing, and images in lower row show edited results. Figure 2d
is an example of glossy specular effects like as metalic object. Figure 2e is an
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Fig. 2 Examples of edited shading effects. a Effects of glossy specular reflection (before editing),
b Effects of skylight at sunset (before editing), c Effects of soft shadows (before editing), d Editing
of glossy specular reflection shown in (a), e Editing of skylight effects shown in (b), f Editing of
soft shadow effects shown in (c)

example of the effects of the skylight in sunset. Figure 2f is an example of the effects
of soft shadows. Our system is useful for inserting synthetic 3D objects into real
photographs, as shown in Fig. 3. The upper row in Fig. 3 shows rendered image by
the Phong reflection model. By editing the shading of the synthetic objects (an asian
doragon, a bunny and a space ship), the objects are naturally composited onto the
real photographs as shown in lower images.

In general, the artificial shading effects shown in this section are often created by
placing virtual light sources, but adjusting the parameters for such light sources is
difficult and time-consuming. In contrast, our system allows the user to easily create
the desired shading effects by directly specifying the desired color and intensity at
the desired positions.

6 Conclusion and Future Work

In this chapter, we have proposed an interactive editing system for shading effects by
feature-based interpolation. In our method, offset functions represented by RBFs are
introduced. Our system allows a user to edit the shading effects for the diffuse, and
the specular terms separately. By using our method, the user can intuitively design
the desired shading effects.
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Fig. 3 Composition of synthetic objects into real photographs. a Insertion of a synthetic dragon
into a photograph, b Insertion of a synthetic bunny into a photograph, c Insertion of a synthetic
battleship into a photograph, d Editing of shading of the dragon, e Editing of shading of the bunny,
f Editing of shading of the battleship

One of our future work is taking into account of interreflection effects. We are
also interested in extending our system to other advanced shading models.
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Ray Tracing of Quadratic Parametric Surface

Shinji Ogaki

Abstract Over the past decades, vast research has been done on the ray-triangle
intersect test but not much attention has been paid to the ray-quadratic parametric
surface intersection test. In this chapter we present two direct ray tracing methods
for quadratic parametric surfaces and introduce a simple optimization technique for
them.

Keywords Ray tracing · Rendering · Parametric surface

1 Introduction

In the film industry there is an increasing demand for higher resolution images. The
most common format has been Full HD (1920 × 1080 pixels, 2K) but 4K monitors
or even 8K monitors are now available on the market. Today’s computer synthesized
objects are mostly modeled with polygons and their silhouettes often appear non-
smooth when rendered in very high resolution. To obtain high quality images, models
must be highly tessellated.

Ray tracing is becoming increasingly popular for photo-realistic image creation
as it is a natural way to simulate the behavior of photons. Although a significant
amount of research has been done to accelerate ray tracing, handling a large number
of polygons is still costly. Memory consumption is another serious problem because
the number of polygons is normally quadrupled as resolution is doubled. Directly
performing ray tracing for parametric surfaces helps to reduce a required memory
amount.
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However, we have to resort to numerical methods such as Bézier clipping [8] when
the order of a parametric surface is high, we thus end up having heavy computational
burden.

Our goal is to seek a sweet spot having a moderate amount of memory consumption
and acceptable computation time. In what follows we focus on quadratic parametric
surface since the intersection test is not so complicated as analytic solution exists.

2 Quadratic Parametric Surface

There are a variety of quadratic parametric surfaces including Steiner patch [3] and
Phong tessellation [2]. In order to reduce memory consumption and achieve smooth
rendering, we replace four triangle, one triangle and its adjacent three triangles, by
a quadratic parametric surface.

P1

P2
P3P4

P6
P5

Q(u, v) = Au2 + Bv2 + Cw2 + Duv + Euw + Fvw, (1)

where w = 1 − u − v and 0 ≈ u, v, w ≈ 1. With the given six vertices P1, P2,
P3, P4, P5, and P6 as in Fig. 2, the coefficients are determined as A = P1, B = P2,
C = P3, D = 4P6 − (P1 + P2), E = 4P5 − (P1 + P3), and F = 4P4 − (P2 + P3).
This patch is C0-continuous on edges.

3 Ray-Quadratic Parametric Surface Intersection Tests

There exist a number of methods for the ray-parametric surface intersection test
including implicitization [4]. For higher order parametric surfaces we need numerical
methods such as Newton’s method and Beźier clippingBeźier clipping [8].

Here we start with describing the algorithm developed by Kajiya [6] because this
method gives elegant solutions especially for the ray-quadratic parametric surface
intersection test (Sects. 3.1 and 3.2).

In his method, each ray is represented as an intersection of two planes, say

0 = D1 · (x, y, z)T + O1 (2)

0 = D2 · (x, y, z)T + O2. (3)
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The intersection of a ray and quadratic parametric surface lies on both the planes.
Substituting the right-hand side of Eq. (1) for (x, y, z)T of Eqs. (2) and (3) gives two
quadratic curves:

0 = F(u, v) = au2 + bv2 + c + duv + eu + f v (4)

0 = G(u, v) = lu2 + mv2 + n + ouv + pu + qv, (5)

where a = (A + C − E) · D1, b = (B + C − F) · D1, c = C · D1 + O1,
d = (D−E−F+2C)·D1, e = (E−2C)·D1, f = (F−2C)·D1, l = (A+C−E)·D2,
m = (B+C−F)·D2, n = C ·D2+O2, o = (D−E−F+2C)·D2, p = (E−2C)·D2,
and q = (F −2C) · D2. Thus the intersection test for a bivariate quadratic parametric
surface is rearranged into the intersection problem of two quadratic curves.

In the following subsections, we describe two interesting curve intersection find-
ing algorithms.

3.1 The Method of Resultant

This method was introduced in [6]. Two quadratic curves have four intersections at a
maximum and they are obtained analytically. We can find the intersections of the two
planar curves F(u, v) and G(u, v) with the resultant by regarding them as quadratic
curves of either u or v. If F and G have one or more common roots, the determinant
of the Sylvester matrix is zero. If we treat the two curves as polynomials of u, we
have

0 = a4u4 + a3u3 + a2u2 + a1u + a0, (6)

where

a4 = abo2 + a2m2 + d2lm + b2l2 − admo − bdlo − 2ablm

a3 = beo2 + d2mp

− admq − bdlq − bdop − a f mo − demo − b f lo

+ 2(aem2 + b2lp + aboq + d f lm − abmp − belm)

a2 = abq2 + f 2lm + bco2 + d2mn + b2 p2 + e2m2

− b f op − bdno − e f mo − cdmo

− bdpq − a f mq − demq − b f lq

+ 2(b2ln + acm2 + beoq + d f mp − bemp − abmn − bclm)

a1 = beq2 + f 2mp

− b f pq − bdnq − e f mq − cdmq − b f no − c f mo

+ 2(cem2 + b2np + bcoq + d f mn − bcmp − bemn)

a0 = bcq2 + b2n2 + f 2mn + c2m2 − b f nq − c f mq − 2bcmn.
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Solving this quartic equation, values for u are obtained. Substituting the values for
u of Eq. (4) or (5), we obtain values for v. Unfortunately, this method is not robust
because of numerical error.

3.2 The Method of Pencil

A simpler and more robust method is to utilize a matrix pencil [7]. The linear matrix
pencil M is a linear combination of two matrices defined as

M = x

⎛

⎝
a d/2 e/2

d/2 b f/2
e/2 f/2 c

⎞

⎠+
⎛

⎝
l o/2 p/2

o/2 m q/2
p/2 q/2 n

⎞

⎠ (7)

with x → R. The linear combination of F and G can then be written as

0 = P = x F(u, v) + G(u, v) = (u, v, 1)M(u, v, 1)T . (8)

Interestingly, P can be represented as a product of two lines if 0 = |M |. For more
details, see [5] for example. This is a special case of a hyperbola. By letting

L1 = α1u + β1v + γ1 (9)

L2 = α2u + β2v + γ2, (10)

we have
(u, v, 1)M(u, v, 1)T = L1L2. (11)

In this case the set of the intersections is decomposed as

{(u, v)|0 = F} ∈ {(u, v)|0 = G} = {(u, v)|0 = F} ∈ {(u, v)|0 = L1}
∞ {(u, v)|0 = F} ∈ {(u, v)|0 = L2}

since

{(u, v)|0 = F} ∈ {(u, v)|0 = G} = {(u, v)|0 = F} ∈ {(u, v)|0 = F + G}
= {(u, v)|0 = F} ∈ {(u, v)|0 = x F + G}
= {(u, v)|0 = F} ∈ {(u, v)|0 = P}
= {(u, v)|0 = F} ∈ {(u, v)|0 = L1L2}.

Thus, the problem can be simplified by finding the value of x such that 0 = |M |.
The values of x are given by solving the following cubic equation
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0 = a3x3 + a2x2 + a1x + a0, (12)

where

a3 = abc + (de f − a f 2 − be2 − cd2)/4

a2 = abn + amc + lbc − (a f q + bep + cdo)/2

+ (oe f + deq + dp f − l f 2 − me2 − nd2)/4

a1 = amn + lbn + lmc − (l f q + mep + ndo)/2

+ (dpq + oeq + op f − aq2 − bp2 − co2)/4

a0 = lmn + (opq − lq2 − mp2 − no2)/4. (13)

We only need to obtain one value of x , which significantly reduces the cost of root
finding. The factorization is done by comparing the coefficients of u2, v2, uv, u, v,
and 1. Dividing the both sides of Eq. (11) by M11 or M22, whichever has a greater
absolute value, makes the calculation easier and more robust.

In the case of M11 > M22, the two lines L1 and L2 are obtained as

L1 = u +
(

M ′
12 +

√
M ′2

12 − M ′
22

)
v +

(
M ′

13 ±
√

M ′2
13 − M ′

33

)

L2 = u +
(

M ′
12 −

√
M ′2

12 − M ′
22

)
v +

(
M ′

13 ∼
√

M ′2
13 − M ′

33

)
,

where M ′
i j = Mi j/M11. The coefficients γ1 and γ2 are chosen so that M ′

23 =
β1γ2 + β2γ1.

Similary, in the case of M22 > M11, L1 and L2 are obtained as

L1 =
(

M ′
12 +

√
M ′2

12 − M ′
11

)
u + v +

(
M ′

23 ±
√

M ′2
23 − M ′

33

)

L2 =
(

M ′
12 −

√
M ′2

12 − M ′
11

)
u + v +

(
M ′

23 ∼
√

M ′2
23 − M ′

33

)
,

where M ′
i j = M ′

i j/M22. The coefficients γ1 and γ2 are chosen so that M ′
13 =

α1γ2 + α2γ1.
Substituting Eqs. (9) and (10) into Eq. (4) or (5) gives two quadratic equations.

By solving them, we obtain values for u and v. These values give the actual inter-
section points. The parameters u, v, and w = 1 − (u + v) must lie between 0
and 1, and intersection points must be in the viewing direction. Note also that the
intersection test can be immediately terminated if 0 < M11 M22 − M12 M21 since
0 = (u, v, 1)M(u, v, 1)T becomes an ellipsoid whose area is zero.
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Fig. 1 Rendered images. The method of resultant (left) and method of pencil (right)

3.3 Optimization

In the previous section two intersection tests were introduced. What we have over-
looked is the way of choosing the two planes (2) and (3). Here we show that the
computation can be simplified if we choose them cleverly. For example, if D1 and
D2 satisfy a = 0 and m = 0, the coefficients (13) become

a3 = (de f − be2 − cd2)/4

a2 = lbc − (bep + cdo)/2 + (oe f + deq + dp f − l f 2 − nd2)/4

a1 = lbn − (l f q + ndo)/2 + (dpq + oeq + op f − bp2 − co2)/4

a0 = (opq − lq2 − no2)/4,

which dramatically reduces the number of multiplications.

4 Result

We applied Phong tessellation to a soccer ball model and rendered it with the two
different algorithms as in Fig. 1. All calculations were done with single precision. A
little artifact can be seen in the image rendered with the method of resultant. On the
other hand, the method of pencil gives an ideal result.

We also rendered a simple quadratic parametric surface (Fig. 2) with three methods
for performance comparison. The method of pencil with the optimization technique
is 20 % faster than the method of resultant (Table 1).

5 Conclusion and Future Work

In this chapter we described two ray-quadratic parametric surface intersection tests.
The method of pencil has a couple of advantages: (1) we can avoid to solve a quartic
equation hence more robust results are obtained and (2) early termination of compu-
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Fig. 2 A quadratic parametric
surface

Table 1 Comparison of three
methods

Resultant Pencil Pencil with optimization technique

1.00 s 0.84 s 0.80 s

tation is possible. We also showed that two well-chosen planes reduce the number
of multiply operations. However, the intersection test still remains computationally
expensive. We would like to explore a way to further improve the performance of the
intersection test. Another interesting research avenue is to extend the pencil method
for higher order parametric surfaces.

Acknowledgments We would like to thank Ken Anjyo and Sampei Hirose for their valuable
comments. This work was partially supported by JST CREST.

Appendix

The geometric normal NG of can be derived as

NG =
(

∂ Q(u, v)

∂u
× ∂ Q(u, v)

∂v

)/⎧⎧⎧⎧
∂ Q(u, v)

∂u
× ∂ Q(u, v)

∂v

⎧⎧⎧⎧ . (14)

The partial derivatives ∂ Q(u,v)
∂u and ∂ Q(u,v)

∂v
are obtained as
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∂ Q(u, v)

∂u
= (2A − E)u + (D − F)v + (E − 2C)w (15)

∂ Q(u, v)

∂v
= (2B − F)v + (D − E)u + (F − 2C)w. (16)

For smooth rendering, we use the Phong-interpolated normal Np as in [3] instead of
NG . The geometric normal NG should be used, for example, when the dot product
of NG and a reflected vector computed with Np is negative.
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A Flexible Image Processing Approach
to the Surfacing of Particle-Based
Fluid Animation (Invited Talk)

Ken Museth

Keywords Fluid animation · OpenVDB · FLIP · Particle skinning · Partial differ-
ential equations (PDE)

In recent years particle based techniques, like FLIP, have all but replaced Eulerian
techniques for free-surface fluid animation in movie production. This, in turn, has
put more emphasis on efficient tools that can turn point clouds into water surfaces. In
this context one of the main challenges is to devise an approach that allows for both
a high degree of artistic control as well as fast turnaround. In this chapter we outline
such a system that has found good use at DreamWorks Animation. The core idea is
surprisingly simple and yet powerful: create flexible and complex surface processing
by means of daisy chaining simple and fast surface operators.

We have developed a novel approach to the important problem of turning particle
systems into surfaces that represent an animated air-water interface. This system is
open sourced in the C++ library OpenVDB [1], and has been thoroughly battle tested
at DreamWorks Animation during the production of “The Croods” [2] (see Fig. 1)
and “How to Train Your Dragon 2”. A distinguishing feature of our system is the
fact that it is based on a flexible combination of numerous fast surface processing
operators, several of which are 3D generalizations of proven techniques from image
processing. This greatly empowers artists to quickly customize and iterate in a more
sequential and manageable manner, hence allowing a significant degree of artistic
control which is paramount in any movie production. This is a departure from most
existing surfacing systems that are based on more complex monolithic techniques
that are relatively slow, typically employ non-intuitive parameters and offer limited
artistic control. Examples of such monolithic turn-key systems that attempt to gen-
erate high-quality surfaces in a single computationally expensive step are techniques
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Fig. 1 Example of particle skinning for Lagrangian fluid animation using our framework based on
VDB and a sequence of highly customizable and multithreaded surface operators. Left The input
particles generated by a FLIP fluid simulator (Naiad). Note the low density of particles colliding
with the character. Right The resulting liquid surface represented by an adaptive quad-mesh. Note
the presence of thin sheets and sharp feature on an otherwise smooth surface with little signs of
spatial aliasing due to particle undersampling. This image is property of DreamWorks Animation

employing elliptic particle footprints, initially proposed in [3, 4] and subsequently
in [5], and techniques using surface filters based on the solution of high-order par-
abolic partial differential equations, e.g. [6]. While such techniques are impressive
in their own right, they have proved to be undesirable in production where artists
prefer a faster and more layered approach in which a specific “look and feel” is
progressively achieved by daisy chaining simpler surface operators. Curiously this
approach is similar in spirit to most existing image processing or 2D compositing
workflows.

Our technical contributions are twofold; foremost, as outlined above, the simple
yet surprisingly powerful idea to base our framework on a rich toolbox of fast low-
level surface operators that can be combined in any order since they share a common
implicit representation. Second, to the best of our knowledge several of these 3D
operators are novel, though many of them have strong ties to conceptually similar
ideas known from image processing.

The proposed workflow has three fundamental stages: initialization, surface
processing and meshing. The first step simply serves to quickly convert the par-
ticles to a representation on which all the subsequent operations can work. This
choice of representation is a narrow-band level set that can be represented compactly
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Fig. 2 Simplified illustration of a typical combination of surface processing operations for ani-
mated particle skinning: 1 Particles generated from any Lagrangian fluid simulation package. 2
Multithreaded conversion of particles into narrow-band level sets that merely serve as the initial-
ization for our subsequent surface processing operators. 3 Dilation filter with interface tracking.
4 Application of various convolution filters with interface tracking, 5 Erosion filter with surface
tracking. This image is property of DreamWorks Animation

with VDB [1], and offers excellent computational performance for complex surface
deformations, which of course are a hallmark of liquid interfaces. The conversion
from particles to signed distance fields is easily multithreaded since VDB supports
efficient hierarchical CSG operations required when joining partial conversions per-
formed by the different computational threads. To improve temporal coherence this
stage also supports simple velocity stretching and attenuation of particle footprints
to form teardrop shapes.

The next (main) step in our pipeline applies different types of surface operators,
all based on the implicit level set representation. We performed this post-processing
of the initial particle surface by means of various combinations of custom filtering
and morphological operations. These surface processing operators can be grouped
into three distinctive kinds. The first group of tools is based on morphological oper-
ators like dilation, erosion, closing and opening. They effectively allow the artist to
fill holes, remove small isolated particles, and sharpen, peak or blur surface details.
Next, are smoothing operators that are based on differential properties of the level
set surface. This includes mean-curvature flow and Laplacian smoothing that per-
form second-order smoothing operations. Last but not least, we use various types
of kernel-based convolution filters that can smooth (or sharpen) surface details in
a very computationally efficient manner. Examples include Gaussian, mean-value
and median-value 3D filters that are applied directly to the signed distance fields.
Unlike the curvature-based smoothing that solves parabolic PDEs, the kernel-based
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filtering techniques facilitate much faster surface deformations while still allowing
for proper interface tracking and re-normalization of the narrow-band. This approach
is especially attractive when employing filters that can be represented as a sequence
of separable convolution kernels, e.g. box filters. As a simple but essential mod-
ification, these surface operators can all be augmented by arbitrary user-defined
alpha-masks. This greatly enhances their usefulness since it allows artists to localize
and better control the effects of an operation, for instance by deriving alpha-masks
from differential properties of surfaces (e.g. curvature) or fluid velocity fields (e.g.
vorticity). Alternatively these masks can also be created by painting directly on sur-
faces. Another very useful type of alpha-mask constraints the surface deformations
to a user defined proximity to the input particles. Essentially this allows for the use
of aggressive filtering and smoothing while preserving small surface details like
ballistic water droplets. This idea was first proposed for polygonal surface in [7],
but as demonstrated in [6] it is easily reformulated to level set surfaces. Figure 2
shows a simple example of a common combination of operators corresponding to a
morphological closing that is interlaced with kernel-based filtering.

The final stage of our operator pipeline converts the narrow-band level sets to a
polygonal mesh. Since VDB allows for very high resolution volumes we typically
employ adaptive meshing techniques (e.g. a modified dual-contouring scheme) to
greatly reduce the polygon count.

References

1. Museth K (2013) VDB: high-resolution sparse volumes with dynamic topology. ACM Trans
Graph 32(3):27:1–27:22. http://www.openvdb.org

2. Budsberg J, Losure M, Museth K, Baer M (2013) Liquids in “The Croods”. ACM DigiPro.
3. Museth K, Clive M, Zafar NB (2007) Blobtacular: surfacing particle systems in “Pirates of the

Caribbean 3”. ACM SIGGRAPH sketches and applications, New York
4. Museth K (2012) System and method for surfacing of particle systems. Patent No. US 8,199,148

B2, filed by Digital Domain 1 August 2008, issued 12 June 2012.
5. Yu J, Truk G (2013) Reconstructing surfaces of particle-based fluids using anisotropic kernels.

ACM Trans Graph 32(1):5:1–5:12.
6. Bhattacharya H, Gao Y, Bargteil AW (2011) A level-set method for skinning animated particle

data. In: ACM SIGGRAPH/Eurographics symposium on computer animation.
7. Williams B (2008) Fluid surface reconstruction from particles. Master’s thesis, University of

British Columbia, Columbia.

http://www.openvdb.org


Inverse Approach for Visual Simulation
of Clouds

Yoshinori Dobashi

Abstract Clouds play an important role for creating realistic images of outdoor
scenes. There are two important factors in synthesizing realistic images, that is,
shapes and colors of clouds. Many methods have therefore been proposed for model-
ing and rendering clouds. One of the promising approaches is to numerically simulate
the actual physical phenomena. However, realistic images cannot be generated unless
the user chooses appropriate parameters involved in the numerical simulation, which
is not an easy task. The shapes and colors of the simulated clouds depend on many
parameters and it is generally difficult and time-consuming to adjust those parame-
ters manually. This paper presents an inverse approach to address this problem. For
cloud shapes, we present a method for controlling the simulation of cloud forma-
tion so that the simulated shapes become similar to those specified by the user. For
colors of clouds, a method for automatically adjusting the parameters for computing
realistic colors by using user-specified photographs of real clouds is presented.

Keywords Clouds · Inverse rendering · Fluid simulation · Genetic algorithm ·
Feedback control

1 Introduction

Clouds are important elements when synthesizing images of outdoor scenes to
enhance realism. Many methods have therefore been proposed for visual simulation
of clouds [1, 4, 6–10]. These methods are used in many applications such as flight
simulators, movies, computer games, and so on. With the rapid development of the
computers, recent researches focus on the numerical simulation of the actual physi-
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cal phenomena. However, one of the problems is that it is often difficult to achieve
desired appearances of the clouds. The appearances of the clouds are determined by
the shapes and colors. Animators need to adjust many non-intuitive parameters man-
ually by a trial-and-error process. The expensive computation cost of the numerical
simulation makes this process much more difficult. One of the solutions to this prob-
lem is to accelerate the simulation process. This can be considered as a fast solution to
the forward problem: the corresponding output image is computed in real-time using
the given parameters, allowing one to efficiently find the appropriate parameters that
produce a desired appearance. However, even using this approach, a repetitive trial-
and-error process is still required until satisfactory results are obtained. Our aim is
to remove the manual trial-and-error process by solving an inverse problem.

For the shapes of clouds, we present a method for controlling the simulation of
the cloud formation process [5]. In this method, the user specifies the contours of the
clouds viewed from a specific camera position. The simulation process is controlled
in order to form the desired shape of the clouds. One straight forward approach to
achieve this goal is to apply the previous methods for controlling smoke or water to
clouds. However we found that this approach did not produce convincing results. The
reason is that there are several physical processes, such as the phase transition from
water vapor to water droplets (i.e. clouds), that are not present in other phenomena.
We therefore developed a new method that controls the physical parameters affecting
the cloud formation process. This results in natural cloud shapes and motion.

For the colors of clouds, we present a method for automatically adjusting the
parameters such that the colors of the synthetic clouds are similar to a specified
photograph of real clouds [3]. Our purpose is not to estimate physically correct
parameters but to find the parameters that can produce an image that is visually
similar to the clouds in the input photograph. We take into account important optical
phenomena affecting the colors of clouds such as scattering and absorption of light
inside the clouds. We use a color histogram to measure the visual difference between
the synthetic image and the photograph. Solving the inverse rendering problem,
however, is not trivial because the intensity of clouds is a highly nonlinear function of
the parameters used to render them. Furthermore, there is seldom a unique solution to
this problem: many different sets of parameters can produce similar images. We chose
genetic algorithms (GAs) to address this problem because of their two capabilities:
(1) they can find the optimal parameters efficiently even for such a highly nonlinear
problem and (2) they can find a number of candidates for the optimal parameters
during the optimization process.

In the following, we briefly explain these two methods and show some examples
to demonstrate the effectiveness of our inverse approach.

2 Controlling Simulation of Cloud Formation

There are two requirements in designing our method for the inverse modeling of
realistic cloud shapes: (1) realistic shapes of clouds have to be generated and (2) the
shapes should closely match to the desired shape specified by the user. For the first
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Fig. 1 Overview of our control method. a Generating 3D target shape from 2D input contour line.
b Our control mechanism

requirement, we employ numerical simulation of cloud formation processes based
on the atmospheric fluid dynamics. For the second requirement, we use a feedback
control mechanism to automatically adjust some of the simulation parameters.

The physical processes for the cloud formation are as follows. First, where there
are no clouds in the sky, the ground is heated by the sun. Then, the air near the
ground is heated and air parcels start to move upward due to the thermal buoyance
forces. The temperature of the rising air parcels decreases due to adiabatic cooling,
so vapor in the air parcels causes a phase transition, coagulates, and water droplets
are generated. The water droplets are perceived as the cloud. At that time when the
phase transition occurs, the latent heat is liberated, which creates additional buoyancy
forces and promotes further growth of the clouds. These processes can be expressed
by five partial differential equations [5]. Two of them are the NS equations. The
other three correspond to temperature, water vapor, and clouds. By simulating these
processes numerically, realistic animation of the cloud formation can be created.

In order to control the simulation, the user specifies a contour line of the desired
shape of clouds as indicated by the pink curve in Fig. 1a. Then a three-dimensional
target shape is generated from the contour line. The simulation is controlled so that
the difference between the target shape and the simulated clouds become zero. We
developed two controllers, a latent heat controller and a water vapor supplier, to
automatically adjusts the amount of the latent heat and the amount of water vapor
to form the target shape. We chose the latent heat and the water vapor as control
variables based on our experimental investigation. Other parameters remain fixed
throughout the simulation. The control mechanism is shown in Fig. 1b. To measure
the difference between the target shape and the simulated clouds, the height ratio
of the height of the simulated clouds Hc to the height of the target shape Htarget is
calculated. The height ratio is fed back into the latent heat controller and the water
vapor supplier. The latent heat controller increases the latent heat and the water
vapor supplier adds water vapor in the regions where the clouds have not reached
the top of the target shape. By combining these controllers, the vertical development
of the clouds and the generation of clouds are controlled until the target shape is
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(a) (b)

Fig. 2 Examples of clouds generated by our control method. a Typical cumulonimbus clouds.
b Unnatural shape of clouds

formed. An important aspect of our control mechanism is that the simulation is
implicitly controlled. No external forces nor cloud densities are explicitly generated.
This prevents our controller from destructing the cloud dynamics and results in
realistic cloud formation.

Figure 2 shows the clouds generated by our method. The shape of the clouds
generated by our method is almost the same as the desired shape indicated by the
pink curves. Figure 2a shows a typical shape of cumulonimbus clouds generated by
using our control method. In Fig. 2b, the user specifies an unnatural shape of clouds,
a skull. Our method can successfully generate realistic clouds even for this unnatural
shape.

3 Automatic Adjustment of Parameters for Rendering Clouds

In order to display realistic clouds, the light scattering inside clouds need to be
simulated. However, realistic images are not generated unless the user specifies good
parameters used for the simulation of the light scattering. Our method addresses this
problem by solving an inverse problem. That is, we let the computer search for the
parameters that produce the realistic image. However, in order to do this, we have
to tell the computer about the definition of the realism. In our approach, we use a
photograph of real clouds and let the computer search for the parameters so that the
appearance of the synthetic clouds look similar to those in the photograph.

An overview of our system is illustrated by Fig. 3. The inputs to our system are
volume data representing the density distribution of synthetic clouds, and a photo-
graph of real clouds. The direction of the sunlight and the camera parameters used
to render synthetic clouds also need to be specified by the user. Our system then
searches for the optimal parameters that minimize the following objective function
O:

arg min
c

O(Icg(c), Iusr ), (1)
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Fig. 3 Overview of our method for automatic adjustment of cloud colors

where c is a vector consisting of the parameters used for rendering the synthetic
image Icg . Iusr is the photograph specified by the user. The objective function O
measures the visual difference between Icg and Iusr . We use color histograms to
compute the visual differences. O is defined by:

O = 1

3

∑

λ=R,G,B

nL−1∑

n=0

|hcg(n, λ) − husr (n, λ)|, (2)

where λ is the wavelength sampled at the wavelength corresponding to the RGB
color channels, nL is the number of intensity levels, and hcg and husr represent
histograms of Icg and Iusr , respectively. hcg and husr are normalized by dividing
them by the number of pixels. These histograms are computed using only the pixels
corresponding to the clouds.

The intensity of clouds in the synthetic image Icg is calculated based on the
rendering equations for the clouds [2, 9, 11]. The intensity of clouds depends on
many parameters, such as the intensities of the sunlight and the skylight, and the
optical properties of atmospheric and cloud particles. In our method, the only light
source illuminating the clouds is the sun. However, the intensity of light directly
reaching the viewpoint from the sky behind the clouds is taken into account. The
attenuation and scattering of light due to atmospheric particles between the clouds
and the viewpoint are also taken into account.

The minimization problem defined above is solved by rendering the clouds repeat-
edly with various parameter settings using GAs. To render clouds, we take into
account both single and multiple scattering. The scattering and absorption due to
atmospheric particles between the clouds and the viewpoint are also taken into
account. We employ the simplest model where the density of the atmospheric parti-
cles is assumed to be uniform and the intensity of scattered light due to atmospheric
particles is assume to be constant. Under these assumptions, the intensity of light
reaching the viewpoint for a pixel is a blended intensity of the clouds and the sky
behind the clouds. Before using GAs, our system extracts cloud pixels from the input
photograph and estimates the color of the incident light cin(λ) and the intensity of
the sky behind the clouds Lsky(q, λ). The color of the incident light is different from
that of the sun because the sunlight is attenuated and scattered by atmospheric par-
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(a)

(b)

(c)

Fig. 4 Examples of our method for adjusting parameters for rendering clouds. a Example of cumu-
lonimbus clouds rendered with parameters determined by our method. b Application of our method
to an animation of cumulonimbus clouds. c Composition of synthetic clouds onto a photograph

ticles before reaching the clouds. The color histogram of the input photograph is
also calculated using the extracted cloud pixels. The rest of the parameters are then
estimated using GAs. The images of the synthetic clouds are repeatedly created by
using volume rendering techniques with different parameter settings. GAs compute
the objective function for each of the candidate parameter sets to measure the quality
of the parameters and modify the parameters. Each set of parameters is ranked by
the objective function and high-ranking parameter sets are stored. The output of our
system is a set of high-ranking parameters and their corresponding images.

Figure 4 shows examples of clouds rendered by using our method. Figure 4a shows
an example of cumulonimbus clouds generated by fluid simulation [8]. The inset in
each image is the input photograph of the clouds. By estimating the parameters
for rendering the clouds, the subtle color variations observed in the photograph are
reproduced in the synthetic clouds. Figure 4b shows an application of our method to
create an animation of dynamic clouds. We used two parameters to render the daytime
and the sunset clouds in Fig. 4a to create the animation with the position of the sun
changing. The parameters were linearly interpolated. Figure 4b shows snapshots from
the animation. Realistic color transitions are realized. Figure 4c shows an example of
unnatural clouds. The clouds were generated using controlled simulation described
in the previous section. In this example, we replaced the real clouds in the input
photograph with the synthetic clouds, rendered using the optimized parameters. The
synthetic clouds are naturally composited onto the real photograph.
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4 Conclusion

We have presented an inverse design approach for visual simulation of clouds.
Our approach takes two-dimensional information as input and computes three-
dimensional information to create realistic images of clouds. For the cloud shapes,
two-dimensional contour line of the desired shapes of clouds is used to generate three-
dimensional shapes of clouds. For the cloud colors, a photograph of real clouds is
used to find optimal parameters that can produce realistic images of the synthetic
clouds. These inverse problems are highly nonlinear and hard to solve. We used
the feedback control mechanism and genetic algorithms. The future work includes
extension of the methods to visual simulation of other natural phenomena such as
fire, smoke, water, and so on.
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Generating Flow Fields Variations Using
Laplacian Eigenfunctions

Syuhei Sato, Yoshinori Dobashi, Kei Iwasaki, Hiroyuki Ochiai
and Tsuyoshi Yamamoto

Abstract The visual simulation of fluids has become an important element in many
applications, such as movies and computer games. In these applications, large-scale
fluid scenes, such as fire in a village, are often simulated by repeatedly rendering
multiple small-scale fluid flows. In these cases, animators are requested to generate
many variations of a small-scale fluid flow. This chapter presents a method to help
animators meet such requirements. Our method enables the user to generate flow
field variations from a single simulated dataset obtained by fluid simulation. The
variations are generated in both the frequency and spatial domains. Fluid velocity
fields are represented using Laplacian eigenfunctions which ensure that the flow
field is always incompressible. Using our method, the user can easily create various
animations from a single dataset calculated by fluid simulation.

Keywords Flow field · Variation synthesis · Laplacian eigenfunctions · Amplitude
modulation · Resizing simulation space
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1 Introduction

The visual simulation of fluids has become one of the most important research
topics in computer graphics. Many methods have been proposed for simulating
smoke, water, fire, etc [2]. Most of the recent methods are based on computational
fluid dynamics to create realistic animations and these are used in many applications
such as movies and computer games. However, one of the problems is the expensive
computational cost. In those entertainment applications, similar fluid animations are
often required. Such examples include multiple explosions caused by missile attack,
many flowing rivers, multiple houses on fire, and smoke rising from multiple chim-
neys. Using the same fluid animation repeatedly degrades the realism of a synthetic
scene. Therefore, animators have to create multiple fluid animations with different
motions. This is achieved by repeating the fluid simulation many times with differ-
ent parameter settings. However, adjusting the simulation parameters to create such
similar animations is very difficult and huge computational costs are required. Our
research goal is to address this problem.

Procedural methods can generate similar multiple flows with relatively low
computational cost. For example, curve-based methods for creating various fire
animations have been proposed [3, 4]. These methods generate user-designed fire
animations by deforming a curve representing the route of the fire. Some researchers
have developed procedural methods for modeling flow using turbulent noise func-
tions [1, 5]. With these methods, animators can easily generate turbulent motion and
multiple animations with similar motion can be created at low cost. However, these
procedural methods do not use fluid simulation to generate the fluid flow, making
the animations less realistic than those created using physically-based simulation.

To address this problem, we propose a method for generating various different fluid
animations from a single simulated dataset.Our method is based on grid-based fluid
simulation and is suitable for generating animations of divergence-free flow such as
smoke and fire. The key concept behind our method is to represent the input velocity
fields using divergence-free basis functions. We use Laplacian eigenfunctions [7]
as the divergence-free basis functions. this basis functions enforce divergence-free
condition to flow fields, and flow fields are decomposed into frequency components.
The variations are generated by randomly modulating the coefficient of frequency
components. Furthermore, our system resizes the simulation space to generate varia-
tions in the spatial domain. The flow field in the resized space is calculated by solving
a minimization problem. By combining these two methods, various fluid flows can
be generated from a single simulated flow field.

2 The Method

Figure 1 shows an overview of our method. Two types of processes are used to
generate the variations. The first one is amplitude modulation which generates vari-
ations of the flow field vmod(tn) in the frequency domain. This process modulates
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Fig. 1 Overview of our
method

the coefficients calculated by expanding the input flow field vin(tn) into divergence-
free basis functions. The other one is resizing the simulation space which generates
variations of the flow field vde f (tn) in the spatial domain. In this process, the size
of the simulation space is changed randomly. Our system then solves a minimiza-
tion problem subject to the resized velocity fields, and generates the resultant flow
fields. These processes can be combined and a flow field vvar (tn) is generated. In the
following subsections, we describe the details of the above two processes.

2.1 Variations in the Frequency Domain

First, we expand the input flow field vin(tn) into divergence-free basis functions bi .
Our system calculates coefficients wi (tn) for the i-th basis function bi using the
following equation.

wi (tn) =
∫

x≈β

vin(tn) · bi dx, (1)

where β is the entire domain of the input flow field and · is the dot product between
two vectors, and tn are discrete time steps (n = 0, 1, · · · ). Using the coefficients
wi (tn), we represent the input flow field vin(tn) by a linear combination of basis
functions bi , as follows,

vin(tn) =
N−1∑

i=0

wi (tn)bi , (2)

where N is the number of basis functions. We use Laplacian eigenfunctions for the
basis functions, bi [7]. This enforces the divergence-free condition on the flow field.
In addition, flow fields can be decomposed into frequency components by using this
basis functions. For a 2D flow field, the Laplacian eigenfunctions are defined on a 2D
rectangular grid. The 2D Laplacian eigenfunctions bk = ( fk1,k2(x, y), gk1,k2(x, y))

in a rectangular region [0, 0]× [sx , sy] are defined by the following equations.
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fk1,k2(x, y) = 1

ξ
k2 sin(k1πx/sx ) cos(k2πy/sy), (3)

gk1,k2(x, y) = −1

ξ
k1 cos(k1πx/sx ) sin(k2πy/sy), (4)

where k1, k2 are wave numbers, and ξ is an eigenvalue defined by ξ = k2
1 + k2

2.
By modulating wi (tn), we generate variations of the flow fields vmod(tn) in the

frequency domain. Our method modulates wi (tn) for each frequency component as
follows,

vmod(tn) =
N−1∑

i=0

gi wi (tn)bi , (5)

where gi represents the gain with which wi (tn) is modulated.In our method, gi is
generated randomly.

2.2 Variations in the Spatial Domain

In this subsection, we describe a method for generating flow field variations in the
spatial domain. Our method changes the size of the simulation space by arbitrarily
expanding or contracting it. Figure 2 shows the method used to resize the simula-
tion space. First, a direction and a line that cuts through the input velocity field are
determined by random numbers. In Fig. 2, the cut direction is shown as being hor-
izontal. Next, a distance to expand or contract the simulation space is determined,
again using a random number. In the expansion process, the simulation space is di-
vided by the cut line into two domains. These domains are separated and new grid
points are inserted between them (Fig. 2). In the case of contraction, two cut lines are
specified, and then the grid points between the two cut lines are removed as shown
in Fig. 2. After resizing the simulation space, we prepare a new grid for the resized
simulation space. The number of grid points for the new grid is Ndef . The input
velocities are copied to the new grid according to the resizing information of the
simulation space. The resized velocity field is denoted by v→

in . Then the coefficients
w→(tn) = (w→

0(tn), w→
1(tn), . . . , w→

N−1(tn)) are calculated by solving the following
minimization problem.

arg min
w→(tn)

(E(tn) + ε

N−1∑

i=0

w→2
i (tn)), (6)

E(tn) =
∑

x≈βin

|v→
in(x, tn) −

N−1∑

i=0

w→
i (tn)b→

i (x)|2,
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Fig. 2 Expanding and
contracting an input
velocity field

where βin is the domain where the input velocities vin are assigned on v→
in , and ε

is a user-specified constant used to adjust the influence of the second term which
is called the regularization term. b→

i is defined on the grid of the resized simulation
space. E(tn) measures the difference between the resized velocities and the resulting
flow field. By solving the above equation, variations of the flow fields vde f (tn) in the
spatial domain are synthesized.

vde f (tn) =
N−1∑

i=0

w→
i (tn)b

→
i . (7)

Given the definition of the error function E(tn) in the previous paragraph, we can
now solve the minimization problem given in Eq. (6). By taking the derivative of
Eq. (6) with respect to the coefficient w→

i (tn), we obtain the following matrix equation.

(A + εI)w→(tn) = c(tn), (8)

where A and I are N × N matrices, and w→(tn) and c(tn) are N dimensional column
vectors. I is the identity matrix. A and c are related to E . The (i, j)-th element ai j

of A and the i-th element ci of c(tn) are given respectively by:

ai j =
∑

x≈βin

b→
i (x) · b→

j (x),

ci =
∑

x≈βin

v→
in(x, tn) · b→

i (x),
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Table 1 Parameter settings and computation times

N Ndef T N Ndef T

Figure 1 1024 – 120 Figure 5b, c 1024 256×320 140
Figure 4b 400 64×96 10 Figure 5e, f 1024 256×192 80

N is the number of basis functions, Ndef is the number of grid points for resized velocity fields. T
is the time for updating the flow field, measured in milliseconds

original synthesized results by modulating amplitudes

(a) (b) (c) (d)

Fig. 3 Modulating amplitudes of a smoke animation by our method

A is a full matrix as shown by the above equation. In order to compute the dot product
between the functions in the above equations, v→

in and b→
i are sampled on the grid of

the resized simulation space. Then, an approximation of the dot product is computed
using the sampled values.

The coefficient vector w→(tn) is then obtained by solving the matrix equation,
Eq. (8). To solve the equation efficiently, we use the LU decomposition technique
[6]. The LU decomposition of the matrix (A+εI) is firstly computed and the weight
vector w→(tn) is efficiently obtained using the decomposed matrix.

3 Results

This section shows some examples created using our method. We used a desktop PC
with an Intel Core i7 2600K CPU, 16GB memory, and an NVIDIA GeForce GTX
680 GPU to compute all the examples shown in this section. The parameter settings
and timing information are summarized in Table 1. For examples of Figs. 3 and 5,
the number of grid points for the input velocity fields was 256 × 256. In Fig. 4, the
input velocity field was computed on a 64 × 64 grid.

Figure 3 shows examples of the amplitude modulation. Note that the flow field
is visualized by advecting the smoke density. The source of the smoke is located
at the bottom-left corner of the simulation space. Figure 3a shows the input smoke
animations. Figure 3b–d show the variations created by modulating the amplitudes
of the input animations. (b) is created by increasing the high-frequency components
of the input velocity fields. In (c), the low-frequency components are reduced. (d) is
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(a)

(b) (c) (d)

Fig. 4 Comparison of results using different methods

created by applying the modulations of both (b) and (c). As shown in these examples,
our method can generate variations in the frequency domain.

Figure 4 shows a comparison of results generated by using other resizing
approaches with a result using our method. Figure 4a shows the original flow field
computed on a 64 × 64 grid. A cut line is shown by a red dotted line in Fig. 4a. The
result by using our method is shown in Fig. 4b. Our method successfully created a
continuous flow field and the flow is similar to the original one. Figure 4c shows
a flow field created by warping the original flow field into the resized simulation
space. In this case, the flow is deformed from the original flow field. Figure 4d shows
a result obtained by re-simulating the flow field in the resized simulation space with
the same parameter settings as in Fig. 4a. In this case, the smoke does not rise into
the higher region unless we adjust the simulation parameters adequately through a
trial-and-error process.

Figure 5 shows the results obtained using our method. Figure 5a, d show the
original flow field computed by the fluid simulation. The cut lines in Fig. 5a, d are
shown by red dotted lines. In Fig. 5b, c, the simulation space has been expanded.
In Fig. 5e, f, the simulation space has been contracted. The amount of expansion
and contraction is set to a quarter of the vertical height of the input animation.
Furthermore, Fig. 5c, f are created by additionally applying amplitude modulation
so that the high-frequency components are enhanced. Using our method continuous
flow fields can be successfully created. In addition, we can generate variations in
both the frequency and spatial domains.

4 Conclusion

We have proposed a method for synthesizing variations of flow fields. Our method
can generate variations in both the frequency and spatial domains. The flow fields are
represented by Laplacian eigenfunctions, and the variations in the frequency domain
are generated by modulating the coefficients of the basis functions. In addition, we
can generate variations in the spatial domain by solving a minimization problem
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cut line

(a)

(b) (c)

(d)

(e) (f)

cut line

Fig. 5 Resizing simulation space of input smoke animation

after resizing the velocity field. We demonstrated the capabilities of our method with
a set of examples. In future work, we are planning to extend our method to 3D flow
fields.

One of the limitations of our method is that the computational cost is proportional
to the number of basis functions. The level of detail in the flow generated by our
method depends on the number of basis functions used. If the number of basis
functions is large, high computational costs are required to calculate A, c(tn) and to
reconstruct the flow fields using Eqs. (5) and (7). The user can generate variations
of detailed flow fields at the expense of increased computational and storage costs.
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Another limitation is the fact that the flow fields generated by our method might
not conform to the laws of fluid flow, if the degree of modulation by gi is too large.
To address this problem, we calculate the Navier–Stokes equations for velocity fields
generated by our method, then compare two velocity fields. By this comparison, we
can evaluate whether or not the flow generated by our method follows the laws of
fluid flow. In future work, we propose to evaluate these flow fields.
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Blood Flow Analysis Using Medical Imaging
Data and Streamline Visualization

Hiroshi Suito and Takuya Ueda

Abstract A numerical simulation of blood flow in the thoracic aorta is presented.
Patient-specific aorta shapes are used in a centerline-fitted curvilinear coordinate
system in which the Navier–Stokes equation is discretized using finite-difference
approximation with immersed boundary method. Numerical results are visualized
by drawing instantaneous streamlines to exhibit the flow structures. Dean vortices
and the transition from them to a swirling flow are observed by comparing the original
shapes and projected shapes that have no torsion.

Keywords Blood flow · Aortic aneurysm · Numerical simulation · Scientific
visualization · Swirling flow

1 Introduction

This chapter presents an investigation of blood flows in the thoracic aorta which is
related to thoracic aortic aneurysms [2, 6].

In recent years, computational fluid dynamics for blood flow has been of wide
interest. From the viewpoint of computational methods, two main discretization
strategies exist: unstructured and structured meshes. When attempting to compute
flows using structured meshes, the most important issue is the manner of representing
the geometry in the structured mesh system. The strategies to resolve this problem are
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classifiable into two categories: body-fitted and immersed-boundary approaches [3].
An advantage of body-fitted mesh is its high accuracy, although mesh generation near
a complex-shaped boundary is often difficult. In contrast, in the immersed boundary
method, mesh generation is simple because a uniform orthogonal mesh is useful
and because the wall geometry is represented by a distribution of a characteristic
function. This study uses a hybrid approach that is intermediate of the body-fitted
and immersed boundary method.

As described in this chapter, we present some numerical simulations based on
the hybrid method described above. In addition, we show streamline visualization to
elucidate the flow structures.

2 Representation of Aorta Morphology

To extract the (x, y, z)—coordinate of the centerline and radius at position s from
CT images, median axis transform technique [4, 5] is applied, where s is a length
along the centerline from the proximal end of the aorta. Branches are neglected in this
study. Then, a curvilinear coordinate system (ξ, η, ζ ) is generated, for which the ζ

axis is nearly parallel to the aorta centerline. Therefore, (ξ, η, ζ ) is a centerline-fitted
coordinate system that represents the coordinate transformation from computational
space (ξ, η, ζ ) to physical space (x, y, z). The ζ−axis is set not to be strictly parallel
but to be nearly parallel to the centerline, which means that the original centerline
geometry is smoothed slightly by the Gaussian filter. This treatment avoids numerical
instabilities arising from the severe skewness of finite difference meshes.

On each mesh point defined in the preceding step, the characteristic function is
generated, which takes the value of 0 inside of the aorta and value 1 outside of
the aorta. It varies gradually near the vessel wall with certain smoothness. Figure 1
portrays a centerline and radius data at several points (left), a finite difference mesh
with the centerline and radius data (center), and a contour surface of the characteristic
function with the finite difference mesh (right).

3 Governing Equations

As governing equations, the incompressible viscous Navier–Stokes equations and
the continuity equation

{
∂u
∂t + (u · ∇) u = − 1

ρ ∇ p + ν∇2u − 1
ε f

λu

∇ · u = 0
, (1)
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Fig. 1 Surface shape reconstruction procedure

are used with initial and boundary conditions where u, p, t, ρ, and ν respectively
denote velocity, pressure, time, density, and kinematic viscosity. The last term of the
Navier–Stokes equations is a drag force term that is proportional to the fluid velocity
because of the immersed boundary method of the discrete forcing type [3]. This force
acts only out of the aorta. Therefore, the flow velocity out of the aorta becomes zero
and the aorta wall shape is represented.

4 Visualization of Numerical Results

To elucidate the flow field in the thoracic aorta, computed flow fields are visualized
by drawing instantaneous streamlines at t = t1, which is defined as

dx

u(x, y, z, t1)
= dy

v(x, y, z, t1)
= dz

w(x, y, z, t1)
, (2)

where u, v, w, and dx, dy, dz respectively represent the x, y, z components of the
fluid velocity and the line segment. The instantaneous streamlines differ from streak
lines or particle paths, which show different views in unsteady flows.

Figure 2 shows instantaneous streamlines immediately after the peak systolic
phase of the heart beat where the widths and colors of the streamlines represent the
velocity magnitude. In Fig. 2, several characteristic flows are visible. For example,
swirling flows are apparent in the descending aorta. Figure 3 shows the instanta-
neous streamlines for another case, which show similar characteristics to those of
the previous case.

Then we examine the effect of torsion of the aorta. The original shape is projected
onto an averaged plane of curvature so that the projected shape has no torsion, i.e.,
the centerline is on a flat plane.
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Fig. 2 Instantaneous streamlines (Case A)

Fig. 3 Instantaneous streamlines (Case B)

Figures 4 and 5 show instantaneous streamlines for Case C, with side and back
views of the original and projected shapes. Generally speaking, a set of twin symmet-
ric vortices are formed in various curved tubes, which are induced by a centrifugal
force depending on the axial flow distribution. These twin vortices are called Dean
vortices, which play an important role in curved tubes. This kind of curvature effect
is characterized by the Dean number [1]. In the projected shape (Fig. 4), the sym-
metric Dean vortices are apparent, although they are deformed and merge to one
swirling flow in the original shape with torsion (Fig. 5). This phenomenon is appar-
ently important because the wall shear stress distribution is changed dramatically by
such a flow structure change. Furthermore, wall shear stress exerted on the aortic
wall has a strong relation to the formation and development of aortic aneurysms.
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Fig. 4 Instantaneous stream-
lines (Case C: projected shape)

side view back view

Fig. 5 Instantaneous stream-
lines (Case C: original shape)

side view back view

5 Conclusions

In this chapter, we presented streamline visualization to elucidate the flow structures.
Instantaneous streamlines are suitable for elucidating and depicting the vortical flow
structures in curved tubes, such as Dean vortices and swirling flows. Nevertheless,
more sophisticated visualization techniques are highly desirable because the flows
in three-dimensional curved vessels are extremely complicated.
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Discrete Isoperimetric Deformation
of Discrete Curves

Jun-ichi Inoguchi, Kenji Kajiwara, Nozomu Matsuura and Yasuhiro Ohta

Abstract We consider isoperimetric deformations of discrete plane/space curves.
We first give a brief review of the theory of isoperimetric deformation of smooth
curves, which naturally gives rise to the modified KdV (mKdV) equation as a defor-
mation equation of the curvature. We then present its discrete model described
by the discrete mKdV equation, which is formulated as the isoperimetric equidis-
tant deformation of discrete curves. We next give a review of isoperimetric and
torsion-preserving deformation of smooth space curves with constant torsion which is
described by the mKdV equation. We formulate a discrete analogue of it as the isoperi-
metric, torsion-preserving and equidistant deformation on the osculating planes of
space discrete curves. The deformation admits two discrete flows, namely by the
discrete mKdV equation and by the discrete sine-Gordon equation. We also show
that one can make an arbitrary choice of two flows at each step, which is controlled
by tuning the deformation parameters appropriately.
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Keywords Curve motion · Discrete curve · Integrable systems · Discrete differen-
tial geometry · Modified KdV equation · Discrete modified KdV equation · Discrete
sine-Gordon equation

1 Introduction

It is well-known that there are deep connections between the differential geometry and
the theory of integrable systems. The theory of deformation of plane/space curves is a
typical example, where the Frenet frame of curves and its deformation are described
by system of linear partial differential equations. The modified KdV (mKdV) or the
nonlinear Schrödinger (NLS) equation and their hierarchies arise naturally as the
compatibility condition, as shown by various researchers including Hasimoto and
Lamb [2, 6, 7, 18, 19, 22]. As the development of the discrete differential geometry,
various continuous deformations of discrete curves have been studied, for example, in
[3, 10, 11, 13, 14, 16, 21, 23]. The discrete deformations of discrete curves have not
been studied well compared to the continuous deformations; deformation of discrete
curves on sphere by the discrete sine-Gordon equation [4], and deformation of space
discrete curves by the discrete NLS equation [12, 24] are such examples.

Recently we have presented the discrete deformation of plane discrete curves by
the discrete mKdV equation [15, 20], and that of space discrete curves with constant
torsion by the discrete mKdV and the discrete sine-Gordon equations. In this paper,
we give a brief review of those discrete deformations of plane/space discrete curves.

2 Plane Curves

2.1 Isoperimetric Deformation of Smooth Plane Curves

It is well-known that the smooth plane/space curves admit the isoperimetric motion
described by the modified Korteweg-de Vries (mKdV) equation [6, 18]

β̇ = 3

2
β2β ≈ + β ≈≈≈, (1)

which is one of the most typical integrable systems. Here β = β(x, t),˙and ≈ denote
t- and x-derivatives, respectively. Let ξ (x, t) → R

2 be an arc-length parameterized
plane curve, x be the arc-length so that |ξ ≈| = 1, and t be a deformation parameter.
Let T (x, t) and N (x, t) be the tangent vector and the normal vector defined by

T (x, t) = ξ ≈(x, t), N (x, t) = R
⎛π

2

⎝
T (x, t), (2)
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respectively, where

R(ε) =
⎞

cos ε − sin ε

sin ε cos ε

⎠
, (3)

and we define the Frenet frame φ(x, t) → SO(2) by φ(x, t) = [T (x, t), N (x, t)].
Then φ satisfies the Frenet formula

φ ≈(x, t) = φ(x, t)L(x, t), L =
⎞

0 −β

β 0

⎠
, (4)

where β = β(x, t) is the curvature. We consider the following deformation of the
curve given by

ξ̇ = β2

2
T + β ≈N , (5)

which can be expressed in terms of the Frenet frame as

˙φ(x, t) = φ(x, t)M(x, t), M =
[

0 −β ≈≈ − β3

2

β ≈≈ + β3

2 0

]
. (6)

One can show by direct calculation that the deformation defined by (5) is isoperimet-
ric, namely, |ξ ≈(x, t)| = 1 for all t . The compatibility condition L̇ − M ≈ = [L , M]
yields the mKdV equation (1). The linear system (4) and (6) is referred to as the
auxiliary linear problem or the Lax pair of the mKdV equation (1).

2.2 Discrete Isoperimetric Deformation of Discrete Plane Curves

In this section, we discuss the discrete isoperimetric deformation of plane discrete
curves by the discrete mKdV equation according to [15, 20]. For ξn → R

2 (n → Z),
if any three consecutive points ξn−1, ξn , ξn+1 are not colinear, we call ξn a discrete
plane curve. Let ξ m

n → R
2 be a discrete plane curve, where m → Z is the discrete

deformation parameter. We define the tangent vector T m
n and the normal vector N m

n
by

T m
n = ξ m

n+1 − ξ m
n∣∣ξ m

n+1 − ξ m
n

∣∣ , N m
n = R

⎛π

2

⎝
T m

n , (7)

respectively. Introducing the discrete Frenet frameφm
n → SO(2)byφm

n = [T m
n , N m

n

⎧
,

it follows from the definition the discrete Frenet formula

φm
n+1 = φm

n Lm
n , Lm

n = R(βm
n+1), (8)
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Fig. 1 Discrete plane curve γ m
n−1

γ m
n

γ m
n+1

an−1 an
m
n

Tm
n

Nm
n

Fig. 2 Deformation of
discrete plane curve

m
n−1

m
n

m
n+1

an−1

an

bm wm
n

m+1
nγ γ γ

γ

where βm
n is the angle between T m

n and T m
n−1 (see Fig. 1). Now we assume the

isoperimetric condition, namely, that |ξ m
n+1 − ξ m

n | = an is constant with respect to
m, or ∣∣∣∣

ξ m
n+1 − ξ m

n

an

∣∣∣∣ = 1, (9)

for all m. We also require the equidistant condition

∣∣∣∣
ξ m+1

n − ξ m
n

bm

∣∣∣∣ = 1, (10)

for all n, where bm is an arbitrary function in m. Then, putting the angle between the
vectors ξ m

n+1 −ξn and ξ m+1
n −ξ m

n as wm
n (see Fig. 2), the deformation of the discrete

curve is expressed as

ξ m+1
n − ξ m

n

bm
= cos wm

n T m
n + sin wm

n N m
n . (11)

The isoperimetric condition (9) and (11) implies that wm
n is determined by the fol-

lowing equation

wm
n+1 = −βm

n+1 + 2 arctan
bm + an

bm − an
tan

wm
n

2
. (12)

In terms of the discrete Frenet frame, the deformation is expressed as

φm+1
n = φm

n Mm
n , Mn = R(βm

n+1 + wm
n+1 + wm

n ). (13)

The compatibility condition of the linear system (8) and (13) Lm
n Mm

n+1 = Mm
n Lm+1

n

yields wm
n+1 − wm

n−1 = βm+1
n − βm

n+1 and the discrete mKdV equation
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wm+1
n+1

2
− wm

n
2

= arctan

⎪
bm+1 + an

bm+1 − an
tan

wm+1
n

2

⎨
−arctan

⎪
bm + an+1

bm − an+1
tan

wm
n+1

2

⎨
, (14)

which is known as an integrable discretization of the mKdV equation [9, 20].

Remark 1 1. The continuous limit of the discrete mKdV equation (14) to the mKdV equa-
tion (1) is described as follows [16]. First put

an = a (const.), bm = b (const.),

ζ = a + b

2
, ρ = a − b

2
,

s

ζ
= n + m, l = n − m.

(15)

Taking the limit ρ ∈ 0 yields the semi-discrete mKdV equation for βl (s) = −wl (s)

dβl

ds
= 1

ρ

⎛
tan

βl+1

2
− tan

βl−1

2

⎝
. (16)

Next putting

x = ρl + s, t = −ρ2

6
s, (17)

and taking the limit ρ ∈ 0, we obtain the mKdV equation (1) for β(x, t). The semi-
discrete mKdV equation (16) also describes certain isoperimetric flows on plane/space
discrete curves [3, 16].

2. By using the standard technique of the theory of the integrable systems, it is possible
to construct explicit formulas for ξ in terms of the τ function [15, 16]. The τ functions
corresponding to the soliton or the breather type solutions are expressed by determinants.

3 Space Curves

3.1 Isoperimetric Deformation Described by mKdV Equation

Let x be the arc-length, ξ (x, t) → R
3 be an arc-length parameterized curve so that

|ξ ≈| = 1, and t be the deformation parameter. The Frenet frame is defined by

φ(x, t) = [T (x, t), N (x, t), B(x, t)] → SO(3),

T = ξ ≈, N = ξ ≈≈
∣∣ξ ≈≈∣∣ , B = T × N , (18)

where T , N , B are the tangent vector, the normal vector and the binormal vector, respec-
tively. Then we have the Frenet-Serret formula
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φ ≈ = φL , L =
⎩

⎢⎣
0 −β 0
β 0 −λ

0 λ 0

⎤

⎥⎦ , β = |ξ ≈≈|, λ = −∞B≈, N 〉, (19)

where β and λ are curvature and torsion, respectively, and ∞·, ·〉 is the standard inner
product. We assume that the torsion λ is a constant with respect to x , and consider
the deformation of curves given by

ξ̇ =
⎪

β2

2
− 3λ2

⎨
T + β ≈N − 2λβ B, (20)

which can be expressed in terms of the Frenet frame as

φ̇ = φM, M =
⎩

⎢⎣
0 − β3

2 + λ2β − β ≈≈ λβ

β3

2 − λ2β + β ≈≈ 0 −λ
2 β2 + λ3

−λβ λ
2 β2 − λ3 0

⎤

⎥⎦ . (21)

The compatibility condition of the linear system (19) and (21) L̇ − M ≈ = [L , M]
yields the mKdV equation (1). We remark that one can verify that this deformation
preserves the arc-length and the torsion. Therefore, (20) defines an isoperimetric and
torsion-preserving deformation of the smooth space curves with constant torsion
described by the mKdV equation (1).

3.2 Isoperimetric Deformation of Discrete Space Curves

Now we introduce the discrete space curve, and formulate the isoperimetric, torsion-
preserving and equidistant deformation of the space discrete curves with constant
torsion. We refer to [17] for the details including the proof of the statements.

For ξn → R
3, if any three consecutive points ξn−1, ξn , ξn+1 are not colinear, we

call ξn a discrete space curve. We introduce the discrete Frenet frame by

φn = [Tn, Nn, Bn] → SO(3), (22)

where the tangent vector Tn , the normal vector Nn and the binormal vector Bn are defined
by

Tn = ξn+1 − ξn

ρn
, Bn = Tn−1 × Tn∣∣Tn−1 × Tn

∣∣ , Nn = Bn × Tn, (23)

respectively, where
ρn = ∣∣ξn+1 − ξn

∣∣ . (24)
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Fig. 3 Discrete Frenet frame
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n
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Note that the normal vector is chosen as Nn → span{Tn−1, Tn} (see Fig. 3). We some-
times call span{Tn−1, Tn} the osculating plane.

We define βn → (0, π) and ∂n → [−π, π) by (see Fig. 4)

∞Tn, Tn−1〉 = cos βn, ∞Bn, Bn−1〉 = cos ∂n, ∞Bn, Nn−1〉 = sin ∂n . (25)

Then we see that the Frenet frame satisfies the discrete Frenet-Serret formula [5]:

φn+1 = φn Ln, Ln = R1(−∂n+1)R3(βn+1), (26)

where R1(ε) and R3(ε) are the rotation matrices given by

R1(ε) =
⎩

⎢⎣
1 0 0
0 cos ε − sin ε

0 sin ε cos ε

⎤

⎥⎦ , R3(ε) =
⎩

⎢⎣
cos ε − sin ε 0
sin ε cos ε 0

0 0 1

⎤

⎥⎦ , (27)

respectively. We define the function λn by

λn = sin ∂n+1

ρn
, (28)

which we refer to as the torsion of ξn . In the following, we assume that λn = λ (const.).
For later convenience we introduce an by

an =
⎛

1 + tan2 ∂n+1

2

⎝
ρn, (29)
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so that
ρn = an

1 + a2
nλ2

4

, ∂n+1 = 2 arctan
anλ

2
. (30)

Now we formulate the discrete isoperimetric, torsion-preserving and equidistant
deformation of the discrete space curve ξn .

Theorem 1 Let ξn be a space discrete curve with constant torsion λ. We define the new
discrete space curve ξ n by

ξ n = ξn + ζ(cos wn Tn + sin wn Nn), (31)

ζ = b

1 + b2λ2

4

> 0, (32)

wn+1 = −βn+1 + 2 arctan

(
b + an

b − an
tan

wn

2

)
. (33)

Here we choose the constant b > 0 and w0 such that the sign of σn = sin(wn+1+βn+1−wn−1)

is constant for all n. Then we have the following:

1. (Isoperimetricity) ξ satisfies

ρn = ∣∣ξ n+1 − ξ n
∣∣ = ∣∣ξn+1 − ξn

∣∣ = ρn, (34)

and thus the deformation ξn ∼∈ ξ n defined by (31)–(33) is an isoperimetric deformation.
2. (Preservation of the torsion) It follows that

∂n = ∂n . (35)

Therefore, we have that an = an, and that the torsion λn = sin ∂n+1
ρn

of ξ n is a constant
with respect to n, whose value is equal to λ. Namely, the deformation ξ ∼∈ ξ preserves
the torsion.

3. (Deformation of the Frenet frame) The Frenet frame φn = [
T n, N n, Bn

⎧
of ξ n satisfies

either of the following: in case of σn > 0,

φn = φn R3 (wn) R1 (μ) R3
(
wn+1 + βn+1

)
, μ = −2 arctan

bλ

2
, (36)

or in case of σn < 0,

φn = φn R3 (wn) R1 (μ) R3
(−wn+1 − βn+1

)
, μ = 2 arctan

2

bλ
. (37)

Repeating the construction in Theorem 1 yields the sequence of the discrete space

curves with constant torsion ξ 0
n = ξn, ξ 1

n = ξ n, ξ 2
n = ξ 1

n , . . . , ξ m
n = ξ m−1

n , . . ..
Correspondingly, we write data of the discrete curves as βm

n , wm
n and so forth. Noticing

that one may change the constant b at each step, the deformation of the curve is
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Fig. 5 Deformation of curve
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rewritten as (see Fig. 5)

ξ m+1
n = ξ m

n + ζm
(
cos wm

n T m
n + sin wm

n N m
n
)
, ζm = bm

1 + b2
mλ2

4

, (38)

wm
n+1 = −βm

n+1 + 2 arctan
bm + an

bm − an
tan

wm
n
2

, (39)

where bm is an arbitrary function in m and the sign of σm
n = sin(wm

n+1 + βm
n+1 − wm

n−1)

should be constant with respect to n. (38) and (39) define an isoperimetric, torsion-
preserving and equidistant deformation of the discrete space curves. The Frenet frame
φm

n satisfies
φm

n+1 = φm
n Lm

n , φm+1
n = φm

n Mm
n . (40)

Here,

Lm
n = R1

(−∂n+1
)

R3
(
βm

n+1
)
, ∂n+1 = 2 arctan

anλ

2
, (41)

and Mm
n is given by either of the following for each m: in case of σm

n > 0,

Mm
n = R3

(
wm

n
)

R1 (μm) R3
(
wm

n+1 + βm
n+1

)
, μm = −2 arctan

bmλ

2
, (42)

or in case of σm
n < 0,

Mm
n = R3

(
wm

n
)

R1 (μm) R3
(−wm

n+1 − βm
n+1

)
, μm = 2 arctan

2

bmλ
. (43)

Choosing the matrix M as (42), the compatibility condition Lm
n Mm

n+1 = Mm
n Lm+1

n for
(40) gives

wm
n+1 − wm

n−1 = βm+1
n − βm

n+1. (44)

Then (39) and (44) yields the discrete mKdV equation

wm+1
n+1

2
− wm

n
2

= arctan

⎪
bm+1 + an

bm+1 − an
tan

wm+1
n

2

⎨
−arctan

⎪
bm + an+1

bm − an+1
tan

wm
n+1

2

⎨
. (45)
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Choosing the matrix M as (43), the compatibility condition of (40) gives

wm
n+1 − wm

n−1 = −βm+1
n − βm

n+1, (46)

and then (39) and (46) yields the discrete sine-Gordon equation

wm+1
n+1

2
+ wm

n
2

= arctan

⎪
bm+1 + an

bm+1 − an
tan

wm+1
n

2

⎨
+arctan

⎪
bm + an+1

bm − an+1
tan

wm
n+1

2

⎨
. (47)

Remark 2 1. One can see from (30) and (38) that the lattice parameters ρ, ζ for the space
discrete curve and a, b for the discrete mKdV or the discrete sine-Gordon equations are
different. This is an essential feature of the discrete deformation of space discrete curves.
They coincide by setting λ = 0 (case of plane discrete curves).

2. The discrete sine-Gordon equation (47) can be rewritten as the well-known form [8]

sin
εm+1

n+1 − εm+1
n − εm

n+1 + εm
n

4
= an

bm
sin

εm+1
n+1 + εm+1

n + εm
n+1 + εm

n

4
, (48)

in terms of the potential function defined by wm
n = − εm+1

n +εm
n+1

2 .

It is the necessary and sufficient condition for the deformation of the discrete curve
ξ m

n ∼∈ ξ m+1
n being torsion-preserving that the sign of σm

n is constant as a function
of n at each m. Moreover, the deformation of the Frenet frame is different according
to the sign of σm

n . It is possible to control the sign of σm
n and thus the deformation

of the Frenet frame by tuning the deformation parameter bm according to the data of
ξ m

n as follows:

Proposition 1 1. If we choose bm > 0 to satisfy either of the following conditions at each
m, then the deformation defined by (38) and (39) is torsion-preserving.

(i) bm > max





amax

tan
βm

min
4

,
a

2 cos βm
max
2



1 +
√

1 + 4aminamax

(a)2 cos2 βm
max

2





⎫
⎬

⎭ ,

or (49)

(ii) bm < min




amin tan
βm

min
4

,
a

2 cos βm
max
2



−1 +
√

1 + 4aminamax

(a)2 cos2 βm
max

2





⎫
⎬

⎭ ,

where
βm

min = minn βm
n , βm

max = maxn βm
n ,

amax = maxn an, amin = minn an, a = amax − amin.
(50)

2. In the case of (i), it holds that σm
n < 0 and thus the Frenet frame φ is deformed according

to (40), (41), (43). In the case of (ii), it holds that σm
n > 0 and thus φ is deformed

according to (40), (41), (42). Namely, (i) and (ii) correspond to the deformation by the
discrete sine-Gordon equation (47) and discrete mKdV equation (45), respectively.
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Remark 3 1. For given constant λ and functions an , bm , wm
n , βm

n , it is possible to reconstruct
the discrete curves ξ m

n as follows: let φm
n be a solution to the linear system (40), (41),

(42) (or (43)). Transforming φm
n to SU(2)-valued function φm

n by the SU(2)-SO(3)

correspondence, the Sym-Tafel formula recovers ξ m
n :

ξ m
n = −

(
∂

∂λ
φm

n

)
(φm

n )−1 → su(2) ← R
3. (51)

2. The sequence of isoperimetric deformations of space discrete curves ξ m
n form discrete

surfaces with the constant negative Gaussian curvature (discrete K -surfaces) [1]. Con-
versely, any discrete K -surface can be constructed by ξ m

n .
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Mathematical Formulation of Motion
and Deformation and Its Applications

Hiroyuki Ochiai and Ken Anjyo

Abstract This chapter is intended to give a summary of Lie groups and Lie algebras
for computer graphics, including an example from interpolations and blending of
motions and deformation. In animation and filmmaking procedure, we want to get a
smooth transition of the drawing of given starting and ending point (the drawings at
these points are called key frame). This problem can be understood as an interpolation,
so that various approach have been proposed and used in Computer Graphics. After
the seminal work so-called ARAP (as-rigid-as-possible), serious properties of matrix
groups have been taken into account both in theoretical and in computational point
of view. To understand and develop these properties, we here employ a Lie theoretic
approach.

Keywords Blend shape · Lie group · Lie algebra · Polar decomposition · As-rigid-
as-possible · Deformation · Exponential map · Motion group

1 Lie Groups and Lie Algebras

Lie groups are used for describing the transformations, and Lie algebra is its linear
approximation which is a main feature of Lie groups.

A Lie group is a manifold with a group structure. A typical example of a Lie group
is a subset of a matrix space M(N ) = M(N , R) for some N closed under the product
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and the inverse. To focus on applications to computer graphics, we may restrict Lie
groups to be of this sub-class without loss of generality.

An affine transformation of R
n is a map from R

n to R
n which maps every line to

a line. We denote by Aff(n) the set of affine transformations, and denote by Aff+(n)

the set of positive (i.e., reflection-free) affine transformations. In computer graphics,
we mainly treat n = 2 and n = 3, while a part of the theory holds for a general n in
a parallel manner. We see that Aff(n) is a group and Aff+(n) is a subgroup. A well-
known homogeneous realization of Aff(n) is given as a set of block upper-triangular
matrices:

Aff(n) =
{

A =
(

Â dA

0 1

)∣∣∣∣ Â ≈ GL(n), dA ≈ R
n
}

, (1)

where GL(n) = {A ≈ M(n, R) | det(A) →= 0}. This realization shows that Aff(n) is
a Lie group.

The exponential of a square matrix X ≈ M(N ) is defined to be

exp(X) =
∈∑

k=0

1

k! Xk, (2)

motivated by the exactly the same Taylor expansion formula for the scalar expo-
nential function. This infinite series always converges; however, the computation is
reduced to the exponential of diagonal matrices by using the formula exp(PXP−1) =
P exp(X)P−1.

Let G be a Lie group realized in M(N , R). The tangent space of G at the origin
is denoted by g, the corresponding German letter, and is called the Lie algebra of G.
Rather surprisingly, the Lie algebra approximates the Lie group, without losing the
(local) informations. The exponential map gives a map from g to G. If G is abelian
(i.e., commutative) and connected, then the exponential map is surjective. If G is
connected, simply connected, and abelian, then the exponential map is bijective. If
G is compact and connected, then the exponential map is surjective. The exponential
map is a local isomorphism at the origin, but it is not necessarily injective or surjec-
tive, e.g. G = SL(2, R). To mitigate this difficulty on the exponential functions for
general Lie groups, we will introduce the decomposition/factorization of matrices.

2 Matrix Factorization

For further understanding and analysis of complicated groups, several types decom-
positions of Lie groups and their generalization are known and used. We here review
some of them (see also [5]).
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2.1 Semi-direct Product Group

The affine transformation group is an example of a semi-direct product group, so
Aff(n) = GL(n) � R

n . In general, let G be a group and H1, H2 be subgroups of G.
If the multiplication map

H1 × H2 ∞ (h1, h2) �∼ h1h2 ≈ G (3)

is bijective and h1h2h−1
1 ≈ H2 for all h1 ≈ H1 and h2 ≈ H2, then G is isomorphic

to the semi-direct product group H1 � H2. Another example of the semi-direct
product group is a motion group SE+(n) = SO(n) � R

n or a congruence group
SE(n) = O(n) � R

n . If h1h2h−1
1 = h2 in the above, then G is isomorphic to the

direct product group H1 × H2.
For K = R, C, or H, the group of invertible dual numbers (see [4] Definition 1

for the notation) is

K̂
× = (K + Kε)× = K

× + Kε = K
×

� Kε, (4)

which also gives an example of semi-direct product groups. The set K̂1 of unit dual
numbers is a subgroup of K̂

×, which is also a semi-direct product group K1 � Kε.

2.2 Diagonalization of Symmetric Matrix

Every (real) symmetric matrix is diagonalized by the conjugate of an orthogonal
matrix. This fact is rephrased as the subjectivity of the multiplication map

O(n) × Diag(n) ∞ (R, D) �∼ RDR−1 ≈ Sym(n). (5)

Note that the diagonal entries of diagonal matrix D are the set of eigenvalues (with
multiplicities) of a given symmetric matrix X = RDR−1, so it is determined by X
up to the ordering of eigenvalues. The column vectors of R are the corresponding
eigenvectors, which form orthonormal frame of R

n . These facts give an algorithm to
compute (R, D) from X . As a special case of this decomposition (5), every positive-
definite symmetric matrix is diagonalized into diagonal matrices with positive diag-
onal entries:

O(n) × Diag+(n) ∞ (R, D) �∼ RDR−1 ≈ Sym+(n). (6)

Note that Sym+(n) is not a group since the product of two symmetric matrices is not
necessarily symmetric. But the exponential map still gives a bijective from Sym(n)

to Sym+(n). This enables us to consider the logarithm, which is defined to be the
inverse of the exponential, and the fractional power St for t ≈ R defined to be
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exp(t log(S)) for S ≈ Sym+(n). (An example is the square root S1/2.) This is a key
for interpolations.

2.3 Polar Decomposition

Every invertible matrix is the product of an orthogonal matrix and a positive-definite
symmetric matrix. In other words, the multiplication map

O(n) × Sym+(n) ∞ (R, S) �∼ RS ≈ GL(n) (7)

is bijective.

2.4 Singular Value Decomposition (SVD)

The following multiplication map is surjective:

SO(n) × Diag+(n) × SO(n) ∞ (R, D, R←) �∼ RDR← ≈ GL+(n). (8)

2.5 Triangular Decomposition

In some settings, almost all matrices can be decomposed. Here is an example from
Gaussian elimination of systems of linear equations. Let N± be the set of upper/lower
triangular matrices whose diagonal entries are 1. Then the multiplication map

N− × Diag(n) × N+ ∞ (U ←, D, U ) �∼ U ←DU ≈ GL(n) (9)

is injective and its image is an open dense subset of GL(n).

2.6 Iwasawa Decomposition

Some decomposition can treat shears. The multiplication map

SO(n) × Diag+(n) × N+ ∞ (R, D, U ) �∼ RDU ≈ GL+(n) (10)

gives a bijection.
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Fig. 1 2D deformation, comparison of [1] and [3]

3 Interpolation and Blend

Our goal is to give an interpolation on GL+(2), but this space is not a convex subset
of M(2). By combining the matrix factorization and the exponential map, we get a
straightforward idea for interpolation. Graphically,

GL+(2)
∼∼ SO(2) × Sym+(2)

log∼ so(2) × sym(2)

⊥ linear interpolation

GL+(2)
∼← SO(2) × Sym+(2)

exp← so(2) × sym(2).

(11)

By decomposition, we switch to the spaces whose exponential maps behave well, and
then by the exponential map, we move to a linear space where we have a reasonable
interpolation. This is a modification of the idea in [1], used in [3] (See Fig. 1).

Another application of this idea is

Aff+(3)
∼∼ SE(3) × Sym+(3)

log∼ se(3) × sym(3)

⊥ linear interpolation

Aff+(3)
∼← SE(3) × Sym+(3)

exp← se(3) × sym(3),

(12)

where SE(3) is a three-dimensional Euclidian motion group with its Lie algebra se(3)

(See Fig. 2).

The exponential exp

(
X d
0 0

)
=

(
R l
0 1

)
of an element se(3) has a Rodrigues’ type

formula, with 2 cos θ = Tr(R), or −2θ2 = Tr(X),
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Fig. 2 Probe-based deformation

Fig. 3 Blend with arbitrary weights

Fig. 4 Deformation by using anti-commutative DCN

X = θ

2 sin θ
(R − t R), and l =

(
I − 1

2
X + 2 sin θ − (1 + cos θ)θ

2θ2 sin θ
X2

)
d. (13)

Note that the right-most column of (11) and (12) is a vector space, so we can
blend two or more objects just as a linear combination

∑m
i=1 wi Si with weights wi .

Further examples are given in [2] (See Fig. 3).
Figure 4 shows a deformation by using ‘anti-commutative dual complex numbers’

[4].
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Anti-commutative Dual Complex Numbers
and 2D Rigid Transformation

Genki Matsuda, Shizuo Kaji and Hiroyuki Ochiai

Abstract We introduce a new presentation of the two dimensional rigid transfor-
mation which is more concise and efficient than the standard matrix presentation.
By modifying the ordinary dual number construction for the complex numbers, we
define the ring of anti-commutative dual complex numbers, which parametrizes two
dimensional rotation and translation all together. With this presentation, one can eas-
ily interpolate or blend two or more rigid transformations at a low computational
cost. We developed a library for C++ with the MIT-licensed source code [13].

Keywords 2D deformation · 2D animation · Interpolation · Skinning · Rigid trans-
formation · Euclidian motion · Dual number

1 Rigid Transformation

The n-dimensional rigid transformation (or Euclidean) group E(n) consists of trans-
formations of R

n which preserves the standard metric. This group serves as an
essential mathematical backend for many applications (see [9]). It is well-known
(see [5], for example) that any element of E(n) can be written as a composition of
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a rotation, a reflection, and a translation, and hence, it is represented by (n + 1) ×
(n + 1)-homogeneous matrix;

E(n) =
⎛

A =
⎝

Â dA

0 1

⎞
| ÂtÂ = In, dA ≈ R

n
⎠
.

Here, we adopt the convention that a matrix acts on a (column) vector by the multi-
plication from the left. E(n) has two connected components. The identity component
SE(n) consists of those without reflection. More precisely,

SE(n) =
⎛

A =
⎝

Â dA

0 1

⎞
| Â ≈ SO(n), dA ≈ R

n
⎠
,

where SO(n) = {R | RtR = In, det(R) = 1} is the special orthogonal group
composed of n-dimensional rotations.

The group SE(n) is widely used in computer graphics such as for expressing
motion and attitude, displacement [10], deformation [1, 4, 11], skinning [7], and
camera control [2]. In some cases, the matrix representation of the group SE(n) is
not convenient. In particular, a linear combination of two matrices in SE(n) does
not necessarily belong to SE(n) and it causes the notorious candy-wrapper defect in
skinning. When n = 3, another representation of SE(3) using the dual quaternion
numbers (DQN, for short) is considered in [7] to solve the candy-wrapper defect. In
this chapter, we consider the 2-dimensional case. Of course, 2D case can be handled
by regarding the plane embedded in R

3 and using DQN, but instead, we introduce the
anti-commutative dual complex numbers (DCN, for short), which is specific to 2D
with much more concise and faster implementation [13]. To summarise, our DCN
has the following advantages:

• any number of rigid transformations can be blended/interpolated easily using its
algebraic structure with no degeneration defects such as the candy-wrapper defect
(see Sect. 5)

• it is efficient in terms of both memory and CPU usage (see Sect. 6).

We believe that our DCN offers a choice for representing the 2D rigid transformation
in certain applications which requires the above properties.

2 Anti-commutative Dual Complex Numbers

Let K denote one of the fields R, C, or H, where H is the quaternion numbers. First,
we recall the standard construction of the dual numbers over K.

Definition 1 The ring of dual numbers K̂ is the quotient ring defined by

K̂ := K[ε]/(ε2) = {p0 + p1ε | p0, p1 ≈ K}.
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We often denote an element in K̂ by a symbol with hat such as p̂.

The addition and the multiplication of two dual numbers are given as

(p0 + p1ε) + (q0 + q1ε) = (p0 + q0) + (p1 + q1)ε,

(p0 + p1ε)(q0 + q1ε) = (p0q0) + (p1q0 + p0q1)ε.

The following involution is considered to be the dual version of conjugation

˜p0 + p1ε := p→
0 − p→

1ε,

where p→
i is the usual conjugation of pi in K. (Note that in some literatures ˜̂p is

denoted by p̂→.)
The unit dual numbers are of special importance.

Definition 2 Let | p̂| =
√

p̂ ˜̂p for p̂ ≈ K̂. The unit dual numbers is defined as

K̂1 := { p̂ ≈ K̂ | | p̂| = 1} ∈ K̂.

K̂1 acts on K̂ by conjugation action

p̂ ∞ q̂ := p̂q̂ ˜̂p

where p̂ ≈ K̂1, q̂ ≈ K̂.

The unit dual quaternion Ĥ1 is successfully used for skinning in [7]; a vector v =
(x, y, z) ≈ R

3 is identified with 1+(xi + y j + zk)ε ≈ Ĥ1 and the conjugation action
of Ĥ1 preserves the embedded R

3 and its Euclidean metric. In fact, the conjugation
action induces the double cover Ĥ1 → SE(3).

On the other hand, when K = R or C, the conjugation action is trivial since
the corresponding dual numbers are commutative. Therefore, we define the anti-
commutative dual complex numbers (DCN, for short) Č by modifying the multi-
plication of Ĉ. That is, Č = Ĉ as a set, and the algebraic operations are replaced
by

(p0 + p1ε)(q0 + q1ε) = (p0q0) + (p1q̃0 + p0q1)ε,

˜p0 + p1ε = p̃0 + p1ε,

|p0 + p1ε| = |p0|.

The addition and the conjugation action are kept unchanged. Then,

Theorem 1 Č satisfies distributive and associative laws, and hence, has a (non-
commutative) ring structure.
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Similarly to the unit dual quaternion numbers, the unit anti-commutative complex
numbers are of particular importance:

Č1 := { p̂ ≈ Č | | p̂| = 1} = {eiθ + p1ε ≈ Č | θ ≈ R, p1 ≈ C}.

It forms a group with inverse

(eiθ + p1ε)
−1 = e−iθ − p1ε.

We define an action of Č1 on Č by the conjugation. Now, we regard C = R
2 as usual.

Identifying v ≈ C with 1 + vε ≈ Č, we see that Č1 acts on C as rigid transformation.

3 Relation to SE(2)

In the previous section, we constructed the unit anti-commutative dual complex
numbers Č1 and its action on C = R

2 as rigid transformation. Recall that p̂ =
p0 + p1ε ≈ Č1 acts on v ≈ C by

p̂ ∞ (1 + vε) = (p0 + p1ε)(1 + vε)( p̃0 + p1ε) = 1 + (p2
0v + 2p0 p1)ε, (1)

that is, v maps to p2
0v + 2p0 p1. For example, when p1 = 0, v ≈ C is mapped to

p2
0v, which is the rotation around the origin of degree 2 arg(p0) since |p0| = 1. On

the other hand, when p0 = 1, the action corresponds to the translation by 2p1. In
general, we have

ϕ : Č1 → SE(2)

p0 + p1ε ∼→



Re(p2

0) −Im(p2
0) Re(2p0 p1)

Im(p2
0) Re(p2

0) Im(2p0 p1)

0 0 1



⎧,

where Re(2p0 p1) (respectively, Im(2p0 p1)) is the real (respectively, imaginary) part
of 2p0 p1 ≈ C. Note that this gives a surjective group homomorphism ϕ : Č1 →
SE(2) whose kernel is {±1}. That is, the preimage of any 2D rigid transformation
consists of exactly two unit DCN’s with opposite signs.

Example 1 We compute the DCN’s ± p̂ ≈ Č1 which represent θ -rotation around
v ≈ C. It is the composition of the following three rigid transformations: (−v)-
translation, θ -rotation around the origin, and v-translation. Thus, we have

p̂ =
⎪

1 + v

2
ε
⎨

·
⎪
±e

θ
2 i
⎨

·
⎪

1 − v

2
ε
⎨

= ±
⎪

e
θ
2 i +

⎪
e− θ

2 i − e
θ
2 i
⎨ v

2
ε
⎨
.
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4 Relation to the Dual Quaternion Numbers

The following ring homomorphism

Č ← p0 + p1ε ∼→ p0 + p1 jε ≈ Ĥ

is compatible with the involution and the conjugation, and preserves the norm. Fur-
thermore, if we identify v = (x, y) ≈ R

2 with 1 + (x j + yk)ε (= 1 + (x + yi) jε),
the above map commutes with the action. From this point of view, DCN is nothing
but a sub-ring of DQN.

Note also that Č can be embedded in the ring of the 2 × 2-complex matrices by

p0 + p1ε ∼→
⎝

p0 p1
0 p̃0

⎞
.

Then
˜
⎝

p0 p1
0 p̃0

⎞
=
⎝

p̃0 p1
0 p0

⎞
,

⎩⎩⎩⎩

⎝
p0 p1
0 p̃0

⎞⎩⎩⎩⎩
2

= det

⎝
p0 p1
0 p̃0

⎞
.

We thus have various equivalent presentations of DCN. However, our presentation
of Č as the anti-commutative dual numbers is easier to implement and more efficient.

5 Interpolation of 2D Rigid Transformations

First, recall that for the positive real numbers x, y ≈ R>0, there are two typical
interpolation methods:

(1 − t)x + t y, t ≈ R

and
(yx−1)t x, t ≈ R.

The first method can be generalized to DQN as the Dual quaternion Linear Blend-
ing in [7]. Similarly, a DCN version of Dual number Linear Blending (DLB, for short)
is given as follows:

Definition 3 For p̂1, p̂2, . . . , p̂n ≈ Č1, we define

DL B( p̂1, p̂2, . . . , p̂n; w1, w2, . . . , wn) = w1 p̂1 + w1 p̂2 + · · · + wn p̂n

|w1 p̂1 + w1 p̂2 + · · · + wn p̂n| , (2)

where w1, w2, . . . , wn ≈ R. Note that the denominator can become 0 and for those
set of wi ’s and p̂i ’s DLB cannot be defined.
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A significant feature of DLB is that it is distributive (it is called bi-invariant in some
literatures). That is, the following holds:

p̂0 DL B( p̂1, p̂2, . . . , p̂n; w1, w2, . . . , wn) = DL B( p̂0 p̂1, p̂0 p̂2, . . . , p̂0 p̂n; w1, w2, . . . , wn).

This property is particularly important when transformations are given in a certain
hierarchy such as in the case of skinning; if the transformation assigned to the root
joint is modified, the skin associated to lower nodes is deformed consistently.

Next, we consider the interpolation of the second type. For this, we need the
exponential and the logarithm maps for DCN.

Definition 4 For p̂ = p0 + p1ε ≈ Č, we define

exp p̂ =
∞⎢

n=0

(p0 + p1ε)
n

n! = ep0 + (ep0 − e p̃0)

p0 − p̃0
p1ε.

When exp p̂ ≈ Č1, we can write p0 = θ i for some −π ⊥ θ < π , and

exp p̂ = eθ i + sin θ

θ
p1ε.

For q̂ = eθ i + q1ε ≈ Č1, we define

log(q̂) = θ i + θ

sin θ
q1ε.

As usual, we have exp(log(q̂)) = q̂ and log(exp( p̂)) = p̂. Note that this gives the
following Lie correspondence (see [3, 8])

exp : dcn → Č1,

log : Č1 → dcn,

where dcn = {θ i + p1ε ≈ Č | θ ≈ R, p1 ≈ C} � R
3. We have the following

commutative diagram:

where

dϕ : dcn → se(2)
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Table 1 Comparison of computational cost

Transformation
(FLOPs)

Composition
(FLOPs)

Conversion
(FLOPs)

Memory usage
(scalars)

DCN 22 20 15 4
DQN 92 88 NA 8
2 × 2-complex

matrix
112 56 15 8

3 × 3-real
matrix

15 45 18 (to DCN) 9

θ i + (x + yi)ε ∼→



0 −2θ 2x

2θ 0 2y
0 0 0



⎧,

is an isomorphism of R-vector spaces.
The following is a DCN version of SLERP [12].

Definition 5 SLERP interpolation from p̂ ≈ Č1 to q̂ ≈ Č1 is given by

SL E R P( p̂, q̂; t) = (q̂ p̂−1)t p̂ = exp(t log(q̂ p̂−1)) p̂,

where t ≈ R.

This gives a uniform angular velocity interpolation of two DCN’s, while DLB can
blend three or more DCN’s without the uniform angular velocity property.

6 Computational Cost

We compare the following four methods for 2D rigid transformation: our DCN, the
unit dual quaternion numbers (see Sect. 4), the 3 × 3-real (homogeneous) matrix
representation of SE(2), and the 2 × 2-complex matrices described below.

In (Table 1), we list the computational cost in terms of the number of floating
point operations for

• transforming a point
• composing two transformations
• converting a transformation to the standard 3×3-real matrix representation (except

for the 3 × 3-real matrix case where it shows the computational cost to convert to
DCN representation).

We also give the memory usage for each presentation in terms of the number of
floating point units necessary to store a transformation.

Note that when a particular application requires to apply a single transformation
to a lot of points, it is faster to first convert the DCN to a 3 × 3-real matrix.
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7 A C++ Library

We implemented our DCN. Though it is written in C++, it should be easy to translate
to any language. You can download the MIT-licensed source code at [13]. We also
included a small demo application for iOS.
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Phase Dynamics on the Modified Oscillators
in Bipedal Locomotion

Wulin Weng, Shin-Ichiro Ei and Kunishige Ohgane

Abstract Based on neurophysiological evidence, studies modeling human
locomotion system have shown that a bipedal walking is generated by mutual en-
trainments between the oscillatory activities of a central pattern generator (CPG) and
a Body. The walking model could well reproduce human walking. However, it has
been also shown that time delay in the sensorimotor loop destabilizes mutual entrain-
ments, which leads a failure to walk. Recently, theoretical studies have discovered a
phenomenon in which a CPG can induce the phase of its oscillatory activity to shift
forward according to time delay. This self-organized phenomenon overcoming time
delay is called “flexible-phase locking”. Then, theoretical studies have hypothesized
that one of the essential mechanisms to yield of flexible-phase locking is a stable
limit cycle of CPG activity. This study demonstrates the hypothesis in walking mod-
els through computer simulation by replacing the CPG model with the one having
different oscillation properties.
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1 Introduction

For motor control, time delays in signal transmission through a sensorimotor loop
cause a serious problem in general. It is well known that the loop time delay in human
locomotion systems is very long [1–4]. How a human overcomes the loop time delay
is a significant and important problem.

Based on neurophysiological evidences, studies for models of human locomo-
tion system have demonstrated that a bipedal walking is generated by a mutual
entrainment of oscillatory activities of a central pattern generator (CPG) and a mus-
culoskeletal system (Body) [5, 6]. The model could well reproduce human walking.
However, the model has also shown [7]) that even a short time delay (70 ms) in a
sensorimotor loop between the CPG and Body causes the failure to walk. On the
other hand, Ohgane et al. [8] have found that the system structure, i.e., the mutual
entrainment between the CPG and Body [5] can overcome loop time delays by an
emergent adaptive phenomenon. It was called flexible-phase locking in [8], in which
the phase of CPG activities shifts forward according to an interval of loop time delay.
Emergence of flexible-phase locking has been discovered by the modification of the
walking model. The main point of the modification was the replacement of neuron
models to compose a CPG. While the previous studies (Taga et al. [5]) has used
harmonic oscillators [9, 10] to compose the CPG, Ohgane et al. [8] have modeled
the CPG by Bonhöffer van del Pol (BVP) equations [11] which is known as a phys-
iologically faithful neuron model. The mechanisms causing flexible-phase locking
are interesting from the viewpoint of motor control or neuroscience. Simplifying
the waking model yielding flexible-phase locking [8] and analyzing the simplified
model, Ohgane et al. have also argued in [12] that one of the mechanisms for causing
flexible-phase locking is a stable limit cycle of CPG activity. However, the simplifica-
tion has been based on only a few characteristics of walking models and conveniences
for analysis. That is, the simplified model has been not described by the reduction
of the walking model. Whether the mechanisms understood by the analysis of the
simplified model have an universality in human locomotion phenomena or not is
an open question. That is, whether the similar mechanisms induce flexible-phase
locking in human locomotion model or not is an inevitable problem.

The purpose of this chapter is a direct confirmation of it. We investigate the validity
of neuronal limit cycles as a mechanism yielding flexible-phase locking in human
walking model. Replacing the description of CPG neurons by ones having different
oscillation properties, we can observe phase shift behaviors of the CPGs. Using two
kinds of limit cycle oscillators with different properties mentioned below, we confirm
the behaviors of phase shift. The one is β − μ system [13–15], in which the orbit
pattern is of just harmonic oscillation but it is originally stable. The other is Van der
Pol oscillator [16], in which the limit cycle orbit is formed typically by a distortion
of the orbit of harmonic oscillations. Replacing CPG neurons with these oscillators,
we also observe the occurrence of flexible-phase locking of the CPG in the walking
model with loop time delays.
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Fig. 1 Outline of the walking
model (a delayed synaptically
coupling of CPG and Body.)
ξa is an afferent time delay
and ξe is an efferent time
delay. This figure is from [8]

2 Flexible-Phase Locking in the Walking Model

2.1 Walking Model

In this section, we introduce a walking model in which flexible-phase locking can
occur [8]. We called this model the delayed direct-coupled CPG and Body (Fig. 1).

The time delays through the sensorimotor loops are assumed to be represented as
follows: The total time delay ξt through the loop consists of two equivalent amounts
of time delay ξt = ξa +ξe, i.e., an afferent delay ξa and an efferent delay ξe [7].
Moreover, ξa = ξe(=: ξ) was assumed for simplicity [17, 18].

The equations for Body are represented by means of the Newton-Euler method
(Appendix). We denote x = (x1, . . . , x6) ≈ R6 a vector of the mass point positions
of 1 link and the inertial angles of 4 links as shown in Fig. 9.

The CPG composed of 12 neurons (Fig. 2) is represented by the following coupled
BVP (Bonhöffer van del Pol) differential equations [11]:

⎛
⎝⎝⎝⎞

⎝⎝⎝⎠

πi u̇i (t) = ui (t) − vi (t) − ui (t)3/3 +
12∑

i j=1

(wi j yi ) + u0 + εw Fi (x(t − ξ)),

π →
i v̇i (t) = ui (t) + a − bvi (t),

yi = f (ui (t)), f (u) = max(0, u) (i = 1, 12),

(1)
where ui is the potential of the i th neuron; vi is responsible for the accommodation
and refractoriness of the i-th neuron; wi j denote connecting weight from the i-th
neuron to the j-th neuron; πi and π

,
i are the time constants of the potential and
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Fig. 2 Ohgane’s walking model [8] which can yield flexible-phase locking. The central pattern
generator (CPG) has been described by using Bonhöffer van del Pol (BVP) equation which is known
as physiologically faithful neuron model. The CPG, Body, and feedback pathway are shown. ui
is the potential of the i-th neuron in the CPG. ∈ and • denote an excitatory connection and an
inhibitory connection, respectively. x3, x4, x5, and x6 are the angles of Body segments. The motion
of the hip, the knee joint and the ankle joint in the right leg are governed by neurons 1–2, 3–4,
and 5–6, respectively. Similarly, the motion of the joints in the left leg is governed by neurons
7–12. Odd-numbered neurons control flexions of the joint, while even-numbered neurons control
its extension. The hip joint angles of both legs are used as feedback to the hip joint neurons. The
afferent delay ξa and the efferent delay ξe take place in the transmission of the neuronal output and
of the feedback, respectively. εw and φw are the afferent coupling strength and the efferent coupling
strength. It is confirmed by computer simulations that the CPG itself has an asymptotically stable
limit cycle. This figure is from [8]

the accommodation and refractory effects, respectively; yi is the output of the i-th
neuron; u0 is a constant parameter. ξ is a time delay. εw is a positive coefficient of
afferent connections from the Body to the CPG; Fi is a sensory feedback; t is time;
a and b are positive constants; the natural frequency of each joint neuron (πi , π

→
i ) is

a set of values similar to the natural frequency of each joint angle [5].
The CPG and Body interact by a torque from the Body (Tr in Appendix) and

sensory feedbacks Fi (i = 1, . . . , 12). The torque and sensory feedbacks reach with
time delays (ξa and ξe in Fig. 1). The torque Tr was assumed to be proportional to
the magnitude of the neuronal output from the CPG.
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Fig. 3 Flexible-phase locking of the CPG neuron described by BVP equations in the walking model
[8] shown in Fig. 2. The graph shows the activities of flexor neuron (y1) and angle motion (x5) in
the left leg. Solid line, dotted line, and dot-dashed line denote the neuronal output, the delayed
neuronal output, and the joint angle motion, respectively. Arrows indicate the phase difference
between neuronal output and joint angle motion, and between delayed neuronal output and joint
angle motion. The phase of neuronal output is shifted forward according to ξt ; t1, t2 are the times
represented in this figure, and c is a constant value. Therefore, the phase relationship between
delayed neuronal output and joint angle motion is maintained constant. This figure is from [12]

The CPG receives sensory feedback from the Body. The feedback Fi (i =
1, . . . , 12) to the i-th neuron is given as follows:

F1 = F, F2 = F →, F7 = F →, F8 = F, Fi = 0 (else),

where F, F → are given as follows:

F = − f (−x5(t − ξ)), F → = − f (−x3(t − ξ)), f (x) = max(0, x),

where x3 and x5 are the thigh angles of the right and left legs at the hip joint,
respectively, as defined in Appendix.

The walking model has shown behaviors adaptive to time delay. The system
successfully walks by a forward phase shift of the CPG activity, according to the
time delay interval as shown in Figs. 3 and 4. The results (Figs. 3, 4) are simulated
by C programming and Newton-Euler method (see Appendix).

We call such adaptive phase shift flexible-phase locking. Investigating mechanisms
of flexible-phase locking, the previous theoretical studies [12] have argued that one
of the essential mechanisms is a stable limit cycle of CPG activity. If the mechanism
is true for the flexible-phase locking, similar structures can be observed even if the
limit cycle of the CPG is replaced with other limit cycles. In the next section, we
demonstrate it by replacing the oscillator of the CPG with other two oscillators.
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Fig. 4 The forward phase
shift of neuronal output of
the CPG described by BVP
equations in the walking
model [8] is shown as a
function of the total time
delay ξt . The vertical axis

denotes
t2 − t1

T
− ζ

2
. T is a

period of walking cycle. t1, t2
are the times represented in
Fig. 3. The phase of neuronal
output is shifted forward
according to ξt . This figure is
from [12]

3 The Walking Systems with Other CPG Models

3.1 λ − μ System

The β − μ system is {
u̇ = ρ(β − u2 − v2)u − μv,
v̇ = ρ(β − u2 − v2)v + μu

(2)

for positive constants ρ > 0, β > 0 and μ > 0. It is easy to see that (2) has a
stable periodic solution S(t) = ∞

β(cos μt, sin μt) with the period p := 2ζ/μ and
amplitude

∞
β.

In this subsection, we revise Ohgane’s model (1) by replacing BVP equations with
β − μ system. Through computer simulations, we confirm that the revised model
could also overcome loop time delays by flexible-phase locking. The revised CPG
model is represented by the following differential equations:

{
u̇i (t) = ρi (βi − u2

i (t) − v2
i (t))ui (t) − μi vi (t) + u0 + εw Fi (x(t − ξ)),

v̇i (t) = ρi (βi − u2
i (t) − v2

i (t))vi (t) + μi ui (t),
(3)

where ρi , βi and μi are the positive parameters.
Here we denote that in no time delay condition ξt = 0ms, the system walks

stably.
In various conditions of time delay intervals, the system could walk by shifting

forward of its CPG activity, as shown in Figs. 5 and 6.
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Fig. 5 Flexible-phase locking caused by the CPG composed of β − μ systems (3) in the walking
model. The graph shows the activities of flexor neuron (y1) and angle motion (x5) in the left leg. Red
line, green line, and blue line denote the neuronal output, the joint angle motion, and the delayed
neuronal output, respectively. where the parameters ρi = 1.0, βi = 1.0, μi = 5.0. The phase of
neuronal output is shifted forward according to ξt . t1, t2 are the times represented in this figure and
c1 is a constant value. Therefore, the phase relationship between delayed neuronal output and joint
angle motion is maintained constant

Fig. 6 The forward phase
shift of neuronal output caused
by the CPG composed of
β − μ systems (3) in the
walking model are shown as a
function of the total time delay
ξt . The vertical axis denotes
t2 − t1

T
− ζ

2
. T is a period of

walking cycle. t1, t2 are the
times represented in Fig. 5

3.2 Van der Pol Oscillator

The Van der Pol oscillator also has a stable limit cycle. Its stability of the orbit is
produced by nonlinear damping governed by the second-order differential equation.
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Fig. 7 Flexible-phase locking caused by the CPG composed of Van der Pol oscillators (5) in the
walking model. The graph shows the activities of flexor neuron (y1) and angle motion (x5) in
the left leg. Green line, red line, and blue line denote the neuronal output, the joint angle motion,
and the delayed neuronal output, respectively. The phase of neuronal output is shifted forward
according to ξt . ρi = 1.0, t1, t2 are the times represented in this figure. c2 represents a constant
value. Therefore, the phase relationship between delayed neuronal output and joint angle motion is
maintained constant

ü − ρ(1 − u2)u̇ + u = 0,

where u is the dynamical variable and ρ > 0 a parameter.
Another commonly used form based on the transformation v = u̇ is leading to

{
u̇ = v,
v̇ = ρ(1 − u2)v − u.

(4)

In this subsection, we revise Ohgane’s model (1) by replacing BVP equations
(1) with Van der Pol oscillator. Through computer simulations, we confirm that the
revised model can also overcome loop time delays by flexible-phase locking. The
revised CPG model is represented by the following differential equations:

⎛
⎝⎝⎞

⎝⎝⎠

u̇i (t) = vi (t) +
12∑

i j=1

(wi j yi ) + u0 + εw Fi (x(t − ξ)),

v̇i (t) = ρi (1 − u2
i (t))vi (t) − ui (t),

(5)

where ρ is the positive parameter.
Here we denote that in no time delay condition ξt = 0 ms, the system walks

stably.
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Fig. 8 The forward phase
shift of neuronal output caused
by the CPG composed of Van
der Pol oscillators (5) in the
walking model are shown as a
function of the total time delay
ξt . The vertical axis denotes
t2 − t1

T
− ζ

2
. T is a period of

walking cycle. t1, t2 are the
times represented in Fig. 7

In various conditions of time delay intervals, the system could walk by shifting
forward of CPG activity, as shown in Figs. 7 and 8.

4 Conclusions

As conjectured in the previous studies, one of the essential mechanisms causing
flexible-phase locking is a stable limit cycle of CPG activity. In this paper, in order to
confirm it, we revised Ohgane’s walking model [8] by replacing the CPG model. For
the replacement of the CPG model, we prepared two other CPG models that have
different machinery for production of limit cycle each other. Moreover, they can
nearly harmonically oscillate by modulation of their parameters. Computer simula-
tions of the two revised walking models suggested that the walking system can yield
flexible-phase locking when the CPG oscillates as stable limit cycles, regardless of
the mechanism of limit cycle; flexible-phase locking becomes hard to occur when the
stability of limit cycle of CPG oscillation weakens. Thus, we confirmed the validity
of the conjecture that one of the essential mechanism for the yield of flexible-phase
locking is a stable limit cycle of CPG activity. This mechanism is suggested to have
an universality in bipedal walking models. Further investigations on the mechanism
causing flexible-phase locking are in progress.
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Fig. 9 Model of bipedal Body
as an interconnected chain of
five rigid links (a point mass
m1 on the hip and four rigid
bodies Ii (i = 1, 4)

Appendix: The Body of the Walking Model

All variables and conventions correspond to those shown in Fig. 9. All variables and
parameters follow the ones proposed by Taga (1994). By using the Newton-Euler
method, motion of the Body (Taga, 1991) can be written as follows:

P(x)ẍ = Q(x, ẍ, Tr (y)),

therefore,
ẍ = [P(x)]−1Q(x, ẍ, Tr (y)).

References

1. Hammond PH (1956) The influence of prior instruction to the subject on an apparently invol-
untary neuro-muscular response. J Physiol 132:17–18

2. Chan CWY, Melvill JG, Kearney RE, Watt DG et al (1979) The late electromyographic response
to limb displacement in man. I. Evidence for supraspinal contribution. Electroencephalogr Clin
Neurophysiol 46:173–181

3. Chan CWY, Melvill JG, Kearney RE, Watt DG et al (1979) The late electromyographic response
to limb displacement in man. ii. sensory origin. Electroencephalogr Clin Neurophysiol 46:182–
188

4. Shinoda Y, Yamaguchi T, Futami T et al (1986) Multiple axon collaterals of single corticospinal
axons in the cat spinal cord. J Neorophysiol 55:425–448

5. Taga G, Yamaguchi Y, Shimizu H et al (1991) Self-organized control of bipedal locomotion
by neural oscillators in unpredictable environment. Biol Cybern 65:147–159

6. Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science
228:143–149

7. Taga G (1994) Emergence of bipedal locomotion through entrainment among the neuro-
musculo-skeltal system and environment. Phys D 75:190–208

8. Ohgane K, Ei SI, Kudo K, Ohtsuki T et al (2004) Emergence of adaptability to time delay in
bipedal locomotion. Biol Cybern 90:125–132



Phase Dynamics on the Modified Oscillators in Bipedal Locomotion 149

9. Matsuoka K (1985) Sustained oscillations generated by mutually inhibiting neurons with adap-
tation. Biol Cybern 52:367–376

10. Matsuoka K (1987) Mechanisms of frequency and pattern control in the neural rhythm gener-
ators. Biol Cybern 56:345–353

11. Fitzhugh R (1961) Impulses and physiological states in theoretical models of nerve membrane.
Biophys 1:445–466

12. Ohgane K, Ei SI, Mahara H (2009) Neuron phase shift adaptive to time delay in locomotor
control. Appl Math Model 33:797–811

13. Ei SI (2004) A remark on the interpretation of periodic solutions. Bull Jpn Soc Ind Appl Math
14(1):35–47

14. Ei SI, Ohgane K (2011) A new treatment for periodic solutions and coupled oscillators. Kyushu
J Math 65:197–217

15. Weng WW, Ei SI, Ohgane K (2012) The functional roles of time delay on flexible phase-locking
in bipedal locomotion. J Math-for-Industry 4:123–133

16. Van der Pol B (1920) A theory of the amplitude of free and forced triode vibrations. Radio Rev
1(701–710):754–762

17. Caruso G, Labianca O, Ferrannini E et al (1973) Effect of ischemia on sensory potentials of
normal subjects of different ages. J Neurol Neurosurg Psychiatry 36:455–466

18. Mankovskij NB, Timko NA et al (1973) Age-related characteristics of the functional condition
of the neoromuscular system. Z Alterforsch 27:191–200



Part V
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Single-View 3D Reconstruction
by Learning 3D Game Scenes

Makoto Okabe, Ken Anjyo and Rikio Onai

Abstract We report a method for reconstructing a three-dimensional (3D) depth map
using a single two-dimensional (2D) image. Our method is designed to reconstruct
manmade objects, such as buildings. We first estimate the normal map, and then
integrate it to obtain the depth map. To estimate the normal map, we analyze the
co-occurrence relation between the normal vectors and image features in a training
dataset. We consider the corners and lines to be the image features. The training
dataset is formed of 3D game scenes. In the offline learning phase, we detect corners
and lines in the normal map of each game scene using a detection algorithm, and
observe the normal vectors around them. Then we construct a database of the co-
occurrence relations, i.e., how frequently each corner or line appears with each normal
vector. In the online reconstruction phase, given an input image, we detect the corners
and lines using the same detection algorithm, and estimate the normal vectors around
them based on the learned co-occurrence relation. We formulate this estimation using
a Markov random field. Finally, the estimated normal map is integrated by solving
Poisson’s equation, and we obtain a depth map.

Keywords Single-view modeling · Tour into the picture · Image-based modeling ·
Image database · Markov random field · Corner detection
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1 Introduction

Three-dimensional (3D) geometry is one of the most important cues for scene under-
standing, and thus 3D reconstruction has been one of the most actively researched
areas in the fields of computer vision and graphics for decades. Multi-view stereo
techniques, such as those used by Google Maps—Photo Tours [1], and depth sensors,
such as Microsoft’s Kinect, have become powerful tools for precisely reconstructing
scene geometries. However, single-view reconstruction techniques are also popular
and have been the subject of much recent research. It is not straightforward to recon-
struct precise scene geometries; however, because only a single image is required,
it is always easy and intuitive to use. No special hardware is required, and so the
technique is generally inexpensive to implement. Animations in which the viewpoint
of a single image is changed always have visual impact [2–6].

2 System Overview

First we analyze the co-occurrence relation between the normal vectors and the
image features in the training dataset. Our training dataset was a set of normal maps
of game scenes, as shown in Fig. 1a. In Fig. 1, the normal map is color-coded, i.e.,
each normal vector, (nx , ny, nz), at a pixel becomes proportional to the magnitude
of the RGB color vector (r, g, b). In the offline-learning phase, we detect corners
(see Fig. 1b) and lines (see Fig. 1c) in the normal map of each game scene using an
corner-detection algorithm. Then we observe the normal vectors around them, and
construct a database of the co-occurrence relation, i.e., how frequently each corner
or line appears with each normal vector (see Fig. 1d, e).

In the online reconstruction phase, given the input image shown in Fig. 1f, we can
detect corners and lines using the same detector (see Fig. 1g, h). Then we estimate the
normal vectors around them based on the learned co-occurrence relation (see Fig. 1i).
We consider this estimation an assignment problem of normal vectors to pixels of
the input image. We formulate this assignment problem using the Markov random
field (MRF), where corners function as data terms, and lines function as smoothness
terms. Finally, we integrate the estimated normal map by solving Poisson’s equation,
and obtain the depth map shown in Fig. 1j.

3 Training Data

The training dataset was a set of normal maps of game scenes (see Fig. 1a). A sample
scene in our training dataset is shown in Fig. 2a, and the corresponding depth and
normal maps are shown in Fig 2b, c. We used the 3D city-building game Anno 1404,
published by UBISOFT [7], to gather our training data. We captured 236 scenes in the
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Fig. 1 Overview of the offline-learning phase (top row) and the online reconstruction phase (bottom
row). The normal map is color-coded, i.e., each normal vector, (nx , ny, nz), at a pixel becomes
proportional to the magnitude of the RGB color vector (r, g, b)

Fig. 2 A sample scene in our
training dataset

3D game world. Because we want to reconstruct manmade objects, we intentionally
chose scenes of multiple buildings.

4 Offline Learning

Our representation of a corner is shown in Fig. 3. Given an image of a Y-junction,
such as that shown in Fig. 3a, we can see the three corners of red, yellow, and blue
around it, as shown in Fig. 3b. A single corner has two arms, i.e., it can be represented
by a pair of angles, θ and φ, as shown in Fig. 3c.

4.1 Co-occurrence of Normal Vectors and Corners

We analyzed the co-occurrence relation between normal vectors and corners. We
applied the corner-detection algorithm to each normal map in the training dataset.
At each detected corner, we observed the normal vectors at the pixels in the sector
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(a) (b) (c)

Fig. 3 Our representation of a corner

Fig. 4 a Map of the frequency of appearance of corners that have green normal vectors. The
horizontal and vertical axes represent the direction of the arms, θ and φ. b The red and yellow
corners correspond to the center pixels of the red and yellow circles in the maps of the frequency
of appearance of corners. c Map of the frequency of appearance of corners that have pink normal
vectors

between the two arms. Figure 4a shows a map of the frequency of appearance of
corners that have the green normal vector between their two arms. The horizonal and
vertical axes represent the direction of the arms, θ and φ, and thus each pixel corre-
sponds to a corner. The pixel intensity is proportional to the frequency of appearance
of the corresponding corner.

4.2 Co-occurrence of Normal Vectors and Lines

The line-detection algorithm is similar to that for corner detection. We detect a line
by finding a corner where |θ − φ| = 180. At each detected line, we observe the pair
of normal vectors appearing across the line. Figure 5a shows a map of the frequency
of appearance of pairs of normal vectors appearing across the vertical line. The
horizontal axis represents the index of the normal vectors that appear at the left side
of the line. The vertical axis represents the index of the normal vectors that appear
at the right side. Each pixel corresponds to a pair of normal vectors appearing at the
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(a) (b) (c)

Fig. 5 a Map of the frequency of appearance of pairs of normal vectors appearing at the left and
right sides of the vertical line. b The pair of normal vectors observed across the red, yellow, and
orange lines corresponds to the pixel at which the arrow of the corresponding color in the maps
points. c Map of the frequency of appearance of pairs of normal vectors appearing at the left and
right sides of the diagonal line

left and right sides of the line. The pixel intensity is proportional to the frequency of
appearance of the corresponding pair of normal vectors.

5 Online Reconstruction

Given a target image, we estimate the normal map assuming that the normal vectors
will appear with corners and lines detected in the target image according to the
frequency of appearance analyzed as described in the previous section. We formulate
the estimation as the assignment problem of an adequate normal vector to each pixel
of the target image.

To simplify the assignment problem, we do not consider all of the normal vectors,
rather we chose the representative normal vectors. The estimation of the normal
map has become simpler. Given a target image with M pixels, the objective of our
algorithm is to perform the assignment A = [n1...nM ], i.e., one of the representative
normal vectors to each pixel. We wish to estimate the assignment,

A∗ = argmaxA

∏

p

P(n p|cp)

(
∏

p,q

P(n p, nq |l pq)

)λ

, (1)

where n p and nq are the normal vectors assigned to the neighboring pixels p and q.
Equation (1) is the standard formulation of MRF, where P(n p|cp) is the data term
and P(n p, nq |l pq) is the smoothness term.

The term P(n p|cp) represents the probability that n p will be assigned to the pixel
p subject to the condition that the corner cp is observed in the pixel p. Applying
Bayes’ theorem, we factor the term as,
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Fig. 6 a The input image, b detected corners, c detected lines, d estimated normal map

P(n p|cp) ∝ P(cp|n p)P(n p), (2)

where P(cp|n p) is the probability distribution of the corner cp subject to the condition
that the normal vector n p is observed in the pixel p. This probability distribution is
equal to the normalized version of the map of the frequency of appearance.

The term P(n p, nq |l pq) represents the probability that the pair of normal vectors
n p and nq will be assigned to the neighboring pixels p and q subject to the condition
that the line l pq is observed around the pixels p and q. P(n p, nq |l pq) is equal to the
normalized version of the map of the frequency of appearance.

We transform the maximization problem in Eq. (1) into a minimization problem
as follows:

A∗ = argmin A

∑

p

V (n p) + λ
∑

p,q

W (n p, nq), (3)

where the data term is V (n p) = −log(P(n p|cp)) and the smoothness term is
W (n p, nq) = −log(P(n p, nq |l pq)). We solve this energy-minimization problem
using the graph-cut method [8], together with the α − β swap algorithm.
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6 Results and Discussion

Figures 1 and 6 shows the target images, detected corners and lines, and estimated
normal maps. The target image of Fig. 6-1-a shows a simple object consisting of a
small number of flat surfaces. For this image, our method successfully estimate the
reasonable normal map. The estimated normal map consists of three major colors of
green, purple, and gray, whose directions are left, upward, and bottom-right. On the
other hand, the other target images are photographs. For these images, the estimated
normal maps are not perfect but have wrong normal vectors and look noisey. These
errors are caused by the errors of detected corners and lines. Since the target image
of Fig. 6-1-a is simple and has no detailed texture, the corners and lines are detected
almost perfectly shown as Fig. 6-1-b. On the other hand, some of the corners and
lines are detected wrongly in the other photographs because of their high frequency
textures. One important furture work is to improve the accuracy of the corner and
line detection.
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Facial Aging Simulation by Patch-Based
Texture Synthesis with Statistical Wrinkle
Aging Pattern Model

Akinobu Maejima, Ai Mizokawa, Daiki Kuwahara
and Shigeo Morishima

Abstract We propose a method for synthesizing a photorealistic human aged-face
image based on the patch-based texture synthesis using a set of human face images
of a target age. The advantage of our method is that it synthesizes an aged-face image
with fine skin texture such as spots and pigments of facial skin, as well as age-related
facial wrinkles without blurs (such as those resulting from lack of accurate pixel-wise
alignments as in the linear combination model) while maintaining the quality of the
original image.

Keywords Automatic · Facial aging · Image patch · Texture synthesis · Wrinkle ·
Agind pattern · Statistical model

1 Introduction

Predicting the current facial appearance of wanted or missing people who have been
missing for several years is an important task in criminal investigation. Previously,
sketches or photomontages have been used for this purpose. However, it is not easy
to predict and depict one’s realistic facial appearance only from photographs that are
several years old and some interviews, because the quality of the resulting sketch or
montage highly depends on the skill of the forensic artists. Thus, an automatic facial
aging simulator, which can synthesize a photorealistic facial appearance based on
statistics from the actual aging process, is required.
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Automatic facial aging simulation methods have been proposed by many
researchers [2, 3, 5, 6, 9, 10, 12]. Most of the conventional methods adopts a linear
combination model such as active appearance model [2, 3, 5, 6, 9] or 3D morphable
model [10] to parameterize both facial geometry and appearance. However, in the
case of linear combination, which relies on bases, the resulting image is somewhat
blurred because the alignment between features, which appear for different individu-
als or ages is impossible. Burt and Perett reported that perceived age of transformed
faces by incorporating the difference between composite faces from different age
groups onto real face images. Moreover, they described that the averaging operation
involved in creating composite faces was observed to smoothen facial creases and
result in composite faces appearing younger than those from their own age groups.
Therefore, it is important to represent fine age-related features such as facial wrinkles,
pores, pigments which are strongly affected by age perception [1].

To solve this problem, Tazoe et al. have proposed patch-based facial aging texture
synthesis using human face images of the target age [12]. This method is based on
the assumption that if we accurately reconstruct an input face using image patches of
the target age, the resulting face would be the same individual’s aged-face. Actually,
their method can generate a photorealistic face image with fine age-related features.
However, the resulting face sometimes does not look like the original person because
the original face has been completely replaced by the reconstructed face. Moreover,
age-related features such as wrinkles may be incorrectly expressed depending on the
pixel intensity pattern of a patch in the input image.

In this chaper, we propose an automatic facial aging simulation method, which
can overcome the above mentioned problems. Our method is based on patch-based
texture synthesis using facial images of the target age. Using the statistical wrinkle
aging pattern model, we predict the resulting facial wrinkle appearance (shape, depth,
and length) of the target age. Moreover, we introduce a modified Poisson solver to
seamlessly merge between image patches, and to keep the original facial appearance
in the region which influences the individual perception and skin tone.

The principal contribution of this paper is to provide a simulator, which can
synthesize photorealistic aged-face images with detailed textures such as spots and
pigments of facial skin, as well as age-related facial wrinkles, while maintaining the
identity of the original face.

2 Overview

Our facial aging simulation pipeline is depicted in Fig. 1. The facial aging simulation
begins with the pre-processing to create patch libraries for age groups and to train
the Statistical Wrinkle Aging Pattern Model. Then given an input face image, the
actual simulation is done by the runtime processing.
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Fig. 1 Our facial aging simulation pipeline. Note that, any images of the target person are not
contained in our database for creating path libraries and training the Statistical Wrinkle Aging
Pattern Model

Preprocessing:
We collect face images corresponding to various ages, and create an average shaped
face model for all faces. Then, shape normalized face image for each face image
is generated by the same procedure as the facial shape normalization phase in the
runtime processing. Then, we divide shape normalized face images into small square
patches with some overlap between neighbors (in this paper, above and to the left). In
this paper, the size of each patch is 42 by 42 pixels for 300 by 300 pixel face image and
Each patch overlaps each other by 10 pixels. At the same time, an index representing
the original position before cutting out are associated with each patch. Then, we
construct patch library of age groups for which patches are grouped according to the
labeled index. Also, the statistical wrinkle aging pattern model is trained by using
longitudinal facial images (details are described in Sect. 4).

Runtime processing:
Shape normalization To remove geometric difference between individuals and to
concentrate texture variations, we need to normalize an input facial shape to the
average shape. First, 89 facial feature points including eyes, eye brows, nose, lips,
and facial contour are detected from the input image using Zhang’s technique [13].
Second, the average face model is deformed using Radial Basis Functions [4] so that
the vertices of the face model are matched to corresponding detected feature points.
Finally, the deformed face model with the input image is rendered into the image.
As a result, we can obtain a face image that the shape is normalized to that of the
average face.
Overwriting pseudo facial wrinkles Pseudo facial wrinkles generated by the sta-
tistical wrinkle aging pattern model (details are described in Sect. 4) consisted of
curves representing wrinkles from individual face images over ages are overwritten
onto the shape normalized image in order to simulate individual aging, especially
with facial wrinkle, which significantly influence human perception of age.
Patch selection and tiling The shape normalized face image is reconstructed by
patch-based texture synthesis using patches of the target age (details are described
in Sect. 3).



164 A. Maejima et al.

Back to the original shape and geometric aging The shape of the resulting face is
deformed toward that of the original face by performing an inverse operation of the
facial shape normalization phase. At this time, to represent geometric aging effect,
the facial shape is deformed using Tazoe’s technique [12]. The complete aged-face
image is generated by embedding the resulting face into the input face image.

3 Patch-Based Texture Synthesis Using Age-Specific Patches

The shape normalized face image is reconstructed by patch-based texture synthesis
using patches of the target age. The patch-based texture synthesis can be done by
exhaustive search for the patch library at each labeled index (i, j) and tiling selected
patches with minimum energy in the raster scan order. The energy function E is
defined as weighted sum of the fitness term Eg and the regularization term El as
shown in Eq. (1).

E(i, j, n) = β ≈ Eg(i, j, n) + (1 − β) ≈ El(i, j, n) (1)

where n represents an unknown patch id in the library, which we would like to find
at index (i, j), Eg is the fitness term, which is defined as sum of squared difference
between two feature vectors of a shape normalized face image and patches at index
(i, j). ξi, j represents the region of an indexed patch at (i, j). I means a feature
vector of a normalized face image and P is that of the patch of the target age. In
this paper, a feature vector consists of the vector representation of the RGB pixel
intensity (r, g, b)T and Laplacian of Gaussian filtered response l at pixel (x, y) of a
patch, for example, I = (r, g, b, l)t → ∈4 (t is transpose).

Eg(i, j, n) =
∑

x,y→ξi, j

||I(x, y) − Pn
i, j (x, y)||2 (2)

El is a regularization term, which preserves the spatial coherency between the
selected patch and its neighboring patches. In other words, this term preserve visual
consistency of the resulting face. Obviously, El is calculated by sum of squared
difference between feature vectors that both overlap regions between the selected
patch and its neighboring patches. In this paper, neighboring patches are on its above
(i, j − 1) and left (i − 1, j) locations for (i, j). In our implementation, the squared
difference between all possible combinations of patches in each overlap region are
calculated and stored at the pre-processing stage. Optimal patches with minimum
energy are selected by exhaustive search for the patch library at each index (i, j)
in the raster scan order. Of course, overall patch selection result is affected by the
processing order depending on the weight for regularization term. Therefore, we
need to adjust the weight β so that patches from different persons can be chosen
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Fig. 2 Our modified Poisson
settings

as possible, while preserving visual consistency. We set β to 0.8 empirically (All
images in this paper were created by using same β).

Finally, the shape normalized face image is reconstructed by tiling selected patches
from top-left to the bottom-right. In this patch-tiling process, the modified Poisson
solver [11] seamlessly merges selected patches. Unlike seamless cloning algorithm
with naive Poisson [7], the modified Poisson solver can preserve the color of a
source image in the composite image by controlling the color preserving parameter.
Assuming that f is the vector representation of the desired pixel intensity, r is also the
same representation of the composed image intensity, and v is the guidance vector
field. The modified Poisson problem can be represented by the following equation.

min
f

(∫

T
||div v − ∞f ||22 dt + π

∫

T
||r − f ||22 dt

)
(3)

where, T is the region for the whole image, and π is the color preserving parameter,
which preserves the color of a source image in the resulting composite image. If
we set a small π, the resulting image would be affected by the composite image.
In our case, we would like to preserve the original skin tone of the input face as
much as possible rather than preserving the color of source image. Therefore, we
modify the original equation proposed by Tanaka et al. [11] by replacing r with f≈
which represents the corresponding intensity of the shape normalized face image
(Our setting is depicted as shown in Fig. 2):

min
f

(∫

T
||div v − ∞f ||22 dt + π

∫

T
||f≈ − f ||22 dt

)
(4)

By discretizing Eq. (4) and vanishing the derivative for a pixel value f p at a pixel p,
we can obtain the following equation.

(π + |Np|) f p − |Np|
∑

q→Np

fq = π f ≈
p − |Np|

∑

q→Np

vpq (5)

where f p is the pixel intensity at a pixel p and π is the weight, which decides the
effect from an input image. If we set a small π, the resulting image would be affected
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by the color of the reconstructed face image. Np is a set of neighboring pixels at
pixel p, and |Np| is the number of neighbors. Also, vpq is defined by the following
equations.

vpq =
{

gp − gq if p → ξ

f ≈
p − f ≈

q otherwise
(6)

where, gp and gq represent the pixel intensity at p and q of the reconstructed face
image, ξ also represents the region in which the gradients can be transferred (in
other words, age-related characteristics can be reflected). We set ξ containing the
eyes, nose, and lips to retain the identity of the original face. We consider Eq. (5) for
all pixels in the entire image and solve a sparse linear system. Finally, we can obtain
the intensity f for each pixel.

4 Statistical Wrinkle Aging Pattern Model

In the texture synthesis phase, occurrence and properties such as shape, depth and
length, and the number of wrinkles, pores and pigments of facial skin depend entirely
on the pixel intensity pattern in the focusing patch. As mentioned before, it is impor-
tant to represent fine age-related features such as facial wrinkles, pores, pigments
which are strongly affected by age perception [1]. In this paper, we introduce a Statis-
tical Wrinkle Aging Pattern Model (SWAPM) that can implicitly predict the wrinkle
appearance, including shape, depth, and length. The SWAPM provides a cue where
the appropriate patch can be selected in the patch selection process. The SWAPM
can be constructed by carrying out the following procedures using a longitudinal
facial image database such as the MORPH database [8]:

(a) Manually marking on left-right laugh lines, left-right crow’s feet, and facial
wrinkles on left-right orbits and forehead for each image in the database.

(b) Approximating each marked line using a parametric curve and parameterizing
each wrinkle by acquired parameters and wrinkle density of each facial wrinkle.
More specifically, we use a Ferguson curve for this approximation. The position
and velocity at the start/end points of the approximated curve and depth that are
decided based on the intensity distribution around the approximated curve are
stacked into a vector form for all approximated curves. We refer to the resulting
vector as the wrinkle vector for an individual.

(c) Collecting all wrinkle vectors at existing ages in the database and train the aging
pattern model in the same manner as the work by Park et al. [5] using principal
component analysis. We refer to the resulting linear combination model as the
SWAPM.

By changing the coefficient of the SWAPM, we can change the shape, depth, and
length of the wrinkles of the model as shown in Fig. 3. The patch selection result can
be modulated by adding or subtracting the pixel intensity from resulting wrinkles
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Fig. 3 Changing coefficients of SWAPM. The vertical axis corresponds different types of coef-
ficient of SWAPM and the horizontal axis means age groups. The brown lines represent pseudo
facial wrinkles generated by SWAPM. We found that shape, depth, and length of facial wrinkles
vary depending on coefficients across the ages

to a shape normalized image. We demonstrate variations of aging simulation for an
individual corresponding to Fig. 3 in Fig. 4. We found that our model can describe
the variation of aging process for facial wrinkles implicitly.

5 Result and Discussion

Aging simulation results from 10 years old to 60 years for each individual old are
shown in Fig. 5. Each row represents aging process for each individual and Each
red outlined image represents the original image for each individual. As shown in
Fig. 5, our method can represent fine-scale spots and pigments of facial skin that it are
difficult to represent using previous methods, as well as age-related facial wrinkles. In
addition, unlike previous methods, our method can utilize different image databases
for texture synthesis and aging pattern learning. As for texture synthesis, we use
facial images of peoples of different ages taken under controlled environment. As
for learning SWAPM, we utilize longitudinal facial images for each individual taken
under different conditions for facial expression, posture, illumination, and resolution.
Thus, we can preserve the quality of resulting texture. In general, it is usually hard
or even impractical to collect a large database of large amount of individuals who
can provide a series of individual images in different ages under the same shooting
condition. Therefore, this point is also advantage of our method.
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Fig. 4 Result of patch-based texture synthesis for Fig. 3. Similarly, the vertical axis corresponds
different types of coefficient of SWAPM and the horizontal axis means age groups. We observed
that variations of wrinkle aging pattern can be represented by SWAPM implicitly

Performance For every synthesized image in Fig. 5, shape normalization and
determining wrinkle shape and depth and overwriting pseudo facial wrinkles 0.81 s,
patch-based texture synthesis including patch selection and tiling 0.97 s, and geomet-
ric deformations 1 s. Entire process takes around 2.78 s in our experiments. Timings
are executed on a 2.7 Ghz Intel Core i7 with 8 GB RAM (2011 VAIO Z).

Limitations In patch-based texture synthesis, original features such as moles are
sometimes missing or placed in other locations. This is because the gradients of the
original image have been completely replaced by those of patches, which consist
from others except for the eyes, nose, and mouth region. However, this problem is
easy to solve if some user interaction is allowed. More specifically, we manually
specify the region ξ in which we would like to retain the identity, in Eq. (6). In
addition, we need to consider for optimal size and shape of a patch to improve the
quality of synthesized texture (Fig. 5).

Future works The capability to represent other aging effects including increas-
ing/decreasing weight and changes in one’s hair is one of the major concerns to be
addressed in future work. Moreover, we plan to improve our facial texture synthe-
sis for large pose and illumination changes between an input image and the patch
library, and to evaluate the performance of our method on public facial databases
like MORPH [8] database by performing a comparison with conventional methods.
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Fig. 5 Aging simulation result from 10 years old to 60 years old. Each red outlined image represents
the original image for each individual. We observed that our method can represent fine-scale features
like spots and pigments of facial skin that it are difficult to represent using previous methods

Acknowledgments This work was supported by the “R&D Program for Implementation of
Anti-Crime and Anti-Terrorism Technologies for a Safe and Secure Society”, funds for integrated
promotion of social system reform and research and development of the Ministry of Education,
Culture, Sports, Science and Technology, the Japanese Government.

References

1. Burt M, Perrett DI (1995) Perception of age in adult caucasian male faces: computer graphic
manipluation of shape and colour information. J Roy Soc 259:137–143

2. Geng X, Zhou Z-H, Smith-Miles KF (2007) Automatic age estimation based on facial aging
patterns. IEEE Trans PAMI 29(12):2234–2240

3. Lanitis A, Taylor CJ, Cootes TF (2002) Toward automatic simulation of aging effects on face
images. IEEE Trans PAMI 24(4):442–455

4. Noh J-Y, Fidaleo D, Neumann U (2000) Animated deformations with radial basis functions.
In: Proceedings of ACM Symposium on VRST’00, pp 166–174

5. Park U, Tong Y, Jain AK (2010) Age invariant face recognition. IEEE Trans PAMI 32(5):
947–954

6. Patterson E, Ricanek K (2006) Automatic representation of adult aging in facial images. In:
Proceedings of the 6th IASTED international conference on VIIP 2006, pp 171–176

7. Pérez P, Gangnet M, Blake A (2003) Poisson image editing. ACM Trans Graph 22(3):313–318
8. Ricanek K Jr, Tesafaye T (2006) MORPH: a longitudinal image database of normal adult

age-progression. In: IEEE 7th international conference on FG 2006, pp 341–345



170 A. Maejima et al.

9. Suo J, Chen X, Shan S, Gao W, Dai Q (2012) A concatenational graph evolution aging model.
IEEE Trans PAMI 34(11):2083–2093

10. Scherbaum K, Sunkel M, Seidel H-P, Blanz V (2007) Prediction of individual non-linear aging
trajectories of faces. Comput Graph Forum 26(3):85–294

11. Tanaka M, Kamio R, Okutomi M (2012) Seamless image cloning by a closed form solution of
a modified poisson problem. In: ACM SIGGRAPH ASIA 2012, Posters, 15

12. Tazoe Y, Gohara H, Maejima A, Morishima S (2012) Facial aging simulator considering geom-
etry and patch-tiled texture. In: ACM SIGGRAPH 2012, Posters, 46

13. Zhang L, Tsukiji S, Ai H, Lao S (2005) A fast and robust automatic face alignment system. In:
IEEE international conference on ICCV 2005 (Demo Program)



Animating Images of Cooking Using Video
Examples and Image Deformation

Syohei Sakiyama, Makoto Okabe and Rikio Onai

Abstract We describe a system that allows users to create animations of cooking
from a single picture. Here we focus on images of food being cooked, where steam,
bubbles, vibrations of the ingredients, and sizzling sounds are important to convey
a depiction of cooking. These elements can be expressed more effectively using
an animation than using a single image. However, it may be difficult to record a
video of cooking, because the heating involved in cooking changes the fresh and
colorful appearance of the ingredients. For these reasons, we propose a method for
animating an image of cooking using a combination of bubbles and steam videos, and
vibrating ingredients using image-deformation techniques. Although existing video
editing software can be used for this purpose, there is typically such a large array of
parameters that even professional users may have to invest a significant amount of
time to create the animation. Our method semi-automatically determines parameters
and allows even novice users to quickly and easily create an animation. Our system
allows the user to animate a cooking picture using a few sketch-based inputs in less
than 10 min.

Keywords Animating picture · Food · Image deformation ·Video database ·Video
texture · Video segmentation
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Fig. 1 The left image shows
a picture of a stew. The right
image is a frame from a video
of the stew being cooked

1 Introduction

Images of cooking or dishes are commonly used by restaurants in advertising.
Figure 1 (left) shows an example of a stew. Here, we aim to replace such images
with animations, because the animation may convey more of an impression of how
appealing a dish is by showing rising steam, bubbles, and by the addition of siz-
zling sounds. However, it may not be desirable to directly record a video of the dish
being cooked. Figure 1 (right) shows a frame of a video of a boiling pot of stew;
however, it does not appear particularly appealing compared to the picture. The meat
and vegetables have changed shape, have sunk down into the fluid, and the overall
appearance has lost its vividness. To combine the fresh appearance of the image with
the added properties of video images, we propose an interactive method for animat-
ing an image. The user animates the picture by interactively specifying the regions
where bubbles should appear, as well as the remaining ingredients, and adjusts sev-
eral parameters describing each region. Then our system automatically creates the
animation by making a composite of the original image, video examples of bubbles,
and by vibrating the ingredients using image-deformation techniques.

2 Related Works

There are numerous methods for animating images [1, 2]. These are useful for scaling
and translating backgrounds, and creating character animations; however, animating
images depicting cooking requires specific image-manipulation techniques. Chuang
et al. animated an image of rippling water, bobbing boats, swaying trees, and moving
clouds using a stochastic motion approach [3]. Furthermore, Okabe et al. created fluid
animation using user sketches [4]. Although these methods are useful for providing
the textures observed during cooking, they do not allow us to control the parameters
describing the appearance of bubbles appropriately.

There are some related methods for synthesizing video textures [5, 6]; however,
it is difficult for users to modify the appearance or motion of the resulting animation.
Bhat et al. proposed a sketching interface that allows users to edit a video of flowing
fluids; however, it does not allow them to animate an image [7]. We require a technique
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Fig. 2 System overview. a Target image. b Specify the region of bubbles and foods. c Separate the
food region into detailed ingredients. d Select deformation pattern and shape type. e Output

that allows users to create a high-quality animation from a single image of cooking
in a short period of time.

3 System Overview

Figure 2a shows the target image; the user begins to create the animation by specifying
the regions where bubbles should appear. We use a sketch-based image-segmentation
tool [8]. The left mouse button is used to specify the regions where bubbles should
appear, and the right mouse button specifies the regions that correspond to ingredi-
ents (Fig. 2b). Using the same tool, the user further separates the ingredients into
individual items (e.g., pieces of meat and vegetables), as shown in Fig. 2c. For each
ingredient, the user selects from one of two parameters: the deformation pattern and
the shape type (Fig. 2d).

To apply deformation, the user selects deformable and non-deformable regions.
Deformable regions correspond to soft ingredients, such as sliced meats or green
leaves. Non-deformable regions describe hard ingredients, such as diced chicken.
The user selects one of five shape types: plane, sphere, stick, leaf, or noodle. Given
these specifications, our system automatically synthesizes the animation by making a
composite video. The parameters include the position, size, and speed of bubbles, and
the vibration speed of the ingredients are determined automatically. An animation
is then created, as shown in Fig. 2e. Then the user can fine-tune the parameters, if
desired.
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Fig. 3 Our database includes
the videos of boiling a water,
b ketchup, and c soy sauce

4 Video Examples and Animation Synthesis

The appearance of bubbles is important to create a depiction of cooking. We prepared
a database of video examples of bubbles. We recorded several types of bubbles using
a video camera. Figure 3 shows three examples of videos of bubbles. We edited
each video to prepare multiple versions, by changing the scale and playback speed.
These video examples of bubbles are superimposed onto the regions where the user
has specified that bubbles should appear. For the example shown in Fig. 2, there are
nine regions where bubbles should appear. For each region, i, we consider the area
ai as the number of pixels in the region, and the distance di between the center of
the region and the center of the dish. We set the size Si and speed Vi of the bubbles
located in the i-th bubble region as follows:

Si = µaidi (1)

Vi = µ
ai

di
(2)

Then we place bubbles of size Si to the i-th bubble region on the grid. We apply
weightings to the speed of the bubbles. If the bubbles occur along boundaries of the
ingredients region, or in a narrow region between ingredients, we apply a factor of
0.7 to reduce the speed of the bubbles. This is based on our observation that the speed
of bubbles at boundaries is slower.

We synthesize the animation by making a composite of the input image and
the video examples. The synthesis was implemented using the hue saturation value
(HSV) color space. We adjust the V channel of the video example so that the bright-
ness matches that of the input image. The process is shown in Fig. 4. For each pixel
position (x, y) in frame t o the video example, VI(x, y, t) is the brightness of the input
image and VV(x, y, t) is the brightness of the video. We compute the brightness of
the synthesized animation VA(x, y, t) using the average of brightness in all frames
of the video example, avg(x, y) as follows:

VA(x, y, t) = VI(x, y, t)+ VV(x, y, t)− avg(x, y), (3)

avg(x, y) =

F∑
t=1

∑
x,y

V V (x, y, t)

N · F
, (4)
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Fig. 4 Adjustment of the brightness in the V channel

Fig. 5 Placement of control points for each object type. The red points are fixed, and the yellow
points vibrate

where N is the number of pixels and F is the number of video frames. This method
enables natural animation synthesis, even if the overall appearance of the video is
different from the input image.

5 Vibration of Ingredients

Each of the ingredients is caused to vibrate by the rising bubbles. Our system syn-
thesizes such vibration-mediated animations using a few user-specified parameters.
User inputs include the deformation pattern and shape type described in Fig. 2d. In-
gredients corresponding to a “deformable” pattern vibrate by deforming the shape.
Those with the “non-deformable” pattern vibrate by translation. In deformable pat-
terns, we use rigid transformation using a least squares method [9] to implement the
deformation. We create a number of control points, and deform the image by moving
these control points. The control points are located according to the shape of the
object to be deformed, illustrated by the example shown in Fig. 5. For example, for
an image of a slice of meat, which is considered a planar object, the system places
six control points, four of which are fixed (shown in red in Fig. 5) and two of which
vibrate (shown in yellow). These control points move vertically and horizontally at
random within three pixels. Non-deformable objects are not described using control
points, and the object vibrates by translating it vertically by three pixels.
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Fig. 6 Animations generated using our method a 5 min, b 8 min c 8 min d 1 min

6 Results

Figure 6 shows four results of animations generated using our system. We use the
water bubbles shown in Fig. 3a in Fig. 6a, b, and use the bubble of the sauce shown
in Fig. 3c in Fig. 6c, d. All of these animations were created within a period of a
few minutes. To compare the edit times with existing approaches, we synthesized a
similar animation to that shown in Fig. 6a using Adobe After Effects (AAE). This
required approximately 6 h. The appearance of the animations generated using our
approach was slightly less natural than the animations generated using AAE. In
particular, the vibrations in our video images looked less natural. However, there
is significant scope for improving the algorithms that generate the vibrations and
deformations, and our approach allows the user to generate animations considerably
more quickly that using existing methods.
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Abstract It is possible to embed text into images using an image-editing software,
and this can be used to make misleading or unfounded claims in advertisements,
which do not comply with advertising standards. To monitor the large volume of
advertising that now exists on the Internet, it is desirable to automatically detect
and read the text inserted into images. Here we describe a technique to determine
regions of images corresponding to inserted text using the FAST algorithm, by finding
corners in the image that lie along a straight line, which we term a supercorner. We
then create a graph by connecting supercorners and apply cost functions describing
the geometrical relations between the corners. Using a graph cut algorithm, we can
separate the text from the background. Using this method in a sample set of 130
images with inserted text, we were able to detect 81 % of the inserted text with a
false positive rate of only 4 %.
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Fig. 1 Illegal image exam-
ples; Left image says taking
this coffee will cure cancer.
Right image says you can lose
weight if you use this body
lotion

1 Introduction

A large number of merchant sites advertise their services on the Internet. Some
merchant sites present images that do not conform to trading standards regulations,
such as advertising goods or services along with unfounded claims. Figure 1 presents
some examples, including a bogus weight-loss product (see the image on the right)
and claims that do not meet the standards of the Pharmaceutical Affairs Act (see the
image on the left). Internet site operators are responsible for detecting and removing
such images. Text regions in an image can be classified into two categories: one kind
appears on the goods directly, and the other kind is inserted into the image using some
kind of image-editing software (see Fig. 3). Here, we propose a method to detect text
that has been inserted using image-editing software.

2 Method

Our strategy consists of two stages: first we extract the corners of the image using
the FAST [3, 6] algorithm (see Fig. 2); then we determine whether each corner is
part of the inserted text region. Corners in inserted text involving Japanese or Kanji
characters are likely to fall along a straight line: we refer to this distribution of corners
as a supercorner. Additionally, inserted text typically has a large color contrast with
the background image, and tends to have a simple color profile. Text that is included
as part of the image, such as the labeling on packaging, generally does not fall on a
straight line and may have a more complex color profile, making it harder to detect.

We observed that the corners in inserted text exhibited the following trends:

1. the supercorner is located along a line of text;
2. supercorners are typically perpendicular to each other;
3. the corners in a supercorner are of the same color.

We need to assign a label of ‘inserted text’ or ‘background’ to each supercorner.
To achieve this, a graph cut technique [1] can be used. We construct a graphG (V ,E ),
where V is the set of supercorners, E is a set of edges between any two supercorners.
And each edge has a cost of link (see Sects. 2.3.1 and 2.3.2).
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Fig. 2 Corner detection using FAST algorithm. In this chapter, since the radius parameter of FAST
algorithm is set to three, we consider the 12 contiguous pixels on the dashed circle. When the center
pixel p is brighter than all the pixels on the dashed circle and the difference of brightness is more
than a user-specified threshold, the pixel p is detected as the center of a corner (Referred [3, 6])

Fig. 3 Extracted FAST and supercorners; Left The location of corners in an image extracted using
FAST. The small circle indicates a FAST corner. Right Extracted supercorners

Fig. 4 Supercorner; Solid circle shows corner (FAST). We refer to this distribution of corners and
bounding box as a supercorner (Si , S j )

2.1 The Supercorner

Corners located using FAST may appear anywhere in the image, but corners that
lie in a straight line are more likely to form a text region (see Fig. 3). We introduce
a line segment with a length that corresponds to the set of corners which we call a
supercorner. We start to detect a supercorner by selecting a FAST corner randomly.
We then iteratively add the other corners to the supercorner if the following four
conditions are satisfied:

1. all FAST corners lie on a line segment within a width δ;
2. the length (λ) of the line is longer than the threshold (λmin);
3. the gap (ε) between two FAST corners is shorter than the given threshold (εmax );
4. all FAST corners in a set have the same color cluster.

This is illustrated in Fig. 4.
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Fig. 5 Supercorner and
Graph Structure; Black
and white circle shows a
supercorner. Black means
inserted text area and white
means others

2.2 Minimizing Energy Function Using Graph Cuts

To apply the graph cut algorithm [5] to the problem, we define an energy function
on the graph G (V ,E ). The energy function E(L) is composed of a data term D(L)

and a smoothness term H(L). The graph is based on Potts interaction energy model
as follows [5]:

E(L) = αD(L) + H(L) (1)

D(L) =
∑

p≈V
Dp(l p) (2)

H(L) =
∑

(p,q)≈V
H{p,q} · δ(l p, lq) (3)

δ(l p, lq) =
{

1 i f l p →= lq
0 otherwise

(4)

This energy function can be optimally solved using max-flow [7]. Where L is a
label set that indicates whether each supercorner is contained in the text region, so
that l p denotes label of p-th supercorner (≈V ), and an α (we choose 1.0) is parameter
of the data term. And label = {“txt”, “bkg”}.

2.3 Definition of Graph

We construct a graph as shown in Fig. 5, where the n-link edges (≈E ) span between
two supercorners. The t-link edges (≈ E ) span between each terminal node and
supercorner. A t-link corresponds to a data term and an n-link corresponds to a
smoothness term.
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2.3.1 Cost of t-Links

We ascribe a cost D̂p(l p) to an edge between a supercorner and terminal {T, S}.
The cost is computed using an aligned length λp (see Fig. 4) which is normalized to
the dimensions of the image size (i.e., the width plus the height). The cost of edges
is defined as:

D̂p(l p) =
{

D(“t xt”) = D̂(λp)

D(“bkg”) = 1 − D̂(λp)
(5)

where the labels “txt” and “bkg” denote text and background regions of the image,
respectively. And D̂(λp) is defined as a monotonically increasing function whose
value range is from 0 to 1, σ 2

λp
is a variance. See Eq. (6).

D̂(λp) = 1 − exp

(
− λ2

p

2σ 2
λp

)
, λp ∈ 0 (6)

2.3.2 Cost of n-Links

H{p,q} in Eq. (3) represents a cost between node p and q. As we refer to a supercorner
as a node, we can give p ∞ si , q ∞ s j , and Eq. (7).

H{p,q} ∞ H(si , s j ) = A(si , s j ) + B(si , s j ) + C(si , s j ) (7)

where H(si , s j ) is defined as a summation of following three costs.

1. If two supercorners are parallel and in close proximity, then the edge cost is
low. The function eval(si , s j ) is minimized when two supercorners are in close
proximity and parallel to each other as follows:

A(si , s j ) = 1 − exp

(
−eval(si , s j )

2σ 2
eval

)
(8)

2. If two supercorners are (nearly) orthogonal, then the edge cost is low. The function
orth(si , s j ) reflects mutually orthogonal relation between si and s j , as follows:

B(si , s j ) = 1 − exp

(
−orth(si , s j )

2σ 2
orth

)
(9)

3. If two supercorners are determined to be in same color cluster, then the edge cost
is low. The function cdist (si , s j ) describes the color distance between si and s j ,
as follows:
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Table 1 Performance comparison between two methods on same data set

Method Na Nb Nd 1 Nd 2 Precision (Nd 2/Nd 1) Recall (Nd 2/Nb)

Our method 135 78 92 75 0.815 0.962
Zhao et al. [8] 135 78 194 65 0.351 0.833

Fig. 6 Comparative evaluation; Our method correctly extracts an overwritten text area. See (a) and
(c). In contrast, the comparative approach generates wrong areas. See (b) and (d)

C(si , s j ) = 1 − exp

(
−cdist (si , s j )

2σ 2
cdist

)
(10)

In Eqs. (8)–(10), σ 2∗ represents a variance.

3 Comparative Evaluation and Result

We conducted a comparative evaluation using an existing proposed method by Zhao
et al. [8]. They use distribution characteristic of corners extracted from a gray scale
image by Harris corner detector. Such corners may appear at anywhere in images. It
cannot distinguish an inserted text from a text that is included as part of an image,
such as labels on a package. Our approach uses linearly arranged FAST corners and
color at corner, then generates a graph which has supercorners as nodes and relations
between any two supercorners as edge. And each edge has a weight that is computed
using equation from (7) to (10). And we apply graph cut algorithm to this graph.
Then our approach can distinguish them.

We applied both methods to 130 images sampled from Rakuten Mart. Table 1
shows the result. Where Na is a number of text, Nb is what Na minus a number of
printed text on a surface of goods. Nd1 is a number which each method detects as
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Fig. 7 Some results; All
images show that it correctly
detects inserted text area

text area. Nd2 is a number of correct cases in Nd1. So we compute a precision =
Nd2/Nd1 and a recall = Nd2/Nb.

Our method identified 81 % of inserted text with a false positive rate of only 4 %.
Figure 6 shows some inserted text area which is detected by each method. Our method
correctly detect the inserted text in images. Figure 7 provides some sample images
with the inserted text identified. Therefore, the algorithm is effective as a filter tool
to detect inserted text in images.

Finally, we will make a point that all images described here without Fig. 1 are not
illegal.
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