
Chapter 6

Nitric Oxide Contributes to Retinal Ganglion

Cell Survival Through Protein

S-Nitrosylation After Optic Nerve Injury

Yoshiki Koriyama and Satoru Kato

Abstract Neuroprotective strategies to attenuate retinal ganglion cell (RGC) death

could lead to novel therapies for chronic optic neuropathies such as glaucoma.

Nitric oxide (NO) signaling results in both neurotoxic and neuroprotective effects

in CNS neurons after nerve lesion. However, the functional mechanisms of NO in

the nervous system are not fully understood. Protein S-nitrosylation by NO is a

posttranslational modification that regulates protein function through the reaction

of NO with a cysteine thiol group on target proteins. NO/S-nitrosylation is now

thought to be important in regulating cell death, survival, and gene expression.

However, there are few reports on the role of protein S-nitrosylation in glaucoma.

Therefore, we investigated the role of protein S-nitrosylation signaling in RGC

survival after optic nerve injury.
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6.1 NO Signaling in Glaucoma

6.1.1 Nerve Injury Model of Glaucoma in Rodents

Glaucoma is a neurodegenerative disorder characterized by the progressive loss of

retinal ganglion cells (RGCs) and by degeneration of optic axons. Elevated intra-

ocular pressure is considered to be one of the major risk factors associated with this
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neuropathy [1]. However, in some glaucomatous patients, loss of RGCs and a

subsequent loss of vision can occur even with normal intraocular pressure.

Although the causes of glaucoma are unclear, the various pathogenetic mechanisms

of glaucoma result in the common end stage of RGC apoptosis. For example,

almost 90 % of RGCs die within 2 weeks after optic nerve injury [2]. In particular,

oxidative stress and nitrative stress appear to play important roles in this progres-

sive neuronal death. Eye tissue uses four times more oxygen than brain tissue and

thus is highly exposed to various reactive oxygen species (ROS) including hydro-

gen peroxide, hydroxyl radicals, and superoxide anions. Consequently, eye tissue

contains very high amounts of antioxidants, such as superoxide dismutase, catalase,

ascorbate, and vitamins [3]. In the pathogenetic stages of RGC death, increasing

intracellular ROS generation has been reported to accompany glutathione depletion

[4]. Evidence also indicates that there are reductions in endogenous antioxidants in

aging and induction of lipid peroxidation [5]. On the other hand, mechanical injury

of axons, and thereby a lack of neurotrophins being supplied to RGC bodies, is one

of the mechanisms proposed for the retrograde degeneration of RGCs following

optic nerve injury [2]. RGC death after nerve injury is mostly caused by apoptosis

associated with upregulation of proapoptotic Bax and downregulation of

antiapoptotic Bcl-2 and Bcl-xL [6]. As RGC cell loss and optic nerve degeneration

in the crush injury model mimics many of the features of glaucoma, we use this

model to study the mechanisms of RGC survival and/or axonal regeneration [7].

Nitric oxide (NO) levels also increase in many retinal cells within a few days of

optic nerve damage [8]. Many reports suggest that excess NO plays a crucial role in

neuronal cell death. However, NO can also prevent neuronal cell death. In general,

NO mediates neuroprotection through two main signaling pathways: the NO/cyclic

guanosine monophosphate (cGMP) pathway and the protein S-nitrosylation path-

way. However, whether S-nitrosylation of target protein promotes RGC survival

after injury is unknown. This is the focus of this review.

6.1.2 Role of Three Isoforms of Nitric Oxide Synthase
in Glaucomatous Retina

NO is an important signaling molecule that regulates a range of physiological pro-

cesses, including vasodilatation, neuronal function, inflammation, and immune func-

tion [9]. NO is an organic gas ubiquitously synthesized by NO synthase (NOS). In

mammalian cells, NOS is subclassified into three types: brain or neuronal NOS (nNOS

or NOSI), inducible NOS (iNOS or NOSII), and endothelial NOS (eNOS or NOSIII).

The function of NO is different depending on the cell type and enzyme isotype.

nNOS may be involved in neurotransmission by creating retrograde signaling

between synapses. At synapses, nNOS is coupled to N-methyl-D-aspartate receptors

(NMDA-R) via postsynaptic density-95 protein complexes [10]. Upon glutamate

stimulation of NMDA-R, calcium ions enter the cytoplasm through the ion channel.
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In conjunction with calmodulin, calcium ion influx triggers nNOS activation and

NO generation [11]. Low levels of NO (picomole order) that are produced under

physiological conditions stimulate many normal intracellular signaling pathways.

In contrast, overstimulation of NMDA-R and subsequent calcium ion influx pro-

mote pathological signaling, resulting in neural damage and death through produc-

tion of toxic amounts of NO [12]. Increased expression of nNOS in the retina and

optic nerve head was reported in rats with elevated intraocular pressure. Most

axotomized RGCs express nNOS protein, and these cells degenerate within

2 weeks after optic nerve injury [13]. Excessive NO generated from injured

RGCs might be one risk factor for RGC cell death in glaucoma.

iNOS can be upregulated by acute inflammatory stimuli. For example, neuro-

toxic levels of NO (nanomole order [14]) via iNOS induction in activated glial cells

give arise various neurodegenerative diseases. NO will further oxidize to nitrite,

peroxynitrite, and free radicals to highly interact with thiols and iron–sulfur centers

of various enzymes [14] to alter the biological function of cells and result in

apoptosis, neurotoxicity, optic nerve degeneration, and numerous eye diseases. It

has been reported that glaucoma could be due to neurotoxic effects of NO at the

optic nerve head and in the RGCs which results in optic nerve head degeneration

and visual field loss [15]. Inducible NOS was triggered by ocular inflammation,

LPS, endotoxin, or cytokines including tumor necrosis factor α (TNFα) and

interleukin-1 or interleukin-6 [16]. Therefore, one possibility for the treatment of

glaucoma could be the use of inhibitors of iNOS induction and/or its activity. In the

retina, Müller glial cells can express the iNOS isoform after endotoxin and cytokine

exposure [17]. Retinal pigment epithelium (RPE) cells also contain iNOS in various

species [18]. Goureau et al. [19] reported that fibroblast growth factors (FGFs) and

transforming growth factor β (TGFβ) have opposite effects on the regulation of the

production of NO in RPE cells. FGFs inhibit the induction of iNOS at the tran-

scriptional level. Conversely, TGFβ frequently acts as an immunosuppressor. TGFβ
attenuates NO production in human and rat RPE and Müller glial cells [20]. These

molecules might be candidates to reverse or treat NO-related glaucoma. On the

other hand, upregulation of TNFα and TNFα receptor-1 expression was accompa-

nied by progressive optic nerve degeneration in the glaucomatous optic nerve head

[21]. It has been reported that TNFα contributes to the progression of optic nerve

degeneration by inducing iNOS expression in glial cells. Thus, the TNFα inhibitor

etanercept or other antagonists of TNFα or suppressors of inflammation could be

considered as therapeutic tools against glaucoma [22].

The major function of eNOS is vasodilation, by regulating vascular smooth

muscle relaxation. Immunoreactivity of eNOS is seen in the retinal vascular

endothelial cells, choroid and retina [23]. In glaucomatous eyes, overexpression

of nNOS and iNOS is linked to glaucomatous RGC apoptosis through increased

levels of NO, while enhanced staining for eNOS is assumed to be a compensatory

neuroprotective reaction [24]. Furthermore, no significant changes in eNOS expres-

sion have been observed in the chronic glaucoma model.

The reagents that can regulate NO levels in the retina could become a reasonable

neuroprotective agent for treating glaucoma.
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6.1.3 Anti- and Proapoptotic Mechanisms by NO
and Protein S-Nitrosylation

Because NO is a free gas, it can easily penetrate the biological membrane. Super-

oxide radical shows a high affinity toward NO. The reaction between NO and

superoxide anion produces peroxynitrite [25], a highly reactive molecule that can

cause extensive damage to proteins, lipids, and DNA molecules. Furthermore, NO

can react with thiols, organosulfur compounds containing a carbon-bonded sulfhy-

dryl (–C–SH or R–SH) group. Some actions of NO, including neurotransmission

and vasodilation, are mediated via the activation of soluble guanylate cyclase and

subsequent elevation of cGMP levels [26]. Other actions of NO are mediated via

S-nitrosylation of the free cysteine SH group of proteins and regulate their activities

when cysteines are present at their active site [26].

Since Jafferey and Snyder discovered the “biotin-switch assay” for protein

S-nitrosylation [27], nearly 1,000 proteins have been identified as S-nitrosoproteins.
The biotin-switch assay consists of four steps (Fig. 6.1):

• Step 1—the methylthiolation of free cysteine thiols with methyl

methanethiosulfonate.

• Step 2—the reduction of SNO bounded to thiols with reductant.

• Step 3—newly reformed cysteines are reacted with biotin-conjugated thiol-

modifying reagent.

• Step 4—target biotinylated proteins are collected by avidin-coupled reagents.

S-nitrosylation can mediate either neuroprotective or neurotoxic effects,

depending on the action of the target protein [28]. For the neuroprotective effect,

S-nitrosylation of caspases inhibits their activation. Most caspases contain a single

cysteine at their catalytic site, which is susceptible to redox modification and can be

effectively modified by S-nitrosylation in the presence of NO with subsequent
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Fig. 6.1 Schematic diagram for detecting S-nitrosylated proteins (biotin-switch assay). Step 1:

free thiols are blocked by methylthiolation reagent. Step 2: the reduction of SNO bonds to thiols

with reductant. Step 3: newly reformed cysteines react with biotin-conjugated thiol-modifying

reagent. Step 4: target biotinylated proteins are collected by avidin-coupled reagents
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inhibition of enzyme activity [29]. S-nitrosylation has been shown to reduce the

activity of caspases such as caspase-3, caspase-8, and caspase-9 in various types of

neurons [30]. These results indicate that endogenous NO generated by NOS exerts

an antiapoptotic function by S-nitrosylation-dependent inactivation of caspases. In

contrast, another target protein of S-nitrosylation promotes activation of caspases

and induces cell death. Caspase activation during NO stimulation also occurs as a

result of downregulation of X-linked inhibitor of apoptosis protein (XIAP)

[31]. Under normal conditions, XIAP efficiently binds to the catalytic sites of

caspases and inhibits them [32]. However, NO inactivates the E3 ligase activity

of XIAP through S-nitrosylation, thus stabilizing caspases [33]. On the other hand,

various S-nitrosylated target proteins are also involved in cell death signaling. For

example, NO S-nitrosylates glyceraldehyde-3-phosphate dehydrogenase (GAPDH)

and binds to Siah, an E3 ubiquitin ligase [34]. Inside the nucleus, S-nitrosylated

GAPDH stabilizes Siah, and the complex facilitates ubiquitination and degradation

of the nuclear coreceptor [35]. This mechanism is thought to regulate gene expres-

sion associated with cellular dysfunction and death [36]. Recent studies have shown

unregulated S-nitrosylation of many proteins involved in neuronal death and

neurodegenerative disorders, such as Parkin [37], protein disulfide-isomerase

(PDI) [38], and phosphatase and tensin homologue deleted on chromosome

10 (PTEN) [39, 40]. The target S-nitrosylated proteins for cell death or cell survival

are listed in Table 6.1. In the future, there might be new targets that could be used

for the treatment of glaucoma.

Table 6.1 S-nitrosylated proteins targeting for cell survival/death

Functions Name References

Cell survival/death 14-3-3 [41]

Apoptosis signal-regulating kinase 1 [42]

Bcl-2 [43]

Caspases [30]

Cyclin-dependent kinase 5 [44]

Cyclooxygenase-2 [45]

Dynamin-related protein 1 [46]

Erk [47]

Fas [48]

GAPDH [34]

GOSPEL [49]

Keap1 [50, 51]

Matrix metalloproteinase 9 [52]

Parkin [37]

Peroxiredoxin2 [53]

PTEN [39, 40]

STAT3 [54]

X-linked inhibitor of apoptosis protein [55]
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6.2 Antioxidative Effects of NO Through Keap1

S-Nitrosylation Signaling in RGCs

6.2.1 Protective Effects of Nip Against Oxidative Stress

Although a growing number of S-nitrosylated proteins are reported to contribute to

pathogenetic brain disease, there are few such reports for retinal diseases. There-

fore, we studied the role of protein S-nitrosylation by NO in RGC survival and

axonal regeneration after optic nerve injury [50, 51, 56–58]. Many chemicals such

as glyceryl trinitrate, sodium nitroprusside, and S-nitrosothiols have been reported

as NO donors [59]. Recently, novel hybrid NO donor drugs have been designed as

NO-releasing compounds such as NO–NSAIDS and nipradilol (Nip), which already

has been registered as an antiglaucoma agent in Japan. Nip acts as a vasodilator by

releasing NO from the nitroxy moiety [60]. Nip lowers intraocular pressure via both

selective α1-adrenoceptor and nonselective β-adrenoceptor antagonists. The pro-

tective effects of Nip have been shown in various neuronal cells [61] including

RGCs [62]. Mizuno et al. demonstrated that the protective effects of Nip were NO

dependent because both selective α1- and nonselective β-adrenoceptor antagonists
had no effect on RGCs [63]. However, the detailed mechanism of NO-dependent

protection is not clear. Several lines of evidence indicate that NO can suppress RGC

cell death [64] through an NO/cGMP-dependent pathway [65]. Furthermore,

Tomita et al. [66] reported that the beneficial effect of Nip on RGC cell death

was partially cancelled by inhibiting protein kinase G. Moreover, Naito [67]

reported that Nip attenuates hydrogen peroxide-induced lipid peroxidation. Thus,

we wanted to know whether the neuroprotective action of Nip is mediated by

antioxidative processes via a NO/cGMP- or a NO/S-nitrosylation-dependent mech-

anism. In addition, as Nip did not S-nitrosylate caspase-3 under our experimental

conditions, we focused on the possibility of Kelch-like ECH-associated protein

1 (Keap1) S-nitrosylation to understand its antioxidative action.

The Keap1 and NF-E2-related factor 2 (Nrf2) pathways regulate the expression

of cytoprotective genes in response to oxidative stress or electrophilic stress

[68]. Keap1 is the redox-sensor protein that allows the activation of Nrf2 by

modification including oxidation or S-nitrosylation [69]. Once activated, Nrf2

translocates from the cytosol to the nucleus, binds to the antioxidant responsible

element (ARE) of target genes, and drives their expression of antioxidative heme

oxygenase-1 (HO-1), NAD(P)H:quinone oxidoreductase-1 (NQO-1), and gluta-

mate cysteine ligase C (GCLC). Keap1 sensor protein contains 27 cysteine residues.

Several analyses have identified multiple Keap1 cysteine residues to be involved in

the reaction with oxygen or electrophiles. The most frequently reported targets are

Cys151, Cys257, Cys273, Cys288, Cys297, and Cys613 [70, 71]. However, there

are notable differences between laboratories, electrophilic probes, and species.

Interestingly, NO activates the Keap1/Nrf2 pathway by S-nitrosylation of Keap1

protein in colon carcinoma cells [72]. Two reactive cysteines, Csy273 and Cys288,

of Keap1 have been identified as key sites of translocational activity of Nrf2 [73].
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Thus, we focused on the neuroprotective mechanism of Nip thorough Keap1

S-nitrosylation.

We first tested whether Nip could induce NO generation in a retinal ganglion cell

line: RGC-5 [51]. Nip (20 μM) significantly increased (1.6-fold) fluorescence

intensity of NO indicator compared to no treatment (control) within 1 h of treat-

ment. Denitro-nipradilol (DeNip) has weak selective α1-adrenoceptor and

nonselective β-adrenoceptor antagonist properties, but no NO-donating action.

DeNip did not increase NO production in RGC-5 cells.

To evaluate the protective action of Nip against oxidative stress in RGC-5 cells,

we used oxidative stress models in culture with hydrogen peroxide, tBOOH, and

serum withdrawal. Charles et al. [74] studied the signaling cascades involved in

RGC-5 cell death under serum deprivation. They demonstrated that serum depri-

vation increases malondialdehyde and decreases reduced glutathione. Furthermore,

several groups have already reported that serum deprivation produced ROS in

RGC-5 cells [75]. While pretreatment with Nip 4–6 h before oxidative stress

exposure showed the maximum protective effect, no protective effect was observed

when Nip was applied to RGC-5 0–2 h before oxidative stress stimulation. Another

NO donor, NOR1, also showed protective effects against oxidative stress

[50]. These protective effects were reversed by a NO scavenger. The protective

effects of Nip were suppressed by the protein synthesis inhibitor cycloheximide. In

contrast, DeNip did not show any neuroprotective effect against oxidative stress.

6.2.2 NO/S-Nitrosylation-Dependent Antioxidative
Protein Induction by Nip

As the protective effect of Nip was dependent upon newly synthesized proteins, we

tested the inducibility of antioxidative enzymes in RGC-5 cells. After 4 h of Nip

treatment, we found that heme oxygenase-1 (HO-1) mRNA and protein had

increased in RGC-5 cells. HO-1 [76] is an enzyme that degrades intracellular

heme to free iron, carbon monoxide, and biliverdin. Bilirubin, converted from

biliverdin, acts as a strong endogenous ROS scavenger and attenuates lipid perox-

idation related to 4-hydroxy-2-nonenal (4HNE). Other antioxidative proteins, such

as NQO-1 and GCLC, did not increase for up to 12 h after treatment of Nip. DeNip

did not alter HO-1 expression. These results indicate that the protective effect of

Nip is dependent on NO. An HO-1 inhibitor prevented the neuroprotective effect of

Nip against oxidative stress. The data indicate that the neuroprotective action of Nip

is caused by NO generation following antioxidative HO-1 expression.

To test the involvement of the Keap1/Nrf2 system in the Nip-induced increase in

HO-1 expression, we analyzed the translocation of Nrf2 to the nucleus. Nip

facilitated the translocation of Nrf2 into the nucleus. Both a NO scavenger and an

S-nitrosylation blocker (dithiothreitol) inhibited nuclear translocation of Nrf2 by

Nip. Furthermore, translocated Nrf2 was bound to the E1 enhancer of HO-1

promoter as an ARE site [50]. These results suggest that Nip-mediated translocation
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of Nrf2 to the nucleus is dependent on NO/S-nitrosylation pathways. We further

investigated the effects of the NO scavenger and S-nitrosylation blocker on HO-1

induction by Nip. As expected, the increase in HO-1 was blocked by both reagents.

By using the biotin-switch assay, we determined that Nip increased S-nitrosylated

Keap1 but not caspase-3.

To extend the protective effect of Nip in vivo, we used an optic nerve injury

model in mice. Nip suppressed the final products of lipid peroxidation: 4HNE

accumulation mediated by inducing HO-1 expression in RGCs after nerve injury.

Finally, RGC death after nerve injury was reduced by Nip. These results demon-

strate for the first time that Nip protects RGC death against oxidative stress both

in vitro and in vivo through the induction of HO-1 by S-nitrosylation of Keap1

(Fig. 6.2). This novel neuroprotective action of Nip in RGCs may shed additional

light on possible antiglaucomatous agents.

6.3 PTEN S-Nitrosylation-Induced Optic Nerve

Regeneration by Nip

Nip has also been reported as having neuritogenic action in cat RGCs [77]. How-

ever, the mechanism of Nip-induced optic nerve regeneration has not been fully

elucidated. It has been reported that PTEN deletion strongly showed optic nerve
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regeneration after injury in part by increasing protein translation through the

mammalian target of rapamycin (mTOR) pathway [78–81]. PTEN and mTOR

are critical factors for controlling the regenerative capacity of mouse RGCs and

corticospinal neurons [81]. It has been known that PTEN is inactivated by

S-nitrosylation and then activates phosphoinositide 3-kinase (PI3K) and its down-

stream pathway [39]. We showed a correlation between Akt/mTOR activities and

optic nerve regeneration through S-nitrosylation of PTEN in RGCs [80]

(Fig. 6.3).

6.4 Future Studies

For treatment of glaucomatous degeneration, neuroprotective and neuritogenic

actions in RGCs play a central role. As there are a few reports on protein

S-nitrosylation in glaucoma, elucidating specific targets of S-nitrosylation and

understanding their regulatory mechanism could assist the development of thera-

peutic intervention and be a next-era target for the treatment of injured RGCs in

glaucomatous retina.
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Fig. 6.3 Schematic diagram of PTEN S-nitrosylation-dependent axonal regeneration. In the case

of NO stimulation, PTEN was inactivated through S-nitrosylation. Subsequently, Akt phosphor-

ylates a wide range of substrates involved in the regulation of cellular functions, including cell

growth and survival. Akt activation also induced mTOR/S6 signaling, which is known as a novel
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