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Retinal Photooxidative Stress

and Its Modifiers
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Abstract Retinal damage is classified into three types based on the mechanisms of

the damage, i.e., photothermal, photomechanical, and photochemical, with the last

likely the most common form of light-induced damage, since the natural range of

light energy sufficient causative. Photochemical damage is caused by reactive

oxygen species and free radicals generated by light exposure, also called photoox-

idative stress. Although different types of photooxidative stress have been pro-

posed, they sometimes cannot be differentiated clearly in various experimental

settings. Epidemiologic studies have suggested a correlation between environmen-

tal light exposure and development/progression of human retinal degeneration such

as age-related macular degeneration and retinitis pigmentosa. The double bonds in

long-chain polyunsaturated fatty acids (PUFAs), which are highly enriched in the

retinal membranes, could be target substrates to propagate photooxidative stress in

the photoreceptors. Posttranslational modification of retinal proteins by PUFA-

degraded molecules, such as 4-hydroxynonenal and 4-hydroxyhexenal, causes

retinal degeneration and neuroprotection depending on the timing and level of

formation.
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15.1 Types of Light-Induced Retinal Damage

Retinal damage is classified into three types based on the mechanisms

[1]. Photothermal damage is induced by at least a 10 �C increase in ambient

temperature in the retinal tissue originating from transfer of radiant energy from

photons to the tissue during an exposure duration between 0.1 and 1.0 s [2–4].

Thermal damage results from a tissue temperature of 55–58 �C that causes cellular

apoptosis, temperature of 60–68 �C that causes apoptosis and necrosis, and tem-

peratures of 72 �C or higher that cause immediate cell death [1]. Laser photocoag-

ulation, transpupillary thermotherapy, and micropulse diode laser are clinical

applications that cause thermal damage. Photomechanical damage, as that caused

by Nd:YAG laser, is induced by rapid introduction of compressive or tensile forces

on retinal tissues by exposure to light with high irradiances (typically mega- or tera-

watts/cm2) during a very short time (typically between nano- and picoseconds)

[5, 6]. Photochemical damage is independent of either photothermal or photome-

chanical damage and is thought to be the most common mechanism of light-

induced retinal damage, since the natural range of light causes this type of damage

[7]. Theoretically, photochemical damage, as that caused by photodynamic therapy,

is caused by reactive oxygen species and free radicals generated by light exposure;

thus, this is also referred to as photooxidative stress.

15.2 Action Spectrum of Retinal Damage Induced

by Photooxidative Stress

15.2.1 Light Properties

Among the electromagnetic waves, the wavelengths between 400 (380 nm) and

800 nm (760 nm) are called visible light because they reach the retina and are the

source of visual information. Ultraviolet (UV) light is that with wavelengths shorter

than visible light. Among the UV wavelengths, UVB (wavelengths between

290 and 320 nm) and UVA (wavelengths between 320 and 400 nm) are absorbed

by the cornea and crystalline lens, respectively, do not reach the retina, and are not

used for visual sensing in humans. Infrared light with a wavelength longer than

visible light also is absorbed by the crystalline lens. In phakic human eyes,

photooxidative stress is thought to result mainly from visible light wavelengths

(Fig 15.1).
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15.2.2 Types of Photooxidative Stress

Previous studies have suggested two possible mechanisms of retinal photooxidative

stress [8, 9]. Noell et al. first reported retinal damage induced by constant green

light (wavelengths, 490–580 nm) at relatively low retinal irradiance (<1 mW/cm2)

during a long exposure time (at least 1.5 h, typically >8 h) in rats [7]. The action

spectrum of this damage is similar to the absorption spectrum of rhodopsin. This

type of photooxidative stress is referred to as Noell’s damage or class I damage.

Noell’s spectrum of retinal damage has been reported subsequently in mice [10],

macaque monkeys [11], fish [12], and chickens [13]. Ham et al. first reported retinal

damage induced by visible light [14] and later by UV radiation [14] at higher retinal

irradiance and shorter (<5 h) exposure times than Noell’s damage in monkeys. In

Ham’s experiments, the susceptibility of retinal damage decreased monotonically

from short to long wavelengths (Fig 15.2). This type of photooxidative stress is

referred to as Ham’s damage, class II damage, or blue-light hazard. Ham et al. later

reported the spectrum of retinal damage in rabbits [15], rats [16, 17], and squirrels

[18]. Currently, Ham’s action spectrum serves as the basis for international stan-

dards or guidelines for protection against retinal damage by lasers and other light

sources [19, 20] (Fig 15.3); the spectrum of Noell et al. is not included because it is

considered to be exclusive to rodents [8]. These guidelines are used mainly to

protect eyes from acute light damage such as that induced by sunlight [21] or to

determine the upper limits of light exposure in a work environment. Thus, no

reliable standards yet have been established to protect eyes from chronic light

exposure.

          

 
 

 

Cornea Lens Retina 

 

UVB(290-320nm)
UVA(320-400nm)

Visible light(400-800nm)

Infrared light(800nm-)

Fig. 15.1 Transmission of light through the cornea and crystalline lens. Light wavelengths that

are shorter (ultraviolet) or longer (infrared) than visible light are absorbed by the cornea or lens and

do not reach the retina
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Fig. 15.2 Wavelength dependence of retinal light damage. Albino mice are exposed to light with

a narrow bandwidth. The eyes are nucleated 1 week after light exposure. (a) A retinal section from

a mouse exposed to 420-nm wavelength light at 500 J/cm2. Most of the ONL has disappeared,

suggesting severe retinal damage resulting from light exposure. (b) A retinal section from a mouse

exposed to 500-nm wavelength light at 500 J/cm2. Most of the ONL is preserved, suggesting mild

retinal damage from light exposure. INL inner nuclear layer. Scale bar¼ 50 μm

Aphakic hazard function

H
az

ar
d 

fu
nc

tio
n

Solar spectral
irradiance 

Wavelength (nm)

200
0

1

2

3

4

5

6

7

300 400 500 600 700 800
0.00

0.02

0.04

0.06

0.08

0.10

0.12

S
ol

ar
 s

pe
ct

ra
l  

irr
ad

ia
nc

e 
(m

W
/c

m
2 /

nm
)

Blue-light hazard function

Fig. 15.3 Aphakic hazard function, blue-light hazard function, and solar spectral irradiance. The

aphakic hazard function (solid line) and the blue-light function (dashed line) show the effective-

ness of optical radiation in producing photochemical retinal damage as a function of wavelength

(left axis). The solar spectral irradiance shows the distribution of the radiant power of sunlight over
a 37� tilted hemispheric surface with an air mass coefficient of 1.5 (right axis). This figure was

generated from the data reported in References 19, 20, and 21

208 M. Tanito



15.2.3 Target of Photooxidative Stress

Across species, photoreceptors are the primary target of retinal damage caused by

UV light and the shortest visible violet light (Fig 15.4). With Noell’s spectrum of

damage, damage is observed in the photoreceptor cells with exposure to light for

1.5–48 h and in both photoreceptors and retinal pigment epithelium (RPE) cells

with longer (8–50 days) durations [22], indicating that sustained visual cycle

turnover and accumulation of rhodopsin-related molecules including retinoids and

intermediate products of the visual cycle are the primary suspects in the initiation of

damage [23]. With Ham’s spectrum of damage by visible light, the rod and cone

photoreceptors are not expected to be primary targets of damage since rhodopsin

and cone opsin are breached during a relatively short exposure time. The damage

occurs predominantly in the RPE [24], indicating that changes in molecules in the

RPE, including lipofuscin, melanin, and intermediate products of the visual cycle,

are primary suspects for damage initiation [9]. Photooxidation of visual cycle-

related molecules (Fig 15.5), such as all-trans-retinal [25], all-trans-retinol [26],
and all-trans-retinyl ester [27], are thought to be sensitizers of retinal damage.

Accumulation of all-trans-retinal leads to light-induced retinal damage [28], which

can be decreased by various types of antioxidants such as ascorbate [29],

Photoreceptor cells
• high metabolic activity
~high oxygen consumption

• highly fluidic cellular membranes
~high PUFA composition

• rhodopsin and retinoid cycle
~photosensitizer

RPE

Choroid • High oxygen concentration

~large tissue blood flow

• Phagocytosis of ROSs 

~various oxidases

• Accumulation of drusen 

~photosensitizer

Fig. 15.4 Conditions around the outer retina. Various conditions around the outer retina are

suitable for this location to be susceptible to photooxidation damage. PUFA polyunsaturated fatty

acids
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dimethylthiourea [30], thioredoxin [31, 32], 4-hydroxy-2,2,6,6-tetramethylpi-

peridine-N-oxyl (TEMPOL) derivatives [33, 34], and phenyl-N-tert-butylnitrone
(PBN) [35, 36] (Fig 15.6). Inhibitors or modulators of the visual cycle prevent

retinal light damage [37] and may be therapies for dry age-related macular degen-

eration (AMD) in humans [38].

15.2.4 Fate of Photoreceptor/RPE Cells
in Photooxidative Stress

Although two different types of photooxidative mechanisms have been proposed,

dataset analyses in previous studies have not clearly distinguished both types of

mechanisms in various experimental settings [8]. In either pathway, the apoptosis is

the main pathway of light-induced cell death [39] (Fig 15.7). Apoptosis of the

photoreceptors also is thought to occur in retinitis pigmentosa (RP) and AMD. The

susceptibility to retinal damage differs greatly among animal species. Generally,

albino animals sustain light damage more easily than pigmented animals, and

albino rats are more susceptible to retinal light damage than albino mice. Exposure

to white fluorescent light at 2,700 lx for 6 h causes devastating apoptotic

Figure  

ROSs 

RPE cells 

11-cis-retinal all trans-retinal 

all trans-retinol 

RDH 

all trans-retinyl ester 

11-cis RDH 

RPE65 

11-cis-retinol 

LRAT 

Rhodopsin 

light 

+phosphatidylethanolamine 

A2PE, A2E 

Fig. 15.5 Visual cycle. RDH all-trans-retinol dehydrogenase, LRAT lecithin retinol

acyltransferase, RPE65 retinal pigment epithelium-specific 65 kDa protein, 11-cis RDH 11-cis
retinol dehydrogenase, A2PE phosphatidyl-pyridinium bisretinoid, A2E pyridinium bisretinoid
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Fig. 15.7 Detection of apoptotic photoreceptor cells after light exposure by terminal

deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining. (a) A retinal section

from an albino rat not exposed to light. (b) A retinal section from a rat exposed to 5 k lx white

fluorescent light for 3 h. The eye was enucleated 24 h after light exposure. TUNEL-positive

photoreceptor cells are observed in the ONL (arrows)

Light exposure (+)

ONL 

INL 

RPE RPE 
ONL 
INL 

INL 

ONL 

RPE    

Light exposure (-) Light exposure (+)
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a b c

Fig. 15.6 Inhibition of retinal light damage by a free radical scavenger. (a) A retinal section from

an albino rat not exposed to light. (b) A retinal section from a rat exposed to 5 k lx white

fluorescent light for 6 h. The eye was enucleated 7 days after light exposure. (c) A retinal section

from rat preinjected with PBN intraperitoneally 30 min before and then exposed to 5 k lx white

fluorescent light for 6 h. The eye was enucleated 7 days after light exposure. INL inner

nuclear layer
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photoreceptor cell loss in albino rats raised in a dim cyclic light environment [34],

whereas exposure to white fluorescent light at 8,000 lx for 2 h only promotes

oxidative stress in pigmented mice [40].

15.3 Role of Membrane Fatty Acids

and Photooxidative Stress

15.3.1 Fatty Acids in the Retina

N-3 and n-6 polyunsaturated fatty acids (PUFAs), which contain two or more

methylene interrupted cis double bonds, are major families of fatty acids in

mammalian cells. Through a series of oxidation (desaturation) and chain elongation

reactions, n-3 and n-6 fatty acids are synthesized from essential fatty acids 18:3n-3
and 18:2, respectively. Phosphatidylcholine, phosphatidylethanolamine, phosphati-

dylserine, and phosphatidylinositol comprise, respectively, 40–50 %, 30–35 %,

5–15 %, and 3–6 % of the PUFAs in the retinal photoreceptor phospholipids

[41]. Thus, the highest levels of PUFAs in any tissues are in the phospholipids in

the retinal membranes. The most abundant retinal fatty acid is docosahexaenoic

acid (DHA, 22:6n-3); its levels in the rod outer segment (ROS) membrane phos-

pholipids are 40–50 % of the total fatty acids [41]. n-3 PUFA deprivation resulting

from n-3-deficient diets resulted in only modest changes in retinal DHA levels;

thus, the retina retains DHA and other n-3 PUFAs [42]. More substantial changes

were seen during the last trimester of pregnancy and throughout the nursing period

when an n-3-deficient diet was fed to pregnant rats and when the same diet was

given to weaning rats for 10–12 weeks [43]. Under these conditions, the DHA

levels in the ROS decreased by 50 % and were replaced by nearly equal amounts of

22:5n-6. The electroretinography responses decreased in animals that were DHA

deficient, especially the a-wave amplitudes in rats [44], guinea pigs [45], and

monkeys [46]. n-3 deficiency reduces the activation of rhodopsin, reduces and

delays rhodopsin-transducin coupling, and decreases cGMP-phosphodiesterase

activity in biochemical assays [47].

15.3.2 Fatty Acids: A Molecular Target
of Photooxidative Stress

With exposure to damaging light, mice with lower n6/n3 ratios and higher DHA

levels in ROS had greater retinal damage [48], which suggested a positive correla-

tion between the DHA level and retinal vulnerability to photooxidative stress

(Fig 15.8). As already mentioned, both types of photooxidative stress are initiated

by light absorption by the target molecules. Such chromophores, called
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photosensitizers, are photoexcited by light, undergo intersystem crossing, and

produce free radicals. The free radicals then can directly attack the PUFAs and

initiate free radical chain reactions that cause lipid peroxidation in cellular mem-

branes and generation of lipid radical species that cause PUFA degradation into

oxidized products, including aldehydes. Thus, PUFAs in ROS are target substrates

to propagate oxidative stress. Some extremely reactive aldehydes potentially can

damage intracellular and extracellular molecules that are a distance from the initial

site of free radical attack; this occurs because aldehydes are relatively longer lived

than free radicals [49, 50]. Damaging aldehydes include 4-hydroxyalkenals, i.e.,

4-hydroxynonenal (4-HNE) and 4-hydroxyhexenal (4-HHE), α, β-unsaturated alde-
hydes that are end products of lipid peroxidation of PUFAs. 4-HNE forms from n-6
PUFAs, such as linoleic acid and AA [51], and 4-HHE forms from n-3 PUFAs such
as DHA, eicosapentaenoic acid, and linolenic acid [52] via several nonenzymatic

steps. These highly reactive aldehydes can react readily with histidine, cysteine, or

lysine residues of proteins to form stable Michael adducts with a hemiacetal

structure [53]. They exhibit cytopathologic effects, e.g., inhibition of enzyme

activity and protein, RNA, and DNA synthesis; cell-cycle arrest; and apoptosis

[49]. The aldehyde-modified proteins accumulate in the photoreceptor cells by 3 h

after light exposure (Fig. 15.9). The retinal location of these proteins corresponds

Low DHA

a b c d

ONL

INL

RPE

INL

ONL

Low DHAhigh DHA high DHA

ONL

INL

RPE RPE

ONL

INL

RPE

Light exposure (-) Light exposure (+)

Fig. 15.8 Effect of retinal fatty acid composition on susceptibility to retinal light damage. Albino

mice with low (a, c; n-6/n-3 PUFA ratio in ROSs, 1.6) or normal DHA (b, d; n-6/n-3 PUFA ratio in

ROSs, 0.2) levels in the retina are exposed to white fluorescent light for 24 h. The eyes were

enucleated 7 days after light exposure. (a, b) With no light exposure, the difference in the retinal

DHA level does not result in marked morphologic changes. A retinal section from an albino rat not

exposed to light. (c, d) After light exposure, more severe loss of the ONL is seen in retinas from

mice with high DHA level than those with low DHA levels, suggesting that retinal DHA can be a

molecular target of photooxidation. INL inner nuclear layer
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well with the locations with increased terminal deoxynucleotidyl transferase dUTP

nick-end labeling (TUNEL) staining at 24 h and severely decreases the outer

nuclear layer (ONL) thickness 7 days after exposure. The posttranslational protein

modifications caused by these aldehydes occur early before apoptosis and subse-

quent photoreceptor cellular loss [54].

15.4 Role of Environmental Light

and Photooxidative Stress

15.4.1 Light-Adaptation Neuroprotective Phenomenon

Environmental light may regulate the cellular or tissue tolerance to photoreceptor

cell damage induced by more intense light exposure. Albino mice and rats raised in

bright (300–800 lx) cyclic light were resistant to light (1,700–3,000 lx for 24–72 h)-

induced photoreceptor cell apoptosis compared with animals raised in dim (5 lx)

cyclic light [55, 56] (Fig. 15.10). There is 6.5 times more DHA compared with

palmitic acid in the ROS of rats raised in dim (<10 lx) light and only 0.6 in bright

(400 lx) light. This is accompanied by shorter ROS, lower concentrations of

rhodopsin, and altered rates of rhodopsin regeneration [56]. Albino rats exhibit a

“photostasis phenomenon,” by which they adapt to environmental light to capture a

constant number of photons daily [57]. Therefore, retinal survival mechanisms

against harmful bright light may include control of photon capture and the efficacy

of visual transduction through control of the ROS DHA level [58].

ONL  

RPE  
a b

  
4-HNE 4-HHE 

Fig. 15.9 Initiation of reactive aldehyde-modified proteins by damaging light exposure in the

retina. The eyes are enucleated 3 h after the 5 k lx white fluorescent light exposure for 3 h. Positive

immunoreactivity against 4-HNE- and 4-HHE-modifided proteins is seen in the ONL (arrows) and
RPE (arrowheads) layers. 4-HNE, 4-hydroxynonenal; 4-HHE, 4-hydroxyhexenal
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15.4.2 Endogenous Defense Mechanisms Against
Photooxidative Stress

Rats raised in bright cyclic light had higher retinal levels of endogenous antioxidant

enzymes glutathione (GSH) peroxidase [59], GSH reductase [59], GSH

S-transferase [59], thioredoxin (Trx) [60], Trx reductase [60], and proteins modified

by 4-HNE compared with those raised in dim cyclic light [60]. Rats raised in bright

cyclic light also had more DNA binding of transcription factor nuclear-factor-E2-

related factor 2 (Nrf2) to the antioxidant-responsive element (ARE) [60]. A suble-

thal dose of 4-HNE in vitro upregulated the Trx system via the Nrf2-ARE pathway

and protected cells from H2O2-induced damage. Thus, in the early stages of cellular

stress, generation of 4-HNE at low concentrations plays an important role in cell

signal transduction and gene expression, and Nrf2-ARE-driven gene regulation is

involved in the molecular mechanism of the retinal neuroprotection phenomenon

[60]. Trx inducers, e.g., geranylgeranylacetone, an antigastric ulcer drug, or sulfo-

raphane, a component of broccoli sprout, effectively upregulate endogenous Trx in

retinal tissues [61, 62]. These compounds mimic an adaptive response mediated by

bright cyclic light. Accordingly, modulating the Trx system via activation of the

Nrf2/ARE pathway may be a molecular target to prevent photooxidative stress-

related retinal diseases such as AMD, RP, and photic maculopathy.

ONL
INL

a

INL

b

ONL
INL

c

ONL
INL

d

5-lux cyclic
light-raised 

400-lux cyclic
light-raised 

Damaging light exposure (-) Damaging light exposure (+) 

Fig. 15.10 Effect of environmental light on susceptibility to retinal light damage. Albino rats born

and raised for 4 weeks in dim (5 lx; a, b) or bright (400 lx; c, d) cyclic light are exposed to

damaging light (3,000 lx, 6 h; b, d). The eyes were enucleated 7 days after light exposure (b, d). (a,

c) Without damaging light exposure, mild loss of the ONL is observed in rats raised in bright light
(c) compared to rats raised in dim light (a). (b, d) After damaging light exposure, the ONL

thickness is markedly reduced in rats raised in dim light (b) compared to those raised in bright light
(d), indicating the presence of a light adaptation neuroprotective phenomenon. INL inner

nuclear layer
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15.5 Light Stress and Retinal Degeneration in Humans

Epidemiologic studies have suggested that excessive light enhances the progression

and severity of AMD and some forms of RP [63, 64]. Twelve of 14 publications in a

recent meta-analysis reported that light exposure, including longer/intense outdoor

activity and sunbathing, can be a risk factor for AMD; six of those articles reported

a significant association [65]. Hirakawa et al. measured the extent facial wrinkles,

which is associated with a history of sunlight exposure, in patients with age-related

maculopathy (ARM) [66] and found that the wrinkles were more severe in patients

with late ARM than in those with early ARM. This suggested that lifetime sunlight

exposure is an important factor in the progression of late ARM. Subretinal accu-

mulation of drusen is a major risk factor for development of AMD (Fig. 15.11).

Drusen, which contains esterified cholesterol-rich, apolipoprotein B-containing

lipoprotein particles, are constitutively produced by the RPE [67] and modified

bisretinoid (A2E), which forms because of a reaction between all-trans-retinal and
phosphatidylethanolamine [68]. Thus, drusen may be a waste product of RPE

Fig. 15.11 Accumulation of drusen in AMD. Fundus photograph (a), fundus autofluorescence

image (b), and optical coherence tomography (c) image of human macular degeneration show

intense subretinal accumulations of yellowish-white autofluorescent-positive drusen under the

RPE layer (c, arrows). The arrow in (a) indicates the scanning direction in (c)
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phagocytosis and retinoid cycle (Fig. 15.5). A proteomic approach to the study of

damaging light-exposed rat retinal specimens found that intense light exposure

increased 4-HNE-protein modifications in specific retinal proteins from several

functional categories including energy metabolism, glycolysis, chaperone,

phototransduction, and RNA processing [69]. Many of these proteins are common

components among the accumulated proteins in drusen from monkey [70]

(Fig. 15.12) and human [71] eyes. Accordingly, drusen form as a result of

subretinal/RPE accumulation of degenerated macromolecules such as proteins

and lipids, and photooxidation of fatty acids in photoreceptor cells triggers these

pathological steps (Fig. 15.13).

15.6 Filtering of Short-Wavelength Visible Light

15.6.1 Presence of Macular Pigment and Supplemental
Lutein/Zeaxanthin

The retinal defense mechanism against photooxidative stress includes superoxide

dismutase, catalase, glutathione peroxidase, and vitamins E and C. The pigment

concentrated in the macula lutea also is part of this defense system (Fig. 15.14). In

the 1980s, the carotenoids lutein ((3R30R,60R)-lutein), zeaxanthin ((3R,30R)-zea-
xanthin), and meso-zeaxanthin ((3R,30S;meso)-zeaxanthin) were identified as the

primary components in macular pigment [72, 73]. Meso-zeaxanthin, a stereoisomer

of zeaxanthin not in the natural diet, is synthesized enzymatically in the retina [74].

ONL

RPE

a b* *
RPE

ONL

4-HHE4-HNE

Fig. 15.12 Detection of reactive aldehyde-modified proteins in monkey drusen. Positive immu-

noreactivity against 4-HNE-modified (a) and 4-HHE-modified (b) proteins is seen in the RPE

(arrows) and drusen (asterisks)
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These three carotenoids absorb blue light and act as a filter that may attenuate

photochemical damage from short-wavelength visible light, since yellow filters

blue from white light (Fig. 15.15). These carotenoids also are antioxidants that

may protect against light-induced oxidative retinal damage by quenching oxygen

Light stress and AMD

DrusenPhotooxidation of photoreceptor
outer segments

Oxidative modifications in outer segments 
proteins↑

RPE phagocytosis↑
Malfunction of oxidized protein digestion in RPE

Proteasome overload
Endoplasmic reticulum stress

Accumulation of oxidized proteins
~ drusen accumulation

Light exposure (aging) Blue light

Photosensitization
Photoreceptor and RPE cell death
Bruch’s membrane injury
~choroidal neovascularization formation

•

•

•

•
•

•

•

Fig. 15.13 Possible mechanisms between chronic light exposure and AMD. Lifelong exposure to

environmental light causes malfunction of the RPE cell machinery of the photoreceptor outer

segment waste, resulting in drusen accumulation. Accumulated drusen can act as a photosensitizer

of blue light, which enhances photoreceptor and RPE cell damage via photooxidative stress

IPL 

OPL(Henle’s layer) 

OS 

Macular 
pigment 

light 

ONL 

RPE 

Fig. 15.14 Schematic distribution of macular pigments in a human macula. The highest concen-

tration of macular pigments (yellow oval) accumulates in the light path to the foveal photoreceptor

cells. IPL inner plexiform layer, OPL outer plexiform layer, OS outer segments
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radicals [75, 76]. A pathological study of autopsy eyes [77], measurements of

macular pigment optical density (MPOD) by resonance Raman spectroscopy [78,

79], and other methods [80] have shown that the concentration of macular pigment

in patients with AMD is significantly lower compared with normal, healthy eyes.

The MPOD levels decrease in light irises and in association with tobacco smoking,

low uptake of lutein and zeaxanthin, excessive light exposure [81–83], and aging

[78, 79, 84]. Growing evidence has suggested that intake of these carotenoids

protects against visual loss from AMD [85–88], although a large-scale randomized

control study failed to find a positive effect of adding lutein/zeaxanthin to a nutrient

formulation that included vitamins C and E, beta carotene, and zinc in reducing the

risk of progression to advanced AMD [89].

15.6.2 Yellowing of Crystalline Lens with Aging
and Implantation of Yellow-Tinted Intraocular
Lens During Cataract Surgery

The absorption properties of the cornea and crystalline lens help protect the retina

from light damage. Yellowing of the crystalline lens with aging causes a progres-

sive increase in absorbance of visible light in the blue range (Fig. 15.16); thus, the

aging human crystalline lens also blocks phototoxic blue light [90–92]. Removing

the crystalline lens during cataract surgery increases the amount of optical radiation

that reaches the retina, and implanting an intraocular lens (IOL) lowers the ocular

defenses against photic retinopathy [93]. IOLs with UVR-blocking dye bonded to

optic polymers were introduced in the early 1980s [93] and are commonly

implanted during cataract surgery. The transmission properties of the colorless

UVR-blocking IOLs may not be comparable to those of the aging crystalline lens

in absorbance of blue light, which causes Ham’s-type retinal phototoxicity

[14]. Epidemiologic studies have suggested that the odds ratios of AMD prevalence

are 1.7–3.8 in eyes after cataract surgery [94–96] (Fig. 15.17). In prospective

studies that spanned 5–10 years, the Beaver Dam Eye Study and Blue Mountains

Green Yellow 

Blue Magenta 

Cyan Red White 

Fig. 15.15 Color circle.

A pair of opposite ends of

each diameters of the circle

are complimentary colors.

Yellow specifically filters

blue from white light
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Fig. 15.16 Cataract and IOLs. (a) Yellowing of the crystalline lens with aging. (b) UVR-blocking

clear IOL. (c) UVR- and blue-light-blocking yellow-tinted IOL
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Fig. 15.17 Risk of cataract surgery in AMD prevalence and incidence. Each bar indicates the
95 % confidence interval of the odds ratio
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Eye Study reported a significant relation between cataract surgery and increased

risk of AMD [97–100]. However, the Age-Related Eye Disease Study did not find a

significant association between cataract surgery and development of the dry- or

wet-type of AMD [101] (Fig. 15.17). To compensate for reduced filtering of blue

light by the colorless UVR-blocking IOLs, blue-light and UVR-absorbing yellow-

tinted IOLs made of rigid polymethylmethacrylate were introduced in the 1990s

[102]; later these were made of foldable silicone or soft acrylic material

(Fig. 15.16). Yellow-tinted IOLs that were evaluated in experimental studies confer

a protective effect against retinal photooxidative stress in photosensitizing

A2E-laden RPE cells exposed to blue light [103] and artificial sunlight [104]

in vitro and in rats [105], mice [106], and rabbits [107] exposed to blue or white

light in vivo. Obana et al. reported higher levels of macular pigment in eyes

implanted with yellow-tinted IOL than in eyes implanted with clear IOLs 1 year

and longer after cataract surgery [108]. A large clinical trial should evaluate the

effects of blue-blocking filters on AMD development and progression and identify

the best balance of filtering spectra for visual function.

Disclosure Chapters 3, 4, and 5 include text extracts from Reference [109] that were used with

permission of Future Medicine Ltd.
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